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Abstract 

Kinematic analysis is a useful and widespread tool used in research and clinical biomechanics for the 

estimation of human pose and the quantification of human movement. Common marker-based optical 

motion capture systems are expensive, time intensive, and require highly trained operators to obtain 

kinematic data. Markerless motion capture systems offer an alternative method for the measurement of 

kinematic data with several practical benefits. This work compared the kinematics of human gait 

measured using a deep learning algorithm-based markerless motion capture system to those of a common 

marker-based motion capture system. Thirty healthy adult participants walked on a treadmill while data 

were simultaneously recorded using eight video cameras (markerless) and seven infrared optical motion 

capture cameras (marker-based). Video data were processed using markerless motion capture software, 

marker-based data were processed using marker-based capture software, and both sets of data were 

compared. The average root mean square distance (RMSD) between corresponding joints was less than 

2.5 cm for all joints except the hip, which was 3.6 cm. Lower limb segment angles indicated pose 

estimates from both systems were very similar, with RMSD of less than 5.5° for all segment angles 

except those that represent rotations about the long axis of the segment. Lower limb joint angles captured 

similar patterns for flexion/extension at all joints, ab/adduction at the knee and hip, and toe-in/toe-out at 

the ankle. These findings demonstrate markerless motion capture can measure similar 3D kinematics to 

those from marker-based systems. 

 

 

Keywords: markerless motion capture; gait analysis; kinematics; deep learning. 
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1. Introduction 

Kinematic analysis is the measurement of the motion of rigid bodies and is an important tool in 

clinical and research biomechanics. While rigid body kinematics are ubiquitous in biomechanics research, 

the experimental and computational methods used to estimate three-dimensional (3D) segment position 

and orientation (pose) vary, and so do the resulting kinematics. Markerless motion capture has the 

potential to alleviate some of the technical and practical issues of marker-based motion analysis without 

sacrificing data quality by replacing physical palpation of bony landmarks with probabilistic estimation of 

segment pose by highly trained neural networks (Mathis et al., 2018). 

In traditional marker-based motion analysis, expertise is required to identify anatomical 

landmarks through physical palpation. This skill necessitates knowledge of anatomy and the translation of 

this information to a specific individual, a process which is honed over years of experimental work. Lack 

of skill in this domain leads to the misrepresentation of anatomical landmarks and unrepresentative 

anatomical coordinate systems and subsequent joint centres, which propagate to errors in reported joint 

kinematics and kinetics (Della Croce et al., 1999; Holden and Stanhope, 1998; Stagni et al., 2000). This 

has been noted as one of the greatest sources of error in motion analysis, being greater than instrument 

error and similar to skin movement artefact (Della Croce et al., 2005). Systematic bias in landmarks for a 

given examiner may also exist which make the consolidation of different datasets and multi-center 

collaborations challenging (Gorton et al., 2009; Johnson et al., 2018). In the case of markerless motion 

analysis, landmark detection is performed by a highly trained deep neural network that applies rules 

consistently across individuals, thereby dissociating the tracking of human motion from the operator.  

 Pose estimation in both marker-based and markerless systems is achieved by using at least three 

noncollinear landmarks to define the pose of body segments, which is represented by a local coordinate 

system (LCS) relative to a global coordinate system (GCS). In a marker-based system, joint center 

positions are estimated using regression approaches based on anthropometric measurements from medical 

imaging or cadaveric studies (Harrington et al., 2007), or functional approaches which approximate the 

center of rotation between two segments (Ehrig et al., 2006; Hicks and Richards, 2005; Schwartz and 

Rozumalski, 2005). A markerless system estimates the probability of joint center locations directly from 

an annotated training set of hundreds of thousands of images. Decision rules for joint center positions are 

estimated in each frame of data by a highly trained neural network based only on the training the network 

received and the video recorded of the movement.  

Reducing the reliance on the expert by removing physical markers increases the ease of collecting 

data. Not only does this have the potential to improve the reliability of data (Kanko et al., 2021a), but also 

to expand the use of quantitative human movement data to areas where attaching physical markers to a 

participant is impractical, or an impediment to the research itself. Such instances include when a 
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participant is not comfortable wearing minimal and skin-tight clothing, during movements where sweat 

reduces marker adhesion, and where observation bias overwhelms the research such as behavioral studies 

(Hutchinson et al., 2019). Markerless motion capture has the potential to measure the kinematics of 

human movement with fewer limitations than marker-based motion capture, including the ability to 

collect data outside of a laboratory environment. 

The aim of this study was to compare full-body 3D kinematics of gait measured by a deep neural 

network-based markerless motion capture system to those measured by a marker-based motion capture 

system. 

 

2. Methods 

2.1 Reuse of Data 

 The dataset used in this study, which is made up of simultaneous marker-based motion capture, 

synchronized video, and ground reaction forces from an instrumented treadmill for thirty healthy adult 

participants during treadmill gait at self-selected speeds, has been previously reported on in a comparison 

of spatiotemporal gait parameter measurements using marker-based and markerless motion capture 

systems (Kanko et al., 2021b). This study reused the marker trajectory data, synchronized video data, and 

ground reaction force data. However, this study differs from the previous comparison in the following 

ways: the video data were processed using a newer version of the markerless motion capture software, 

producing separate markerless motion capture data; this study compares kinematic waveforms rather than 

spatiotemporal parameters, which are often of interest to differing core audiences; the data analysis 

described here, including gait event detection, was performed independently from that previously 

described, with the two being treated as two fully separate studies. 

 

2.2 Markerless Motion Capture 

 Theia3D (Theia Markerless Inc., Kingston, ON, Canada) is a deep learning algorithm-based 

approach to markerless motion capture that uses synchronized video data to perform 3D human pose 

estimation, and which has been previously described in detail elsewhere (Kanko et al., 2021b, 2021a). 

Briefly, the system utilizes deep convolutional neural networks which were trained on over 500,000 

manually annotated digital images of humans in the wild to estimate the position of 51 salient features on 

humans in new images provided to the system. Using this approach, the system estimates the 2D positions 

of these features for all humans that appear within synchronized and calibrated video data provided to the 

system, from which 3D position estimates can be obtained. An articulated multi-body model is scaled to 

fit the subject-specific landmarks positions in 3D space, and a multi-body optimization approach (inverse 

kinematic (IK)) is used to estimate the 3D pose of the subject throughout the recorded physical task. By 
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default, the lower body kinematic chain has six degrees-of-freedom (DOF) at the pelvis and three DOF at 

the hip, knee, and ankle. This markerless system has previously been shown to measure comparable 

spatiotemporal gait parameters to marker-based motion capture and a pressure-sensitive gait mat, and 

measure gait kinematics over multiple sessions with greater reliability than marker-based motion capture 

(Kanko et al., 2021b, 2021a).  

 

2.3 Participants 

A convenience sample of thirty healthy, recreationally active individuals (15 male/15 female, 

mean (SD) age: 23.0 (3.5) years, height: 1.76 (0.09) m, mass: 69.2 (11.4) kg) were recruited to participate 

in this study at the Human Mobility Research Laboratory (Kingston, ON). Participants gave written 

informed consent, and this study was approved by the institutional ethics committee. Exclusion criteria 

included having any neuromuscular or musculoskeletal impairments that could prevent their performance 

of walking. Participants were provided with minimal, skin-tight clothing, and wore their personal athletic 

shoes. Retroreflective markers and tracking clusters were affixed to relevant anatomical landmarks and 

body segments; a complete description of the marker set has been previously reported (Kanko et al., 

2021b) 

 

2.4 Experimental Setup and Procedure 

 The data collection setup and procedure were previously used to compare spatiotemporal gait 

parameter measurements between marker-based and markerless motion capture (Kanko et al., 2021b). 

Specifically, a marker-based camera system (seven Qualisys 3+ (Qualisys AB, Gothenburg, Sweden), 1.3 

Megapixel resolution motion capture cameras) and a markerless camera system (eight Qualisys Miqus, 3 

Megapixel resolution video cameras) were positioned around an instrumented treadmill (Tandem Force-

Sensing Treadmill, AMTI Inc., MA). Both camera systems were connected to a single instance of 

Qualisys Track Manager for synchronization and to allow them to be calibrated simultaneously, resulting 

in a single shared global reference frame. Both systems recorded at 85 Hz. 

A static calibration trial for the marker-based motion capture data was collected with the subject 

standing on the treadmill; no static trial is required for the markerless system. Starting at an initial speed 

of 1.2 m/s, participants determined a comfortable self-selected walking speed by providing feedback to 

researchers. Participants acclimatized to the treadmill for two minutes before ten consecutive trials of four 

seconds were collected simultaneously using both camera systems. 

 

2.5 Data Analysis 
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 Markerless motion capture video data were processed using Theia3D (v2021.1.0.1450), from 

which 4x4 pose matrices of each body segment were exported for analysis in Visual3D (C-Motion, USA) 

alongside the tracked marker trajectories from the marker-based motion capture. Two skeletal models 

were created in Visual3D; one that tracked the markerless pose matrices, which Visual3D created 

automatically when data from Theia3D was loaded, and a second that tracked the marker trajectories, 

which was manually defined. The marker-based model was defined to have identical joint constraints as 

those of the Theia3D IK model. Force-based gait events were used to obtain time-normalized gait cycles, 

all of which were included in the analysis except those with tracking issues in the data from either system, 

which were excluded for both systems; this ensured the measurements being compared between systems 

were for identical gait cycles. Kinematic measures were calculated using the Visual3D models, time 

normalized over the gait cycle, and analyzed further in MATLAB (MathWorks, Natick, MA). Joint 

position estimates, lower limb segment angles, and lower limb joint angles were directly compared for 

matching gait cycles between systems, which were summarized as subject-average differences and 

average root-mean-square (RMS) differences across all subjects. Global segment angles represent the 

components of the XYZ Cardan angle taken between the segment LCS and the laboratory GCS (defined 

as Z-Up and Y-Anterior); thus, the x-component represents rotation about the global x-axis, the z-

component represents rotation about the axially-aligned axis of the segment LCS, and the y-component 

represents rotation about the floating axis produced by the cross product of the latter with the former. 

Joint angles were calculated using a Cardan sequence equivalent to the Joint Coordinate System (Grood 

and Suntay, 1983). 

 

3. Results 

 Data from all thirty subjects were included in the analysis, using an average of 37 gait cycles per 

subject (range 11 to 51). The majority of identified tracking issues that led to the exclusion of a gait cycle 

were found in the marker-based data. Example skeletal models from the two systems are overlaid in 

Figure 1A for visual comparison, and the markerless skeletal model is shown overlaid on the original 

video data in Figure 1B. Visually, there is substantial overlap between the two models, providing face 

validity that the pose estimates were similar between the two systems.  
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Figure 1: Examples of A) the concurrent skeletal models with the global coordinate system, and B) the markerless 

skeletal model overlaid on original video data, with segment local coordinate systems displayed. The markerless 

skeletal model is shown coloured red in the image with the concurrent models, and coloured blue in the overlaid 

image. The global coordinate system is fixed in the treadmill, with the x-axis pointing laterally, the y-axis pointing 

in the direction of progression, and the z-axis pointing vertically. This subject had average joint position 3D 

differences at the ankle, knee, hip, shoulder, elbow, and wrist of 2.6 cm, 1.5 cm, 3.3 cm, 2.2 cm, 1.9 cm, and 1.1 cm, 

respectively. The joint angle RMS differences between the markerless and marker-based models for this subject 

were 10.1° in ankle flex/ext, 2.3° in knee flex/ext, 6.5° in hip flex/ext, 6.2° in ankle inv/ever, 3.6° in knee ab/ad, 2.1° 

in hip ab/ad, 9.8° in foot toe-in/-out, 13.9° in knee int/ext rotation, and 3.1° in hip int/ext rotation angles. 

 

3.1 Joint Position Estimates 

The average 3D Euclidean distance between corresponding lower limb joints throughout the gait 

cycle across all subjects was 2.4 cm, 2.2 cm, and 3.6 cm, for the ankle, knee, and hip, respectively. The 

lower limb joint position differences demonstrated some dependence on gait cycle phase, indicating that 

there are systematic differences in the estimates from both systems that are dependent on subject pose 

(Figure 2). The average 3D Euclidean distance between corresponding upper limb joints throughout the 

gait cycle across all subjects was 2.1 cm, 2.4 cm, and 1.1 cm at the shoulder, elbow, and wrist, 

respectively. The upper limb joint position estimates were less dependent on gait cycle phase than the 

lower limb joints, with less variable differences throughout the gait cycle (Figure 3). 
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Figure 2: Mean +/- SD lower limb joint position differences between both motion capture systems across the gait 

cycle for thirty subjects. Differences were calculated as [markerless (ML) position] - [marker-based (MB) position] 

and are expressed as components along each of the global coordinate system axes (row 1: medial/lateral direction; 

row 2: anterior/posterior direction; row 3: superior/inferior direction) and as 3D Euclidean distances (row 4). Axis 

labels (e.g. Lateral) indicate the position of the markerless joint relative to the marker-based joint. Root-mean-square 

(RMS) values are inset in the 3D Euclidean distance plots. 
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Figure 3: Mean +/- SD upper limb joint position differences between both motion capture systems across the gait 

cycle for thirty subjects. Differences were calculated as [markerless (ML) position] - [marker-based (MB) position] 

and are expressed as components along each of the global coordinate system axes (row 1: medial/lateral direction; 

row 2: anterior/posterior direction; row 3: superior/inferior direction) and as 3D Euclidean distances (row 4). Axis 

labels (e.g. Lateral) indicate the position of the markerless joint relative to the marker-based joint. Root-mean-square 

(RMS) values are inset in the 3D Euclidean distance plots. 

 

3.2 Lower Limb Global Segment Angles 

 Subject-average lower limb global segment angles measured using both motion capture systems 

and the average difference between the measurements are shown in Figure 4. The thigh and shank 

segments were found to have very similar global segment angles between the marker-based and 
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markerless system for the x- and y-components, with average RMS differences of 0.9°-2.2°. The thigh 

and shank segment angle z-components had greater differences between the marker-based and markerless 

systems, of 8.5° and 13° respectively. The foot segment angle x-components capture the greatest range of 

motion among the lower limb segments, and very similar patterns were measured by both systems across 

all subjects, with an average RMS difference of 5.4°. The foot segment angle y-components (similar to 

inversion/eversion) had greater differences between systems with an average RMS difference of 7.0°, 

while the z-components (similar to toe in/toe out) had little difference with an average RMS difference of 

2.8°.  
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Figure 4: Subject-average global segment angles of the thigh (row 1), shank (row 2), and foot (row 3) for thirty 

subjects measured by the markerless (orange) and marker-based (blue) motion capture systems, stacked above the 

average difference (markerless - marker-based) across all subjects. Segment angle x-components represent rotation 

about the laboratory GCS x-axis, z-components represent rotation about the axially aligned axis of the segment LCS, 

and y-components represent rotation about the floating axis produced by the cross product of the latter with the 

former. Average RMS differences are inset in each segment angle difference plot. 

 

3.3 Lower Limb Joint Angles 

 Subject-average lower limb joint angles measured using both motion capture systems are shown 

in Figure 5, and lower limb joint angles for all cycles from one representative subject are shown in Figure 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2021. ; https://doi.org/10.1101/2020.12.10.420075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420075
http://creativecommons.org/licenses/by/4.0/


6. Hip flexion/extension angles showed an offset between systems that decreased during early stance and 

at toe-off, which resulted in an average RMS difference of 11°. The ankle flexion/extension angles 

showed a similar but smaller offset that resulted in an average RMS difference of 6.7°. The knee 

flexion/extension angles demonstrated the greatest similarity among sagittal plane angles, with an average 

RMS difference of 3.3°. For all three joints, the marker-based system measured greater flexion than the 

markerless system. 

The hip and knee ab/adduction joint angles showed high agreement between the marker-based 

and markerless systems, which had average RMS differences of 2.6° and 3.2°, respectively. The marker-

based system typically measured greater knee adduction than the markerless system, particularly during 

swing phase (60-100% gait cycle). The ankle inversion/eversion angles had greater differences between 

systems, particularly during stance phase (10-50% gait cycle); the average RMS difference between 

systems for this angle was 8.0°. 

The hip internal/external, knee internal/external, and foot toe-in/toe-out joint angles measured by 

the marker-based system had greater variability across all thirty subjects, whereas the joint angle 

waveforms from the markerless system were more similar across subjects. The internal/external hip 

rotation angles measured by the markerless system were more neutral than those from the marker-based 

system, and the average RMS difference between systems was 6.9°. The internal/external knee joint 

angles differed more during early stance and late swing phases, and the average RMS difference was 

13.2°. The foot toe-in/toe-out angles measured by the markerless system follow a similar pattern to those 

measured by the marker-based system, but with less variability across subjects. The average RMS 

difference between the foot toe-in/toe-out angles was 11.6°. 
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Figure 5: Subject-average joint angles for the hip (row 1), knee (row 2), and ankle (row 3) for thirty subjects 

measured by the markerless (orange) and marker-based (blue) motion capture systems, stacked above the average 

difference (markerless - marker-based) across all subjects. Average RMS differences are inset in each joint angle 

difference plot. 
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Figure 6: Right lower limb joint angles for 19 gait cycles from one representative subject for the hip (row 1), knee 

(row 2), and ankle (row 3) measured by the markerless (orange) and marker-based (blue) motion capture systems. 

 

4. Discussion 

This study compared the kinematics of healthy human treadmill gait measured by a marker-based 

motion capture system and a markerless motion capture system, finding comparable results between the 

two systems. We have previously shown that spatiotemporal gait parameters are comparable between 
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marker-based and markerless motion capture, using the same dataset analyzed here, and comparable to 

those from a pressure-sensitive gait mat (Kanko et al., 2021b). 

Across all thirty subjects, the joint position estimates differed by less than 3 cm for all joints 

except the hip, which differed by 3.6 cm. These differences are similar in magnitude to the errors 

associated with different marker-based joint center location techniques which have been reported up to 

4.59 cm for functional methods and 5.08 cm for predictive regression methods (Kainz et al., 2015). The 

lower limb joint position differences were more sensitive to gait cycle phase compared to the upper limb 

joints, which may be a result of greater soft tissue artefacts for the lower limbs, less accurate markerless 

tracking due to occlusion by the treadmill safety bar, or blurred images due to the higher speeds at which 

the lower limbs travel during walking. 

Both systems measured segment poses with similar x-components, which capture the largest 

segment rotations during gait, differing by roughly 2° for the shank and thigh, and 5.4° for the foot. Shank 

and thigh segment angle y-components and foot segment angle z-components had similarly small 

differences of less than 3° between systems. The largest segment angle differences were found for the 

foot segment angle y-component and the shank and thigh segment angle z-components, which are angular 

measurements taken about the axially aligned LCS axis during gait. In combination, the relatively small 

rotations of these segments about these axes and the alignment of the anatomical reference frames 

between the segments make these movements challenging for both systems to measure, resulting in 

greater differences of 7°-13°. 

The lower limb joint angles captured similar patterns and ranges of motion in flexion/extension at 

the ankle, knee, and hip, and in ab/adduction at the knee and hip. Joint angles are measured between two 

adjacent body segments, and therefore any errors in segment pose are amplified in these measurements. 

The offset in the ankle flex/extension angles is likely a result of the foot segment angle x-component 

differences, which had an average RMSD of 5.4°. Similarly, the offset in the hip flex/extension angles is 

likely a result of an offset in the pelvis segment pose between systems, since the differences in thigh 

segment angle x-components were small, with an average RMSD of 2.0°. Hip and knee internal/external 

rotation, foot toe-in/toe-out, and ankle inversion/eversion had the most apparent differences between the 

marker-based and markerless systems, with respect to both the waveform patterns captured and the 

variability among subjects. The larger differences observed in these joint angles are both notable and 

challenging to interpret due to the likely presence of errors in the signals from both systems. Therefore, 

the differences between systems cannot be interpreted as measurement errors of either system, given that 

the ground truth is not known and both systems likely contribute to the observed differences. We chose to 

present subject average waveforms and individual gait cycle waveforms for one representative subject to 
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illustrate the differences between systems, capturing both the intrinsic differences in measurement 

modalities and potential measurement inaccuracies of both systems. 

There are several potential sources of error that could affect the measurements from both systems. 

Marker-based kinematics are susceptible to marker placement variation, kinematic crosstalk, soft tissue 

artefact, and joint position regression errors. Inconsistent marker placement has been shown to contribute 

up to 5° of error in lower limb joint angles due to the procedure being performed by different operators 

and following different protocols (Gorton et al., 2009; Schwartz et al., 2004). To minimize this source of 

error, markers were placed by the same examiner across all subjects. It has also been shown that skin-

mounted marker clusters move relative to the underlying bone during gait, with translations of up to 1.5 

cm at the shank and 2.5 cm at the thigh, and rotations up to 8° (Benoit et al., 2015). These tissue artefacts 

introduce unpredictable, subject- and task-specific errors of up to 3° in knee joint angles (Benoit et al., 

2015). Finally, joint position estimation errors have been found to range from 0 cm to 4.6 cm for 

functional methods and from 0.7 cm to 5.1 cm for predictive regression methods, which can also 

contribute up to 3° of error in lower limb joint kinematics (Kainz et al., 2015; Leboeuf et al., 2019).  

Markerless kinematics may also be affected by several factors. The treadmill on which subjects 

walked had a safety bar across the front that partially occluded the lower limbs in several camera views 

(Figure 1). Subjects wore minimal, skin-tight clothing and motion capture markers which were unfamiliar 

to the neural networks since the training dataset did not include any images of motion capture subjects or 

markers. Additionally, the video cameras used were necessary for spatial and temporal synchronization 

with the marker-based system but were not ideal for the markerless system. The video data consisted of 3 

Megapixel images recorded at 85 Hz under indoor lighting conditions, producing images that were 

somewhat low resolution and blurry at times. More appropriate video cameras would provide higher 

quality images and may improve tracking. Finally, treadmill gait is known to differ from over-ground 

gait; however, this test compared pose estimation, not characteristics of walking, so any differences are 

not relevant in the context of this work. 

The specific training of the neural networks used for automated pose estimation is both a strength 

and limitation of the markerless system. Any omissions or biases implicit within training sets will be 

propagated to error when applied to situations where the training was weak. The sensitivity of the 

markerless motion capture system to various factors including subject characteristics such as age, sex, 

ethnicity, health status, and clothing have not yet been fully tested, nor has the sensitivity to 

environmental factors such as lighting, the use of a treadmill, or being in a laboratory environment. These 

potential sensitivities will require further testing outside of this study since the results may differ for 

samples with different characteristics. Finally, the markerless system employs a frame-by-frame approach 

to track subject movement which may introduce greater noise to kinematic measurements of individual 
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gait cycles compared to marker-based motion capture; however, previous work has indicated that this 

noise may be overcome by the use of multiple gait cycles and that gait kinematics from markerless 

motion capture are slightly more consistent across multiple sessions compared to marker-based 

kinematics (Kanko et al., 2021a). 

The results presented here indicate that the overall pose of subjects is measured very similarly 

between systems, with small joint position differences and similar waveform patterns for most joint and 

segment angle measures. Given the practical benefits of markerless motion capture such as minimal 

subject preparation time and reduced collection environment restrictions, this technology could allow 

studies to be undertaken with truly large sample sizes that were previously not feasible. Furthermore, 

previous work has indicated that this system offers slightly greater repeatability across multiple collection 

sessions than marker-based systems, increasing the opportunity for and potential of multi-center trials. 
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