
 Open access Journal Article DOI:10.1145/2003695.2003697

Concurrency-oriented verification and coverage of system-level designs
— Source link

Alper Sen

Institutions: Boğaziçi University

Published on: 27 Oct 2011 - ACM Transactions on Design Automation of Electronic Systems (ACM)

Topics: Functional verification, High-level verification, Runtime verification, Software verification and Intelligent verification

Related papers:

 Proving transaction and system-level properties of untimed SystemC TLM designs

 Verification and coverage of message passing multicore applications

 An Integrated Framework for Checking Concurrency-Related Programming Errors

 Cloud-Based Verification of Concurrent Software

 A mutation model for the SystemC TLM 2.0 communication interfaces

Share this paper:

View more about this paper here: https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-
2lqrc3rjxh

https://typeset.io/
https://www.doi.org/10.1145/2003695.2003697
https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh
https://typeset.io/authors/alper-sen-2w2fira61t
https://typeset.io/institutions/bogazici-university-rdhvagrb
https://typeset.io/journals/acm-transactions-on-design-automation-of-electronic-systems-mjyl9han
https://typeset.io/topics/functional-verification-375pvjeg
https://typeset.io/topics/high-level-verification-3qbw15t6
https://typeset.io/topics/runtime-verification-3jq1s44v
https://typeset.io/topics/software-verification-1o24ub5u
https://typeset.io/topics/intelligent-verification-12dk6cdb
https://typeset.io/papers/proving-transaction-and-system-level-properties-of-untimed-toq8dteajx
https://typeset.io/papers/verification-and-coverage-of-message-passing-multicore-45p5cfh27t
https://typeset.io/papers/an-integrated-framework-for-checking-concurrency-related-16kb93lo4s
https://typeset.io/papers/cloud-based-verification-of-concurrent-software-4sr4b1b6iy
https://typeset.io/papers/a-mutation-model-for-the-systemc-tlm-2-0-communication-16nq9zlyf1
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh
https://twitter.com/intent/tweet?text=Concurrency-oriented%20verification%20and%20coverage%20of%20system-level%20designs&url=https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh
https://typeset.io/papers/concurrency-oriented-verification-and-coverage-of-system-2lqrc3rjxh

37

Concurrency-Oriented Verification and Coverage
of System-Level Designs

ALPER SEN, Bogazici University

Correct concurrent System-on-Chips (SoCs) are very hard to design and reason about. In this work, we de-
velop an automated framework complete with concurrency-oriented verification and coverage techniques for
system-level designs. Our techniques are different from traditional simulation-based reliability techniques,
since concurrency information is often lost in traditional techniques. We preserve concurrency information
to obtain unique verification techniques that allow us to predict potential errors (formulated as transaction-
level assertions) from error-free simulations. In order to do this, we exploit the inherent concurrency in the
designs to generate and analyze novel partial-order simulation traces. Additionally, to evaluate the confi-
dence on verification results and the gauge progress of verification, we develop novel mutation testing based
on concurrent coverage metrics. Mutation testing is a fault insertion-based simulation technique that has
been successfully applied in software testing. We present a comprehensive list of mutation operators for
SystemC, similar to behavioral fault models, and show the effectiveness of these operators by relating them
to actual bug patterns. We have successfully applied our verification and coverage techniques on industrial
systems and demonstrated that current verification test suites need to be improved for concurrent designs,
and we have found errors in systems that were tested previously.

Categories and Subject Descriptors: J.6 [Computer Applications]: Computer-Aided Engineering—
Computer-Aided design (CAD); D.2.4 [Software Engineering]: Software Program Verification

General Terms: Algorithms, Verification

Additional Key Words and Phrases: SystemC, simulation, concurrency, assertion-based verification, predic-
tive verification, coverage, mutation testing, partial-orders

ACM Reference Format:

Sen, A. 2011. Concurrency-oriented verification and coverage of system level designs. ACM Trans. Des.
Autom. Electron. Syst. 16, 4, Article 37 (October 2011), 25 pages.
DOI = 10.1145/2003695.2003697 http://doi.acm.org/10.1145/2003695.2003697

1. INTRODUCTION

The complexity of System-on-Chips (SoCs) has been steadily increasing with the emer-
gence of concurrent systems such as multicore, multiprocessor, and multithreaded
systems. Concurrent systems have the property that multiple components can execute
simultaneously, resulting in a very complex behavior of the system. Various scenarios
of component interaction can happen due to concurrency, which are often very difficult
to find. Concurrency information is often lost when traditional simulations are used
because during execution of a concurrent system, the simulation scheduler (Verilog,
VHDL, or SystemC scheduler) puts an arbitrary ordering on executions of concurrent
components. Hence, bugs that may reveal themselves on a different execution ordering

This research was supported by a Marie Curie European Reintegration Grant within the 7th European
Community Framework Programme, BU Research Fund, and the Turkish Academy of Sciences.
Author’s address: A. Sen, Department of Computer Engineering, Bogazici University, 34342, Istanbul,
Turkey; email: alper.sen@boun.edu.tr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1084-4309/2011/10-ART37 $10.00

DOI 10.1145/2003695.2003697 http://doi.acm.org/10.1145/2003695.2003697

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:2 A. Sen

of concurrent components can be missed. Given this increasing complexity of concur-
rent SoCs, the traditional design entry-level Register Transfer Level (RTL) is no longer
scalable for verification. It is easier to diagnose concurrency and protocol problems at
abstract system levels, whereas these problems are hidden at the lower implementa-
tion levels. Additionally, the increasing design costs are also pushing design entry to
system levels.

SystemC is the most popular system-level modeling language used for designing
SoCs in the industry. It is a C++ library that contains constructs to represent the
concurrent behavior of hardware. It is freely available from OSCI [OSCI 2010] and is
an IEEE standard. The SystemC Transaction-Level Modeling (TLM) standard enables
verification and debugging, as well as hardware/software co-design, architectural ex-
ploration, and power/performance analysis, all at the system level [Ghenassia 2005].
However, the combination of system-level design with concurrent multiprocessors is
a challenge to EDA tool providers, and system-level tools are still in their infancy.
New concurrency-oriented system-level techniques of analysis are required to improve
reliability of concurrent software running on concurrent hardware.

In this article, we present concurrency-oriented verification and coverage techniques.
Our techniques are based on simulation of system-level designs, rather than a static
analysis of these designs. For verification, we develop techniques based on Assertion-
Based Verification (ABV) [Foster et al. 2004], which is a popular simulation-based
verification technique, where the assertions (specifications) are monitored during the
execution of the system. ABV is a commonly used verification technique, since it does
not suffer from the complexities of using formal verification techniques such as model
checking. Our ABV technique differs from traditional ABV techniques because ours is a
predictive verification technique, where we can predict potential errors using error-free
executions. This is a valuable debugging tool that can greatly increase the detection of
hard-to-find scheduling dependent errors during simulation. Potential error detection
is possible in our approach due to preserving and exploiting concurrency information
by tracking dependencies during the execution of a system. Using this information,
we obtain a partial-order execution trace, as opposed to a total order trace, which tra-
ditional simulation-based approaches generate. In partial-order traces, only causally
dependent actions are ordered, hence concurrent actions are not artificially ordered.
However, the complexity of verification on partial-order traces may be high. To tackle
this complexity, we use an abstraction technique called computation (trace) slicing,
where a slice of a trace with respect to an assertion is a subtrace that contains all the
states of the trace that satisfy the assertion such that it is computed efficiently (without
traversing the state space) and represented concisely (without explicit representation
of individual states). In this work, we develop a concurrency-oriented verification tech-
nique that is predictive and can be used to verify transaction-level assertions of Sys-
temC designs. In particular, our goal is to efficiently explore a concurrent system-level
program using partial-order traces and computation slicing to find schedule-related
bugs.

Verification is not complete without coverage metrics [Tasiran and Keutzer 2001] to
measure effectiveness, gauge progress, and help determine when the design is robust
enough. For coverage, we develop techniques based on mutation testing, which is a
fault injection-based simulation technique where faults are inserted at various design
points and where it is checked whether the test suites used in predictive verification can
propagate these faults to the outputs of the design. Mutation operators are similar to
functional fault models for high-level design descriptions. Mutation testing was shown
to be an effective technique for improving test suites [Frankl et al. 1997; Walsh 1985; Li
et al. 2009]. A verification test suite developed for a sequential program is not adequate
for a concurrent program. We need a concurrency-oriented verification test suites for

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:3

concurrent programs. In this work, we develop a novel mutation coverage metric for
all concurrency constructs in SystemC.

One of our major requirements for implementation is to obtain a scalable and fast
solution that can be seamlessly integrated with current design flows. Techniques based
on translating SystemC models to an internal formal model are not scalable to complex
real designs. Similarly for coverage work, since the number of mutations can be high,
performance can be a problem. However, the more abstract the design description, the
fewer the number of mutations. Hence, at SystemC TLM-level, we do not suffer from
performance problems as seen in lower levels.

We performed experiments with multiple applications including industrial designs
to validate the effectiveness of our verification and coverage environment. Our exper-
imental results confirm the inadequacy of current verification test suites for checking
concurrent features of SystemC. We also predicted and found errors on earlier tested
systems.

The rest of the article is organized as follows. Section 2 gives an overview of previous
work in SystemC verification and mutation testing; Section 3 details the background
in SystemC. Sections 4, 5, and 6 detail how we have developed concurrency-oriented
predictive verification techniques using partial-order traces and transaction-level as-
sertions for SystemC, as well as our modifications to the SystemC kernel to accomplish
these. We also describe the abstraction generation mechanism of computation slicing
in Section 7. Section 8 demonstrates our predictive verification technique. Section 9
describes our mutation operators for concurrent SystemC functions and relates these
operators to actual bugs. Our mutation coverage algorithm is described in Section 10.
Experimental results are explained in Section 11. We conclude our article with a plan
for future work and conclusions.

2. RELATED WORK

Formal verification of SystemC designs has been studied in Grosse and Drechsler
[2003]. Due to the state space search, formal techniques are limited in practice. Further-
more, these techniques can only translate a subset of SystemC into an FSM model. In
Vardi [2007], a summary of formal techniques in a SystemC context is presented. Blanc
and Kroening [2010] present a static partial-order reduction technique for race analysis
in SystemC with the use of a model checker. System Verilog Assertions have been used
for SystemC descriptions [Habibi and Tahar 2004]. SystemC-specific transaction-level
assertions have also been developed [Tabakov et al. 2008; Kasuya and Tesfaye 2007;
Ecker et al. 2007]. We use these transaction level assertions in our work. There is a
growing vendor tool support for SystemC modeling and verification.

Our work is similar to dynamic partial-order reduction (DPOR), in that both tech-
niques are simulation-based and apply a single input to the design, whereas in model
checking, all possible input combinations are applied. However, our work is also dif-
ferent from DPOR. In DPOR, the order of dependent transitions in the generated sim-
ulation trace is changed, leading to the generation of new simulation traces until all
possible changes are exhausted. This may lead to state explosion problem for complex
designs. However, we generate a partial-order trace from a single simulation trace and
do not modify the order of dependent transitions in order to generate new traces. DPOR
is orthogonal to our approach and can be used in conjunction, where DPOR can provide
all partial-order traces for a given input, and our work can check the temporal prop-
erties on each partial-order trace efficiently. DPOR has also been applied to SystemC
designs [Kundu et al. 2008; Helmstetter et al. 2009]. In Helmstetter et al. [2009], dif-
ferent SystemC schedules are generated to improve test coverage using DPOR. This is
different from our verification work, since our goal is verification of temporal assertions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:4 A. Sen

Our ABV technique differs from traditional ABV techniques [Pierre and Ferro 2008]
because ours is a predictive verification technique, where we can predict potential er-
rors using error-free executions. Partial-order execution traces for multithreaded Java
programs have been analyzed in Sen and Garg [2007], whereas we analyze partial-
order traces for SystemC. We earlier considered multiple schedules for assertion-based
verification of SystemC in Sen et al. [2008]. In this article, we extend this work
with transaction-level assertions and add mutation testing-based coverage metrics for
SystemC.

Using ABV for partial-order traces may lead to a state-explosion problem. We use
computation slicing as an abstraction technique for ABV in this work. Earlier, we
provided an application of computation slicing on concurrent and distributed systems
and Java programs in Sen and Garg [2007]. As opposed to program slicing [Weiser
1982], where the user is interested in generating a projection of a program with respect
to a set of interesting variables, computation slicing generates a projection of a partial-
order execution trace with respect to temporal assertions.

Traditional coverage metrics have been used for RTL and gate-level designs. These
techniques can be summarized as code coverage, structural coverage, functional cov-
erage, and observability-based coverage techniques [Tasiran and Keutzer 2001; Fallah
et al. 1998]. Code coverage techniques measure the amount of activation of lines,
branches, and expressions in the source codes of designs during simulation. This is a
limited approach, since activations cannot be observed at the outputs of the design,
hence this approach may not have an impact on the design. Structural coverage tech-
niques extract an abstract state machine from design descriptions and measure the
number of states traversed during simulation. This approach is limited due to the
growing size of the state machine for complex designs. Functional coverage metrics
target design functionalities to cover interesting scenarios. However, these techniques
are not automatic. They need to be redeveloped for new designs, since they rely on
internal monitors defined and built by engineers having knowledge of both the design
specification and implementation. Observability-based coverage metrics observe the
impact of errors activated by the verification tests at the outputs of the design. All of
the above techniques have been applied at the lower-level designs such as RTL and
gate-level designs.

The mutation testing technique is an observability-based coverage technique based
on software testing [Budd 1981; Offutt et al. 2006; Offutt and Untch 2001]. It has been
applied to programming languages such as Java [Ma et al. 2005; Bradbury et al. 2006]
and state machines [Fabbri et al. 1994]. Mutation testing is based on a given fault
model. Mutations developed on the basis of this fault model are injected into the design
one at a time, and it is checked whether verification tests activate and propagate
such mutations to the outputs of the design. Mutation testing helps to strengthen
the quality of verification tests iteratively until reaching a given target coverage. The
previously developed stuck-at-fault model is similar to mutation testing, and has been
very successful for manufacturing faults [Abramovici et al. 1990]. Fault models have
also been used for test generation [Campenhout et al. 1998; Hsiao et al. 2000].

Typical mutation operators for a programming language are designed to modify
variables and expressions by replacement, insertion, or deletion operators. For exam-
ple, a simple nonconcurrent arithmetic operation mutation can change an assignment
statement like x = y + z into x = y − z, x = y ∗ z, or x = y/z.

Several previous works have shown the effectiveness of mutation testing for assess-
ing the quality of a test suite. Mutation testing is more powerful than statement or
branch coverage, and all-use dataflow coverage criteria [Frankl et al. 1997; Walsh 1985;
Li et al. 2009]. Similarly, in Andrews et al. [2005], it is shown that generated mutants
are similar to real faults.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:5

Mutation operators have been defined for concurrency constructs in Java [Bradbury
et al. 2006; Farchi et al. 2003]. We make use of some of these operators in our work
and enhance them for SystemC. Mutation testing has recently been applied to Verilog
[Hampton and Petithomme 2007] and SystemC TLM 2.0 communication interfaces
[Bombieri et al. 2008, 2009]. Our work differs from these in that we are concerned
about all concurrency constructs in SystemC, rather than only TLM communication
constructs. We do not modify TLM libraries, hence we can provide better integration
into already developed industrial frameworks.

Mutation testing has been explored in the context of formal and assertion-based
verification [Fummi and Pravadelli 2007; Kupferman et al. 2008; Tong et al. 2010] in
reasoning about vacuity and coverage of assertions. In particular, the quality of formal
specifications (assertions) is measured for RTL descriptions. Another approach would
be to measure the number of assertions that have been executed, or what portions of
assertions have been executed. This approach can quickly become infeasible for large
designs.

In Helmstetter et al. [2006], the authors generate different SystemC schedules to
improve test coverage. In particular, they generate nonequivalent (no two schedules
have the same output) SystemC execution schedules using dynamic partial-order re-
ductions. This allows them to explore all possible schedules with the same test suite.
Our coverage work is different, in that we provide a coverage metric to determine the
quality of the test suite; that is, for each schedule, we check whether the test suite can
detect inserted mutations. Hence, their approach is orthogonal to our approach, and
we can use it in conjunction with our mutation testing-based approach.

3. SYSTEMC BACKGROUND

SystemC models the concurrent activities of a system using processes. Processes can
be combined into modules to create hierarchies. Process registration and module inter-
connection happen during the elaboration phase. Processes run concurrently, but code
inside a process is sequential. There are method processes and thread processes. The
SystemC scheduler controls the timing and order of process execution, handles event
notifications, and manages updates to channels. It is an event-based simulator similar
to VHDL. SystemC processes are nonpreemptive; hence, a process has to voluntarily
yield control for another process to be executed. Threads are run exactly once by the
kernel, and typically have a loop that keeps the thread alive for the required duration.
The program-flow control remains with the thread until it yields explicitly. The thread
then stays in a wait state until some event triggers it, and it resumes execution from the
next statement after wait. A method executes atomically, and cannot yield to another
process. The simulator regains control after the entire method has been executed.

Processes are triggered and synchronized with respect to sensitivity on events. An
event keeps the list of processes that are sensitive to it and informs the scheduler which
processes to trigger. Concretely, an event is used to represent a condition that may occur
during the simulation. A SystemC event is the occurrence of an sc event notification,
and happens at a single point in time. An event has no duration or value. There are
two types of sensitivity. Static sensitivity is defined before simulation starts, such as
sensitivity to a clock signal, and dynamic sensitivity is defined after simulation starts
and can be altered during simulation. Events are controlled via wait, next trigger,
and noti f y functions of the sc event class. A wait function changes dynamic sensitivity
of a thread process and suspends its execution. For example, wait(SC ZERO TIME)
delays the process by one delta cycle, a process waits on event e with wait(e), and, with
wait(e1|e2|e3), a process waits on event e1, e2, or e3. Similarly, a next trigger function
changes the dynamic sensitivity of a method process. However, this function returns
immediately rather than suspending execution.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:6 A. Sen

Table I. SystemC Concurrency Functions

Construct Available Functions

Event noti f y, wait, next trigger
Channel read, write, put, get, peek, nb put, nb get,

nb peek, b transport, nb transport f w,
nb transport bw

Semaphore wait, trywait, post
Mutex lock, trylock, unlock

Events occur explicitly by using the notify function, and the scheduler resumes ex-
ecution of a thread or method process by executing the trigger function. For example,
e.notify() is called an immediate notification, since processes sensitive to event e will
run in the current evaluation phase or delta cycle. Using e.noti f y(SC ZERO TIME)
processes sensitive to event e will run in the evaluation phase of the next delta cycle.
Using e.notify(t) processes sensitive to event e will run during the evaluation phase of
some future simulation time.

Process synchronization also occurs with the usage of channels, interfaces, and ports.
These constructs are the core of the Transaction-Level Model (TLM)-based methodol-
ogy. Channel functions read, write, b transport, nb transport f w, nb transport bw, put,
get, peek, nb put, nb get, and nb peek generate synchronization between processes.
Synchronization is also established through instantiating sc semaphore and sc mutex
objects, which provide wait, trywait, post and lock, trylock, unlock functions, respec-
tively. Table I summarizes SystemC concurrency functions. Note that, in SystemC,
communication between processes is established either by explicit concurrency func-
tions or by shared variables.

The following shows the steps of the simulation scheduler in more detail.

(1) Initialization. All processes are made executable in an unspecified order.
(2) Evaluate. Select a ready-to-run process and resume its execution. This may re-

sult in more processes ready for execution in this same phase due to immediate
notification. Signals and channels may invoke a request for update in the update
phase.

(3) Repeat step 2 until no more processes are ready-to-run.
(4) Update. Execute all pending update requests due to calls made in step 2.
(5) If steps 2 or 4 resulted in delta event notifications, go back to step 2.
(6) If there are no more events, simulation is finished for the current time.
(7) Advance to the next simulation time that has pending events. If none, exit

simulation.
(8) Go back to step 2.

Transaction-level models allow to specify a super-set of the realistic behaviors of the
hardware using nondeterministic schedulings and loose timings. The set of behaviors
of a model can change based on the effect of simulated time elapses. Helmstetter et al.
[2009] state that a design can be faithfully modeled in TLM with fixed-time durations,
without time durations, or with loose timing annotations. Each such model returns
either a subset, a large super-set, or a super-set of realistic behaviors, respectively.
Specifically, in modeling with fixed-time durations, SystemC wait functions are used
with fixed durations, where fixed durations means that the value is given as a constant
in the test scenario, and is the same for all executions. Duration values refer to the
SystemC simulated time. In this article we are not concerned in developing faithful
models at the SystemC level, rather we assume that the design is already modeled
with fixed-time durations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:7

Fig. 1. A SystemC design.

The SystemC scheduler is not preemptive; that is, a process runs without interrup-
tion until it explicitly gives control back with a wait statement. In Helmstetter and
Ponsini [2008], the authors show that a nonpreemptive scheduler introduces implicit
atomic sections (a wait-to-wait block in a process), hiding most of the issues regarding
concurrent accesses to shared resources. Therefore, potential erroneous behaviors of
the real system may not be revealed by SystemC simulation and formal methods com-
plying with the SystemC simulation semantics. Hence, they compare nonpreemptive
SystemC semantics with a schedulerless SystemC semantics, which corresponds to an
asynchronous concurrency where interleaving in wait blocks is allowed.

3.1. SystemC Example

Figure 1 demonstrates a SystemC example with two threads T1 and T2. In this ex-
ample, thread T1 is waiting for an event from thread T2 to make progress. Variables
cs1 and cs2 are initially f alse(f) and true(t), respectively. There are three possible ex-
ecution schedules by the kernel. These are (T1;T2;T1;TE;T2;T1), (T1;T2;T1;TE;T1;T2),
and (T2;T1;TE;T2), where TE denotes a time-elapse. In the first and second schedules,
threads run until completion and T1 is executed before T2. The choice of thread execu-
tion after a time elapse is different in both schedules. This leads to a state in the second
schedule where both cs1 and cs2 can be true at the same time. In the third schedule,
T2 is executed before T1 (T2;T1;TE;T2). In this case, the noti f y message is lost, since
T1 is not in a waiting state, and this leads to a special case of deadlock for T1. These
three schedules lead to three total order traces, shown in Figure 2.

4. CONCURRENCY-ORIENTED PREDICTIVE ASSERTION VERIFICATION

The SystemC scheduler nondeterministically schedules ready-to-run processes and
has an asynchronous interleaving semantics where scheduling of processes is non-
deterministic. Scheduling of processes occurs at specific locations such as the wait
function, or the end of a thread, but not inside the atomic wait-to-wait blocks. The non-
deterministic thread scheduling may result in a discrepancy between the simulation
and synthesis models. Although scheduling can be restricted with constructs such as

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:8 A. Sen

Fig. 2. Different execution schedules corresponding to the design in Figure 1.

explicit events for the lower-level models, for high-level models such as TLM, design-
ers often want the nondeterminism to model nondeterministic choices implicit in the
design. Our goal is to explore multiple schedules to find schedule-related bugs. This is
often done in practice by manually instrumenting the SystemC model with statements
that attempt to randomize the schedule chosen by the SystemC scheduler. Whereas,
we develop an automated technique that can efficiently analyze multiple schedules
using a single schedule of a SystemC model, we accomplish this with our predictive
verification framework.

Algorithm 1 displays an outline of our predictive assertion-based verification
algorithm, which consists of tracing, execution, and verification phases. In the tracing
phase, the user-given assertion (which includes SystemC variables) is parsed to
automatically determine the relevant variables of interest (atomic propositions), so
that we can trace changes in those variables of the design. We also add tracing for
shared variables in this phase. In the execution phase, we generate a partial-order
execution trace using our modified SystemC kernel. In the verification phase, we use

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:9

ALGORITHM 1: Predictive Assertion-Based Verification Algorithm

Input: a SystemC program P, an assertion f .
Output: assertion is satisfied or not.

tracing phase
1: read f and determine the relevant variables of interest;
2: automatically add tracing info for relevant variables; execution phase
3: compile and execute with the modified SystemC kernel;
4: generate a partial order trace;

verification phase
5: compute the slice wrt. the assertion using the trace;

recursively process f from inside to outside while applying temporal and boolean operators
to compute slices

6: determine whether the assertion is satisfied or not;
if initial states of P and slice are different then return false and a counter-example else
return true

computation slicing to determine whether the assertion is satisfied or not. We next
describe the details of these phases, starting with the tracing and execution phases.
However, we first give the technical background on the partial-order trace model and
how it can be generated from SystemC programs.

4.1. Partial-Order Trace Model

We assume a system consisting of processes denoted by P1, . . . , Pn. Examples of pro-
cesses are a node sitting on a PCI bus, a cache-in-a-cache coherence protocol. Processes
execute actions. Actions on the same process are totally ordered. However, actions on
different processes are only partially ordered. In this article, we relax the partial-order
restriction on the set of actions and use directed graphs.

Given a directed graph G, let V(G) and E(G) denote the set of vertices and edges,
respectively. We define a consistent global state (reachable global state) on directed
graphs as a subset of vertices such that if the subset contains a vertex, then it contains
all its incoming neighbors. Formally, C is a consistent global state of G, if ∀e, f ∈ V(G) :
(e, f) ∈ E(G) ∧ (f ∈ C) ⇒ (e ∈ C). The set of consistent global states of a directed graph
forms a distributive lattice under the subset relation [Mittal and Garg 2001]. We say
that a state D is reachable from a state C if C ⊆ D. In the rest of the article, unless
otherwise stated, a global state or simply a state refers to a consistent global state.
We model an execution trace (simulation trace or a computation) as a directed graph,
denoted by 〈E,→〉, with vertices as the set of actions E and edges as →. We use action
and vertex interchangeably. To limit our attention to only those consistent global states
that can actually occur during an execution, we assume that the paths in 〈E,→〉 contain
at least the partial-order relation.

A permutation of all the actions e1, e2, . . . , er which does not violate the partial-order
relation is called a consistent run (interleaving, schedule). Note that an interleaving
is similar to a linearization of a partial order, and there are possibly an exponential
number of interleavings of a computation.

Figure 3 parts (a) and (b) display a partial-order trace and its set of consistent
global states reachable from the initial state {e0, f0}, respectively. For example, V =
{e3, e2, e1, e0, f1, f0} in Figure 3(b) is a consistent global state. Only the frontier of the
global states is displayed in the figures, where the frontier is composed of actions in a
global state that occurs last in process order (order of events on a given process/thread).
For example, global state V = {e3, e2, e1, e0, f1, f0} is denoted by the frontier V =
{e3, f1} instead. Observe that C = {e1, e0, f0} is not a consistent global state because
(f1, e1) ∈ E(G) ∧ (e1 ∈ C) but (f1 �∈ C). Intuitively, this depicts a situation where T1 has

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:10 A. Sen

3 1f 1f3

1e 2e

1f0f

0 0f 3f3

1e

1f

0e

1e

1f

3

1 , 3f }{e

0 0f }{e ,

0 1f }{e ,

1 , 1f }{e

0e0e

2f 3f0f

0f

0f0{e , }

3e 3e

1f

1f3 },{e

3f3 },{e

3e2e

2e

(c)

(a)

{e , {e , }

t

f

Initial state: Final state:{e , {e} , }

t

f

Final state:{e , }

(d)

f

tt

f

cs2

cs1

notify

}Initial state: Final state: Initial state:

tt

f, [1,0] f, [2,2]

trigger

Final state

V

Initial state

wait

wait

trigger

trigger

(b)

wait

t, [0,2]t, [0.1] f, [0,4]

cs1, vc1

cs2, vc2

f, [3,2] t, [4,2]

t, [0,3]

ff

Thread 1

Thread 2

Fig. 3. (a) A partial-order trace corresponding to an execution of Figure 1; (b) its set of all consistent global
states with 6 states; (c) its slice with respect to cs1 = true ∧ cs2 = true, the slice has state V ; (d) its slice with
respect to possibly(cs1 = true ∧ cs2 = true), its states are enclosed in the shaded region

been notified by receiving a message from T2; that is e1, but T2 has not yet sent the
notification message. Similarly, {e3, e2, e1, e0, f2, f1, f0} is not a consistent global state
as well, since f3 has to be included in the state as well. Schedule (T1;T2;T1;TE;T2;T1)
corresponding to Trace 1 in Figure 2 is obtained by the schedule e0, f0, f1, e1, f2, f3, e2, e3

of actions in the partial order. This schedule generates an interleaving sequence of
states {e0, f0}, {e0, f1}, {e1, f1}, {e1, f3}, {e3, f3} in Figure 3(b). The other interleaving
sequence of states {e0, f0}, {e0, f1}, {e1, f1}, {e3, f1}, {e3, f3} in Figure 3(b) corresponds to
the total order Trace 2 in Figure 2. By using a partial-order representation, we are able
to capture both of these schedules. We next describe how to generate this partial-order
trace from a SystemC program execution.

4.2. Generating Partial-Order Traces with Vector Clocks

A physical timestamp cannot be used to generate partial-order traces from executions
of concurrent designs, since physical timestamps are totally ordered. We use a vector
of logical timestamps for this purpose. These logical timestamps allow us to track the
concurrency information and the dependencies among the actions in an execution. A
partial-order relation known as Lamport’s happened-before relation [Lamport 1978]
has been used for capturing dependencies in message-passing systems. A happened-
before relation assumes that execution of a process (thread or method) can generate
an internal action, a send action, or a receive action. Specifically, Lamport’s happened-
before relation is defined as the smallest transitive relation satisfying the following
properties: (a) if actions e and f are generated by the same process, and e occurred
before f in real time, then e happened-before f , and (b) if actions e and f correspond
to the send and receive, respectively, of a message, then e happened-before f .

We use a mechanism known as vector clocks to represent the partial-order rela-
tion (the happened-before relation) described above. A vector clock assigns logical

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:11

timestamps to actions such that the partial-order relation between actions can be
determined by using the timestamps.

Definition 4.1 (Vector clock). Given a computation G on n processes, a vector clock vc
is a map from V(G) to N n (vectors of natural numbers) such that ∀e, f ∈ V(G) : (e, f) ∈
E(G) ⇐⇒ e.vc ≤ f.vc, where e.vc is the vector assigned to the element e.

Vector clock algorithms for message-passing systems exist in Garg [2002]. For example,
given an n process program, for every process j, we assign a vector clock of size n
denoted by vc j . Initially, vc j[i] = 0, for i �= j, and vc j[j] = 1. A process increments its
own component of the vector clock only after a relevant action. A process includes a
copy of its vector clock in every outgoing message. On receiving a message, it updates
its vector clock by taking a component-wise maximum with the vector clock included in
the message. Finally, if the action is relevant, then the action and its vector clock are
output. For message-passing programs, all internal events that assign values to the
atomic propositions in the assertion, as well as send and receive actions, are relevant.

Vector clock algorithms for shared memory systems also exist [Sen et al. 2003]. In
this case, the happened-before relation assumes that execution of a process (thread
or method) can also generate read or write actions on shared variables. In this case,
for each shared variable x, there are two vector clocks va

x and vw
x , denoted by access

and write vector clocks, respectively. These are initially set to 0. A process updates
its vector clock on reading a shared variable x by taking a component-wise maximum
with the write vector clock of x. Then the access vector clock of x is updated by taking
a component-wise maximum with that of the vector clock of the process. On writing
a shared variable x, a process updates its vector clock by taking a component-wise
maximum with the access vector clock of x. Then, the write and access vector clocks
of x are set to the vector clock of the process. Finally, if the action is relevant, then
the action and its vector clock pair are output. For shared memory programs, all write
actions of shared variables that appear in the assertion to be verified are relevant. Note
that this vector clock algorithm allows multiple consecutive reads of the same shared
variable. It was proven in Garg [2002] and Sen et al. [2003] that the above-mentioned
vector clock algorithms correctly implement causality.

Since a TLM design can use both shared variables and messages, our vector clock
algorithm follows both of the above rules. Upon running the instrumented program,
a separate log file is created for each process. Each log file consists of a sequence of
(action, vector clock) pairs that a process generates. Furthermore, each such pair is
also appended by the values of the variables that the action in the pair manipulates.
Additionally, in order to capture the nonpreemptive SystemC scheduler with atomic
sections, we modify the log files and update vector clocks in atomic sections by adding an
edge from the last action in an atomic section to the first action. For example, thread
T 1 in Figure 1 has an atomic section that starts with triggering wait(10, SC NS)
and ends with cs1 = true, with corresponding actions e2 and e3, respectively. The
corresponding partial-order trace in Figure 3(a) contains an edge from the last action
e3 to e2. In the absence of such an edge, it would be possible to interleave the actions in
an atomic section, leading to global states that are not possible with a nonpreemptive
SystemC semantics, such as the global state {e2, e1, e0, f1, f0}. In other words, if we
ignored these edges for atomic sections, we would obtain a trace corresponding to the
schedulerless semantics of SystemC, as described earlier. The log files from all processes
are then combined to obtain a partial-order representation of the execution trace.
Instead of using a log file, if every process sends its trace to a dedicated process which
combines them during runtime, we can obtain a simple online verification environment.
Currently, the instrumentation code for shared variables is added manually to the
programs, however the instrumentation of messages is automatic, as described in the

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:12 A. Sen

Fig. 4. Partial-order trace with vector clocks.

next section. Note that an approach similar to Helmstetter et al. [2009] can be used to
automate instrumentation of shared variables and generation of partial-order traces for
a given execution. We do not handle dynamic process creation in this article. However,
vector clock algorithms can be extended such that the newly created process starts
with the same vector clock of the process that creates it.

A sample execution of the vector clock algorithm is given in Figure 4, where the
tuples in brackets represent the vector clocks. In the example, action s happened-
before t since [1, 0, 0] < [2, 1, 3], where vci < vc j if all elements of vci are less than or
equal to the corresponding elements of vc j and at least one element of vci is strictly
less than the corresponding element of vc j . Whereas u is concurrent with t, their vector
clocks are not comparable, hence the program does not enforce any ordering between
them. The reordering of concurrent actions can possibly lead to an exponential number
of new schedules, or total orders. However, traditional simulators put an artificial
ordering between these concurrent actions and generate only a single schedule. We
present verification algorithms that can efficiently check assertions on partial-order
traces that may encode an exponential number of schedules or total-order traces.

5. IMPLEMENTING VECTOR CLOCKS IN SYSTEMC KERNEL

Now that we know how to capture concurrency information as partial-order traces using
vector clocks, we implement these in the SystemC kernel. Specifically, we add a new
class, sctv vector clock, to implement vector clocks. During the elaboration phase of the
simulation, the processes are registered, the total number of processes in the system is
determined, and the appropriately-sized vector clocks are instantiated. Every process
in the design has the extra data member consisting of the vector clock. Every send and
receive is considered to be an action. By default, every evaluate-phase is registered as
an internal action. Note that a single evaluate-phase can consist of multiple concurrent
actions.

As we discussed above, the communication framework in SystemC is based around
events. SystemC events are stateless and extremely lightweight. Execution of a trigger
function (resulting after a wait function) or a channel read corresponds to a receive
action in the partial-order trace. Similarly, execution of a noti f y function or a chan-
nel write (which later invokes notify) corresponds to a send action in the trace. It is
convenient to have the sender information when a message is received. Hence, we
add the sender id to every event. For a trigger action, the sender id is checked. If the
sender id is invalid, we conclude that the action is an internal action (e.g., a timed
wait). Since an event leads to an action in our partial-order trace model, as per the
vector clock algorithm, the vector clock of the sending process is stored with the event.
Note that, for channel writes, the events are initialized after the current process has
finished executing. Hence, we store the required information in the sc prim channel
class. This works for the primitive channels as well as any user-defined channels. Note

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:13

that notify and trigger are two fundamental actions that generate causal dependence
in a SystemC model. Therefore we instrument these functions in the SystemC kernel.
Blocking channel operations ultimately make use of these fundamental actions. Also,
nonblocking operations in TLM 2.0 generate causal dependence when they use these
fundamental actions. Finally, accesses to shared variables can also generate causal
dependence, but these are invisible from the SystemC kernel, and hence can be dealt
with by instrumenting the user code.

The dependencies between processes are dynamically generated as the program is
executed. We treat AND and OR event lists separately. In particular, we receive the
vector clock for each notifying process in the AND case, whereas the first notifying
process’s vector clock suffices in the OR case.

5.1. SystemC Partial-Order Trace Example

When the design in Figure 1 is compiled and executed with our modified kernel, a trace
is generated that contains internal send and receive actions from every thread together
with the values of relevant variables and vector clocks for every action. Trace 1 in Figure
2 corresponds to a generated total-order trace where the scheduling of the threads is
(T1;T2;T1:TE;T2;T1). Note that there are three possible schedules (total-order traces)
for this program, but the SystemC scheduler will generate only one. The partial order
trace of the resulting execution is shown in Figure 3(a). This partial-order trace is
obtained from Trace 1 using the vector clock information in Trace 1. In the partial-
order trace, the time flows from left to right; the actions of threads are represented
by circles. In each thread an action is labeled with an ordered tuple: the value of the
respective local variable immediately after the action is executed and a vector clock.
For example, the value of cs1 immediately after the T1 executing trigger action e1 is
false (f). The first action on each thread initializes the state of the thread. Figure 3(b)
contains the set of all consistent global states of the computation reachable from the
initial state {e0, f0}. Note that we do not generate actions in the partial-order trace in
Figure 3(a) for the nonrelevant actions wait and read, but only for notify, trigger, and
write actions. However, for ease of presentation, we show nonrelevant actions in the
traces via empty circles. Also, note that edges e3 to e2 and f3 to f2 are added in order
to preserve atomicity of wait-to-wait blocks.

We can also use shared variables for communication in TLM designs. Figure 5 dis-
plays a SystemC design and a partial-order trace where the scheduling of the threads
is (T2;T1;T2). Note that edges e2 to e1 and f3 to f2 are added in order to preserve
atomicity of wait-to-wait blocks.

Next, we describe the verification phase of our algorithm. In this phase, we first
describe our transaction-level assertion language. Then, we describe how we can check
assertions on partial-order traces using the computation slicing technique.

6. TRANSACTION-LEVEL ASSERTION LANGUAGE

For the assertion language, we use a variant of branching temporal logic, CTL, for
SystemC and add transaction-level atomic propositions as described in Tabakov et al.
[2008]. This logic allows us to express many alternative futures from every instant
of time. Many futures are possible, since the state space of a partial-order trace is a
lattice structure, as can be seen from the consistent global states in Figure 3(b). We
use assertion, property, and specification interchangeably.

Atomic propositions of this logic refer to the variables in a SystemC program.
We extend these with the following propositions from Tabakov et al. [2008]. The
f unc name.entry is true at the location immediately before the first executable state-
ment in a function. Similarly, f unc name.exit is true at the location immediately after

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:14 A. Sen

Fig. 5. A SystemC design with shared variable communication and a partial-order trace corresponding to
an execution of it.

the last executable statement in a function. The event name.noti f ied is true whenever
the SystemC kernel carries out the actual notification.

Basic temporal operators of this logic include possibly, eventually, possibly− f orever,
always, some − nextstate, and all − nextstates. We interpret properties in our logic over
the global states of a computation. Given a global state, a property is evaluated with
respect to the values of variables resulting after executing all actions in the state,
that is, at the frontier of the state. Intuitively, we say that a global state C satisfies
always(p) (resp. possibly − f orever(p)) if every state on all sequences of global states
(resp. on some sequence of global states) from C to the final global state satisfies p.
Similarly, we say that C satisfies possibly(p) if there exists a global state that satisfies
p on some sequence from C to the final state.

Our logic allows us to specify safety, liveness, and transaction properties that a
SystemC program must satisfy. A safety property specifies that something bad will
never happen, whereas a liveness property specifies that something good will even-
tually happen. For example, the safety property in a cache coherence protocol, “no
two cache lines are in the modified state at the same time” can be specified as
always(¬modi f iedi ∨ ¬modi f iedj), where i �= j. The liveness property in a bus pro-
tocol, “all requests for the bus are eventually acknowledged” can be specified as
always(requesti ⇒ eventually(acki)). A transaction property specifies properties about
transactions in SystemC. For example, “after an event is notified, a memory read trans-
action starts” can be specified as always(e.noti f ied ⇒ all − nextstates(memory read)).
We can now define assertion-based verification for our partial-order trace-based frame-
work.

Definition 6.1 (Assertion-based verification). Given a partial-order execution trace
of a SystemC program and an assertion, the assertion-based verification problem is to
decide whether the initial global state of the trace satisfies the assertion.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:15

For example, the assertion possibly(cs1 = true ∧ cs2 = true) is true for the trace in
Figure 3(a). Since the trace has a global state V that satisfies (cs1 = true ∧ cs2 = true)
on some sequence from the initial state to the final state, as seen in Figure 3(b).

7. USING COMPUTATION SLICES FOR VERIFICATION

Verifying properties on a partial-order trace suffers from the state explosion problem.
This is because a system with n processes and k actions on each process can have up to
nk number of global states. The concept of slicing is useful because it allows us to reason
only on the part of the global state space that could potentially affect the assertion.

A computation slice (or a slice) is a concise representation of all those global states
of the computation that satisfy an assertion. Formally the definition is as follows.

Definition 7.1 (Slice). A slice of a graph G with respect to an assertion p, denoted by
Slice[p], is the directed graph obtained from G by adding edges and removing vertices
such that it only contains all the consistent global states of the graph that satisfy the
assertion p .

For example, the slice of the trace in Figure 3(a) with respect to the assertion (cs1 =
true ∧ cs2 = true) is shown in Figure 3(c). The reader can verify that, indeed, this new
trace contains the global state V of the trace in Figure 3(a) that satisfies the assertion.
We explain in the next section how we obtained this slice.

Earlier we presented polynomial-time (in the number of processes) computation
slicing algorithms for temporal assertions [Sen and Garg 2007]. In the next section,
we describe slicing algorithm for temporal assertions of the form possibly(p). In order
to compute the slice with respect to an assertion, we recursively process the assertion
from inside to outside while applying temporal and Boolean operators at each step to
compute slices. Now we are ready to redefine Definition 6.1 in the light of slicing.

Definition 7.2 (Assertion-based verification using slicing). Given a partial-order ex-
ecution trace and an assertion, the assertion-based verification using slicing is to decide
whether the initial global state of the trace and the slice with respect to the assertion
are the same.

We can use this definition for assertion-based verification because the slice contains all
states of the trace that satisfy the assertion including, possibly, the initial state of the
trace.

8. SYSTEMC PREDICTIVE ASSERTION VERIFICATION

In this section we describe how to use computation slicing for predictive assertion
verification of SystemC designs. In particular, we show that by using partial-order
traces and slicing, we can find errors from error-free total-order traces. We demonstrate
predictive verification on the design shown in Figure 1. We are interested in checking
an error condition where both threads can set their cs variables to true at the same
time; that is, possibly(cs1 = true ∧ cs2 = true). This assertion is composed of two
local assertions cs1 = true and cs2 = true, and we denote their conjunction (cs1 =
true ∧ cs2 = true) by p. The relevant variables of this assertion are cs1 from thread 1
and cs2 from thread 2. Our framework automatically adds tracing for these relevant
variables to the design, as explained in Section 5. We earlier showed that executing
this program with our modified SystemC kernel generates a total order Trace 1 with
vector clock information, which we use to obtain the partial-order trace, as shown
in Figure 3(a). Note that there are three possible schedules (total-order traces) for
this program, but the SystemC scheduler will generate only one. Note also that the
assertion is not satisfied (error is not found) in the total-order of Trace 1. To see this, we
observe that the assertion is satisfied only at state V = {e3, f1} in Figure 3(b). Trace 1

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:16 A. Sen

ALGORITHM 2: Algorithm for Generating Slice[possibly(p)]

Input: a partial order trace T , an assertion possibly(p).
Output: Slice[possibly(p)].
1: compute Slice[p], where p = p1 ∧ p2 . . . ∧ pn is a conjunctive assertion;
2: S1 = T ;
3: add an edge from the successor of an action where p1, p2, . . . , pn is false back to the

action in S1;
4: find the largest reachable state V that satisfies p using Slice[p];
5: S2 = T ;
6: remove vertices and edges after state V in S2;
7: output S2;

corresponds to the sequence of states {e0, f0}, {e0, f1}, {e0, f2}, {e0, f3}, {e1, f3}, {e2, f3},
{e3, f3} in Figure 3(b) and does not contain the V state. However, the partial-order trace
clearly contains V and satisfies the assertion (finds the error). We now show how we
use slicing to automate this.

Without computation slicing, we are forced to examine all global states of the partial-
order trace, six in total, to decide whether the trace satisfies the assertion. Instead,
we compute the slice of the trace with respect to the assertion possibly(p) and apply
Definition 7.2. We show the algorithm that computes Slice[possibly(p)] in Algorithm 2.
The algorithm has polynomial-time complexity O(|p| · n2|E|), where |p| is the number
of Boolean and temporal operators in p, n is the number of processes, and |E| is the
number of edges. Polynomial-time algorithms for other assertions and their proof of
correctness can be found in Sen and Garg [2007].

To obtain the slice with respect to the nontemporal part p, we add an edge from the
successor of an action where the local assertion p1 or p2 or . . ., pn is false back to the
action in the partial-order trace, thereby increasing the number of incoming neighbors
of that action. This process eliminates the action from taking part in any consistent
global state. For example, action e0 does not satisfy the local assertion cs1 = true,
therefore the global states that contain e0, that is, {e0, f0}, and {e0, f1} in Figure 3(b),
do not satisfy the local assertion. After the addition of the edges (e1, e0), (e2, e1) in
Figure 3(c), none of these states belong to the states of the slice. After addition of these
edges, from the definition of a consistent state, any state that includes e0, e1, or e2 must
include e3, where the local assertion is satisfied. Similarly, we remove vertex f3, since
f3 it does not satisfy local assertion cs2 = true. Also, since f3 and f2 belong to the same
component (atomic section), f2 has to be removed as well. As a result, from the six
consistent global states in Figure 3(b), this exercise eliminates five – retaining state
V , which satisfies cs1 = true ∧ cs2 = true.

To obtain the slice with respect to the temporal part possibly(p), we use the slice with
respect to the nontemporal part p. Specifically, the slice with respect to possibly(p)
includes all states up to the largest reachable state that satisfies p. Since, from the
definition of possibly(p), every global state of the trace that can reach the largest
reachable state that satisfies p also satisfies possibly(p). Using the slice in Figure 3(c),
we can obtain the largest reachable state that satisfies p, which is denoted by V . All
of the states enclosed in the dashed ellipse in Figure 3(b) can reach V , hence they all
satisfy possibly(p) and should be part of the slice. Therefore, in order to generate the
slice, we first find the largest reachable state that satisfies p using the slice with respect
to p. We have earlier shown that such a state exists. Then, the slice with respect to
possibly(p) is the same as the partial-order trace, except none of the vertices and edges
after state V is included in the slice. We show the slice with respect to possibly(p) in
Figure 3(d).

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:17

Finally, we use Definition 7.2 and check whether the initial state of the trace is the
same as the initial state of the slice. If the answer is yes, then the assertion is satisfied;
otherwise a counter-example is returned. We find that the assertion possibly(p) is
satisfied, since the the initial state of the slice with respect to possibly(p), which is
{e0, f0}, is the same as the initial state of the partial-order trace. Hence, we can detect
this error. However, the assertion is not satisfied (error is not detected) in the total-
order Trace 1, which was what the user observed. Indeed, this error could have been
found only if the user had observed another total-order trace, Trace 2, which is encoded
in the partial-order trace in our case. Hence, our framework is able to find potential
errors from error-free total-order traces (from Trace 1).

A strength of the slicing approach is that the slice is computed efficiently by adding
edges and removing nodes (without traversing the state space) and represented con-
cisely (without explicit representation of individual states) as a trace. Another strength
of our approach is that once the partial-order trace is obtained, the design is never
re-executed in order to find other possible traces (Trace 2 and Trace 3); rather our
algorithms work on the partial-order trace itself by adding edges or removing vertices.
This is different from traditional assertion-based verifiers.

For each simulation of the design in the above predictive verification approach,
we need a verification test, be it random or directed or otherwise, that guides the
design exploration. Even if predictive assertion verification is successfully completed,
there is still a doubt whether verification tests are comprehensive and if they cover
all possible behaviors of the system. Increasingly, there is a need to measure the
quality of verification efforts. Coverage metrics play an important role in evaluating
the confidence in the verification results. In the next section, we develop mutation
testing-based coverage metrics in order to determine the quality of the verification
tests.

9. MUTATION OPERATORS FOR CONCURRENT SYSTEMC

In this section, we first identify typical bugs that designers make when using concur-
rency. Then, we develop mutation operators for concurrent SystemC functions, listed
in Table I, and relate them to these bugs.

Note that there is work in the literature on bug patterns due to mutation of C++
constructs such as variable mutation, operator mutation, constant mutation, and state-
ment mutation. Though such mutations may also be useful, we are only concerned with
the mutations due to SystemC constructs. A tool such as [CERTITUDE 2010] can be
used for other cases. It is also important to check the coverage of the assertions used
in the verification, since the designer may not have verified all potential behavior of
the design with the given set of assertions. There is work on coverage techniques for
assertions [Kupferman et al. 2008; Tong et al. 2010] which can be used in conjunction
with our work.

The following list of bug patterns is based on resources such as Java concurrency bug
patterns [Bradbury et al. 2006; Farchi et al. 2003], patterns for TLM 2.0 communication
functions [Bombieri et al. 2008], and our experience.

B1. Lost notify. If a notify is executed before a corresponding wait is executed, the
noti f y has no effect for the process that will start waiting and is lost. As a result, a
process executing a wait might not be awakened because it is waiting for a notify
that occurred before the wait was executed. This may hold for timed notifications
as well as immediate notifications.

B2. Interference (Data race). Two or more concurrent threads access a shared variable
and at least one access is a write.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:18 A. Sen

B3. Deadlock. Two or more processes are unable to proceed due to waiting for one
another. Also, we say that a process is deadlocked when it is stuck as in schedule
(T2;T1;TE;T2) in Figure 2.

B4. Starvation. A process may starve due to actions of other processes. A change in
lock acquisition may lead to this.

B5. Resource exhaustion. A group of processes holds all of a finite number of resources.
One of them needs additional resources but no other process gives up.

B6. Incorrect count initialization. This occurs when number of entries in a semaphore
initialization is incorrect.

B7. Nondeterminism. If an immediate notification is used, this may cause nondeter-
minism.

B8. Forgetting functions. Forgetting to call a put before a get function.
B9. Incorrect functions. Using read instead of write, or using blocking instead of a

nonblocking function.

We now present a set of mutation operators designed to exercise concurrency and
synchronization present in SystemC programs. We describe operators in two categories.
In the first category, mutations modify parameters of concurrency functions. In the
second category, mutations remove, replace, or exchange concurrency functions. We
also relate these mutation operators to real bug patterns just described.
Category 1. Modify parameters of concurrency function.

M1. Modify Function Time. This operator can be applied to functions with a time
parameter such as wait, noti f y, and next trigger. For example, we can modify
wait(time) to wait(time/2). This modification may result in an interference or data
race bug B2, since a process may access a shared variable when it is not supposed
to, due to a potential change in process activation time or order. This mutation
can also lead to a lost notify B1 and deadlock B3 if the notification is sent before
the corresponding wait.

M2. Modify Concurrency Construct Count. This operator can be applied to semaphores
that indicate the number of threads that can access a shared resource. This mu-
tation leads to incorrect count initialization B6, and may also lead to resource ex-
haustion B5 if the count is decremented. For example, modify sc semaphore(num)
to sc semaphore(num− 1) or sc semaphore(num+ 1).

Category 2. Remove, replace, and exchange concurrency function.

M3. Remove Concurrency Construct. This operator removes calls to concurrency func-
tions described in Table I. This mutation results in a B8 bug. Removing wait or
lock may result in interference B2, since a thread that should have been waiting
can potentially access a shared variable. Removing noti f y may result in lost notify
bug B1 and deadlock B3. Removing an unlock may result in the process waiting
for the lock to be starved, hence B4.

M4. Replace Timed Construct with Untimed Construct. This operator replaces timed
construct with an untimed construct, and vice versa. For example, we can replace
timed notify, with immediate notify which may result in nondeterminism B9. Also,
a wait(e) can be replaced by wait(1, SC NS), which may result in interference B9,
since the process may access a shared variable before waiting for the appropriate
event notification.

M5. Exchange Lock/Permit Acquisition. This operator exchanges a function of a
semaphore or mutex with another one. In a semaphore, wait or trywait can be used
to acquire permits to a shared resource. Exchanging one function with another
may lead to timing changes and starvation. For example, using trywait instead
of wait may lead to starvation, B4, since in the first case threads do not block,

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:19

whereas threads block in the second case. Also, this can result in an incorrect
function, B9.

M6. Exchange Function Call with Another. This operator exchanges a function in
Table I with another appropriate function. For example, a call to semaphore post
is exchanged with wait or noti f y exchanged with wait. Also, a call to get may be
exchanged with an appropriate peek. This may result in starvation B4 as in B5;
interference B2 since a shared variable may be accessed; deadlock B3 since in-
stead of releasing a lock it may request creating a circular chain of lock requests;
exhaustion B5 since resources may have been received from the channel by get,
lost notify B1, or incorrect function B9.

M7. Exchange one Concurrency Construct Instance with Another. When there is more
than one lock (mutex or semaphore), we replace a call to a lock with another one.
This may lead to a deadlock situation B3, or interference B2, since the correct lock
is not used to access critical regions, and may also lead to an incorrect usage of
functions B9.

We have described a complete set of mutation operators and how they relate to real
bug patterns. Next, we are going to present our mutation coverage algorithm.

10. MUTATION COVERAGE ALGORITHM

We define a mutant P ′ as the introduction of a mutation operator into a program P. We
then define what it means to kill a mutant.

Definition 10.1 (Killing mutant). Given a mutant P ′ for a program P and a test t,
t is said to kill P ′ if and only if the output of t on P ′ is different from the output of
t on P.

A verification test is expected to kill each mutant with at least one test case. In case a
mutant cannot be killed, the tester needs to show that (1) output of t on P ′ is the same
as the output of t on P; or (2) update tests by adding a test case that kills the mutant.
We define the ratio of the number of mutants killed to the number of all mutants as
mutation coverage. This allows us to determine the coverage of verification tests.

Note that in case both the mutant and the original program can generate multiple
schedules, a concurrent mutation coverage definition can be given, where we can check
output differences of all possible schedules. However, generating multiple schedules of
a design can result in huge overheads in execution. Similarly, a SystemC program may
not be terminating, leading to many schedules. Hence, such a concurrent mutation
coverage may not be useful.

Algorithm 3 displays our automatic mutation coverage algorithm for SystemC. In
line 1, for every concurrency function in the original program, we insert a mutation
operator, as described above, and obtain a metaprogram. The metaprogram uses a
mutant schema where each inserted mutation is guarded by a conditional statement
that can be switched on and off at runtime. This metaprogram is more efficient than
generating a new version of the program for each mutation. Note that not all mutation
operators are applicable to every program. In line 3, we enable the inserted mutation
operators one by one, obtaining a mutant for each enabling. Then, in line 4, we choose
every test in the test suite one by one for simulation. It is possible that some tests may
not execute the inserted mutation, so we do not consider these tests during simulation.
This check can be done by an initial execution of all tests on the metaprogram. In line
5, we simulate the metaprogram. In line 6, we check if the test kills the mutant using
Definition 10.1. Finally, in line 8, we generate mutation coverage.

The complexity of algorithm can reach M×V ×T , where M is the number of inserted
mutations, V is the number of verification tests and T is the cost of simulation of

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:20 A. Sen

Table II. Outputs of Mutant Example in Figure 6

Test1 Outputs(cs1cs2) Test2 Outputs(cs1cs2)
Original (P) Mutant (P’) Original (P) Mutant (P’)

tf tf ft, ff, tf ft, tt, tf

ALGORITHM 3: Mutation Coverage Algorithm

Input: a SystemC program P, a set of verification tests V .
Output: mutation coverage.
1: insert all “relevant” mutation operators into P;
2: for each inserted mutation operator M in P do
3: enable M and obtain a mutant P ′;
4: for each verification test v ∈ V do
5: simulate P ′ with v;
6: check if v kills P ′;
7: end for
8: end for
9: generate mutation coverage;

one test. Since the number of mutations can be high, performance can be a problem.
However, the more abstract the design description, the fewer the number of mutations.
Hence, at SystemC TLM level, we have relatively fewer numbers of mutations as, can
be seen from experimental results.

10.1. SystemC Mutation Coverage Example

We apply a mutation operator that removes the concurrency construct wait and ob-
tain the mutant in Figure 6. Assume that the test suite only contained Test1, which
generates only the final values of cs1, cs2, as can be seen from the Test1 columns in
Table II. We denote values that are generated before the thread ends or deadlocks
as final values. Consider schedule (T1;T2;T1;TE;T2:T1) for the original program and
schedule (T1;T2;TE;T1:T2) for the mutant. This mutation is not killed by Test1 because
the output of the original program (tf) is the same as the output of the mutant (tf). The
designer needs to improve the coverage by adding a new test.

One possible way to improve the quality of the test suite (and kill the mutant) is
to generate values of cs1, cs2 at all value changes, rather than just at the final state,
starting from their initial values f t. We call this test Test2. From Table II, it is clear
that the mutant output f t, tt, t f is different from the output of the original program
f t, f f, t f , hence the mutant is killed. Another possible way to improve the quality of
the test suite would be to use an assertion to check whether cs1, cs2 can be true at the
same time.

11. EXPERIMENTS

We have performed experiments on concurrent SystemC designs using our predictive
verification and mutation testing-based coverage frameworks to validate the effec-
tiveness of our concurrency-oriented approaches. As experimental testbeds, we chose
five designs from OSCI SystemC and TLM 2.0 library distributions [OSCI 2010]; two
designs from SystemC Runtime Verification Toolbox (SCRV) [SCRV 2009]; and two
industrial designs described below. Each design contains its own verification tests.

11.1. SystemC Verification Experiments

In verification of each design, we executed Algorithm 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:21

Fig. 6. A SystemC mutant example.

The first industrial design framework (ind1) is a modeling library based on SystemC,
used for architectural exploration, RTL development, constrained random verifica-
tion, and early software development. It includes a complete set of BFM and moni-
tor components for several bus protocols, including proprietary TLM compliant bus
protocols. Also included is a new testbench environment built on the existing hard-
ware modeling library, that includes controllers through which all interaction with
the device under verification takes place. Some of the controllers are data stimu-
lus, clock, signal, bus, fifo, and memory. The framework consists of around 38,000
lines of SystemC code. The experiments were executed with up to 12 threads. We
used 21 testbenches that were used during the original validation. We used several
transaction-level assertions (34 in total) to describe high-level communication and
synchronization between the controllers and peripherals. Several assertions were vio-
lated. One such violation was for the property “After a notification of a start event by
the bus controller, the next notification is a test event, - always(start−event.noti f ied ⇒
all − nextstates(test − event.noti f ied))”. This property is useful to demonstrate the cor-
rect ordering of communication events. Another property that was violated stated that
“Every access request by a core for the bus is eventually granted”. This is useful for
checking starvation freedom. We checked the complement of this property, which is∨

i∈0...(n−1)(possibly(requesti ∧ possibly − f orever(¬grantedi))), for each core i. The er-
rors could only be generated for an alternative schedule of threads rather than the
observed schedule, hence a traditional assertion-based verifier that checks only the
observed simulation schedule could not detect this error. The average slowdown on
simulation using our kernel versus the unmodified kernel was 7%.

The second industrial framework (ind2) is an SOC with DSP cores, cryptographic
accelerators, and crossbar. The code base was around 100,000 lines of SystemC code.
There were 57 threads maximum during the experiments. We used 6 testbenches that
were used during the original validation of the design. We also manually inserted
errors and checked several temporal assertions. One of these errors resulted in cache
coherency violation, where a cache state was in modified state in more than one cache.
The property is possibly(modi f iedi ∧modi f iedj), where i and j are cache identifiers. We
caught these errors via our predictive verification framework, whereas errors were not

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:22 A. Sen

Table III. Mutation Testing-based Coverage Metric Experiments

Design Lines # Mutants Time (ms) Coverage (%)

pv example 2449 18 200 66
p2p pipe thread 926 36 240 55
scx mutex w policy 161 30 280 76
at1 phase 2350 34 240 56
ind1 38,080 146 440240 52
pvt put example 1161 55 400 41
bozo 139 16 170 56
sirac 253 28 230 60

found by a traditional assertion-based verifier, since the observed simulation did not
have the error. Our initial experiments demonstrate a 12% slowdown on simulation
versus the unmodified kernel. Designs with a higher number of processes have a higher
slowdown, as expected.

We also performed experiments for designs pvt put example, bozo, and sirac, and the
design in Figure 1, where we added simple temporal assertions to check for mutual
exclusion of shared resources. All designs had schedules that violated the assertions.
For the example in Figure 1, assertion possibly(cs1 = true ∧ cs2 = true) was vio-
lated. Similarly, for the example in Figure 5, we checked the assertion always((y =
f alse ∧ some − nextstate(y = true)) ⇒ (x = f alse ∧ some − nextstate(x = f alse)), which
states that “when y becomes true, x must stay false”. This assertion was not violated.
Since these designs are relatively small with a fewer number of threads, the average
slowdown on simulation using our kernel versus the unmodified kernel was around
3%.

11.2. SystemC Coverage Experiments

For each design, we executed Algorithm 3 and displayed mutation coverage together
with the mutations killed and not killed as feedback.

Table III shows our results. In the table, we denote the number of lines in the design
in the column Lines, the time it took to complete the experiment in column T ime,
and the number of generated mutants in column Mutants. Finally, the column denoted
Coverage represents the mutation coverage percentage. Our experimental results can
be summarized as follows.

(1) Low mutation coverage percentages (less than 60% for most designs) confirm the
inadequacy of test suites to find many possible design errors, since mutations are
closely related to actual errors, as we described.

(2) For each design, execution of our mutation algorithm for all mutants took less than
400ms to complete, except for ind1, where it took 440240ms (close to 5x execution
time slowdown), since it is a large design and has a high number of testbenches.
However, our approach lends itself to simple parallelization, and we expect to
reduce these execution times substantially for large designs when we implement
parallelism.

(3) The relatively few number of generated mutants shows that by focusing solely on
concurrency functions at TLM, we do not suffer from an explosion in the number
of mutants. The industrial design especially used very few concurrency constructs.

Similar to other coverage measures, a target coverage percentage can be provided by
the user. Empirical industrial data has shown that mutation coverage over 80% could
be the initial target [Bailey 2009]. The user can iteratively improve the test suite by
adding new test cases until the target coverage is reached. For example, in the case of
the industrial design, although the coverage was 52%, we increased it to 83% after the
addition of a new test that activates concurrency constructs by bus transactions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:23

12. CONCLUSIONS AND FUTURE WORK

The emergence of concurrent multicore designs requires concurrency-oriented design
automation techniques. We have presented a concurrency-oriented approach for verifi-
cation and coverage of system-level designs using SystemC. Unlike formal verification
techniques, our solutions are scalable and fast, and can be seamlessly integrated with
current design flows. In verification work, we have used a combination of partial-order
traces, computation slicing, and transaction-level assertions to develop a concurrency-
oriented predictive verification technique. We have demonstrated that our technique
can predict potential errors from error-free executions. We not only analyze more sched-
ules than a traditional assertion-based verifier, but we can also do this with very little
cost, thanks to our efficient slicing algorithms. We have extended SystemC kernel and
added transaction-level assertion support for this purpose. Our experimental results
on industrial designs validate the effectiveness of predictive verification.

In coverage work, we developed a comprehensive list of the mutation operators for
concurrency and synchronization-related features of SystemC and showed the effective-
ness of these operators by relating them to actual bug patterns. Such a comprehensive
list had not been developed before. Our coverage metric allows us to adequately gener-
ate coverage for concurrent SystemC programs and, ultimately, improve the quality of
test suites. Our experimental results confirm the inadequacy of current verification test
suites for checking concurrent features of SystemC and demonstrate the effectiveness
of mutation testing-based coverage metrics.

In the future, we are planning to extend our verification framework to predict com-
mon error types, such as race conditions, and investigate efficient vector clock algo-
rithms to further reduce overhead. Our mutation framework can also be used to opti-
mize the test suite by removing redundant test cases that kill the same set of mutants.
Also, a parallel version of our work will substantially improve performance for large
designs.

ACKNOWLEDGMENTS

We thank the anonymous referees, whose comments helped us improve the article.

REFERENCES

ABRAMOVICI, M., BREUER, M. A., AND FRIEDMAN, A. D. 1990. Digital Systems Testing and Testable Design.
Computer Science Press, New York.

ANDREWS, J. H., BRIAND, L. C., AND LABICHE, Y. 2005. Is mutation an appropriate tool for testing experiments?
In Proceedings of the 27th International Conference on Software Engineering (ICSE). 402– 411.

BAILEY, B. 2009. Can mutation analysis help fix our broken coverage metrics? In Proceedings of the 4th

International Haifa Verification Conference (HVC ’08). 5–5.

BLANC, N. AND KROENING, D. 2010. Race analysis for systemc using model checking. ACM Trans. Des. Autom,
Electron. Syst. 15, 3, 1–32.

BOMBIERI, N., FUMMI, F., AND PRAVADELLI, G. 2008. A mutation model for the SystemC TLM2.0 communication
interfaces. In Proceedings of the Conference on Design Automation and Test in Europe (DATE). ACM,
New York, 396–401.

BOMBIERI, N., FUMMI, F., PRAVADELLI, G., HAMPTON, M., AND LETOMBE, F. 2009. Functional qualification of TLM
verification. In Proceedings of the Conference on Design Automation and Test in Europe (DATE). ACM,
New York, 190–195.

BRADBURY, J., CORDY, J., AND DINGEL, J. 2006. Mutation operators for Concurrent Java (J2SE 5.0). In Workshop
on Mutation Analysis, 2006. 11.

BUDD, T. A. 1981. Mutation analysis: Ideas, examples, problems and prospects. In Computer Program Testing,
North-Holland, Amsterdam, 129–148.

CAMPENHOUT, D. V., AL-ASAAD, H., HAYES, J. P., MUDGE, T., AND BROWN, R. B. 1998. High-level design verification
of microprocessors via error modeling. ACM Trans. Des. Autom. Electron. Syst, 3, 4, 581–599.

CERTITUDE. 2010. Springsoft, Certitude website. http://www.springsoft.com/.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

37:24 A. Sen

ECKER, W., ESEN, V., STEININGER, T., VELTEN, M., AND HULL, M. 2007. Implementation of a transaction level
assertion framework in SystemC. In Proceedings of the Conference on Design Automation and Test in
Europe (DATE). ACM, New York, 1–6.

FALLAH, F., DEVADAS, S., AND KEUTZER, K. 1998. OCCOM: Efficient computation of observability-based code
coverage metrics for functional verification. In Proceedings of the Design Automation Conference (DAC).
ACM, New York,152–157.

FARCHI, E., NIR, Y., AND UR, S. 2003. Concurrent bug patterns and how to test them. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS).

FOSTER, H. D., KROLNIK, A. C., AND LACEY, D. J. 2004. Assertion-Based Design 2nd Ed., Springer, Berlin.

FRANKL, P. G., WEISS, S. N., AND HU, C. 1997. All-uses vs mutation testing: An experimental comparison of
effectiveness. J. Syst. Softw. 38, 3, 235–253.

FUMMI, F. AND PRAVADELLI, G. 2007. Too few or too many properties? Measure it by ATPG! J. Electron. Testing
23, 5, 373–388.

GARG, V. K. 2002. Elements of Distributed Computing. Wiley, New York.

GHENASSIA, F. 2005. Transaction-Level Modeling with SystemC. Springer, Berlin.

GROSSE, D. AND DRECHSLER, R. 2003. Formal verification of LTL formulas for SystemC designs. In Proceedings
of the International Symposium on Circuits and Systems (ISCAS). 245–248.

HABIBI, A. AND TAHAR, S. 2004. On the extension of SystemC by SystemVerilog assertions. In Proceedings of
the Canadian Conference on Electrical and Computer Engineering. 1869–1872.

HAMPTON, M. AND PETITHOMME, S. 2007. Leveraging a commercial mutation analysis tool for research. In
Proceedings of Testing: Academic and Industrial Conference Practice and Research Techniques (MUTA-
TION’07). 203–209.

HELMSTETTER, C., MARANINCHI, F., AND MAILLET-CONTOZ, L. 2009. Full simulation coverage for SystemC
transaction-level models of systems-on-a-chip. Formal Methods Syst, Des. 35, 2, 152–189.

HELMSTETTER, C., MARANINCHI, F., MAILLET-CONTOZ, L., AND MOY, M. 2006. Automatic generation of schedulings
for improving the test coverage of systems-on-a-chip. In Proceedings of the International Conference on
Formal Methods in Computer-Aided Design (FMCAD). 171–178.

HELMSTETTER, C. AND PONSINI, O. 2008. A comparison of two SystemC/TLM semantics for formal verification.
In Proceedings of the International Conference on Formal Methods and Models for Co-Design (MEM-
OCODE). 59–68.

HSIAO, M. S., RUDNICK, E. M., AND PATEL, J. H. 2000. Dynamic state traversal for sequential circuit test
generation. ACM Trans. Des. Autom. Electron. Syst. 5, 3, 548–565.

KASUYA, A. AND TESFAYE, T. 2007. Verification methodologies in a TLM-to-RTL design flow. In Proceedings of
the Design Automation Conference (DAC). 199–204.

KUNDU, S., GANAI, M., AND GUPTA, R. 2008. Partial order reduction for scalable testing of SystemC TLM
designs. In Proceedings of the 45th Annual Design Automation Conference (DAC’08). 936–941.

KUPFERMAN, O., LI, W., AND SESHIA, S. A. 2008. A theory of mutations with applications to vacuity, coverage, and
fault tolerance. In Proceedings of the International Conference on Formal Methods in Computer-Aided
Design (FMCAD). 1–9.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm. ACM 21, 7,
558–565.

LI, N., PRAPHAMONTRIPONG, U., AND OFFUTT, J. 2009. An experimental comparison of four unit test criteria: Mu-
tation, edge-pair, all-uses and prime path coverage. In Proceedings of the IEEE International Conference
on Software Testing Verification and Validation Workshop. IEEE, Los Alamitos, CA, 220–229.

MA, Y.-S., OFFUTT, J., AND KWON, Y. R. 2005. MuJava: An automated class mutation system: Research articles.
Softw. Test. Verification Reliability 15, 2, 97–133.

MITTAL, N. AND GARG, V. K. 2001. Computation slicing: Techniques and theory. In Proceedings of the Symposium
on Distributed Computing (DISC). 78–92.

OFFUTT, J., AMMANN, P., AND LIU, L. 2006. Mutation testing implements grammar-based testing. In Proceedings
of the 2nd Workshop on Mutation Analysis. 12.

OFFUTT, J. AND UNTCH, R. H. 2001. Mutation 2000: Uniting the Orthogonal. Kluwer, Amsterdam.

OSCI 2010. Open SystemC initiative, http://www.systemc.org/.

PINTO FERRAZ FABBRI, S. C., DELAMARO, M., MALDONADO, J., AND MASIERO, P. 1994. Mutation analysis testing
for finite state machines. In Proceedings of the 5th International Symposium on Software Reliability
Engineering. 220–229.

PIERRE, L. AND FERRO, L. 2008. A tractable and fast method for monitoring SystemC TLM specifications. IEEE
Trans. Computers 57, 10, 1346–1356.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

Concurrency-Oriented Verification and Coverage 37:25

SCRV 2009. SystemC runtime verification toolbox (SCRV). http://mytrac.assembla.com/scrv/wiki.

SEN, A. AND GARG, V. K. 2007. Formal verification of simulation traces using computation slicing. IEEE Trans.
Computers 56, 4, 511–527.

SEN, A., OGALE, V., AND ABADIR, M. S. 2008. Predictive runtime verification of multi-processor SoCs in SystemC.
In Proceedings of the Design Automation Conference (DAC). 948–953.

SEN, K., ROSU, G., AND AGHA, G. 2003. Runtime safety analysis of multithreaded programs. In Proceedings of
the Symposium on the Foundations of Software Engineering (FSE).

TABAKOV, D., VARDI, M. Y., KAMHI, G., AND SINGERMAN, E. 2008. A temporal language for SystemC. In Proceedings
of the International Conference on Formal Methods in Computer-Aided Design (FMCAD). 1–9.

TASIRAN, S. AND KEUTZER, K. 2001. Coverage metrics for functional validation of hardware designs. IEEE Des.
Test Comput. 18, 4, 36 –45.

TONG, J. G., BOULE, M., AND ZILIC, Z. 2010. Defining and providing coverage for assertion-based dynamic
verification. J. Electron. Testing 26, 2, 211–225.

VARDI, M. Y. 2007. Formal techniques for SystemC verification; position paper. In Proceedings of the Design
Automation Conference (DAC). 188–192.

WALSH, P. J. 1985. A measure of test case completeness (software, engineering). Ph.D. dissertation, State
University of New York at Binghamton.

WEISER, M. 1982. Programmers use slices when debugging. Comm. ACM 25, 7, 446–452.

Received July 2010; revised January 2011; accepted February 2011

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 37, Pub. date: October 2011.

