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Abstract.  Objects are studied as higher-level net tokens having an
individual dynamical behaviour. In the context of Petri net research it i s
quite natural to also model such tokens by Petri nets. To distinguish them
from the system net, they are called object nets. Object nets behave like
tokens, i.e., they are lying in places and are moved by transitions. In
contrast to ordinary tokens, however, they may change their state (i.e. their
marking) when lying in a place or when being moved by a transition. By
this approach an interesting and challenging two-level system modelling
technique is introduced. Similar to the object-oriented approach, complex
systems are modelled close to their real appearance in a natural way to
promote clear and reliable concepts. Applications in fields like workflow,
agent-oriented approaches (mobile agents and/or intelligent agents as in AI
research) or open system networks are feasible. This paper gives a precise
definition of the basic model together with a suitable process semantics. The
focus is set more on basic concepts and their fundamental study than on high
modelling capability.

1   Introduction

With the emergence of object systems and object-oriented programming also a number
of papers have been published combining this modelling technique with Petri net
models [2], [6], [7], [11]. This appears to be quite natural since both, object-oriented
modelling as well as modelling by Petri nets, intend to support software development
by abstraction of objects from the real world and then using the model to build a
language-independent design organized around these objects. Both approaches promote
better understanding of requirements, clearer designs, and more maintainable systems.

Object-oriented modelling means that software is designed as the interaction of
discrete objects, incorporating both data structure and behaviour [10]. However, in
most contributions, if formal techniques for describing the behaviour of objects in an
object-oriented model are provided at all, these are usually equivalent to finite
automata. In particular if concurrent behaviour is important, system modellers have to
fall back on rather intuitive and informal methods. Here are the advantages of system
modelling by Petri nets. They combine intuitive approaches with a formal tratment of
systems and behavioural description. In addition they provide a deep and fundamental
theory of concurrency.
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From a Petri net view objects appear in the form of tokens. During the last decade 
tokens have been considered as more and more complex data objects. In this paper we
continue our previous work [13] by adding dynamical aspects to such token-objects.
To integrate this approach into the systematics of Petri net modelling, it is quite
natural to consider dynamical tokens as Petri nets themselves.

Before giving an introduction to the formalism used and an overview on the
structure of the paper we motivate the approach by some less formal examples. In the
first example there are three tasks A, B and C to be processed on three machines M1,
M2 and M3 (Fig. 1.1.). There are limited resources for the machines of the following
kind. Machines M1 and M2 are operated by an operator O1. He can only operate one of
the machines M1, or M2 at a given time. The same holds with operator O2 with
respect to M1 and M3. Machine M1 can work, in mutual exclusion, only in a mode 1
with O1 or in a mode 2 with O2. Each of the tasks is divided in two subtasks, e.g. a1

and a2 in the case of A. The subtasks have to be executed by particular machines, as
specified on the left-hand of Fig. 1.1. In the case of task A the second subtask a2 must
be executed on M2 after the execution of a1 on M1. We take an „object-oriented“

A: a1/M1  →  a2/M2

B: b1/M1  →  b2/M2

C: c1/M1  →  c2/M3

Fig. 1.1. Three machines with 3 tasks

Fig. 1.2. Three machines example as object system
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approach in the sense that the task is to be modelled as an object that enters machine
M1 and leaves it after execution to be then transferred to machine M2. Attached with
the object there is an „execution plan“ specifying the machines to be used and the
order for doing so. Also the current „status“ of the execution is noted.

This situation is formalized by the Petri nets of Fig. 1.2., where the two modes of
machine M1 are modelled by two different transitions M11 and M12. Mutual exclusion
is obtained by the places p2, O1 and O2. Initially, all three tasks A, B and C are in the
place p1 (in the net on the right-hand side). By the „object -oriented“ approach they are
not represented by an unstructured token, but by their entire execution plan, as given
on the left-hand side, also as Petri nets. Note that by the marking in the nets A, B and
C also their „status“ description is given.

Labels at a subtask of the form <mach11> indicate that this subtask can be executed
by any machine with the same label, i.e. by M11 in this case. Following this
convention, transition M11 of the „machine net“ on the right-hand side of Fig. 1.2. can
occur with respect to A in its input place p1. The whole „task net“ is then moved as a
token to the output place p3, as shown in Fig. 1.3. The internal token of A is also
moved from s1A to s2A to update the current execution „status“ of the task.

To have a precise and unambiguous notation we will distinguish between a system
net and one or several object nets. In the example presented before, the „machine net“
is the system net whereas the „task nets“ A, B and C are the object nets. The relation
between transitions of the system net and transitions of the object net will be called
the interaction relation. This relation is represented by labels (enclosed  sharp brackets)
in the graphical representation.

In the preceding example the executions of the tasks A, B and C are independently
performed. This type of concurrency is restricted only by resource limitations of the
system net. For instance, in the marking given in Fig. 1.3. task A can be executed on
machine M2 while task B (or task C) is concurrently executable on M12. A more
realistic application to flexible manufacturing systems is given in [19].

Fig. 1.3. Follower marking of the object system from Fig. 1.2.
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Another type of concurrency is exemplified by the object system of Fig. 1.4. In its
object net, after termination of the subtask a1 (on machine M1), there are two
successor tasks a2 and a3. They can be executed independently if there are suitable
functional units (machines) being able to perform the execution concurrently. The
system net in Fig. 1.4. (on the right-hand side) offers such a suitable system
architecture: after the occurrence of transition t1 two identical descriptions of the object
net (both with its current marking) are generated and placed in p5 and p7. With respect
to the instance of the object in p5 the subtask a2 is executable on M2, while
concurrently the subtask a3 of the object net instance in p7 is executed by M3. The
„results“ of the partial executions are then „brought together“ by transition t2, which
outputs the combined and final result to the place p4. Hence, from an intuitive point
of view, M2 and M3 produce partial results that are independent from each other. They
are „put together“ into a single task description by transition t2. Here the precise
semantics of this action in terms of Petri nets will be left open. This will be one of
the results to be described in section 3. We will refer to this kind of concurrency as
intra-object concurrency, as opposed to concurrent behaviour of two different objects.

Using standard definitions of Petri net theory the preceding examples can be encoded
either as a „flat“ net by identifying corresponding transitions or as a coloured net with
appropriate data type definitions in the colour sets (compare with [8]). In this paper we
follow a different approach: object and system nets are defined (as simple as possible)
as Elementary Net Systems ("EN systems", formerly condition/event-systems),
including the occurrence rule of this net type. Using the individual occurrence rules of
the component nets, by combination of the individual EN-systems, Object Systems
will be introduced, which allow to model real systems directly in the style of object
oriented modelling. In doing this, we are led by the experience that has been made by
the development of higher Petri nets (Pr/T-nets, coloured nets) from "lower" Petri nets
(C/E-nets, P/T-nets), namely, that new features should be introduced in accordance
with basic principles of concurrency theory, as formulated by C.A. Petri.

Fig. 1.4. Machine example with concurrent execution
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For the first time, Petri nets as dynamical objects have been considered for
describing the execution of task systems in systems of functional units [4],[13],[14].
In [16] the formalism is extended in such a way that the objects are allowed to be
general EN systems not necessarily restricted to (non-cyclic) causal nets.

Object-oriented modelling and programming, as appearing in current literature, is
characterized by a specific object notion together with many features like generation
and deletion of objects, defining classes and subclasses, inheriting attributes and many
more. We do not incorporate all these features in our model as we are concentrated on
such properties that can be expressed on the level of EN systems. This is done to
master the complexity of the new approach. It is easier to define new models than to
derive formal results. However, working on formal theories gives important hints for
a suitable design of the model. Where the system net and all object nets are EN
systems object systems will be called Elementary Object Systems.

Section 2 is concentrated on the study of object systems having only a single
object net (Unary Elementary Object Systems). This class is introduced to investigate
the behaviour of concurrent task execution. Different notions of markings are
introduced. Finally a suitable formalism for the modelling of „fork/join“-concurrency
structures is proposed. Also a process-oriented semantics for unary elementary object
systems is given (section 3). One of the main formal results of this paper is a theorem
characterizing processes of unary elementary object systems by classical processes of
EN systems.

In section 4 Unary Elementary Object Systems are studied that allow for more than
a single object net. This class is restricted to system nets that essentially are state
machines. Therefore duplication of objects is not possible as well as intra-object
concurrency. This restriction is not necessary. It has only been made to allow for a
simpler occurrence rule and simpler semantical descriptions. On the other hand, a new
feature is introduced with this model: the direct interaction of different object nets.
Further complex examples using such an „inter-object communication“ are presented,
showing advantages of the object-oriented approach.

The main results of this contribution may be summarized as follows:
• A simple and clear notion of object Petri net is introduced such that most principles

of the elementary net theory are respected.
• A formal semantics of the behaviour is given for this net class.
• It was discovered that from the different choices for the definition of markings and

occurrence rules, not all of them allow a meaningful and consistent modelling of
object-oriented concurrency.

• Processes of Elementary Net systems are extended to the model in a natural way. A
low-level characterization of such higher-level processes is given and the
equivalence is formally proven.

• Unary object systems are consistently extended to multiple objects.

At the end of this introduction we now give a less artificial example of an unary
elementary object system with intra-object concurrency. In the example a workflow of
the Dutch Justice Department is modelled. It has been used for demonstration of
modelling and analysis of workflow applications using Petri nets [1].
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<verifying>

secretary

<compl>

official2

<printing>

printer

<recording>
<ex>

official1

<prosec> prosecutor

<summ>
<char>

tribunal

<susp>

official3

join

<join1>

Fig. 1.6. System net of the work flow example

<summ>

dec1

<prosec>

suspend

<sus p>

charge

<prosec>

<char>

<prosec>

<join1>

collect

<verifying>

verify

<compl>

complete

<printing>

print

<recording>

record

dec2

dec3

examine

<ex>

summon

Fig. 1.5. Object net of the work flow example
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The example was introduced as follows. When a criminal offence happened and the
police has a suspect a record is made by an official. This is printed and sent to the
secretary of the Justice Department. Extra information about the history of the suspect
and some data from the local government are supplied and completed by a second
official. Meanwhile the information on the official record is verified by a secretary.
When these activities are completed,  the first official examinates the case and a
prosecutor determines whether the suspect is summoned, charged or that the case is
suspended.

Originally the case was modelled by a single and „flat“ net for the workflow. A
slightly modified version is given as an object net in Fig. 1.5. Observe that, indeed,
verification and completion are concurrent subtasks. The labels in sharp brackets refer
to the corresponding functional units (in Fig. 1.6.) executing these subtasks. For
instance „printing“ is executed by a printer and „verifying“ is executed by the
secretary. Official1 is executing two subtasks (record and examine) for this object net.
As there are three possible outcomes of the decision of the prosecutor that are followed
by different actions, the decision is modelled by three transitions dec1, dec2 and dec3.

Though being more complex the advantage of this kind of modelling by object nets
lies in the direct representation of the functional units. The system net in Fig. 1.6.
reflects the organisational structure of the system while the object net (Fig. 1.5.)
represents a particular workflow. Obviously there may be different workflows (object
nets) for the same system of functional units (system net). The simultaneous
simulation of different such executions can be used to determine bottlenecks and
execution times.

Fig. 2.1. Elementary object system "con-tasks"
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2   Unary Elementary Object Systems

In this section Unary Elementary Object Systems are introduced, consisting of a
system net SN and an object net ON, both being elementary net systems. These are
used in their standard form as given in [12].
An Elementary Net System (EN system) N = (B,E,F,C) is defined by a finite set of
places (or conditions) B, a finite set of transitions (or events) E, disjoint from B, a
flow relation F ⊆ (B×E) ∪ (E×B), and an initial marking (or initial case) C ⊆ B. The
occurrence relation for markings C1 , C2 and a transition t is written as C1[t > C2 or
C1→t C2. If t is enabled in C1 we write C1[t > or C1→t . These notions are extended to
words w ∈ E* as usual and written as C1[w> C2 (or C1 →w C2 ) and C1[w> (or C1→w),
respectively. N is called a structural state machine if each transition t ∈ T has exactly
one input place (|•t| = 1) and exactly one output place (|t•| = 1). N is said to be a state
machine if it is a structural state machine and C contains exactly one token (|C| = 1).
FS(N) := { w ∈ E* | C [w> } is the set of firing or occurrence sequences of N , and
R(N) := {C1 | ∃ w : C[w>C1} is the set of reachable markings (or cases), also called
the reachability set of N (cf. [9]). Processes of EN systems will be defined in the
appendix .

Definition 2.1
An unary elementary object system is a tuple EOS = (SN,ON,ρ) where
SN= (P,T,W,Mo) is an EN system with |Mo| =1, called system net of EOS,
ON = (B,E,F,mo) is an EN system, called object net of EOS, and
ρ ⊆ T × E is the interaction relation.
An elementary object system is called simple if its system net SN is a state machine.

Fig. 2.1. gives an example of an elementary object system with the components of an
object net ON on the left-hand and a system net SN on the right-hand side. The
interaction relation ρ is given by labels <in> at t and e iff tρe ("in" stands for
interaction number n). A similar object net is used in Fig. 2.3. (i1 is removed to
illustrate autonomous transitions), but with a different system net. By this system net
the "parallel" transitions e2 and e3 perform in a serial way. Since the system net is a
state machine, the object system is simple.

Before coming to formalization we describe the intuition behind the occurrence rule
to be defined afterwards. The object net ON of Fig. 2.1. should be thought of lying in
place p1 of the system net SN. It is represented by a token in that place. The
occurrence of transition t1 of the system net SN should coincide with e1 in the object
net ON by the interaction i1. The object net ON is then removed from p1 and added to
p2 and p4 in two copies, both of them being in the marking {b2,b4}. Then we observe
some concurrent behaviour ending with a kind of „join“ operation by the interaction i4

of t7 and e4. Furthermore, there are transitions without interaction like the so-called
"autonomous" occurrences of t8 or e5

In the definitions of the occurrence rule we will use the following well-known
notions for a binary relation ρ. For t ∈ T and  e ∈ E  let  tρ := {e ∈ E | (t,e) ∈ ρ } and
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ρe: = {t ∈ T | (t,e) ∈ ρ}. Then tρ = Ø means that there is no element in the interaction
relation with t.

Definition 2.2
A bi-marking of an unary elementary object system EOS = (SN,ON,ρ) is a pair
(M,m) where M is a marking of the system net SN and m is a marking of the object
net ON.
a) A transition t ∈ T is enabled in a bi-marking (M,m) of EOS if tρ = Ø and t is
enabled in M. Then the successor bi-marking (M’,m‘) is defined by M→tM' (w.r.t.
SN) and m‘=m. We write (M,m) →[t,λ] (M‘,m‘) in this case.
b) A pair [t,e] ∈ T × E is enabled in a bi-marking (M,m) of EOS if (t,e) ∈ ρ and t and
e are enabled in M and m, respectively. Then the successor bi-marking (M‘,m‘) is
defined by M →t M‘ (w.r.t. SN) and m →e m‘ (w.r.t. ON).
We write (M,m) →[t,e](M‘,m‘) in this case.
c) A transition e ∈ E is enabled in a bi-marking (M,m) of a EOS if ρe = Ø and e is
enabled in m. Then the successor bi-marking (M‘,m‘) is defined by m →e m‘ (w.r.t.
ON) and M‘ = M. We write (M,m) →[λ,e] (M‘,m‘) in this case.

In transition occurrences of type b) both the system and the object participate in the
same event. Such an occurrence will be called an interaction. By an occurrence of type
c), however, the object net changes its state without moving to another place of the
system net. It is therefore called object-autonomous or autonomous for short. The
symmetric case in a) is called system-autonomous or transport, since the object net is
transported to a different place without performing an action.

 

Fig. 2.2. Successor marking of Fig. 2.1.
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By extending this notion to occurrence sequences for the EOS of  2.3., for example,
we obtain the following sequence: [λ,e1], [t1,λ], [t4,e3], [t5,e2], [t6,λ], [t7,e4], [λ,e5] .
After this sequence, the initial bi-marking is reached again. We call this the occurrence
sequence semantics. It is possible to characterize the set of all such occurrence
sequences of simple EOS by some kind of intersection of the individual occurrence

sequences of SN and ON. As simple object systems appear quite frequently in
applications, this definition of a bi-marking and transition occurrence semantics is
useful. However, the question must be asked whether it is also adequate for general
EOS.

To discuss the problem consider the EOS of Fig. 2.1. again in a bi-marking (M,m)
= ({p3,p5},{b3,b5}) that is reached after the occurrence sequence [t1,e1], [t2,e2], [t3,e3].
Apparently this notion of a bi-marking is not adequate since the distributed character
of this state is not represented, namely it is not visible that b3 and b5 hold in different
copies of the object net, as graphically visualized in Fig. 2.2. In the next transition
occurrence the tokens b3 and b5 should be used, since these tokens represent those parts
of the object net processes which are the „most advanced“. It might be possible to
modify the object system in such a way that the tokens b2 and b4 are used by a
transition occurrence. This would be contraintuitive since b2 represents a part of the
process of one copy of the object net which is „less advanced“, but where the other
copy was more progressive. In the same way one could argue for b4 .

A solution different from bi-markings is a marking where the pairs (ON,{b3,b4})
and (ON,{b2,b5}) are assigned to p3 and p5, respectively (cf. Fig. 2.2.). As shown by a
counter example in [18], [19] also such a modelling is not adequate for non-simple
unary elementary object systems. By this observation we are lead to follow a different
approach for representing markings of object systems. Instead of object net markings
the corresponding processes will be used. In a bi-marking of an elementary object
system, a place may be empty or contain the object net ON, being in some specific

Fig. 2.3. Elementary object system "ser-task"
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state of its execution. Such a state is now described by a process of the object net ON.
Hence a marking associates a process proc ∈ PROC(ON) to every place p ∈ P. In
order to distinguish this form of a marking from the one in the previous section, we
call it a "process-marking" or in short a "p-marking".

Definition 2.3
A process-marking (p-marking)     M     of an elementary object system EOS = (SN,ON,ρ)
is a mapping     M    : P → PROC(ON), associating to each place of the system net SN a
process proc of the object net ON (including the empty process). If in a p-marking M
of an EOS     M    (p) = Ø (the empty process), we say the place is empty, else occupied.
The set CM := {p ∈ P |     M    (p) ≠ Ø } of occupied places defines a case or marking of
EOS.

In this definition PROC(ON) denotes the set of all processes of ON. (For definitions
concerning processes see appendix.) For introducing the new occurrence rule, consider
the EOS of Fig. 2.1. In the initial marking the process consisting of b1 is in the place
p1 of the system net. Now consider a follower state after the occurrence of [t1,e1],
[t2,e2] and [t3,e3]. For the next step t7 is enabled since all its input places are non-
empty and (t7,e4) ∈ ρ. But in addition e4 should be enabled in ON. The preconditions
of e4 are satisfied if all copies of the object net processes lying in the input places in
p3 and p5 of t7 are taken into consideration (see 2.4.). The joint information is obtained
by the least upper bound „lub“ of these processes.

Fig. 2.4. Elementary object system "con-task" with p-marking
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Definition 2.4
Let     M     be a p-marking of an unary elementary object system EOS, t∈T a transition of
the system net SN and e ∈ E a transition of the object net ON.
To enable t, it is necessary in any of the following cases a) and b) that all input places
p ∈ •t are occupied, the process LUB := lub({    M    (p) | p ∈ •t }) exists and all output
places p ∈ t• are empty in     M    .
In case a), where tρ=Ø, transition t is enabled and we write     M    →[t,λ].
In case b), where tρe, the pair [t,e] is enabled (denoted     M     →[t,e]) if e is enabled for
LUB (cf. appendix).
For both cases a) and b) the follower p-marking     M    ' is defined by     M    '(p) = Ø if p ∈ •t,
and for p ∈ t• we define      M    '(p) = LUB in case a) and     M    '(p) = LUB°e in case b) and
    M'(p) =     M    (p) otherwise.
(Case a) is called a system-autonomous or a transport occurrence and is denoted by
    M    →[t,λ]     M    ‘ whereas case b) is called an interaction and is denoted by     M     → [t,e]    M    ‘).
case c): If in some place p ∈ P an object net transition e ∈ E with ρe=Ø is enabled in
proc ∈     M    (p), we write     M    →[λ,e] and define a follower marking     M' by

    M'(p) = proc°e and
    M'(p') =     M    (p) for p'≠ p.

(Case c) is called an object-autonomous or an autonomous occurrence and is denoted
by     M    →[λ,e]     M    ‘).

In Fig. 2.5. all cases a), b) and c) of the occurrence rule are represented symbolically.
In this figure process inscriptions are not given. In general, however, it may depend

Fig. 2.5. Object system occurrence rule: a) transport, b) interaction, c) autonomous
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on these inscriptions whether the process LUB exists or does not exist. Next we
extend the definition to sequences of the form [λ,e1] [t1,λ] [t2,e2] [t3,e3] ∈ ((T∪{λ})×
(E∪{λ}))*.

Definition 2.5
For an elementary object system EOS = (SN,ON,ρ) we consider occurrence sequences
w∈ Q* where Q:=   T   l×   E   l and    T   l:= T∪{λ},    E   l:= E∪{λ}. For such sequences and p-
markings     M     and     M    ' the relation     M     →w     M    ' is inductively defined by :

1.     M     →w     M     if w = [λ,λ]
2.     M     →wq     M    ' if w ∈ Q*, q ∈ Q and     M     →w     M    '' ,     M    ''→q     M    ' for a p-marking       M    ''.

Definition 2.6
The initial p-marking of EOS is defined using the initial markings Mo and mo of SN
and ON, respectively:     M    o(p):= if p∈Mo then mo else ∅. (Note that in this context mo

means the initial process of EOS, as defined in the appendix).

Definition 2.7
Given an elementary object system EOS = (SN,ON,ρ), then FS(EOS) := { w ∈ Q* |
∃     M    :     M    o →w     M    } is the set of occurrence sequences of EOS, and
R(EOS) := {    M     | ∃ w :     M    o →w     M     } is the set of reachable p-markings, also called the
reachability set of EOS.

3   Processes of Unary Elementary Object Systems

The definition of processes of unary elementary object systems is quite obvious if
autonomous occurrences are not considered. To give an example, in Fig. 3.2. a
process of the elementary object system "con-tasks" EOS = (SN,ON,ρ) from Fig. 2.1.
is constructed as follows. A process of the system net SN is extended in such a way
that the places contain the object net process in the corresponding p-marking.
Autonomous transitions are represented in black. Throughout this section all
elementary object systems are assumed to be unary.

Concurrency of transitions is a fundamental topic of Elementary Net Systems.
Transitions may occur concurrently if their input and output places are disjoint. A
more interesting situation occurs if these transitions occur in markings where the
object net process takes part in the system net transition occurrence. This is formally
treated in lemma 3.1. and graphically represented in Fig. 3.1. a) and b) for the case
n=2.

Lemma 3.1
Let EOS = (SN,ON) be an unary elementary object system and „t“ a system-
autonomous transition of SN and „e“ an object-autonomous transition of ON.
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Suppose •t= {p1} and |t•| = n ≥ 1 and     M    1(p1) = proc°e for some p-marking     M    1 (i.e. p1

contains a process  where „e“ is „at the end“ (see appendix)). Then there are p-
markings     M     and     M    ' such that

    M     →w     M    '   where  w=[λ,e][t,λ]  and
    M     →v     M    '   where  v=[t,λ][λ,e]n.

Proof: Starting from     M    1 p-markings     M     and     M    ' are constructed as follows in a), b):
a) Since     M    1(p1) has the form proc°e there is a predecessor marking     M     such that
    M     → [λ,e]     M    1 where     M    (p1) = proc and     M    (p) =     M    1(p) for p ≠ p1

b) Since t is enabled in     M    1 there is a follower marking     M    ' of     M    1 (i.e.     M      1   →[t,λ]     M    ’)
where proc°e is contained in all n output places of t. By a) and b) we have     M     → [λ,e]     M    1

→[t,λ]     M    '.
To prove the second part of the lemma, we observe that [t,λ] is also enabled in     M    ,

since the unique input place p1 of t contains the process proc i.e.     M     → [t,λ]     M    2 for some
p-marking     M    2. In     M    2 all n output places of t contain the process proc in each of which
the transition e is enabled. This leads to     M     →[t,λ]     M    2 →u     M    ' with u = [λ,e]n.                                

                        q . e . d . 

While object autonomous transition occurrences are not part of SN processes, they
should be visible in the object system process. For distinction we denote them by

e

t

t

e

e

t

[ e]

a)

b)

c)

Fig. 3.1. Concurrent autonomous transitions
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small and solid (black) transitions as in Fig. 3.1. and 3.2. Furthermore it is straight
forward to introduce an equivalent step containing both transitions as in Fig. 3.1. c).
We will call this a reduced process equivalent.

Next we inductively define a process of an elementary object system, having a set
of places    P   π and a set of transitions    T   π, together with mappings φ and µ. For a place x
∈    P   π or a transition y ∈    T   π of this process φ(x) and φ(y) give the corresponding place
or transition of the system net, respectively. µ(x) will be the process of the object net
ON associated to a place x. Furthermore for each place x ∈    P   π the interaction relation
ρ ⊆ T × E is extended to ρx ⊆ Tπ × Eπ, where Eπ is the set of places of the process
µ(x). These mappings are given by inscriptions in the example of Fig. 3.2. as
explained after the following definition.

Definition 3.2
For a given firing sequence w ∈ FS(EOS) of an unary elementary object system EOS
= (SN,ON,ρ), where SN = (P,T,W,Mo), ON = (B,E,F,mo), a process proc(w) =
(   P   π,   T   π,   F   π,φ,µ) is a structure consisting of a causal net (   P   π,   T   π,   F   π) and mappings

φ  :    P   π∪   T   π → P∪T∪E and µ:    P   π → PROC(ON).
proc(w) is defined by induction over Q*. Furthermore for each object net process proc2

= (Bπ,Eπ,F2π,φ2) = µ(x), x ∈    P   π an extended interaction relation ρx ⊆ Tπ×Eπ is defined.
I. If w = λ, then    P   π = {pπ | p ∈ Mo} with φ(pπ) = p and µ(pπ) = mo for all pπ ∈P. ρx is
empty.
(Note: markings are interpreted here as processes in the form of an initial process (see
appendix).
II. Let     M    o →w     M     →[u,v]    M    ' and proc(w) = (   P   π,   T   π,   F   π,φ,µ) be the process of w. Then for
[u.v]∈Q we define proc(w[u,v]) = (   P   'π,   T   'π,   F   'π,φ',µ') for each of the cases a), b) and c) of
definition 2.4:
a) If [u,v] = [t,λ] and tρ=∅, then there is a subset P1⊆Pπ having no output transitions
(i.e.    P   1• = ∅) such that φ(   P   1) = •t. By the enabeling rule all places x in    P   1 contain a
process µ(x)=proc1 such that their least upper bound LUB:=lub{µ(x)|x∈   P   1} exists. To
obtain (   P   π‘,   T   π‘,   F   π‘,φ‘,µ‘) we have to do the following steps :
   a1) Add a new set P2 of places to    P   π such that φ‘(P2)=t•, (i.e.    P   π‘ =    P   π ∪ P2).
   a2) Add a new transition y with φ‘(y) = t to    T   π (i.e.    T   π‘ :=    T   π ∪ {y}).
   a3) Add arcs from P1 to y and from y to P2

(i.e.:    F   π‘ :=    F   π ∪ { (x,y) | x ∈P1 } ∪ {(t‘,p)|p∈P2}).
   a4) Define φ‘ = φ for all old places and transitions and for the new ones as defined                
in a1) and a2).
    a5) Define µ‘(x) = µ(x) for the old places x ∈    P   π and for the new places x2 ∈ P2 with
φ(x2) ∈ t• we define µ‘(x2) := LUB (i.e. the output places of t contain the same process
LUB. ρx for x ∈ P2 remains as in the old places.
b) If [u,v] = [t,e] and tρe, then P1 exists as in case a). The steps b1) to b4) are defined
as a1) to a4), respectively.
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Fig. 3.2.: A process of the object system „Con-Task“ from Fig. 2.1.
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b5). Define µ‘(x) = µ(x) for the old places x ∈ Pπ and for the new places x2 ∈ P2 with
φ(x2) ∈ t• we define µ‘(x2) :=LUB°e (i.e. the output places of t contain the process
LUB extended by e ). (y,e2) is added to ρx for x ∈ P2 and the new e2 with φ2(e2) = e.
c) If [u,v] = [λ,e] and ρe = ∅, then there is a place x∈Pπ with x•=∅ such that "e" is
enabled in the process proc1=µ(x).
   c1) Add a new place x2 to Pπ (i.e.    P   π‘ =    P   π ∪ {x2}).
   c2) Add a new transition y with φ(t) = e to    T   π (i.e.    T   π‘ :=    T   π ∪ {y}
   c3) Add arcs from x to y and from y to x2 (i.e.:    F   π‘ :=    F   π ∪ { (x,y), (y,x2)}).
   c4) Define φ‘ = φ for all old places and φ'(x2) = φ(x1) .
   c5) Define µ‘(x) = µ(x) for the old places x ∈    P   π and for the new place x2 ∈ P2 we
define µ‘(x2) :=proc1°e (i.e. the output places of y contain the same processes as the
input places but extended by a new e2 with φ2(e2) = e). ρx is not modified.

An example of an object system process is shown in Fig. 3.2. In the graphical
representation φ  and µ are given as follows. Places are named x1, x2,... and
inscriptions at such places have the form xi/φ(xi) (actually, due to the graphical tool
used: xi/φ(xi)). The object net process µ(x) is drawn into the ellypse of x. y1,y2,...
denote transitions. They have inscriptions of the form

a) [φ(yi)] if φ(yi) = ti is a transport, i.e. tiρ = Ø,
b) [φ(yi),e] ∈ T × E if φ(yi) = ti interacts with e, i.e. tiρe and
c) [φ(yi)], φ(yi) = e ∈ E if e is autonomous i.e. ρe = Ø.

Transitions y of case c) are called autonomous and drawn as black rectangles.

Lemma 3.3
With the notation of def. 3.2 the following holds: for each place x ∈    P   π , procx =
(Bπ,Eπ,Fxπ,φxπ) = µ(x), and e ∈ Eπ with ρπe ≠ ∅ there is some transition y with
y<proc(w)x (i.e. y "before" x) such that yρπe.

Proof: e is either introduced to procx in µ(x) in step II b) of definition 3.2 (then yρπe
for some y ∈ •x ) or e is created with a copy of proc2 from some x ∈ •y in one of the
other steps (in that case the statement holds by induction).                           q.e.d.

Definition 3.4
An autonomous transition y of an object system process as introduced in definition
3.2 c) has a unique input place x1 and a unique output place x2 with φ(x1) = φ(x2).
Therefore identifying x1 and x2 to a new place x and eliminating y gives a consistent
notion of a process. For the merged place x the contained process µ(x) is defined by
µ(x1) if x2• ≠ Ø and µ(x2) if x2• = Ø. The causal net (   P   π,   T   π,   F   π,φ,µ) obtained by
iterating this construction until all autonomous transitions are eliminated is said to be
"in reduced form".

The reduced form of a process can be interpreted as process where autonomous
transition occurrences are hidden.
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It is a general observation in net theory that behavioural effects appear in a similar
way in high level nets, e.g. Coloured Petri Nets, as in low level nets, for instance in
Elementary Net Systems. It is often easier to study these effects in the low level form
to profit from the gained experience for use with high level nets. This was our major
motivation to search for a low level equivalent of the high level process notion of
object systems. In fact, proving the theorem of this section has much influenced our
efforts in finding a consistent formalisation of the object system semantics.
Furthermore the theorem provides general insight into the nature of distributed
computing.

A natural approach for representing processes of elementary object systems is to
construct the two processes of the system and the object net side by side as co-
operating processes. This is done in Fig. 3.3. for the EOS "con-tasks" (Fig. 2.1.) and
its process (Fig. 3.2.). This figure contains at the top a process of the object net ON
from the elementary object system EOS = (SN,ON,ρ). Below a process of the system
net SN is drawn. Interacting transitions t and e with tρe are connected. A formal
definition follows the induction principle of def. 3.2 and is not given here in full
detail.

Definition 3.5
Let EOS = (SN,ON,ρ) be an elementary object system with SN= (P,T,W,Mo) and ON
= (B,E,F,mo). Given a process proc = (   P   π,   T   π,   F   π,φ,µ) of EOS (def. 3.2) having a latest
place xω (see appendix for a definition) a cop-process (process in co-operating process
form) of EOS is defined as a triple

Θ = (proc1,proc2,ρπ) where
proc1= (Pπ,Tπ,F1π,φ1) ∈ PROC(SN),
proc2= (Bπ,Eπ,F2π,φ2) ∈ PROC(ON) and

                                 ρπ ⊆ Tπ × Eπ.

Fig. 3.3. Cooperating process representation of a subprocess from Fig. 3.2.

181Concurrency in Communicating Object Petri Nets



where proc1 = (   P   π,   T   π,   F   π,φ) (i.e proc without µ), proc2 = µ(xω) and ρπ as defined in def.
3.2 w.r.t. proc2 and xω i.e. ρπ := ρxω.

For an example consider the process of Fig. 3.2. from the beginning x1 up to the
place x7 (and delete y6, x8, y7, x9 and x10). With respect to this shorter process we
construct the reduced form (def. 3.4) by merging x6 and x7 to a new place x with µ(x)
= µ(x7) (since x7• = Ø) and φ1(x) = φ1(x6) = φ1(x7) = p6. x is a latest place xω. Fig. 3.3.
gives the result of the construction: proc1 is drawn in the lower part and proc2 = µ(x7)
in the upper one. The definition can be extended to cover the case of the whole process
of Fig. 3.2. as well. Then the object net processes in the terminal cut (cf. appendix) of
proc(w) should have a least upper bound LUB. Note that a cop-process representation
of EOS-processes  leads to a more consistent notion of concurrency. While Lemma
3.1 is describing concurrency properties int he style of interleaving semantics, cop-
processes represent independent actions by unrelated transition. To give an example, in
the cop-process form of a EOS-process in Fig. 3.3., the object autonomous transition
e5 and the system autonomous transition t8 are represented without causal dependence .

Remark: Given a cop-process Θ = (proc1,proc2,ρπ) of an EOS as defined above, then a
corresponding process of the EOS can be recovered. For proc1= (Pπ,Tπ,Fπ,φ) and each
p∈Pπ a suitable process µ(p) of ON has to be defined. This can be done by first
constructing the set T1 := {e∈E | ∃ t∈Tπ: t < p ∧ eρπt }, where "<" is the causal order
of proc1. Then µ(p) is the subprocess pastproc1(T1) (see appendix).

Lemma 3.6
a) Given a cop-process Θ = (proc1,proc2,ρπ) of an EOS = (SN,ON,ρ) then

∀ y1∈ Tπ ∀ e1, e2 ∈ Eπ : y1ρπe1 ∧ y1ρπe2 ⇒ e1 = e2 holds.
b) There is a cop-process Θ = (proc1,proc2,ρπ) of an EOS = (SN,ON,ρ) such that

∀ y1,y2 ∈ Tπ ∀ e1 ∈ Eπ : y1ρπe1 ∧ y2ρπe1 ⇒ y1 = y2 is not true in general.

Proof: In the construction of ρπ each transition y∈Tπ appears only once, whereas e∈Eπ

may appear in different copies. In Fig. 3.5. a cop-process of the EOS from Fig. 3.4.
is shown together with the relation ρπ. The cop-process fails to have property b).      

   q.e.d.
Definition 3.7
Let be Tint := {y ∈ Tπ | yρπ ≠ ∅ } and Eint := {e ∈ Eπ | ρπe ≠ ∅ } the set of interactive
transitions of proc1 and proc2, respectively. To simplify the following definitions and
proofs from now on we exclude object autonomous transitions, i.e. we assume
Eint=Eπ.

Then (by lemma 3.6 a)) ϕ : Tint → Eπ with (ϕ(y) = e ⇔ yρπe) is a mapping. ϕ may be
non-injective (by lemma 3.6b) but is surjective, however. Hence, a cop-process Θ =
(proc1,proc2,ρπ) can be represented by Θ = (proc1,proc2,ϕ). Using this notation lemma
3.3 can be rewritten as follows.
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Lemma 3.8
Given a cop-process Θ = (proc1,proc2,ϕ), then e1 <proc2ϕ(y) implies

∃y1: y1 <proc1 y ∧ ϕ(y1) = e1 .

Proof: By definition e=ϕ(y) iff yρπe in the corresponding EOS-process "proc". By
induction on the construction of proc transitions e1 and e are in µ(p) for any p∈y•. By
lemma 3.3 there is a transition y1<procp with y1ρπe. By lemma 3.6 (since yρπe) y1≠y,
hence y1 <proc y <proc p, and also y1 <proc1 y <proc1 p.                                       q.e.d.

This lemma motivates a property, called extended process morphism property (EMP),
that generalizes the notion of process morphism.

Definition 3.9
Given an elementary object system EOS = (SN,ON,ρ) and processes 
proc1 = (Pπ,Tπ,F1π,φ1) ∈ PROC(SN) , proc2 = (Bπ,Eπ,F2π,φ2) ∈ PROC(ON) and a
mapping   ϕ: Tint → Eπ .
ϕ is called interaction true or true if

a) ϕ is surjective,
b) ∀ y ∈ Tint ∀ e ∈ Eπ : ϕ(y) = e ⇔ φ1(y)ρφ2(e)
c) ∀ y1,y2 ∈ Tπ : y1 <proc1 y2    ⇒      ϕ(y1) ≠ ϕ(y2)

The triple Θ = (proc1,proc2,ϕ) has the extended process morphism property (EMP) iff:  
e1 <•proc2 e2  ∧  y2 ∈ ϕ-1(e2)   ⇒   ∃ y1 <proc1  y2 :  ϕ(y1) = e1

(<•proc2 ⊆ <proc2 denotes the immediate successor relation of <proc2 restricted to
transitions.)

By a) the whole object net process is reached by ϕ. b) relates the interaction relation of
the EOS to a corresponding relation on the processes. By c) causally dependent actions
are excluded to execute the same task.  If ϕ is an injection, then ψ: Eπ → Tint where
ψ:=ϕ-1 is a T-morphism (cf. appendix). There is a convincing interpretation of the
extended morphism property. Consider object net transitions as tasks being executed
by functional units, given here in the form of system net transitions. Then two
sequential tasks e1 and e2 with e1<e2 cannot be executed by concurrent system net
transitions (formally: e1<e2 implies ψ(e1) < ψ(e2)), as for the execution of the second
task e2 the "result" of the execution of e1 is required. Hence concurrent object net
transitions may be executed sequentially but not vice versa.

Theorem 3.10
Let be given an elementary object system EOS = (SN,ON,ρ) and a triple Θ =
(proc1,proc2,ϕ), where proc1 ∈ PROC(SN), having a latest place xω, and proc2 ∈
PROC(ON) are processes and ϕ: Tint → Eπ is an interaction true mapping. Then Θ is a
cop-process of EOS if and only if ϕ has the extended morphism property.

Proof: The necessity of the condition follows from lemma 3.8.
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To prove that the condition is also sufficient, assume that Θ = (proc1,proc2,ϕ), where
proc1= (Pπ,Tπ,Fπ,φ1) ∈ PROC(SN), proc2 = (Bπ,Eπ,F2π,φ2) ∈ PROC(ON) are processes
and ϕ: Tπ → Eπ is a true mapping satisfying the EMP.

First we have to find a mapping µ: Pπ → PROC(ON) such that proc =
(Pπ,Tπ,Fπ,φ1,µ) is an EOS-process. This is done by defining:

µ(x):= pastproc2({ϕ(y1)| y1 <proc1 x}) ∪ init(proc2)
(As defined in the appendix, pastproc2(A) is the subprocess „generated“ by the set A.)
Next it must be shown that proc is an EOS-process, i.e. that µ is consistent with the
occurrence of definition 3.2. This is done by induction on Pπ w.r.t. the partial order
<proc of proc.
a) If for x ∈ Pπ the condition (∃ y1 ∈ Tint:y1 <proc1 x) does not hold then µ(x) =
init(proc2) by definition.

Fig. 3.4. A more complex unary EOS
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Fig. 3.5. Cop-process of the more complex unary EOS from Fig. 3.4.
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b) (induction step) Different to case a) we may assume (∃ y1 ∈ Tint: y1 <proc1 x),
i.e. •x ≠ Ø, {y} := •x.
  case   b1): y ∈ Tint. Then e: = ϕ(y) is included in µ(x) by its definition and it must be
shown that the input places of y contain appropriate subnets of proc2, such that their
lub enables transition e. Therefore in the following we consider different subnets of
proc2 contained in different µ(x).
Now let be b ∈ •e an input place of e in µ(x).
  subcase   b11) If there is some input transition e1 ∈ •b then by (EMP) there is a
transition y1 with y1 <proc1 y and ϕ(y1) = e1. By def. 3.9 c) ϕ(y1) = e1 and ϕ(y) = e are
different. Hence e1 and b also belong to an input place x1 of y with y1<proc1x1<proc1y.
  subcase   b12) If •b = Ø then b ∈ init(proc2) and b ∈ µ(x1) for all x1 ∈ •y by the
definition of µ.
All the input places x1 of y contain initial parts of proc2. (see appendix for „initial
part“). Hence the process proclub, defined as their lub, exists and as proved before the
terminal cut of proclub contains all input places of e. Therefore proclub enables e (see
appendix for „enables“). By similar arguments all elements from µ(x1) are also in µ(x).
This concludes the proof for case b1).
  case   b2): y ∉ Tint. Then µ(x) = lub{µ(x1) | x1 ∈ •y} by the definition of µ. Thus the
occurrence rule for EOS is also respected in this case. This concludes case b).
Finally it has to be shown that the latest place xω contains proc2. This follows from
the definition of µ(xω) since by def. 3.9 a) each transition e has some y ∈ ϕ-1(e) and y
<proc1 xω by the definition of the latest place.    q.e.d.

In Fig. 3.4. a more complex unary elementary object system is given to illustrate the
theorem by its cop-process as in Fig. 3.5. The mapping ϕ is obviously not injective.
Moreover there are system autonomous transitions (e.g. t7). Two concurrent
transitions, as t2 and t9 with ϕ(t2) = ϕ(t9) may execute the same „task“ ϕ(t2) = ϕ(t9) =
e3. This redundancy can be useful in the design of reliable systems. The extended
morphism property can be checked. When simplifying the system net SN by deleting
the subnet from p5 to p7 the corresponding process in Fig. 3.5. becomes sequential and
no concurrent task execution is possible any more. Then ψ := ϕ-1 is a T-morphism.
To see an example of this property the first occurrences of the transitions labelled e3

and e5. Then e3 < e5 implies ψ(e3) < ψ(e5) which holds, since ψ(e3) = t2 and ψ (e5) = t11

(the labels are taken in place of the names of the transitions which are not drawn in
the figure).

4   Elementary Object Systems

In this section unary elementary object systems are extended in such a way that
different object nets are moving around in a system net and interact with both, the
system net and with other object nets. As before, the model is kept as simple as
possible in order to have a clear formalism.
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Definition 4.1
An elementary object system is a tuple EOS = (SN,   ON   ,Rho,type,    M    ) where
• SN= (P,T,W) is a net (i.e. an EN system without initial marking), called system

net of EOS,
•    ON    = {ON1,...,ONn} (n≥1) is a finite set of EN systems, called object nets of

EOS, denoted by ONi = (Bi,Ei,Fi,moi),
• Rho = (ρ,σ) is the interaction relation, consisting of a system/object interaction

relation ρ ⊆ T×E where E := ∪{Ei|1≤i≤n} and a symmetric object/object
interaction relation σ ⊆ (E×E)\idE,

• type : W → 2{1,...,n}∪IN is the arc type function, and
•     M     is a marking as defined in definition 4.2.

Fig. 4.1. gives a graphical representation of an elementary object system with a
system net SN and three object nets ONi (1≤i≤3). The value of type(p1,t1) = {1,2,3} is
given by a corresponding arc inscription (1)+(2)+(3). Intuitively, an object net ONi

can be moved along an arc (x,y) if i ∈ Type(x,y). Arcs of type type(x,y) = k ∈ IN are
labelled by k ∈ IN. They are used as in the case of P/T-nets. xρy holds iff x and y are
marked by the same label of the form <i1> (e.g. t1ρe1a) and xσy is given by a label of
the form [r] (e.g. e2ae2b). On the right-hand side the relation ρ∪σ is represented as an
undirected digraph. Next, a marking will be defined as an assignment of a subset of the
object nets together with a current marking to the places. It is also possible to assign
a number k of tokens.

Fig. 4.1. A simple Elementary Object System with 3 object nets
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Definition 4.2
The set Obj := {(ONi,mi) | 1≤i≤n, mi∈R(ONi)} is the set of objects of the EOS. An
object-marking (O-marking) is a mapping     M    : P → 2Obj ∪IN    such that      M    (p) ∩ Obj
≠  ∅  ⇒       M    (p) ∩ IN  = ∅

The (initial) O-marking of the EOS in Fig. 4.1. is obvious. By restriction to a
particular object type from EOS we obtain a unary EOS (i-component, 1≤i≤n). The 0-
component (zero-component) describes the part working like an ordinary P/T-net. This
will be used to define simple elementary object systems.

Definition 4.3
Let EOS = (SN,   ON   ,Rho,type,    M    ) be an elementary object system as given in def. 4.1
but in some arbitrary marking     M    . Rho = (ρ,σ) is said to be separated,  if iσj ⇒ ρi =
∅ = ρj. The i-component (1≤i≤n) of EOS is the EN system SN(i) = (P,T,W(i),M0i)
defined by  W(i)  = {(x,y)| i ∈ type(x,y)}  and  M0i(p) = 1  iff  (Oni,mi)  ∈      M    (p).  The

Fig. 4.3. Occurrence rule for simple EOS

Fig. 4.2. The 1-component EOS(1) of Fig. 4.1.
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0-component (zero-component) is the P/T-net SN(0) = (P,T,W(0),M00) with the arc
weight function W(0)(x,y) = k if type(x,y) = k ∈ IN and M00(p) = k ∈ IN iff k ∈     M    (p).
The subnet SN(1..n) = (P,T,W(1..n),M1.n), where W(1..n) = ∪{W(i)|1≤i≤n} and
M1.n(p) =     M    (p) ∩ Obj is said to be the object-component.
EOS is said to be a simple elementary object system if SN(1..n) is a structural state
machine, all i-components of SN are state machines and Rho is separated.

Remark: For each i∈{1,...,n} the i-component EOS(i) := (SN(i),ONi,ρ(i)) is an unary
EOS, where ρ(i) := ρ∩(T×Ei).

The EOS from Fig. 4.1 is simple since each SN(i) (1≤i≤3) is a state machine and

Fig. 4.4. Five Philosophers I: system net SN

Fig. 4.5. Five Philosophers I: system net SN
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Rho is separated. The latter property is easily deduced from the depicted graph of ρ∪σ.
The 1-component is a simple and unary elementary object system (see Fig. 4.2).
Dropping the condition that SN(1..n) is a structural state machine would lead to
inconsistencies in the definition of the dynamical behaviour (def. 4.4).

By the introduction of i-components of EOS we are able to connect the models of
unary EOS to general EOS. For instance, the semantical formalization of the
behaviour of the more complex model of a simple elementary object system can profit
from the results obtained earlier in this paper for simple unary elementary object
systems. The property of separated interaction relation Rho allows to separate
system/object interactions from the new concept of object/object interaction. The
latter form of interaction is restricted to the case where the i-components perform
autonomous transitions in the same place of the system net. Therefore in the
following definition of transition occurrence of simple EOS system/object interactions
are defined using case b) of def. 2.2 whereas object/object interactions are associated
with case c) of this definition.

Definition 4.4
Let be EOS = (SN,   ON   ,Rho,type,    M    ) an elementary object system as in def. 4.1 and
    M    : P → 2Obj ∪IN  an O-marking (def. 4.2) and t ∈ T, ei ∈ Ei, ej ∈ Ej, i≠j.
a) Transition t ∈ T is enabled in     M     (denoted     M    →t) if tρ = ∅ and the following holds:

a1) t is enabled in the zero-component of SN (def. 4.3) (i.e. in the P/T-net part)  
a2) By the state machine property there is at most one type i∈{1,..,n} such that i ∈

type(p1,t) and i ∈ type(t,p2) for some p1 ∈ •t and p2 ∈ t•. In this case there must be
some object (ONi,mi) ∈     M    (p1).(cf. Fig. 4.3.)

Fig. 4.6. Five philosophers II: system net SN
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Fig. 4.7. Five Philosophers II: four object nets ph_i, shr_i, ph_k and shl_k
( k = (i+1) mod 5 )
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If t is enabled, then t may occur (    M   → t     M    ’) and the successor marking     M    ’ is defined
as follows: with respect to the zero-components tokens are changed according to the
P/T-net occurrence rule. In case of a2) (ONi,mi) is removed from p1 and added to p2

(only if p1 ≠ p2).
b) A pair [t,e] ∈ T×Ei with tρe is enabled in     M     (denoted     M    →[t,e]) if in addition to case
a) e is also enabled for ONi in mi. Instead of (ONi,mi) the changed object (ONi,mi+1)
where mi →e mi+1 is added.
c) A pair [ei,ej] ∈ Ei×Ej with eiσej is enabled in     M     (denoted     M    →[ei,ej]) if for some
place p ∈ P two objects (ONi,Mi) ∈     M    (p) and (ONj,mj) ∈     M    (p) are in the same
place  p and mi→ei

mi+1 and mj→ej
mj+1. In the successor  marking     M    ’ the objects

(ONi,mi) and (ONj,mj) in p are replaced by (ONi,mi+1) and (ONj,mj+1), respectively.
d) A transition e ∈ Ei with eσ = σe = ∅ is enabled in     M     (denoted     M    →e) if for some
place p ∈ P we have (ONi,mi) ∈     M    (p) and mi→emi+1. In the follower marking     M    ’ the
object (ONi,mi) is replaced by (ONi,mi+1).

To apply the definition to a well-known example, consider the system net SN of
„Five Philosophers I“ in Fig. 4.4. This example is a restricted version of a case study
as proposed in [Sibertin-Blanc 94]. There are five object nets ph1,...,ph5 representing
the philosophers. Initially they are in a place „library“, but can „go“ by interaction
<enter> into the dining room. They have their left fork in the hand when entering this
room. The object nets are shown in Fig. 4.5. in full detail for the instance ph_i and in
part for ph_k (k=(i+1)mod5). Philosopher ph_i, for instance, being hungry can borrow
the missing right fork from his right neighbour ph_k (if he is also in the dining
room) by interaction of the transitions labelled [r2(k)]. All neighbouring philosophers
can exchange the shared fork in the same way, under the condition that they are in the

Fig. 4.8. EN system equivalent of Fig. 4.7.
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dining room. If both ph_i and ph_k are hungry at the same time, it can happen, that
they permanently exchange the fork without ever managing to eat. Such „after you -
after you“ effects are well known from ordinary Petri nets and can be excluded by
similar methods. Solutions for this problem are out of the scope of this paper. It
should be observed, however, that side conditions are used, which are not allowed by
standard EN systems. By simple constructions they can be eliminated, resulting in a
more complex net, however.

In a truly distributed environment the philosophers can only communicate by
sending messages. This is assumed for the system of „Five Philosophers II“. An
extract of the system net is given in Fig. 4.6. Each philosopher phi can enter his own
place pi by an arc of type (i). In pi he finds a „fork shuttle right“ shr_i, that can be
used to send a request to his right neighbour ph_k by the interaction [ai] (see Fig.
4.7.).

The shuttle then moves to pk using interaction <xi> to take the fork of ph_i using
interaction [ek], provided philosopher ph_k is now at his place and the fork is free.
Then it goes back, delivering the fork to ph_i by [ci]. The type of this object net is
(si). In a symmetrical way ph_k uses shuttle shl_k („fork shuttle left“) to obtain the
fork back. Since the partners for communication are fixed in this example by merging
communicating transitions, an ordinary net (see Fig. 4.8.) can be constructed,
representing the behaviour of shuttle exchange. This net can be seen as a communica -
tion protocol for distributed mutual exclusion, being similar to the method of [15] and
[5].

Many different settings of the distributed philosophers problem could be realized, as
well. For instance, a fork shuttle could move around and distribute forks to arbitrary
participants. Also, different approaches for handling forks on leave of the dining room
could be realized (e.g.: a philosopher leaves with „his“ left fork, as he came in, or he
leaves without forks granting the resource to a neighbour.) Such variants of
specifications are out of the scope of this paper.

The semantical description techniques discussed in sections 2 and 3 can be extended
to the model of general EOS. In particular, the description of processes by (an
extended version of) co-operating processes has been applied to this case and has been
proved to be very useful [18]. Further research is necessary, in order to well understand
the behaviour of non-simple (general) Elementary Object Systems.

5   Conclusion

An intuitive notion of object system is introduced and then formalized.  Unary object
systems are restricted to contain only a single object net, but allow for „intra-
concurrency“ to model concurrent task execution.  Using net processes a suitable
definition of marking was found. Processes of unary object systems have been defined
and  were represented   as cop-processes.  This representation was characterized by the
necessary and sufficient  extended morphism property.

In the second part simple elementary object systems have been considered, where
intra-concurrency is excluded, but concurrent behaviour and interaction of different
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object nets is possible. Such object systems are used to model two instances of
Philosophers, showing the usefulness of the approach for a simple and direct way to
model in the object paradigm on the level of classical Petri nets.

6   Appendix: Processes of EN Systems

The non-sequential behaviour of EN systems is given by causal nets (occurrence nets
(cf [9])). A process of an EN system N = (B,E,F,C) is defined by a node-labelled
causal net Nπ =(Bπ,Eπ,Fπ,φ) such that φ : Bπ∪Eπ→B∪E satisfies

a) φ(Bπ) ⊆ B and φ(Eπ) ⊆ E  and ∀ t ∈ Eπ: [φ(•t) = •φ(t) and φ(t•) = φ(t)•]
b) φ is injective on every Bπ-cut of Nπ

c) ∀ b ∈ Bπ : •b = Ø ⇔ φ(b) ∈ C
The initial process of Nπ init(Nπ)=(BC,EC,FC,φC) consists just of the initial case C,

i.e. BC= C, EC = FC = Ø and φC(b) = b. The set of places term(Nπ):= {b∈Bπ| b•=∅} is
called a terminal cut. (It is assumed that all transitions e∈Eπ have an output place:
e•≠Ø). Only finite processes are considered in this paper.

We use PROC(N) to denote all processes of N together with the "empty process"
Ø. By <Nπ := (Fπ)

+ we denote the partial order "before". A place bω is called latest
place, if all other places are before bω, i.e.: ∀ b ∈ Bπ\bω : b <Nπ bω . Given Nπ and a
subset A⊆Eπ of process transitions, then pastNπ(A) is the subnet generated by A. The
process pastNπ(A) = (B'π,E'π,F'π,φ') is defined by all transitions "before or in A", i.e. E'π
:= {t∈Eπ|t∈A ∨ ∃t1∈A: t<Nπt1} and all input or output places of E'π, i.e.: B'π:=
{b∈Bπ|∃b∈E'π:b ∈ •t∪t•}. φ' is the restriction of φ to B'π ∪E'π. Note that A=∅ implies
B'π =  E'π = ∅.

Given two processes Nπ1 and Nπ2  then a T-morphism from Nπ1 to Nπ2 is a mapping
α:Eπ1→ Eπ2 such that ∀ x,y ∈ Eπ1: x <Nπ1y ⇒ α(x) <Nπ2α(y). Every firing sequence
w= e1...en ∈ FS(N) uniquely determinates a process proc(w) = (Bπ,Eπ,Fπ,φ) such that
φ(ei) <proc(w) φ(ej) ⇒ i<j. On the set PROC(N) of all processes there is a partial order
≤π "initial part":  proc1 ≤π proc2 if ∃ w1,w2 ∈ FS(N) : proc1 = proc(w1) and proc2 =
proc(w2) and ∃ v ∈ E* : w1v = w2 . If in this definition v = e ∈ E, then we say that e
is enabled by proc1 (denoted proc1→e) and proc1°e := proc2 ( i.e. proc1°e  is the
prolongation of proc1 by a transition e2with φ(e2) = e and the output places of e2). If
for two processes proci ( i ∈ {1,2}) there is a process proc3 such that proci ≤π proc3

(1≤i≤2), then there is a least upper bound of proc1 and proc2 , which we denote
lub(proc1,proc2). This definition is extended to finite subsets Q ⊆ PROC(N) and
denoted by lub(Q).
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