
ETH Library

Concurrency patterns in SCOOP

Master Thesis

Author(s):
Schmocker, Roman

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010255889

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010255889
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Concurrency Patterns in SCOOP

Master Thesis

Roman Schmocker

ETH Zürich

romasch@student.ethz.ch

10 March 2014 – 10 September 2014

Supervised by:

Alexey Kolesnichenko

Prof. Dr. Bertrand Meyer

Abstract

The wide distribution of multi-core processors increasingly forces program-
mers to deal with concurrency. Parallel programming is not easy, but there are
many well-known patterns at hand to help developers.

SCOOP, an extension to the Eiffel programming language, provides an al-
ternative approach to concurrent programming compared to the threading mo-
del used in many other languages. There is little experience in implementing
and using concurrency patterns in SCOOP however.

We have investigated which patterns are used in practice and compiled a
detailed list of pattern descriptions. From this list we selected several popular
concurrency patterns and implemented them as a reusable Eiffel library. A
small performance comparison shows that the new library is faster and more
robust for large data sets than a raw SCOOP solution. We also describe some
of the challenges when programming in SCOOP for the first time and provide
solutions.

iii

Acknowledgements

I would like to thank Alexey Kolesnichenko very much for his great support
and helpful advice throughout my thesis. Many thanks go to Prof. Dr. Bertrand
Meyer for his insightful comments and for giving me the opportunity to work
on this project. I would also like to thank Julian Tschannen, Mischael Schill,
Scott West, Sebastian Nanz and others at the Chair of Software Engineering for
their useful input.

Roman Schmocker

iv

Contents

1 Introduction 1
1.1 Overview . 1

2 Pattern overview 2
2.1 Data-centric patterns . 2
2.2 Task-centric patterns . 4
2.3 I/O patterns . 6
2.4 Miscellaneous patterns . 8
2.5 SCOOP patterns . 10
2.6 Synchronization primitives . 12

3 The SCOOP model 15

4 Challenges in SCOOP 16
4.1 Object migration . 16
4.2 Processor communication . 18
4.3 Processor termination . 19

5 Library 20
5.1 Goals . 20
5.2 Concepts . 21

5.2.1 Import . 21
5.2.2 Separate Proxy . 22

5.3 Module overview . 23

6 Library modules 24
6.1 Import . 24
6.2 Queue . 25
6.3 Process . 25
6.4 Worker pool . 26
6.5 Promise . 27
6.6 Executor . 28
6.7 Futures . 28

7 Evaluation 29

8 Conclusion 30
8.1 Future work . 31

A How-To: Separate Proxy 32

B SCOOP and EiffelVision 34

C API tutorial 39
C.1 Producer / Consumer . 39
C.2 Server thread . 43
C.3 Worker Pool and Futures . 44

References 49

v

vi

1 Introduction

Concurrent programming has become an important part in software engineer-
ing due to the advent of multi-core processors. Dealing with parallelism isn’t
easy however. There are many pitfalls, such as race conditions and deadlocks.

In practice programmers have learned to avoid tricky concurrency prob-
lems with the use of some well-known patterns. These patterns are often
shipped as part of the standard library of the language, such that users rarely
have to implement them.

The Eiffel programming language [2][15] has an extension called SCOOP
[17][7], which stands for Simple Concurrent Object-Oriented Programming.
SCOOP simplifies concurrent programming a lot and eliminates one source
of errors completely, namely race conditions [17]. However, there is little expe-
rience on how to implement popular concurrency patterns, like a worker pool,
in SCOOP.

This thesis tries to fill this gap by providing a library of reusable concur-
rency patterns as well as methodical advice on programming in SCOOP. The
main contributions are:

• A broad survey of known concurrency patterns.

• The identification of common SCOOP challenges and advice on how to
solve them.

• A new library which provides implementations for some selected con-
currency patterns. The selection was mainly based on input from the
Software Engineering group at ETH Zürich and the study of Java [5] and
C# [4] concurrency libraries.

1.1 Overview

Section 2 introduces a list of concurrency patterns which we found and cate-
gorized by studying literature and the standard libraries. A brief introduction
of the SCOOP model is given in Section 3. Section 4 describes some challenges
when programming in SCOOP and how to solve them. The latter two sections
may be interesting for programmers having experience in thread programming
and who wish to learn SCOOP.

The focus of Section 5 is on the goals and concepts of the concurrency pat-
terns library. It also provides an overview over the available modules and
describes which patterns are implemented by which modules.

A detailed explanation over the individual modules is given by Section 6.
Finally, Section 7 provides a small performance evaluation of the library.

1

2 Pattern overview

2.1 Data-centric patterns

Producer / Consumer

Identifier: P/C

Intent: Provide a synchronized shared buffer. Producer
threads put items into the buffer, and consumers
remove items.

Applicability: When participants should not know each other. Also
applicable if there’s no one-to-one relation between
producers and consumers or when buffering is
desired.

Status: Implemented library component

Example: A logger service where many producers submit log
messages to a buffer and a single consumer writes
them to a file.

Known
applications:

Very widely used. E.g. logging, input processing,
buffering web server requests.

Relation to
other patterns:

The Worker Pool [WP] uses this pattern for its task
queue. Pipeline [PL] and Dataflow Networks [DFN]
are chained Producer / Consumer instances.

References: [8, p. 87], [21, p. 53]

Pipeline

Identifier: PL

Intent: Process data in several independent stages.

Applicability: When the input consist of a stream of data where
several processing steps need to be performed.

Status: Possible library component

Example: An emailing system that applies a spam filter,
database logging, and a virus scan to each incoming
email.

Known
applications:

Messaging systems, multimedia streaming (receive -
decode - display)

Relation to
other patterns:

The Producer / Consumer pattern [P/C] is used
between two stages. Pipeline is a special form of
Dataflow Network [DFN].

References: [12, p. 305], [14, p. 253], [21, p. 53]

2

Dataflow Network

Identifier: DFN

Intent: Process data in independent stages, with the option
to branch and merge data streams.

Applicability: When the input consists of a stream of data which
allows for parallel processing.

Status: Possible library component

Example: A video player application that internally has a file
decoder stage, which splits the input in an audio and
video part for further processing.

Known
applications:

The borealis engine [1].

Relation to
other patterns:

The pattern is related to Pipeline [PL]. In Dataflow
Network however data can be split and forwarded to
two different stages and maybe merged again later.

References: [12, p. 305], [14, p. 261]

Exchanger

Identifier: EXC

Intent: Exchange two objects between two threads
atomically.

Applicability: When synchronization and atomicity is required.

Status: Possible library component.

Example: A logger with two buffers: One is used by clients to
submit messages, the other is used by the logger to
write messages. When the latter is empty and the
former is full the exchange happens.

Known
applications:

-

Relation to
other patterns:

Similar to Synchronous Message Passing, except that
data passes in both directions.

References: [8, p. 101], [12, p. 231]

3

2.2 Task-centric patterns

Worker Pool

Identifier: WP

Intent: Avoid expensive thread creation by providing a set
of threads that can execute arbitrary operations.

Applicability: When there are a lot of small tasks that may be
executed in parallel.

Status: Implemented library component

Example: A set of HTTP request handlers in a web server.

Known
applications:

Often used in server applications, e.g. databases,
HTTP servers, web services.

Relation to
other patterns:

Producer / Consumer [P/C] is used to pass along
task objects. Worker Pool is usually an
implementation of the Executor Framework [EF].

References: [8, p. 117], [8, p. 167], [12, p. 290], [21, p. 61], [13]

Future

Identifier: FUT

Intent: Run a task asynchronously and fetch the result later.

Applicability: When a computation may be run in parallel, but
creating an extra thread is too expensive.

Status: Implemented library component

Example: A web browser which starts download tasks for
image files in parallel to rendering an HTML file.

Known
applications:

In UI programming for long-running background
tasks, or parallelization of numerical computations.

Relation to
other patterns:

Futures may be backed by a Worker Pool [WP] that
execute them.

References: [8, p. 125], [12, p. 332], [21, p. 36], [13]

Comment: The wait by necessity semantics of SCOOP [7] also
correspond to the Future pattern.

4

Executor Framework

Identifier: EF

Intent: Split task submission from task execution.

Applicability: When the task execution strategy should be flexible,
e.g. using a worker pool or creating a new thread per
task.

Status: Implemented library component

Example: The Java Executor interface, where descendants can
decide wether a submitted Runnable object is
executed in the current thread, in a new thread, or by
a worker pool.

Known
applications:

Java Executor interface, Microsoft Task Parallel
Library

Relation to
other patterns:

The Worker Pool [WP] is an implementation of the
Executor Framework.

References: [8, p. 117], [12, p. 289]

Timer: Periodic

Identifier: TP

Intent: Apply an operation repeatedly in regular intervals.

Applicability: When an operation, which can be executed in
parallel to the application’s main thread, needs to be
applied repeatedly.

Status: Implemented library component

Example: An email client that checks for new messages every
five seconds.

Known
applications:

Message polling, buffer flushes, background log
writes, heartbeat messages, cron jobs.

Relation to
other patterns:

Similar to Active Object [AO], but it schedules just
one operation repeatedly.

References: [8, p. 123], [12, p. 298]

5

Timer: Invoke Later

Identifier: TIL

Intent: Invoke a certain operation at a later point in time.

Applicability: When it is necessary to wait a bit before executing an
operation.

Status: Implemented library component

Example: Send an email after a delay of one minute, during
which the user can still press a cancel button.

Known
applications:

“Grace periods” to cancel actions, robotics control,
alarm clocks.

Relation to
other patterns:

-

References: [8, p. 123], [12, p. 297]

2.3 I/O patterns

Half-Sync / Half-Async

Identifier: HS/HA

Intent: Simplify asynchronous event handling. A thread or
an interrupt handler listens for incoming messages
and puts them in a synchronized queue. Worker
threads then retrieve and handle the messages.

Applicability: When the application must react to several event
sources at the same time.

Status: not covered

Example: The network stack in most UNIX system is
implemented like this. A network socket is the
“queue” which gets filled by interrupt handlers.
Application threads take care of handling the data.

Known
applications:

Network sockets, web servers.

Relation to
other patterns:

-

References: [9, p. 423]

6

Leader / Followers

Identifier: L/F

Intent: Reduce synchronization overhead when using a
thread pool to handle requests on I/O sockets. A
leader thread receives a request, promotes the next
leader, and then handles the request.

Applicability: When there are hundreds of I/O sockets.

Status: not covered

Example: A web server for a high volume website serving
thousands of connections at the same time.

Known
applications:

Online Transaction Processing (OLTP) applications.

Relation to
other patterns:

Compared to Half-Sync / Half-Async [HS/HA] it
avoids the synchronization overhead of a shared
queue.

References: [9, p. 447], [19]

Disruptor

Identifier: DIS

Intent: Provide a high-performance ring buffer with a single
producer and multiple readers, each assigned to a
thread. Readers can have dependencies to other
readers and change buffer entries.

Applicability: When very high throughput in an I/O application is
required.

Status: not covered

Example: An OLTP system where the producer listens on a
socket for new requests. Then there’s a reader for
each of the following tasks: logging, unmarshalling,
request handling.

Known
applications:

LMAX Exchange uses this pattern for their trading
platform.

Relation to
other patterns:

Similar to Half-Synch/Half-Asynch [HS/HA], but
buffer entries may be modified in place and accessed
by several threads.

References: [20]

7

2.4 Miscellaneous patterns

Active Object

Identifier: AO

Intent: Pair an object with its own thread. Clients access the
active object through a proxy which transforms
feature calls to asynchronous messages. The active
object runs a main loop where it schedules requests
from clients and runs its own code.

Applicability: When access to a shared resource can be guarded by
an object, or when an object should execute its own
main loop.

Status: Implemented language mechanism. Implemented
library component.

Example: A logging service may be implemented as an active
object. Clients call log ("something") on the proxy
which forwards the message to the active object.

Known
applications:

The Java Timer class is implemented as an active
object. SCOOP separate calls correspond to feature
invocation on an active object.

Relation to
other patterns:

The Future pattern [FUT] is usually used for active
object functions that return a result.

References: [9, p. 369], [12, p. 367]

Thread-local storage

Identifier: TLS

Intent: Provide private heap data for each thread.

Applicability: When multiple threads run the same code, but each
one needs a different set of data, or when the
synchronization overhead for shared heap objects is
undesirable.

Status: Implemented language mechanism

Example: Store the last exception raised in the current thread.

Known
applications:

Java and C# both have a class ThreadLocal<T>.

Relation to
other patterns:

-

References: [9, p. 475], [8, p. 45], [12, p. 105], [21, p. 53]

Comment: Native support in SCOOP: Use once("THREAD") and
a non-separate return type.

8

Publish / Subscribe

Identifier: P/S

Intent: Provide a hook to subscribe to events. In the
concurrent context there’s often an intermediate
broker which receives events from a publisher and
forwards them to all subscribers.

Applicability: When the publisher doesn’t need to know the
subscribers, and vice versa with the broker solution.

Status: Implemented library component

Example: A GUI button has an event “clicked”. The
application logic can subscribe to it with a handler
function.

Known
applications:

Event driven programming, GUI frameworks like
Java Swing or EiffelVision.

Relation to
other patterns:

Similar to the Observer pattern by Gamma et al.[10,
p. 293], but events may come with arguments. The
Eiffel agent mechanism may be used for Publish /
Subscribe.

References: -

Transactions

Identifier: TRA

Intent: Avoid a deadlock by reserving a set of objects one at
a time. Abort if an object is already reserved by
another thread.

Applicability: When multiple operations need to be locked and no
proper locking order can be established.

Status: Possible library component

Example: A banking application where multiple threads apply
various operations on a set of bank accounts.

Known
applications:

Two-phase locking in database systems.

Relation to
other patterns:

-

References: [12, p. 249]

9

2.5 SCOOP patterns

Import

Identifier: IMP

Intent: Copy an object structure from a separate processor to
the local processor.

Applicability: When it’s cheaper to clone the object instead of
placing it on its own processor.

Status: Implemented library component. Future language
mechanism.

Example: Copy the HTTP request string from the network
socket listener to a request handler, such that the
listener can continue.

Known
applications:

The library developed in this thesis makes heavy use
of this pattern.

Relation to
other patterns:

-

References: [17, p. 106]

Asynchronous Self-Call

Identifier: ASC

Intent: Execute the body of a main loop and then ask
another processor to call back the loop body.

Applicability: When a processor is running its own code, but others
need to access data on it from time to time.

Status: Implemented library component

Example: A network socket listener that may be stopped by
another processor.

Known
applications:

The Timer: Periodic [TP] implementation and the
echo server example (see Appendix C.2) use
asynchronous self-calls.

Relation to
other patterns:

Similar to the Active Object pattern [AO], but the
Asynchronous Self-Call pattern lets other processors
manipulate its data directly.

References: [17, p. 217]

10

Separate Proxy

Identifier: SP

Intent: Simplify access to a separate object by providing a
processor-local proxy.

Applicability: When a class is reusable (i.e. library code) and
usually placed on a separate processor.

Status: Guideline

Example: A shared queue which gets accessed by several
threads. Each thread creates a processor-local proxy
to avoid having to deal with a separate reference.

Known
applications:

Most classes in the library have a Separate Proxy.

Relation to
other patterns:

The Separate Proxy is a special version of the proxy
pattern described by Gamma et al. [10, p. 207].

References: -

Full Asynchrony

Identifier: FA

Intent: Perform an operation completely asynchronously.

Applicability: When an operation can be executed in parallel and
there’s no need to wait for a result.

Status: Future language mechanism

Example: A logger service where clients just want to send a log
message without having to wait.

Known
applications:

A workaround is described in [17, p. 215], but it is
currently broken in SCOOP.

Relation to
other patterns:

-

References: [17, p. 215]

Comment: Will be supported natively in the new runtime
developed by Scott West [22].

11

Universal Call

Identifier: UC

Intent: Provide a universal enclosing routine to perform a
single call on a separate object.

Applicability: When it doesn’t matter if separate calls are
interleaved with calls from other processors.

Status: Designed language mechanism

Example: A shared queue where producers only insert items.

Known
applications:

An implementation is described in [17, p. 213], but it
is currently broken in SCOOP.

Relation to
other patterns:

The Separate Proxy [SP] is a workaround for the
missing universal call.

References: [17, p. 213]

Comment: The new language mechanism will probably be a
statement like:
separate a as l_a then l_a.do_something end

2.6 Synchronization primitives

Atomic Operations

Intent: Avoid the use of locks by using hardware-supported
atomic operations.

Status: not covered

Example: A lock-free queue using CompareAndSwap.

Known
applications:

Low-level primitive which is used to implement
lock-free data structures or other synchronization
primitives.

References: [8, p. 319], [12, p. 140]

Locks

Intent: An object where only one thread at a time succeeds
in calling lock, and others have to wait.

Status: Possible library component

Example: Provide exclusive access on a certain section of code.

Known
applications:

Low-level primitive which is often used to
implement other synchronization primitives.

References: [8, p. 277], [12, p. 148]

12

Try Lock

Intent: Try to acquire a lock with the option to back off after
a certain amount of time.

Status: Possible library component

Example: Database transactions may get aborted due to a
timeout if they can’t lock a resource after a certain
amount of time.

Known
applications:

Applications with real-time requirements.

References: [8, p. 277], [12, p. 148]

Read / Write lock

Intent: Allow multiple concurrent readers but provide
exclusive access to a writer.

Status: Language limitation

Example: An array with frequent concurrent reads can make
use of a read / write lock.

Known
applications:

Shared, read-mostly data structures.

References: [8, p. 286], [12, p. 157]

Semaphore

Intent: Make sure that only a certain amount of threads can
execute a section of code.

Status: Possible library component

Example: The dining philosophers pattern, where at most
(N-1) philosophers can eat.

Known
applications:

Can be used to implement other synchronization
primitives.

References: [8, p. 98], [12, p. 220]

Single Exclusive Access

Intent: Make sure that at most one thread has access to
exactly one shared object or resource.

Status: Implemented language mechanism

Example: A counter variable that should only be incremented
by one thread at a time to avoid lost updates.

Known
applications:

The Java synchronized and C# lock statements
implement single exclusive access for sections of
code.

References: [8, p. 25], [12, p. 76]

13

Multiple Exclusive Access

Intent: Make sure that at most one thread has access to
several shared objects or resources.

Status: Implemented language mechanism

Example: A money transfer between two bank accounts.

Known
applications:

Databases can provide exclusive access over all data
items previously used in the same transaction.

References: -

Barrier

Intent: Provide a synchronization point where several
threads have to meet before continuing.

Status: Possible library component

Example: If the computation of a matrix multiplication is
divided among threads, a barrier can be used to
make sure that all threads finish before the result is
used.

Known
applications:

Parallel matrix operations, parallel loop processing.

References: [8, p. 99], [12, p. 362]

Monitor

Intent: Ensure that only one thread has access to an object.
The thread may also wait for a condition to become
true.

Status: Implemented language mechanism

Example: A shared buffer with conditions is_empty and
is_full.

Known
applications:

Java with a combination of synchronized, wait()
and notifiyAll()

References: [9, p. 399], [12, p. 184]

Comment: The monitor pattern is a combination of single
exclusive access and condition variables.

14

Condition Variables

Intent: Wait for a certain condition to become true.

Status: Implemented language mechanism. Possible library
component.

Example: When a buffer is empty, consumers can wait on the
is_not_empty conditon variable. Producers will
send a signal on this variable when a new item is
available.

Known
applications:

Preconditions in SCOOP are effectively condition
variables due to their wait semantics.

References: [8, p. 298 and 306]

Synchronous Message Passing

Intent: Send a message from a sender to a receiver
synchronously, where both have to wait until the
operation has completed.

Status: Possible library component

Example: Make a flight reservation with the implicit guarantee
that the booking system has received the message.

Known
applications:

Main synchronizaton mechanism in message passing
systems.

References: [12, p. 369]

3 The SCOOP model

SCOOP is an extension to the Eiffel programming language that aims to make
concurrent programming easier. The basic idea is that every object can be ac-
cessed by exactly one computational unit only. This unit is called processor or
handler of an object.

The keyword separate is used to indicate that an object may be handled
by a different processor than the handler for Current. Calls to a separate object
(“separate calls”) then correspond to sending a message to the foreign proces-
sor. There are two types of separate calls: synchronous and asynchronous. If
the called feature returns a result the call is synchronous, which means that the
current processor has to wait for the foreign processor to finish its task. An
asynchonous call happens when the feature is a command, i.e. not returning
any result. In that case both processors can proceed concurrently.

A separate call is only allowed if its target is “controlled”. Controlling an
object means that the user has exclusive access to that object. In that sense
controlling corresponds a bit to locking in other languages. In order to control
an object it has to appear as a formal argument in the enclosing routine.

SCOOP guarantees that all messages sent by the current processor are han-
dled in the correct order by the foreign processor. The exclusive access and
order guarantee ensure that a controlled separate object behaves just like an
object in a sequential program. This is the reason why the SCOOP model is so

15

simple: It allows reasoning about a feature body without the need to consider
all possible interleavings of two parallel executions.

A new processor is created by calling a creation instruction on a variable
which is declared as separate. The new object is then handled by the new
processor.

Preconditions in SCOOP have a special role. In a concurrent setting there’s
often the problem that a correctness condition may change due to unfortunate
interleaving, e.g. between checking that a buffer is not empty and then re-
moving an item, the buffer actually becomes empty due to interference from
another thread. Therefore SCOOP turns preconditions into wait conditions if
they reference a separate object.

There are many advantages to the SCOOP model, such as easier reasoning
and absence of data races, but it also has some shortcomings. It is for example
often necessary to write lots of little helper functions that just take a separate
object and perform a single call on it, because SCOOP enforces that every target
of a separate call needs to be controlled.

SCOOP also has performance problems because it transforms every sepa-
rate call into a message to another processor. This is rather expensve, especially
for small functions like array access.

Furthermore, a processor is currently implemented as an operating system
thread and creating them is a costly operation that involves context switches.
The SCOOP model however encourages the creation of many processors which
is not ideal for performance reasons.

4 Challenges in SCOOP

4.1 Object migration

Passing data from one processor to another is often necessary when program-
ming in SCOOP. The most obvious example is the Producer / Consumer pat-
tern [P/C], but it also applies to other situations like providing an argument to
an asynchronous command.

There are two categories of objects which can be passed as arguments: ex-
panded and reference types. Passing expanded objects, which also includes
basic types such as INTEGER, is not a problem in SCOOP due to their copy-
semantics property. However, passing a reference object from one processor to
another is a bit more tricky, because bad things such as starvation or uninten-
tional lock passing may happen if done wrong.

There are essentially three ways to safely move reference objects from a
sender to a receiver processor. The first and easiest solution is to create the
data on its own, separate processor:

class SENDER feature

send (a_receiver: separate RECEIVER)

3 -- Invoke an asynchronous operation with

-- an argument on ‘a_receiver’.

local

6 args: separate ANY

do

create args

16

9 a_receiver.do_something (args)

end

end

12

class RECEIVER feature

do_something (args: separate ANY)

15 -- Perform some operation with ‘args’.

do

print (args)

18 end

end

Listing 1: Migrate objects on a separate processor.

This approach is conceptually easy but not very efficient, especially when the
argument object is small. We’ll call this solution the Data Processor approach.

Another solution is to create the object on the same handler as the sender
object:

class SENDER feature

2 send (a_receiver: separate RECEIVER)

-- Invoke an asynchronous operation with

-- an argument on ‘a_receiver’.

5 local

args: ANY

do

8 create args

a_receiver.do_something (args)

end

11 end

class RECEIVER feature

14 do_something (args: separate ANY)

-- Perform some operation with ‘args’.

do

17 print (args)

end

end

Listing 2: Migrate objects with lock passing.

This solution (the Lock Passing approach) looks almost like the first one. The
only change is a missing separate keyword. The semantics however are radi-
cally different:

• The feature do_something is executed synchronously due to the lock
passing mechanism [17, p. 152][7]. This means that the sender class needs
to wait for it to finish.

• RECEIVER can’t lock the argument object any more after do_something
finishes. In particular this means that the receiver class should not store
the argument in one of its attributes, because any attempt to access it later
will likely result in starvation. The reason for this is that the handler of
SENDER will continue its execution, and as long as there’s still work to do
no other processor can access objects on it .

17

• Compared to the first approach no new processor is created.

The last method makes use of a special SCOOP mechanism called import:

class SENDER feature

send (a_receiver: separate RECEIVER)

3 -- Invoke an asynchronous operation with

-- an argument on ‘a_receiver’.

local

6 args: ANY

do

create args

9 a_receiver.receive_args (args)

a_receiver.do_something

end

12 end

class RECEIVER feature

15

received: ANY

18 receive_args (args: separate ANY)

-- Receive some arguments

do

21 received := import (args)

end

24 do_something

-- Perform some operation.

do

27 print (received)

end

end

Listing 3: Migrate objects with import.

The import feature copies its argument along with all non-separate references
to the local processor. It is somewhat similar to {ANY}.deep_clone, except that
it doesn’t follow separate references.

The import solution has several advantages. There is no need for a new
processor and the receiver can also keep the argument and do the operation
asynchronously. The drawback is that the data needs to be copied. However,
for small data items this is usually faster than creating a new processor.

Note that receive_args is executed synchronously just as in the Lock Pass-
ing approach. To execute do_something asynchronously it has therefore been
divided into an execution and argument receiving part.

The feature import was first described in [17, p. 106], but unfortunately it
is currently not implemented in SCOOP. It is possible however to implement it
manually with some user support.

4.2 Processor communication

It is often the case that two threads need to communicate with each other. An
example would be a user interface with a background download task. The user

18

interface needs to be able to cancel the download, and the download task has
to inform the GUI when it is finished.

In SCOOP this is not easily done. Both processors are performing a long-
running execution, which doesn’t allow other processors to do separate calls on
them. Specifically, the GUI processor is in an infinite loop to receive input and
repaint the window, whereas the download task is busy receiving chunks of
data. Cancellation will not work in this case because the user interface proces-
sor will have to wait for the download processor to finish until it can actually
access the download task to call cancel, which kind of defeats the purpose of
the cancellation button. Worse yet, the user interface will freeze until the GUI
processor finally gets the lock.

The solution to this kind of problem is to introduce a third processor which
is “passive”, meaning that it doesn’t have a task to perform and only waits
for incoming requests. This new processor is known to the other two, “ac-
tive” processors and handles an object which can be used for communication.
In our example the “passive” processor has an object with an is_cancelled

and is_finished boolean flag. The “active” processors then regularly need to
check the status of these flags.

The solution to the task cancellation problem comes from a previous paper
by the Software Engineering group [11].

4.3 Processor termination

When an application terminates it is necessary to stop any running thread.
Sometimes this can be done with processor communication as seen in Section
4.2. A problem arises however when a processor is stuck in a wait condition.

One example of this could be a producer / consumer situation where a
consumer is waiting for the buffer to become non-empty. If the producers have
terminated already, the consumer never gets the chance to break out of its wait
condition and therefore cannot terminate successfully.

The solution is to add a query is_stop_requested in the shared buffer and
to adapt the wait condition to include the stop request:

class

CONSUMER

3

feature -- Status report

6 buffer: separate BUFFER

last_item: INTEGER

9

is_stopped: BOOLEAN

12 feature -- Basic operations

start

15 -- Start the main loop

do

from

18 fetch (buffer)

until

19

is_stopped

21 loop

-- Do something, e.g.

print (last_item)

24

fetch (buffer)

end

27 end

feature -- Implementation

30

fetch (buf: separate BUFFER)

-- Get the next item from ‘buf’.

33 require

not buf.is_empty or buf.is_stop_requested

do

36 if buf.is_stop_requested then

is_stopped := True

else

39 last_item := buf.item

buf.remove

end

42 end

end

Listing 4: Breaking out of a wait condition.

This allows a consumer to leave the wait condition even when the buffer is
empty. The drawback of this approach is that it clutters the application code
with some additional if-else constructs, but it is often possible to hide them in
a fetch function, as shown in our example.

5 Library

5.1 Goals

The goal of the library is to provide a set of classes that simplify programming
in SCOOP. Specifically, we want to provide implementations for common con-
currency patterns like the worker pool. The result should be a new Eiffel library
similar to the standard concurrency libraries in Java [5] or C# [4].

The library was developed with the following design goals:

Safety Avoid common SCOOP pitfalls like deadlocks, starvation of a proces-
sor or unintentional lock passing.

Convenience Shield the user from having to write many little “wrappers”, i.e.
features that just lock an object for a single separate call.

Performance Reduce the overhead of thread creation, especially for code that
deals with a lot of small separate objects.

20

5.2 Concepts

This section describes two core concepts of the library: Import and Separate
Proxies. The import concept deals with the problem of how to pass data from
one processor to another. It is useful to achieve the performance and to some
extent the safety design goal in Section 5.1.

The Separate Proxy [SP] is a pattern to hide separate references behind a
proxy object. It provides a solution to the convenience design goal.

5.2.1 Import

The import concept is a central part of the library. It was developed to let users
choose between two object passing strategies, namely the Data Processor and
the Import approach (see Section 4.1).

The main class is CP_IMPORT_STRATEGY, which has the simple interface:

deferred class interface

CP_IMPORT_STRATEGY [G]

3

feature -- Status report

6 is_importable (object: separate G): BOOLEAN

-- Is ‘object’ importable?

9 feature -- Duplication

import (object: separate G): separate G

12 -- Import ‘object’.

require

importable: is_importable (object)

15

end

Listing 5: The deferred class CP IMPORT STRATEGY.

The class has two descendants. CP_NO_IMPORTER [G] can be used for the
Data Processor strategy. It just perform a reference copy of the object. The class
CP_IMPORTER [G] on the other hand narrows the return type of import to a
non-separate G, meaning that it actually performs an import.

As there’s no general-purpose import available in SCOOP at the moment
users have to implement their own import features for every class that needs
this facility. Descendants of CP_IMPORTER simplify this task and provide prede-
fined implementations for some standard classes such as STRING. Those mech-
anisms are described in detail in Section 6.1.

Components that want to make use of the import mechanism need an in-
stance of CP_IMPORT_STRATEGY on the same processor. There are several ways
how this object can be supplied to a library component. The most obvious
solution - passing it as an argument in a constructor - has a big drawback in
the SCOOP world: It is impossible to instantiate the component on a separate
processor without having to write an extra factory class.

A better solution is to exploit the constrained genericity mechanism in Eif-
fel. A component that needs to import objects has to declare an additional

21

generic argument for the import strategy. A user can then decide on the pre-
cise semantics of the import strategy by just declaring the right type.

The constraint placed on the generic argument is that it needs to be a de-
scendant of CP_IMPORT_STRATEGY and that it needs to declare default_create
as a creation procedure. The latter is not a big restriction in practice, as there
are usually no attributes in an importer anyway.

A typical class header of a component using the import concept looks like
this:

class BUFFER [G, IMPORTER ->

CP_IMPORT_STRATEGY [G] create default_create end]

3

feature -- Access

6 item: like {IMPORTER}.import

end

Listing 6: An example component with import.

This small code sample shows another neat little feature of Eiffel. The like
statement fixes the type based on the chosen import strategy, i.e. separate G

for CP_NO_IMPORTER and non-separate for descendants of CP_IMPORTER. This
makes the handling of imported objects a lot easier.

5.2.2 Separate Proxy

The Separate Proxy pattern [SP] simplifies access to a separate reference by pro-
viding a processor-local proxy object wich forwards all requests to the actual
object. The main advantage is that clients don’t need to write extra “wrap-
per” feature to control the separate object. It is applied to all classes in the
library which are meant to be shared among processors, i.e. which are usually
accessed through a separate reference.

The pattern consists of three classes:

Protégé The actual business class whose objects are usually shared.

Helper A class that provides wrapper functions to access a separate protégé.
The helper class is usually ending on _UTILS.

Proxy A proxy class with a similar interface as the protégé class, usually end-
ing on _PROXY. The proxy forwards every call to its protégé, using the
helper class.

It is possible to add a fourth, deferred class that just defines a common in-
terface for the protégé and the proxy. There’s an inconsistency however: All
preconditions in the protégé class that reference Current (explicitly or implic-
itly) need to be weakened (i.e. require else True) in the proxy, and turned
into wait conditions in the helper class. Furthermore, not all features in the
business class may be necessary in the proxy, and the proxy itself may add
some more features such as compound actions.

Unfortunately this pattern cannot be turned into a reusable module, be-
cause it is highly dependent on the precise interface of the protégé class. There
is some support in the library however: CP_PROXY defines a creation procedure

22

Figure 1: The class relations in the Separate Proxy pattern.

and the attributes subject for a separate protégé object and utils for a helper
object.

Appendix A provides a general recipe on how to implement a separate
proxy for an arbitrary protégé class.

5.3 Module overview

The library consists of several modules which implement some of the patterns
described in the overview (Section 2). The source code of the library is available
on GitHub [3]. All file locations in the following section are relative to the root
directory of the repository.

One of the most basic modules is the import module in library/import. It
implements the Import [IMP] pattern and is at the same time one of the core
concepts of the library.

The queue module in library/queue implements the Prdocuer / Consumer
[P/C] pattern. It depends on the import module.

The process module in library/process provides skeleton classes for objects
with a main loop. It provides implementations for the Active Object [AO],
Asynchronous Self-Call [ASC] and Timer: Periodic [TP] patterns.

The worker pool module in library/worker pool implements the Worker Pool
[WP] pattern. It uses the import, queue and process module.

The directory library/promise contains the promise module. This module
provides classes to monitor and interact with an asynchronous operation.

The executor module resides in library/executor and provides an implemen-
tation to the Executor Framework [EF], a specialized worker pool and part of
the implementation to the Future pattern [FUT].

The implementation of the future pattern is highly intertwined with other
parts of the library. It makes use of the promise, executor and worker pool
modules and introduces only two classes on its own: CP_COMPUTATION and
CP_FUTURE_EXECUTOR_PROXY.

The class CP_DELAYED_TASK in libary/util implements the Timer: Invoke
Later pattern [TIL]. The same directory also contains the class CP_EVENT, which
implements the Publish / Subscribe pattern [P/S] in SCOOP.

23

6 Library modules

6.1 Import

The import module substitutes the SCOOP import feature, a built-in mecha-
nism that is unfortunately not implemented at the moment. The basic concepts
and ideas behind the module are described in Section 5.2.1. This section only
deals with the class CP_IMPORTER and its descendants.

The class CP_IMPORTER [G] has a single deferred feature import. It does
not provide a generic import mechanism. To write an importer for an arbi-
trary type, e.g. STRING, a client needs to write a new class, inheriting from
CP_IMPORTER [STRING], and implement the deferred feature.

Although the library has a few predefined importers, writing an extra class
for every user-defined type may quickly become tedious. Therefore the library
provides another way of using the import module with CP_IMPORTABLE:

deferred class

CP_IMPORTABLE

3

feature {CP_DYNAMIC_TYPE_IMPORTER} -- Initialization

6 make_from_separate (other: separate like Current)

-- Initialize ‘Current’ with values from ‘other’.

deferred

9 end

end

Listing 7: The deferred class CP IMPORTABLE.

Users can inherit from CP_IMPORTABLE and define the import function right
inside their class.

There are two predefined importers which can be used for CP_IMPORTABLE
objects:

• CP_DYNAMIC_TYPE_IMPORTER

• CP_STATIC_TYPE_IMPORTER

The latter uses constrained genericity to create an object of type G. The ap-
proach is pretty simple and fast but it has the drawback that the result type is
always the static type G, even if the argument to provided to the import feature
was of a subtype of G.

The CP_DYNAMIC_TYPE_IMPORTER on the other hand respects the dynamic
type of its argument. With the help of reflection it creates a new, uninitialized
object of the correct type and then calls make_from_separate to perform the
initialization. This introduces a new problem with respect to void safety how-
ever.

As opposed to the static type importer, the feature make_from_separate

doesn’t need to be a creation procedure. This in turn means that the compiler
will not check if every attribute is correctly initialized. It is therefore strongly
advised to declare make_from_separate as a creation procedure for every de-
scendant of CP_IMPORTABLE.

24

Another problem of the CP_DYNAMIC_TYPE_IMPORTER is the invariant of an
object. There’s a short time interval between the creation of an object (using
reflection) and the call to {CP_IMPORTABLE}.make_from_separate where the
invariant is broken. Due to this it is impossible to use classes with invariants
in conjunction with the dynamic type importer.

In the future, there will hopefully exist an import routine natively sup-
ported by the SCOOP runtime. In that case CP_IMPORTER can be made effective
and use the native import, and all its descendants will become obsolete.

6.2 Queue

The queue module provides the class CP_QUEUE and some support classes that
implement the Separate Proxy pattern [SP]. The module can be used for the
Producer / Consumer pattern [P/C].

The main challenge in the queue module is data migration, as described
in Section 4.1. Therefore the module makes heavy use of the import concept.
This means that, along with a generic argument for the data type, it is also
necessary for clients to provide a CP_IMPORT_STRATEGY. The import strategy
basically “teaches” the queue how to import a given object.

Internally the class CP_QUEUE uses an ARRAYED_QUEUE to store its elements.

6.3 Process

The process module provides a set of classes that implement a skeleton for a
main loop with a deferred body.

The class CP_PROCESS defines the interface. It is a descendant of the class
CP_STARTABLE, which means that clients have a simple way to start a separate
process using CP_STARTABLE_UTILS.

Users need to implement the feature step, which should contain the body
of the loop. The feature start is used to start the loop, and it can be terminated
by setting the attribute is_stopped to True.

CP_PROCESS also introduces the two methods setup and cleanup. They are
called in the beginning or at the end of the main loop, and must be explicitly
redefined by descendants if needed.

There are two techniques to implement the main loop itself. The first tech-
nique, used by CP_CONTINUOUS_PROCESS, is pretty staightforward:

from setup

until is_stopped

3 loop

step

end

This approach is very simple and fast. The problem however is that other pro-
cessors never get a chance to access the CP_CONTINUOUS_PROCESS unless the
main loop is exited completely. This class is an implementation of the Active
Object pattern [AO].

CP_INTERMITTENT_PROCESS uses a different technique. The basic idea is to
perform only one iteration, and then ask another processor to invoke the loop
body again in Current. This ping-pong approach ensures that other processors
get a chance to access and modify data in CP_INTERMITTENT_PROCESS after

25

each iteration. In practice this is particularly useful to stop the process from
the outside.

CP_INTERMITTENT_PROCESS implements the Asynchronous Self-Call pat-
tern [ASC]. The callback service is provided by the class CP_PACEMAKER. Every
CP_INTERMITTENT_PROCESS automatically creates an associated pacemaker.

The CP_PERIODIC_PROCESS allows to add small delays between executions.
It is a descendant of CP_INTERMITTENT_PROCESS and an implementation of the
Timer: Periodic pattern [TP]. The class also introduces the simple command
stop, which can be used to stop the timer.

6.4 Worker pool

The worker pool module provides an implementation for the pattern of the
same name. The intention of the Worker Pool pattern [WP] is to exploit the
performance advantages of parallel execution while avoiding the overhead of
expensive thread creation.

The main component of a worker pool is a shared buffer where clients can
insert tasks to be executed. A set of worker threads then continuously retrieve
tasks from the buffer and execute them.

The representation of a task varies between different languages. In Java for
instance a Runnable object is used, whereas in C# the task is represented as a
delegate. SCOOP however has to deal with the problem of object migration, as
described in Section 4.1.

If the task object is created on its own processor, as in the Data Processor
approach, the performance advantage of the worker pool cancels out. With
the Lock Passing approach a task object will be executed on the processor that
created the object, which makes the worker pool useless (not to mention the
risks of starvation if applied wrong). This only leaves the import mechanism
as a sensible solution.

The library supports two flavors of a worker pool. The first and more basic
one leaves the choice on how to represent a task object open to the user through
a generic argument. The second solution on the other hand defines a new class
to encapsulate an operation. It is described in Section 6.6.

The basic worker pool module has three important classes:

• CP_WORKER_POOL

• CP_WORKER

• CP_WORKER_FACTORY

The CP_WORKER_POOL provides the shared buffer and some additional func-
tionality to adjust the pool size. The type of the task object alongside its import
strategy can be specified with generic arguments. CP_WORKER_POOL inherits
from CP_QUEUE and therefore uses the import concept too.

The deferred class CP_WORKER corresponds to the worker thread in other
languages. Users need to implement the feature do_run, which receives a task
object and executes some operation on it. The exact type of the task object de-
pends on the generic arguments of CP_WORKER, which must be the same as in
CP_WORKER_POOL. The non-deferred part of CP_WORKER is the main loop itself,

26

which fetches a new task, calls do_run, and checks if the worker has to termi-
nate.

The last class, CP_WORKER_FACTORY, just provides a deferred factory func-
tion for a new worker. The factory class is necessary because the exact type of
CP_WORKER is not known to the library in advance. CP_WORKER_POOL uses the
factory to create new workers on demand.

An important functionality of a worker pool is to adjust the number of
workers. Increasing the worker count is easily done by just creating new in-
stances of CP_WORKER. To decrease the amount of workers however the module
needs to apply the processor termination technique described in Section 4.3.

The Separate Proxy pattern [SP] is applied to CP_WORKER_POOL to make the
handling of a separate worker pool object more convenient.

The basic worker pool module is very flexible. It is for example possible
to use it just as an advanced producer / consumer module, where consumers
are automatically created and destroyed. The drawback however is that clients
need to implement two classes, the worker and the factory, to make use of
the module. Section 6.6 therefore introduces a more specialized version of the
worker pool which can be used to execute arbitrary operations.

6.5 Promise

The promise module contains a set of classes which can be used to monitor the
state of an asynchronous operation. It is mostly used in conjunction with the
executor or future module.

The main class is CP_PROMISE, which defines queries like is_terminated

or is_exceptional. It also defines the interface to cancel an operation or to
get the progress percentage (e.g. for a download task), but these mechanisms
need to be supported by the asynchronous operation as well.

The Separate Proxy [SP] is available for promise objects because they are
usually declared separate to the client. In this case the pattern is implemented
with four classes, i.e.

• CP_PROMISE defines a common interface,

• CP_SHARED_PROMISE defines the actual separate object,

• CP_PROMISE_UTILS has features to access a separate CP_PROMISE and

• CP_PROMISE_PROXY implements the proxy object.

There’s an important descendant, the CP_RESULT_PROMISE, which is used
for asynchronous operations returning a result. It also has a set of associated
classes that implement the Separate Proxy pattern.

The CP_RESULT_PROMISE contains a query item to retrieve the result as
soon as it’s available. A distinguishing feature of this query is that it blocks
if the result is still being computed.

The return type of item depends on a generic argument. To move the re-
sult back to the client the class makes use of the import concept. This means
that both CP_SHARED_RESULT_PROMISE and CP_RESULT_PROMISE_PROXY have
an additional generic argument which defines the import strategy.

27

6.6 Executor

The executor module defines an interface for executing arbitrary tasks. The
implementation of the execution service may vary. In most cases it is a worker
pool, but it is also possible to use a single thread or to execute the task syn-
chronously in the current thread.

The representation of a task object in Java is a Runnable object, or a dele-
gate in C#. A SCOOP implementation also needs a class to represent an task,
but with an important additional requirement: The task objects have to be im-
portable.

The agent classes in Eiffel (i.e. ROUTINE and descendants) may be used to
represent operations, but they can’t be easily imported. Therefore we added a
new, deferred class CP_TASK to represent an importable asynchronous opera-
tion. It also adds some additional functionality like exception handling or the
ability to attach a promise object (see Section 6.5). To define a new task clients
need to inherit from CP_DEFAULT_TASK and implement the two features run

and make_from_separate.
The interface to execute tasks is provided by the class CP_EXECUTOR. It de-

fines the feature put which takes a separate CP_TASK object as its argument.
As an executor instance is usually placed on its own separate processor we
applied the Separate Proxy pattern [SP] on CP_EXECUTOR.

The executor framework is pretty useless on its own, as it essentially con-
sists of only two deferred classes. Therefore it is shipped with a worker pool
implementation. The CP_TASK_WORKER_POOL implements the executor inter-
face and is itself a descendant of the more basic CP_WORKER_POOL. The associ-
ated CP_TASK_WORKER then just fetches CP_TASK objects and executes them.

In some cases it may also be possible to use agents in conjunction with
the executor module. The library has implemented a mechanism to import
agents with the help of reflection. The restrictions imposed on the agent are
quite harsh however, e.g. it only works with basic expanded or truly sepa-
rate closed arguments. The functionality is provided by CP_AGENT_TASK (and
CP_AGENT_COMPUTATION for the future module, see Section 6.7) in library/a-
gent integration.

6.7 Futures

The Future pattern [FUT] is used to perform a computation asynchronously.
Instead of computing a value straight away, the computation is wrapped into
an object and the user receives a handle to retrieve the value as soon as it is
ready. This handle is often called future, promise or delay. In this section
we’ll use the term future for the whole pattern, and promise only refers to
the handle.

The main advantage of the future pattern is that it allows to make use of
parallelism in an easy way. Users just have to spot computations which may
run asynchronously, and the future pattern then takes care of thread manage-
ment, synchronization and result propagation.

The pattern consists of four building blocks:

• The promise,

• the computation,

28

• the execution service,

• and a “frontend” object which takes a computation, submits it to the ex-
ecutor, and returns a promise.

The promise object is defined by CP_PROMISE and its descendants. The de-
tailed implementation is described in Section 6.5.

The representation of the computation is a Callable object in Java and a
delegate in C#. Our library uses the class CP_COMPUTATION with the deferred
feature computed. It is a descendant of CP_TASK introduced in Section 6.6.

Due to the fact that CP_COMPUTATION inherits from CP_TASK we can just use
the executor module (see Section 6.6) as the execution service for the future
pattern.

The “frontend” part is provided by the two classes CP_EXECUTOR_PROXY

and CP_FUTURE_EXECUTOR_PROXY. This is an example for a separate proxy
where the responsability has been expanded: Instead of just forwarding the
computation object to the execution service, it also initializes the promise and
returns it to the user.

The implementation of the future pattern hits two challenges:

• Object Migration (see Section 4.1): Operations can’t be easily moved from
the client to an execution service. The same is also true for the result of a
computation in the reverse direction.

• Processor Communication (see Section 4.2): The promise object should
neither be placed on the client processor nor on the executor service.

The first problem is already solved by the executor module. Just like a
CP_TASK object, a CP_COMPUTATION is movable across processor boundaries.
To bring the result back to the client the CP_RESULT_PROMISE also makes use
of the import concept.

The second problem is more interesting however. As we’ve seen in Section
4.2, the promise object needs to be placed on its own processor. However,
starting a new processor for every computation introduces a huge overhead.

A better tradeoff would be to create one global processor which takes care
of all promise objects. This may introduce some contention if multiple futures
are submitted at the same time, but we think that this is acceptable.

The global processor approach brings another problem though. A promise
object has two generic arguments for the return type and the import strategy.
As these arguments are not known in advance, and because SCOOP processor
tags [17, p. 90] are not implemented yet, it is impossible to create a promise
object on this dedicated processor.

The solution is - surprisingly - the import concept. We can create a “tem-
plate” promise object with the correct types on the client processor, and then
ask the global processor to import it. That way the promise ends up on the
correct processor.

7 Evaluation

To evaluate the library we did a small performance benchmark. We imple-
mented the Gaussian elimination algorithm in three different ways: sequen-
tially, with SCOOP only, and using the future module (see Section 6.7) from our

29

library. We chose to use the future module because it indirectly also measures
many other parts of the library, like the worker pool or import mechanism.

We ran the tests with randomly generated square matrices. The order of a
matrix was always a power of two in the range from 32 to 1024. Additionally,
there was one more column for the result vector in the system of linear equa-
tions. Each test was repeated 5 times. The test system was a quad-core AMD
Phenom II X4 955 processor with 6 GB of RAM. The results are shown Table 1.

Matrix Size Future Raw SCOOP Sequential

32 0.36 0.19 <0.01

64 1.67 1.11 <0.01

128 8.45 9.27 0.04

256 26.45 66.56 0.33

512 102.28 515.11 2.62

1000 - 3937.2 -

1024 424.32 error 20.79

Table 1: Average time in seconds for different algorithms.

We can get several observations from the results:

• The raw SCOOP solution fails for the biggest matrix. This is a known bug
[6]: The algorithm uses more than the maximum number of processors.
The library solution doesn’t suffer from this problem because it’s using a
fixed amount of processors.

• Futures are faster than raw SCOOP for large data sets.

• For smaller data sets, raw SCOOP beats the library.

• Sequential execution is a lot faster than SCOOP.

The last observation is probably the most fundamental. The SCOOP run-
time really needs to be improved in order to make it competitive to threaded
systems, or even sequential ones. Fortunately an improved version [22] is be-
ing developed at the time of writing. It will probably be integrated into a future
EiffelStudio release.

Another improvement which might be useful for the library is the Passive
Processor concept [16]. If both the worker pool and the promise processor
could be declared as passive, the computation might speed up a lot.

8 Conclusion

Concurrent programming is increasingly becoming the norm despite its diffi-
culties. The SCOOP model provides a solid foundation to concurrent program-
ming in Eiffel, but it is hard to learn for developers due to the paradigm shift
and the lack of a concurrency library.

In this thesis we’ve worked out many methods that simplify concurrent
programming in SCOOP. We did a broad survey of popular concurrency pat-
terns and present our findings in a detailed list. The list can be used to search

30

for a pattern that fits a particular problem, which may even be useful to pro-
grammers of threaded languages.

From our survey we selected some patterns which we thought to be es-
pecially useful. The selection was based on the study of other concurrency
libraries as well as some input from the Software Engineering research group
at ETH. The seleted patterns were then implemented and are now available as
a new Eiffel library. Besides the pattern implementations, the library also pro-
vides some workarounds for current SCOOP limitations, such as the missing
import statement.

Performance measurements for the Future pattern showed that the library
is actually faster for large data sets and uses less threads than the native SCOOP
approach.

Finally, we also described some challenges when programming in SCOOP
for the first time and how to solve them. This is especially useful to developers
experienced in thread programming who want to try SCOOP out.

8.1 Future work

The library provides several opportunities for future work.

More patterns The library can be extended with additional patterns. It may
be useful to include Pipeline or Dataflow Network.

Separate Proxies The Separate Proxy pattern may be applied to some Eiffel-
Base classes, such as ARRAYED_LIST, HASH_TABLE or ROUTINE.

Separate Proxy Wizard Writing a Separate Proxy is tedious. Most of it could
be automated with a wizard however.

Concurrent Data Structures Sometimes it may be useful to have truly concur-
rent data structures for performance reasons. The Array Slicing tech-
nique [18] is an example how arrays with concurrent read access can be
implemented in SCOOP.

SCOOP itself also provides a rich offering of possible improvements.

Faster runtime The SCOOP runtime needs to become faster. This is currently
being developed [22].

Native Import A native SCOOP import mechanism is a great tool to deal with
a lot of small objects. It will also make the library API and implementa-
tion simpler, as the manual import workaround can be removed.

Passive Processors The passive processors concept [16] could be integrated
into EiffelStudio. It can make a big performance improvement to situ-
ations where one needs to pass data from one processor to another.

Separate references The handling of separate references should become more
convenient. At the moment programmers are forced to write a lot of
small, annoying features to perform separate calls. Some syntactic sugar
would be really helpful.

31

Appendices

A How-To: Separate Proxy

This appendix shows how to implement a separate proxy based on a small
class EXAMPLE.

class interface

EXAMPLE [G]

3

feature -- Status report

6 is_available: BOOLEAN

-- Is ‘item’ available?

9 feature -- Access

item: separate G

12 -- Item in ‘Current’.

require

available: is_available

15

feature -- Element change

18 put (a_item: separate G)

-- Set ‘item’ to ‘a_item’.

21 end

Listing 8: The example class (protégé) where the separate proxy should be applied.

First we need to create the helper class. This is done according to these
rules:

• The name should end in _UTILS, i.e. EXAMPLE_UTILS.

• The generic arguments are the same as in EXAMPLE.

• Any feature to access the separate EXAMPLE object should be prefixed with
example_. This helps to avoid name clashes if someone wants to inherit
from EXAMPLE_UTILS.

• The first argument of each feature is example: separate EXAMPLE [G].
All other arguments are the same as the ones in the corresponding feature
in EXAMPLE.

• Preconditions in EXAMPLE should be rewritten as wait conditions with the
same meaning in EXAMPLE_UTILS.

• If there’s a non-expanded return type to a feature, you can decide if it
should be declared separate in EXAMPLE_UTILS or if it should be im-
ported.

32

class

EXAMPLE_UTILS [G]

3

feature -- Access

6 example_item (example: separate EXAMPLE [G]): separate G

-- Get the item from ‘example’.

-- May block if not yet available.

9 require

available: example.is_available

do

12 Result := example.item

end

15 feature -- Element change

example_put (example: separate EXAMPLE [G];

18 item: separate G)

-- Put ‘item’ into ‘example’.

do

21 example.put (item)

end

end

Listing 9: The helper class for a separate EXAMPLE.

In this example we also dropped the feature is_available, because it’s not
considered to be important for separate clients.

The proxy class also has some simple rules:

• The name should be EXAMPLE_PROXY.

• The generic arguments are the same as in EXAMPLE.

• Inheriting from CP_PROXY [EXAMPLE [G], EXAMPLE_UTILS [G]] is rec-
ommended. That way one can avoid having to write the creation proce-
dure make.

• The feature names and arguments are the same as in EXAMPLE.

• Preconditions in EXAMPLE are not present in EXAMPLE_PROXY. The class
EXAMPLE_UTILS defines them as wait conditions instead.

• Every feature body makes use of utils to forward its requests to the
subject.

class

EXAMPLE_PROXY [G]

3

inherit

CP_PROXY [EXAMPLE [G], EXAMPLE_UTILS [G]]

6

create

make

9

33

feature -- Access

12 item: separate G

-- Item in the example object.

-- May block if not yet available.

15 do

Result := utils.example_item (subject)

end

18

feature -- Element change

21 put (a_item: separate G)

-- Set ‘item’ to ‘a_item’.

do

24 utils.example_put (subject, a_item)

end

27 end

Listing 10: The proxy class for a separate EXAMPLE.

B SCOOP and EiffelVision

At the core of most GUI toolkits is an event dispatching thread (EDT). The EDT
is running an infinite loop where it listens for user input events.

Only the EDT is allowed to modify user interface objects. Background
threads therefore have to enqueue agents to be executed by the EDT if they
want to update the GUI.

EiffelVision also follows this design with the event dispatching code de-
fined in EV_APPLICATION and the enqueuing feature do_once_on_idle in the
same class. Due to this design one might think that combining SCOOP with
EiffelVision is impossible.

This is not true however. EiffelVision implements a variation of the Asyn-
chronous Self-Call pattern [ASC]. The body of the loop is defined by the fea-
ture {EV_APPLICATION_I}.process_event_queue, whereas the actual loop is
implemented in EV_APPLICATION_HANDLER. Therefore, a user interface object
can subscribe to events from separate processors in the same manner as it can
subscribe to events from the same processor.

In fact the SCOOP model makes GUI programming a lot easier. In threaded
languages programmers constantly have to worry that only the EDT manipu-
lates user interface objects. SCOOP however gives this guarantee for free. This
completely eliminates a source of randomly occurring errors which are usually
very hard to find.

We’ll show a small example application which can download a file in the
background. The application has a simple graphical user interface and uses
the executor module from the library. Some highlights of the example are
event propagation and the cancellation mechanism. The full source code can
be found in examples/eiffelvision downloader in the repository [3].

Let’s first look at the business logic. The class DOWNLOAD_TASK in Listing 11
defines the background downloader. It inherits from CP_DEFAULT_TASK such
that it can be used in conjunction with an executor.

34

class

DOWNLOAD_TASK

3

inherit

CP_DEFAULT_TASK

6

-- Initialization omitted.

9 feature -- Access

url: STRING

12

feature -- Basic operations

15 run

-- <Precursor>

local

18 download_fragments: ARRAYED_LIST [STRING]

http_downloader: detachable HTTP_PROTOCOL

size: INTEGER

21 do

create download_fragments.make (50)

create http_downloader.make (create {HTTP_URL}.make(url))

24

from

-- Start the download

27 http_downloader.set_read_mode

http_downloader.open

http_downloader.initiate_transfer

30 size := http_downloader.count

until

-- Terminate when the download is finished

33 -- or the user cancels the download manually.

http_downloader.bytes_transferred = size

or attached promise as l_promise

36 and then is_promise_cancelled (l_promise)

loop

-- Receive a single packet.

39 http_downloader.read

if attached http_downloader.last_packet as l_packet then

download_fragments.extend (l_packet)

42 end

-- Update the progress information in the UI.

if attached promise as l_promise then

45 promise_set_progress (l_promise,

http_downloader.bytes_transferred / size)

end

48 end

-- Discard result. A real application would

51 -- probably write it to a file

download_fragments.wipe_out

http_downloader.close

54 rescue

35

if attached http_downloader as dl and then dl.is_open then

dl.close

57 end

end

end

Listing 11: The background download task.

The code is structured such that the loop body only handles a small chunk
of the total download. This allows to check for a cancellation request in regular
intervals, and to publish the current progress to the shared promise object.

The rescue clause at the end ensures that the connection is correctly closed.
Note that this is the only exception handling which needs to be done, and it’s
not necessary to “catch” an exception with retry. The user interface is still safe
though because the exception gets caught later, transformed to an unsuccessful
termination event, and the GUI will be informed automatically.

Another major component is the class which defines the main window. It
contains a lot of boring EiffelVision initialization code however. Listing 12
therefore only shows the event handling part.

class

MAIN_WINDOW

3 inherit

EV_TITLED_WINDOW

6 -- Initialization and GUI elements omitted.

feature -- Access

9

executor: CP_EXECUTOR_PROXY

-- An executor to submit background tasks to.

12

download_handle: detachable CP_PROMISE_PROXY

-- A handle to a possible background download.

15

formatter: FORMAT_DOUBLE

-- A formatter for progress values.

18

feature -- Status report

21 is_cancelling: BOOLEAN

-- Is the download about to terminate?

24 feature {NONE} -- Button press events

on_download_button_clicked

27 -- Handler for clicks on download button.

local

downloader: DOWNLOAD_TASK

30 l_promise: CP_PROMISE_PROXY

do

if not attached download_handle then

33

create downloader.make (url_text.text)

l_promise := executor.new_promise

36

36 download_handle := l_promise

l_promise.progress_change_event.subscribe (agent

on_progress)

39 l_promise.termination_event.subscribe (agent

on_terminated)

downloader.set_promise (l_promise.subject)

42 executor.put (downloader)

end

end

45

on_cancel_button_clicked

-- Handler for clicks on cancel button.

48 do

if

not is_cancelling and

51 attached download_handle as l_download

then

l_download.cancel

54 is_cancelling := True

status_text.set_text ("Cancelling download...")

end

57 end

feature {NONE} -- Background download events

60

on_terminated (is_successful: BOOLEAN)

-- Handler for termination events from download task.

63 do

if not is_successful then

result_text.set_text ("Download aborted.")

66 elseif is_cancelling then

result_text.set_text ("Download cancelled.")

is_cancelling := False

69 else

result_text.set_text ("Download finished.")

end

72

status_text.set_text ("No download in progress.")

download_handle := Void

75 end

on_progress (progress: DOUBLE)

78 -- Handler for progress change events from download task.

do

if not is_cancelling then

81 status_text.set_text ("Download progress:" +

formatter.formatted (progress * 100) + "%%")

end

84 end

end

Listing 12: The main window.

37

The most interesting feature is on_download_button_clicked. It starts a
background task and sets up all event handlers such that the user interface can
react to progress change or termination events. The events are predefined in
CP_PROMISE and sent automatically to all subscribers whenever the associated
task changes the progress value or terminates.

The on_terminated handler function is used to receive an event that the
background task has finished. There are three cases that need to be distin-
guished: normal termination without cancellation, normal termination with
cancellation, and exceptional termination due to an error.

The last component is the class DOWNLOAD_APPLICATION.

class

DOWNLOAD_APPLICATION

3

create make

6 feature {NONE} -- Initialization

make

9 -- Start the download application example.

local

app: EV_APPLICATION

12 main_window: MAIN_WINDOW

worker_pool: separate CP_TASK_WORKER_POOL

do

15 -- Create a worker pool which can be

-- used to execute background downloads.

create worker_pool.make (10, 1)

18 create executor.make (worker_pool)

-- Create application and main window.

21 create app

create main_window.make (executor)

24 -- Don’t forget to tear down the worker pool at the end.

app.destroy_actions.extend (agent executor.stop)

27 -- Start the GUI.

main_window.show

app.launch

30 end

feature -- Access

33

executor: CP_EXECUTOR_PROXY

-- The worker pool for background tasks.

36

end

Listing 13: Download application root class.

The class just creates and launches the event loop, the worker pool and
the main window. The most interesting part is how the worker pool can be
stopped. As the statement app.launch just kick-starts the event loop and then

38

returns we can’t destroy the worker pool after this statement as in a sequential
program. It is therefore necessary to install a handler to stop the executor when
the event loop terminates.

C API tutorial

The library has several independent components which can be used for vari-
ous tasks in concurrent programming. This tutorial therefore consists of three
unrelated sections. Each section describes a concurrency problem and how the
library can be used to solve it.

All programming code used in this section originally comes from the exam-
ple applications in the repository [3].

C.1 Producer / Consumer

The producer / consumer example is pretty common in concurrent program-
ming. At its core is a shared buffer. A producer can add items to the buffer,
whereas a consumer removes items from the buffer.

The library class CP_QUEUE can be used for the shared buffer. If we want
to pass STRING objects from producers to consumers, we have to declare the
queue like this:

class PRODUCER_CONSUMER feature

3 make

-- Launch producers and consumers.

local

6 queue: separate CP_QUEUE [STRING, CP_STRING_IMPORTER]

-- ...

do

9 create queue.make_bounded (10)

-- ...

end

12 end

Note that there are two generic arguments:

• The first argument (STRING) denotes the type of items in the queue.

• The second argument (CP_STRING_IMPORTER) defines the import strategy
(see Section 5.2.1). It teaches the queue how to import a string object.

In our example we decided to import every string object. An alternative
would be to use CP_NO_IMPORTER [STRING] and deal with separate references
instead.

The next step is to define the producer and consumer classes.

class

PRODUCER

3

inherit

CP_STARTABLE

6

39

create

make

9

feature {NONE} -- Initialization

12 make (a_queue: separate CP_QUEUE [STRING, CP_STRING_IMPORTER];

a_identifier: INTEGER; a_item_count: INTEGER)

-- Initialization for ‘Current’.

do

15 identifier := a_identifier

item_count := a_item_count

create queue_wrapper.make (a_queue)

18 end

queue_wrapper: CP_QUEUE_PROXY [STRING, CP_STRING_IMPORTER]

21 -- A wrapper object to a separate queue.

identifier: INTEGER

24 -- Identifier of ‘Current’.

item_count: INTEGER

27 -- Number of items to produce.

feature -- Basic operations

30

start

-- Produce ‘item_count’ items.

33 local

i: INTEGER

item: STRING

36 do

from

i := 1

39 until

i > item_count

loop

42 -- Note that there’s no need to declare ‘item’ as

-- separate, because it will be imported anyway.

item := "Producer: " + identifier.out + ": item " + i.out

45 queue_wrapper.put (item)

i := i + 1

end

48 end

end

Listing 14: The producer class.

You may notice three things in this example:

• PRODUCER inherits from CP_STARTABLE.

• The PRODUCER uses a CP_QUEUE_PROXY instead of CP_QUEUE.

• The generated strings are not separate.

40

The classes CP_STARTABLE and CP_STARTABLE_UTILS are a useful combina-
tion. They allow to start some operation on a separate object without the need
for a specialized wrapper function.

CP_QUEUE_PROXY is part of the Separate Proxy pattern [SP] (see Section
5.2.2). It is useful to access a separate queue without having to write a lot
of small wrapper functions.

The fact that strings can be generated on the local processor is probably the
most interesting observation. Usually it is necessary when using SCOOP to
create shared data on a dedicated processor. As we’re using the import mech-
anism however this is not necessary and would even be wasteful.

The consumer is the same as the producer except for the feature start:

class

CONSUMER

3

inherit

CP_STARTABLE

6

-- Initialization omitted...

9 feature -- Basic operations

start

12 -- Consume ‘item_count’ items.

local

i: INTEGER

15 item: STRING

do

from

18 i := 1

until

i > item_count

21 loop

queue_wrapper.consume

24 check attached queue_wrapper.last_consumed_item as l_item

then

-- Note that ‘item’ is not declared as separate

27 item := l_item

print (item + " // Consumer " + identifier.out

+ ": item " + i.out + "%N")

30 end

i := i + 1

end

33 end

end

Listing 15: The consumer class.

Again, there’s no need to declare the consumed string as separate, thanks
to the import mechanism.

The only thing left now is to create and launch the producers and con-
sumers in the main application. Note that PRODUCER_CONSUMER inherits from

41

CP_STARTABLE_UTILS such that it can use async_start to start both the con-
sumer and producer threads.

class

PRODUCER_CONSUMER

3

inherit

CP_STARTABLE_UTILS

6

create

make

9

feature {NONE} -- Initialization

12 make

-- Launch the producer and consumers.

local

15 l_queue: separate CP_QUEUE [STRING, CP_STRING_IMPORTER]

l_producer: separate PRODUCER

l_consumer: separate CONSUMER

18 do

print ("%NStarting producer/consumer example. %N%N")

21 -- Create a shared bounded queue for data exchange.

create l_queue.make_bounded (queue_size)

24 -- Create and launch the consumers.

across 1 |..| consumer_count as i loop

create l_consumer.make (l_queue, i.item,

items_per_consumer)

27 async_start (l_consumer)

end

30 -- Create and launch the producers.

across 1 |..| producer_count as i loop

create l_producer.make (l_queue, i.item,

items_per_producer)

33 async_start (l_producer)

end

end

36

feature -- Constants

39 queue_size: INTEGER = 5

producer_count: INTEGER = 10

consumer_count: INTEGER = 10

42 items_per_producer: INTEGER = 20

items_per_consumer: INTEGER = 20

45 invariant

equal_values: producer_count * items_per_producer =

consumer_count * items_per_consumer

end

Listing 16: The producer / consumer application root class.

42

C.2 Server thread

In network server programming it is common to have a dedicated thread lis-
tening on a socket. In a SCOOP environment it is not hard to create such a
processor, but it is hard to stop it. The main problem is that the server will
run an infinite loop, and other processors never get exclusive access to call a
feature like stop.

The library addresses this issue with CP_INTERMITTENT_PROCESS. The class
defines a special main loop using the Asynchronous Self-Call pattern [ASC].

To use CP_INTERMITTENT_PROCESS you need to inherit from it and imple-
ment the deferred feature step. The following example defines a simple echo
server that just listens on a socket and replies with the same string:

class

ECHO_SERVER

3

inherit

6 CP_INTERMITTENT_PROCESS

redefine

cleanup

9 end

create

12 make

feature {NONE} -- Initialization

15

make

-- Initialization for ‘Current’.

18 do

-- Create the socket on the specified port.

create socket.make_server_by_port (2000)

21 -- Set an accept timeout.

socket.set_accept_timeout (500)

-- Enable the socket.

24 socket.listen (5)

end

27 feature -- Basic operations

cleanup

30 -- <Precursor>

do

socket.cleanup

33 end

stop

36 -- Stop the current processor.

do

is_stopped := True

39 end

43

42 step

-- <Precursor>

local

45 l_received: STRING

do

-- Accept a new message.

48 socket.accept

-- In case of an accept timeout ‘accepted’ is Void.

51 if attached socket.accepted as l_answer_socket then

-- Read the message.

54 l_answer_socket.read_line

l_received := l_answer_socket.last_string

57 -- Generate and send the answer.

l_answer_socket.put_string (l_received)

l_answer_socket.put_new_line

60 l_answer_socket.close

end

end

63

feature {NONE} -- Implementation

66 socket: NETWORK_STREAM_SOCKET

-- The server network socket.

69 end

Listing 17: The echo server class.

The accept timeout is important in this example. It ensures that the server pro-
cessor periodically breaks free of its wait condition while listening and there-
fore has a chance to finish the step feature.

The echo server can be started with {STARTABLE_UTILS}.async_start and
stopped with the feature stop. Thanks to the special loop construct used in
CP_INTERMITTENT_PROCESS stopping the echo server also works when called
from another processor.

C.3 Worker Pool and Futures

This section describes how to use a worker pool for I/O tasks. The example
application defines two operations: reading a file and appending a string to
a text file. The classes to represent these operations are FILE_APPENDER_TASK

and FILE_READER_TASK.
The file reader task is implemented with the future module from the li-

brary. The library has the class CP_COMPUTATION to represent futures, i.e. asyn-
chronous tasks that return a result. The FILE_READER_TASK therefore needs to
inherit from CP_COMPUTATION.

The file appender task doesn’t return a result. Therefore it has to inherit
from CP_DEFAULT_TASK. This inheritance is necessary to be able to submit it to
a worker pool later.

The two classes are shown in Listing 18.

44

class

FILE_READER_TASK

3 inherit

CP_COMPUTATION [STRING]

6 create

make, make_from_separate

9 feature {NONE} -- Initialization

make (a_path: STRING)

12 -- Create a new task to read the content from ‘a_path’.

do

path := a_path

15 end

feature {CP_DYNAMIC_TYPE_IMPORTER} -- Initialization

18

make_from_separate (other: separate like Current)

-- <Precursor>

21 do

create path.make_from_separate (other.path)

promise := other.promise

24 end

feature -- Access

27

path: STRING

-- The path of the file to read from.

30

feature -- Basic operations

33 computed: STRING

-- <Precursor>

local

36 l_file: PLAIN_TEXT_FILE

l_content: STRING

do

39 create l_file.make_open_read (path)

l_file.read_stream (l_file.count)

Result := l_file.last_string

42 l_file.close

end

end

45

class

FILE_APPENDER_TASK

48 inherit

CP_DEFAULT_TASK

51 -- Initialization similar to FILE_READER_TASK.

feature -- Access

54

45

path: STRING

-- The path of the file to write to.

57

content: STRING

-- The content to be written.

60

feature -- Basic operations

63 run

-- <Precursor>

local

66 l_file: PLAIN_TEXT_FILE

do

create l_file.make_open_append (path)

69 l_file.put_string (content)

l_file.close

end

72 end

Listing 18: The file reader and appender classes.

The main algorithm needs to be defined in computed or run, respectively.
Additionally, the feature make_from_separate has to be implemented. This
feature is required to import task objects from the client to the worker pool
processor (see Section 5.2.1 for the import concept).

CP_EXECUTOR defines an interface to submit and execute task objects. The
most important implementation is CP_TASK_WORKER_POOL. The executor class
is shipped with a Separate Proxy [SP], which means that clients can access
it via CP_EXECUTOR_PROXY or CP_FUTURE_EXECUTOR_PROXY. These two proxy
classes also initialize the promise object, which is a handle to the asynchronous
operation that can be used to wait for its termination or to retrieve the result
when it’s available.

Listing 19 shows how a worker pool is used to submit the previously de-
fined file reader and appender tasks.

class

IO_WORKER_POOL

3

create

make

6

feature -- Constants

9 path: STRING = "a.txt"

hello_world: STRING = "Hello World%N"

12

feature {NONE} -- Initialization

15 make

-- Initialization for ‘Current’.

do

18 -- Create the worker pools.

create worker_pool.make (100, 4)

46

create executor.make (worker_pool)

21

-- Run the example

single_read_write

24

-- Stop the executor. This is necessary such that

-- the application can terminate.

27 executor.stop

end

30 feature -- Basic operations

single_read_write

33 -- Perform a single write operation on a file.

local

write_task: FILE_APPENDER_TASK

36 write_task_promise: CP_PROMISE_PROXY

read_task: FILE_READER_TASK

39 read_task_promise: CP_RESULT_PROMISE_PROXY [STRING,

CP_STRING_IMPORTER]

l_result: detachable STRING

42 do

-- Execute a file append task first.

create write_task.make (path, hello_world)

45

-- Submit the task and get a promise object.

write_task_promise := executor.put_with_promise(write_task)

48

-- Wait for the task to finish.

write_task_promise.await_termination

51

-- It is possible to check for IO exceptions.

check no_exception:

54 not write_task_promise.is_exceptional

end

57

-- Now execute a read task.

create read_task.make (path)

60

-- Submit the task and get a promise.

read_task_promise := executor.put_future (read_task)

63

-- The promise can be used to retrieve the result.

-- Note that the statement blocks if the result

66 -- is not ready yet.

l_result := read_task_promise.item

69 -- Check if the read-write cycle worked as expected.

% check correct_result: l_result ˜ hello_world end

end

72

47

feature {NONE} -- Implementation

75 worker_pool: separate CP_TASK_WORKER_POOL

-- The worker pool to execute tasks.

78 executor: CP_FUTURE_EXECUTOR_PROXY[STRING, CP_STRING_IMPORTER]

-- The executor proxy used to submit tasks.

81 end

Listing 19: Using a worker pool for futures and asynchronous tasks.

Submitting tasks to the executor and dealing with the asynchronous result
is pretty straightforward. Some calls to the promise object are blocking how-
ever, e.g. await_termination or item, if the asynchronous task has not fin-
ished yet.

The library ensures that no exception can escape the task object and crash
the worker pool or the client code. Clients can check if an exception happened
with the query is_exceptional on the promise object. The exception trace, if
any, is also available to the client with the query last_exception_trace.

An important measure is to stop the executor when the application wants
to terminate. Otherwise the workers will continue to wait for incoming tasks,
preventing the process to shut down.

48

References

[1] Borealis distributed stream processing.
http://cs.brown.edu/research/borealis/public/.

[2] Eiffel ECMA-367 Standard. http://www.ecma-
international.org/publications/standards/Ecma-367.htm.

[3] Github code repository. https://github.com/romasch/scoop patterns.

[4] Microsoft Task Parallel Library.
http://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx.

[5] Oracle Java concurrency package.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
package-summary.html.

[6] Scoop: Known limitations.
https://docs.eiffel.com/book/solutions/scoop-implementation.

[7] Scoop: Official website.
http://docs.eiffel.com/book/solutions/concurrent-eiffel-scoop.

[8] J. Bloch J. Dowbeer D. Holmes D. Lea B. Goetz, T. Peierls. Java
Concurrency in Practice. Addison-Wesley, 2006.

[9] H. Rohnert H. Buschmann D. Schmidt, M. Stal. Pattern-Oriented Software
Architecture, Volume 2, Patterns for Concurrent and Networked Objects.
Wiley, 2000.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[11] Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. How to
cancel a task. In Proceedings of the 2013 International Conference on
Multicore Software Engineering, Performance, and Tools (MUSEPAT’13),
Lecture Notes in Computer Science, pages 61–72. Springer, 2013.

[12] D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, second edition, 2000.

[13] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a
task parallel library. In Proceedings of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 227–242, New York, NY, USA, 2009. ACM.

[14] J. Reinders M. McCool, A. Robison. Structured Parallel Programming:
Patterns for Efficient Computation. Morgan Kaufmann, 2012.

[15] B. Meyer. Touch of Class. Springer, 2009.

[16] Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Safe and
efficient data sharing for message-passing concurrency. In Proceedings of
the 16th International Conference on Coordination Models and Languages
(COORDINATION 2014), volume 8459 of Lecture Notes in Computer
Science, pages 99–114. Springer, 2014.

49

[17] Piotr Nienaltowski. Practical Framework for Contract-based Concurrent
Object-oriented Programming. PhD thesis, ETH Zürich, 2007.

[18] Mischael Schill, Sebastian Nanz, and Bertrand Meyer. Handling
parallelism in a concurrency model. In Proceedings of the 2013
International Conference on Multicore Software Engineering, Performance, and
Tools (MUSEPAT’13), volume 8063 of Lecture Notes in Computer Science,
pages 37–48. Springer, 2013.

[19] Douglas C Schmidt, Carlos O’Ryan, Michael Kircher, Irfan Pyarali, et al.
Leader/Followers - a design pattern for efficient multi-threaded event
demultiplexing and dispatching. In University of Washington.
http://www.cs.wustl.edu/s̃chmidt/PDF/lf.pdf. Citeseer, 2000.

[20] Martin Thompson, Dave Farley, Michael Barker, Patricia Gee, and
Andrew Stewart. Disruptor: High performance alternative to bounded
queues for exchanging data between concurrent threads, 2011.

[21] S. Toub. Patterns for parallel programming, 2010. Microsoft Corporation.

[22] Scott West. Correctness and Execution of Concurrent Object-Oriented
Programs. PhD thesis, ETH Zürich, 2014.

50

	Introduction
	Overview

	Pattern overview
	Data-centric patterns
	Task-centric patterns
	I/O patterns
	Miscellaneous patterns
	SCOOP patterns
	Synchronization primitives

	The SCOOP model
	Challenges in SCOOP
	Object migration
	Processor communication
	Processor termination

	Library
	Goals
	Concepts
	Import
	Separate Proxy

	Module overview

	Library modules
	Import
	Queue
	Process
	Worker pool
	Promise
	Executor
	Futures

	Evaluation
	Conclusion
	Future work

	How-To: Separate Proxy
	SCOOP and EiffelVision
	API tutorial
	Producer / Consumer
	Server thread
	Worker Pool and Futures

	References

