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ABSTRACT 
Concurrency is a common technique used in modern memory 
systems. However, the effectiveness of memory concurrency is 
application dependent. It varies largely from application to 
application and from implementation to implementation. 
Understanding and utilizing memory concurrency is a vital and 
timely task for data intensive applications. Traditional memory 
performance metrics, such as Average Memory Access Time 
(AMAT), are designed for sequential data accesses, and have 
inherent limitations in characterizing concurrency. In this study, 
we propose Concurrent Average Memory Access Time (C-
AMAT) as an accurate metric for modern memory systems. C-
AMAT has the ability to examine the impact of concurrent 
memory behavior at both the component and system level of 
modern memory systems. It is a good guide for design choices, 
while other conventional memory metrics often mislead in 
measurement when concurrency is present. 

Keywords 
Memory concurrency; memory metric; memory performance 
measurement 

1. INTRODUCTION 
The unbalanced technological advancements in processor and 
memory over the past thirty years have led directly to the 
“memory wall” problem [1] [2], which means there is an ever 
increasing gap between CPU and memory performance. Cache 
hierarchies are the most effective mechanism for hiding the long 
delay of off-chip main memory accesses. As the “memory wall” 
problem becomes worse, the long delays exist not only in main 
memory, but also penetrate into the cache hierarchies. For 
instance, in the Intel Nehalem architecture CPU, each L1 data 
cache has a 4-cycle hit latency; and each L2 cache has a 10-cycle 
hit latency. Additionally, the IBM Power6 has a 4-cycle L1 cache 
hit latency, and a L2 cache hit latency of 24 cycles. For Last Level 
Caches (LLC) of modern multi-core processors, latencies can 
even exceed one hundred cycles. In order to alleviate the effect of 
these performance gaps, intensive research has been conducted to 
improve the concurrency of memory systems. Multi-port cache, 
multi-banked cache and pipelined cache [3] are advanced cache 
design techniques which improve cache hit concurrency; whereas, 
non-blocking cache [4] is the main technique to improve cache 
miss concurrency. Processor ILP (Instruction Level Parallelism) 
techniques, such as out-of-order execution, multiple issue 
pipeline, SMT (Simultaneous Multi-Threading), CMP (Chip 
Multi-Processing), etc., can dramatically improve both cache hit 
and miss concurrency. With these advanced cache optimizations 
and processor ILP techniques, tens of or even hundreds of 
cache/memory accesses may coexist in the memory hierarchy at 
the same time. Thus, a single cache miss is no longer a determine 

factor of the overall memory system performance. However, 
existing memory metrics, such as Miss Rate (MR), Average Miss 
Penalty (AMP), and Average Memory Access Time (AMAT), are 
still measured based on single access activity, which does not 
reflect the reality of cache/memory concurrency. While it 
becomes increasingly important, understanding the contributions 
of various concurrencies of modern memory systems remains 
elusive for researchers and practitioners. In this study, we extend 
concurrency to the widely-used AMAT metric to create the 
Concurrent AMAT (named C-AMAT in short) metric. Similar to 
AMAT, C-AMAT formulates the memory access delay into a 
summation of memory hierarchy access delays. It introduces two 
new average concurrency parameters at each level of the memory 
hierarchy, namely hit concurrency and miss concurrency. C-
AMAT argues that hit concurrency will improve performance 
while a cache miss may or may not reduce the overall memory 
system performance, depending on hit concurrency. When the 
sum of the two concurrencies equals to one, that is when the data 
access is sequential, C-AMAT is the same as AMAT. Similar to 
AMAT, C-AMAT is a powerful tool to evaluate architecture 
design choices, from hit/miss ratio to hit/miss concurrency.  

APC (memory Access Per Cycle) is a new performance metric 
designed to measure concurrent memory system performance [5]. 
First, through proving the C-AMAT formulation is the reciprocal 
of the APC measurement [5], we confirm the correctness of the C-
AMAT definition.  Then, we exam the relation between C-AMAT 
and AMAT, and formally introduce the associated hit and miss 
concurrency definition. Finally, we examine the impact of the 
configuration of processor microarchitecture and cache using C-
AMAT and other existing memory performance metrics. 
Experimental results confirm that only C-AMAT always captures 
the characteristic of modern commercial processors, whereas 
conventional memory metrics often provide misleading 
information.  

2. DEFINITION AND FORMULATION 

2.1 Definition 
C-AMAT is defined as the average memory access time with the 
consideration of concurrent hit and miss accesses. Quantitatively 
speaking, C-AMAT is equal to the total memory access cycles 
divided by the total number of memory accesses. Let TMemCycle 

represent the total number of cycles executed in which there is at 
least one outstanding memory reference; let CMemAcc represent the 
total number of memory accesses. Therefore 

 

The definition of C-AMAT is very simple. The tacit concurrency 
of Eq.(1) is that the memory cycles are parallel cycles. That is 
when there are several memory accesses co-existing during the 
same cycle, TMemCycle only increases by one. On other words, 
when counting memory access cycles, an overlapping mode is 

 
 

Digital Object Indentifier 10.1109/MC.2013.227             0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.



adopted. Due to the advanced structures of modern cache and 
memory systems, such as pipelined cache, multi-ported cache, 
non-blocking cache, etc., multiple hit accesses and miss accesses 
could be overlapped with each other. TMemCycle catches this 
concurrency. Another important feature of TMemCycle is that 
TMemCycle only includes the clock cycles with memory access 
activities; the cycles without memory references are excluded. 
According to the definition of APC (memory Access Per Cycle) 
[5], the C-AMAT is the reciprocal of APC. Based on the 
measurement methodology of APC proposed in [5], the final 
value of C-AMAT can be obtained. 

 

Paper [5] used the statistical variable correlate coefficient to 
verify the correctness and accuracy of APC, and introduced a 
practical method to measure APC. The direct relation of C-AMAT 
and APC translates the correctness, accuracy, and feasibility of 
APC to C-AMAT.  

Eq. (2) provides the correctness of C-AMAT. Correctness, 
however, is only part of the story. C-AMAT is an analytic tool. 
Like AMAT, a component-based, parameterized formula of C-
AMAT needs to be derived in order to put C-AMAT in use.   

2.2 Extend AMAT Formula with 
Concurrency 
The traditional AMAT is calculated as HitCycle+MR×AMP. 
HitCycle (marked as H in equation 3) is the hit time of memory 
accesses; MR is the miss rate of cache accesses; and AMP is the 
average miss penalty. AMP is calculated as the sum of all single 
miss access latency divided by the total number of miss accesses. 
AMAT does not consider the concurrency of memory accesses, in 
either the hit or the miss section of the formula. It assumes that the 
memory accesses are sequential, one after another. Furthermore, 
with concurrent accesses, hits and misses may co-exist at the same 
cycle. The sequential view of AMAT is simple and worked well 
in the past, but is impeded toward modern processor architectures 
and memory systems where concurrency is paramount. To 
properly analyze the concurrency, we extend AMAT with 
concurrency parameters for hit and miss accesses, and propose a 
new counting method for MR and AMP which considers the 
relation between concurrent hits and misses. The extended 
formula is shown in (3). 

 

The first parameter CH represents the hit concurrency; the second 
parameter CM represents the miss concurrency. The CH could be 
contributed by multi-port cache, multi-banked cache or pipelined 
cache structures. The CM could be contributed by non-blocking 
cache structure. In addition, processor ILP design techniques, 
such as out-of-order execution, multiple issue pipeline, SMT, 
CMP, etc., can both increase the hit concurrency and miss 
concurrency. The Miss Rate in formula (3) is re-defined as the 
number of pure misses over the total number of accesses. The 
pure miss here means that the miss contains at least one miss 
cycle which does not have any hit access activity. When 
measuring private caches for CMP processors, e.g. L1 data cache, 
the pure misses are measured based on “per-core” mode, which 
means every core has its own detecting logic, and that logic only 
measures that core’s private cache accesses. When a miss occurs 
without a hit access inside the private cache, the correspondent 

cycle is measured as a “pure miss cycle” for that core. For shared 
caches, e.g. L2 or L3 caches, the pure miss cycles are measured 
based on “all-core” mode, which means when there is no cache hit 
access from any of the cores, then a miss cycle is counted as “pure 
miss cycle”. AMP is also re-defined as the average number of 
pure miss cycles per miss access.  

C-AMAT can be calculated using hit and miss concurrency 
factors for architecture design choices. The critical question is 
how to obtain an accurate average CH and CM. Here a weighted 
method is applied to calculate the average value. 

Let CH be the average hit cache concurrency, by definition it is 
equal to  

 

N is the total number of cache hit phases. In each hit phase the 
value of Ci does not change; Ci is the hit concurrency during 
phase i; ti is the number of cycles of phase i. Note these hit access 
phases only include cache cycles containing at least one cache hit 
activity, clock cycles without any hit accesses cannot be counted 
into a hit access phase. TH is the total hit cycles in the overlapping 
mode, therefore  

 

Similar, the definition of CM can be given as below, 

 

M is the total number of pure cache miss phases. In each miss 
phase, the value of Cj does not change; Cj is the miss concurrency 
during the phase j; tj is the number of cycles of phase j. Note that 
the pure miss phases only include the cache cycles that contain at 
least one pure cache miss activity. If one clock cycle contains 
miss access as well as hit access or does not contain any miss 
access, this cycle is not counted in pure miss phases. TM is the 
total pure miss cycles in the overlapping mode, therefore  

 

In the following, we will analytically prove formula (1) is equal to 
formula (3) based on their definitions and show how the C-AMAT 
formulation (3) can be extended recursively from L1 cache down 
to LLC. 

2.3 Proof of Equality 
In order to prove formula (1) and formula (3) are equivalent, more 
detailed descriptions of the related variables are listed below. 

H is the number of hit cycles when accessing the current cache 
layer. Every cache access needs to spend H cycles to determine 
whether this is a hit or a miss access. Note H is a constant value in 
our cache model. 
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MR (Miss Rate) in this study is an extended version of the 
traditional miss rate definition with the consideration of 
concurrency. Only when a miss access has no overlapping with 
any hit accesses, then this miss access is a pure miss access. Thus, 

 

CMemPMiss is the total number of pure misses. 

AMP is the average miss penalty which only considers pure miss 
accesses. 

 

TMemPMiss is the sum of total pure miss cycles. The pure miss 
cycles are the cache miss access cycles without any hit access. 
Thus 

 

 

 

Because,  

 

 

 

Thus,  

 

 

 

 

So, 

 

According to formula (5), there are five important parameters 
determining the overall memory performance, namely hit latency, 
hit concurrency, miss rate, average miss penalty, and miss 
concurrency. Though the concepts of miss rate and average miss 
penalty in C-AMAT are similar to the counterparts used in 
AMAT, C-AMAT excludes hit and miss accesses overlapping 
cycles.  

Without considering concurrency, the traditional memory metrics 
often provide an unhelpful measurement, which may lead to 
improper design considerations. Only by considering concurrency 
will the memory performance reflect the impact of micro-
architectural design choices correctly. Also as we will see in 
section 5, different processor and cache design choices will affect 
different C-AMAT parameters, sometimes a technique might 
improve one factor while deteriorating others. These parameters 
in turn affect the overall data access time, and therefore determine 
the design choices. Only comprehensively considering all factors 
can determine the most appropriate system configuration of a 
memory system. 

3. CACHE CONCURRENCY 
MEASUREMENT 
As introduced in formula (5), two concurrencies exist at each 
layer of a memory hierarchy, namely hit concurrency and miss 
concurrency. Hit concurrency reflects the parallelism of cache 
tags query and cache data access. It does not matter whether a 
cache access finally turns out to be a hit or a miss access; this 
cache access requires the system to spend a certain fixed cycles 
performing a cache tags query. Considering advanced cache 
design techniques such as multi-ported cache and pipelined cache, 
the maximum hit cache concurrency is (#cache port × #cache 
pipeline stage). For example, the AMD Opteron CPU has a two-
port L1 data cache, and a 3-cycle pipeline stage for cache access 
[6], thus the maximum hit concurrency is 2×3=6. The miss 
concurrency is usually determined by the number of MSHR (Miss 
Status Holding Register) entries. The maximum miss concurrency 
is equal to the number of outstanding cache misses that MSHR 
can support.  

Compared with the traditional AMAT miss rate measurement, C-
AMAT does not include any miss cycles which overlap with a hit 
cycle. Because when a hit occurs, the memory does not block 
CPU performance. Only pure miss access cycles cause the CPU to 
discontinue execution. Thus, the challenge of measuring miss 
concurrency is the elimination of overlapping cycles which 
contain hit accesses. In other words, the miss concurrency 
detector needs to simultaneously be aware of both cache hit 
accesses and miss accesses. Only pure miss cycles, defined as 
miss cycles which do not overlap with hit cycles, are counted in 
C-AMAT as miss cycles. A detailed cache hit and miss 
concurrency detecting structure is shown in Fig. 1.  

 

Figure 1.  C-AMAT Detecting Structure 
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The Hit Concurrency Detector (HCD) counts the total hit cycles 
and records each hit phase in order to calculate the average hit 
concurrency. The hit cycles are the clock cycles containing at 
least one hit access activity. The HCD also tells the Miss 
Concurrency Detector (MCD) whether a current cycle has a hit 
access or not. The MCD is a monitor unit which counts the total 
number of pure miss cycles and records each pure miss phase in 
order to calculate the average miss concurrency, pure miss rate, 
and pure miss penalty. With the information provided by the 
HCD, the MCD is able to tell whether a cycle is a pure miss cycle, 
and whether a miss is pure miss. Furthermore with all miss 
information, the pure miss rate and average pure miss penalty can 
be calculated. Finally with formula (5), C-AMAT can be 
measured with the five parameters at the right-side of the 
equation. Similar to AMAT, the AMP in Eq. (5) can be further 
extended as a composition of the hit and miss of the next level 
cache of the memory hierarchy. The extension is straightforward.  

4. MICROARCHITECTURE IMPACT 
To demonstrate their contributions to cache concurrency, several 
processor microarchitectures and advanced cache design choices 
are presented herein. From a processor microarchitecture aspect, 
critical ILP technologies, such as out-of-order execution, multiple 
issue pipeline, load/store unit, issue buffer and reorder buffer, 
have not only a large impact on instruction parallelism, but also 
on cache/memory access concurrency. SMT allows a processor to 
execute multiple threads’ instructions in one cycle; while CMP 
allows the execution of multiple independent applications 
concurrently within different processor cores on the same die. 
Both of these techniques can dramatically increase cache hit and 
miss concurrency. Advanced cache design techniques, such as 
multi-port cache, multi-banked cache, pipelined cache, can 
directly affect maximum cache hit concurrency; other cache 
advanced technologies, such as non-blocking cache, cache 
prefetching, main memory bank-level parallelism, greatly 
influence cache miss concurrency.  

We select three basic and fundamental techniques to verify the 
accuracy and practical usefulness of C-AMAT. They are multiple 
issue pipeline, non-blocking cache, and chip multi-processing.  

Multiple Issue Pipeline 
Multiple issue pipeline allows multiple instructions to be fetched, 
decoded, issued, executed and committed in the same cycle. It is a 
very important ILP design technique widely used in modern 
commercial processors. Due to data dependency of algorithms, 
high penalty of branch mis-prediction, missing load data, and 
“power wall” problems, over-increasing pipeline width is not a 
good design choice. Usually commercial processors adopt a 4 to 8 
width pipeline at different stages [3]. In this study, we assume 
each stage has the same width for simplicity. 

Non-blocking Cache 
To cooperate with modern processor technologies, such as out-of-
order speculation, multiple issue, multi-threading, and multi-core 
technologies, modern CPUs, such as Intel Core, Itanium [7], and 
IBM POWER3, employ non-blocking cache heavily at each level 
of a memory hierarchy in order to enhance memory access 
parallelism. Non-blocking caches can continue supplying data 
under certain number of cache misses by adopting a Miss Status 
Holding Register (MSHR) [4]. The MSHR is a structured table, 
which records cache miss information such as access type 
(load/store), access address, and return register, etc. When the 
MSHR table is empty, there are no outstanding cache misses. 

When the MSHR is attached to LLC (Last Level Cache) and 
empty, there are no outstanding main memory accesses. When the 
MSHR table is full, the cache cannot afford more cache accesses, 
and the CPU's memory accesses or next-level memory accesses 
are blocked. Therefore, the number of MSHR entries can directly 
determine miss access concurrency. 

Chip Multi-Processor 
Due to the “power wall” problem and limited performance gain 
from ILP technologies, increasing the number of processor cores 
on the same die is becoming the most important and efficient 
method of increasing total system performance. In CMP 
processor, different cores share a Last Level Cache. Increasing the 
number of cores can directly increase LLC hit and miss 
concurrency.   

5. EXPERIMENT TESTING 
A detailed CPU model in the GEM5 simulator [8] was adopted, 
which supports out-of-order, speculative execution, superscalar, 
and multi-threading for a single core, and complicated cache 
hierarchies for multi-cores with different cache coherency 
protocol. Unless stated otherwise, the experiments assume the 
following default processor and cache configuration showing in 
Table I. 

Table 1. Default Simulation Configuration Parameters 

Parameter Value 

Processor 

Function units 

 

 

 

ROB, LSQ size 

1core, 4 GHz, 4-issue width, 

6 IntALU 1 cycle,  1 IntMul 3 cycles, 

2 FPAdd  2 cycles, 1 FPCmp 2 cycles, 

1 FPCvt   2 cycles,  

1 FPMul  4 cycles, 1 FPDiv 12 cycles 

ROB 64, LQ 48, SQ 24 

L1 caches  

 

32KB Inst/32KB Data, 2-way, 64B line,  

hit latency: 4 cycle Inst/4 cycle Data,  

ICache 8 MSHR Entry,  

DCache 8 MSHR Entry 

L2 cache 512KB, 16-way, 64B line,  

24-cycle hit latency, 16 MSHR Entry 

DRAM latency/Width 240-cycle access latency/64 bits 

In this study, there are three different sets of configurations based 
on the default configuration. Each of them only changes one or 
two parameter of the simulation in order to show the influence of 
each design choice on the cache concurrency and C-AMAT. The 
three design choices, as stated in Section 4, are multiple issue 
pipeline, non-blocking cache, and multi-core design choices. The 
variation of all memory performance metrics, including MR, 
AMP, AMAT and C-AMAT were used to distinguish the 
correctness of each memory performance metric. The winner 
should always correlate to processor design choices.  

The simulations were conducted using 24 benchmarks from SPEC 
CPU2006 suite [9]. Some benchmarks in the set were omitted 
because of compatibility issues with the simulator. The 
benchmarks were compiled using GCC 4.3.2 with -O2 
optimization. The reference input sizes provided by the 
benchmark suite were adopted for all benchmarks. For each 
benchmark, 10 million instructions were simulated to collect 
statistics. The memory performance results presented are the 
average value for all 24 benchmarks. The advantage and accuracy 
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of the C-AMAT measurement already verified in [5] in terms of 
APC. The experimental testing herein is focused on the credential 
and usefulness of C-AMAT formulation in evaluating memory 
design choices. The measurement and discussion are for a general 
purpose memory system design. For a special designed memory 
system for a particular benchmark (application), the measurement 
and discussion can be narrowed in for that particular benchmark. 

By comparing results of C-AMAT and AMAT for each design 
choice, it is clear that only C-AMAT always matches actual 
design choices for modern processors. 

5.1 Impact of Multiple Issue Pipeline Width 
Multiple issue pipeline is an important processor 
microarchitecture design to improve ILP.  Most modern general 
purpose CPUs have an issue width between 4 and 8. From Figure 
2 (b)~(d), it can be observed that only the memory performance 
reflected by C-AMAT can correctly match the performance 
improvement trend of practical processor design considerations. 
Other memory performance metrics, including Miss Rate, 
Average Miss Penalty, and AMAT do not correctly reflect the 
memory performance variation trend.  

Fig. 2(a) shows the average hit concurrency, and average pure 
miss concurrency of an L1 data cache as issue width is increased 
from 1 to 8. It can be observed that the average hit concurrency 
increases at a greater rate than average pure miss concurrency 
when the pipeline width is larger than 4. According to Fig. 2(b), 
the traditional AMAT increases when the pipeline width 
increases, which means the memory performance is decreasing. 
This is a contradiction with the fact that application performance 
should be improved with the increased width of issue pipeline 
width [3]. On the contrary, C-AMAT not only correctly describes 
that the overall memory performance is increasing, but also 
correctly reflects the diminishing returns which occur when the 
issue width of the pipeline is larger than 4. It is interesting to note 
that this C-AMAT result confirms that the current design 
methodology of choosing an issue width size of between 4 and 6 
is optimal for general purpose processors. This demonstrates the 
practical usefulness of C-AMAT. According to Fig. 2(c) and Fig. 
2(d), the MR and AMP are also ineffective at measuring memory 
performance. Only the comprehensive memory metric C-AMAT 
which considers hit and miss access delay, proportion and 
concurrency can correctly reflect the overall memory 
performance. 

Figure 2(a).  L1 DCache Concurrency when Changing Issue 
Pipeline Width 

Figure 2(b).  L1 DCache AMAT and C-AMAT when 
Changing Issue Pipeline Width 

 
Figure 2(c).  L1 DCache Miss Rate and Pure Miss Rate when 

Changing Issue Pipeline Width 

 
Figure 2(d).  L1 DCache AMP and Pure AMP when Changing 

Issue Pipeline Width 
Please notice that the difference between MR and Pure MR, AMP 
and Pure AMP are very small. For miss rate the average 
difference is 1.2%, for miss penalty the difference is 7.1%. The 
correctness of C-AMAT is mainly determined by the concurrency 
of memory accesses. That is reasonable, since changing pipeline 
issue width changes concurrency.  

In the following sub-sections, we demonstrate that different 
architecture choices have different impacts on the five parameters 
of the C-AMAT equation. All the five parameters, therefore, are 
essential for modeling the overall memory performance. C-
AMAT adds some complexity to AMAT, but the complexity is a 
necessity for understanding and analyzing the overall performance 
of modern memory systems. 

5.2 Impact of MSHR Size 
The size of MSHR table can directly determine the maximum 
miss concurrency; however, it does not have direct impact on hit 
concurrency. As shown in Fig. 3(a), when the number of MSHR 
entry is increased, the average hit concurrency stays 
approximately the same, whereas the average pure miss 
concurrency constantly increases. According to Fig. 3(b), the 
larger the MSHR table is, the smaller the miss concurrency gain; 
similarly when the number of MSHR entry increases, C-AMAT 
decreases while AMAT increases. This AMAT increase 
inappropriately describes a memory performance decrease; but C-
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AMAT accurately portrays the performance improvement create 
from the wide adoption of the non-blocking cache technique in 
modern processor design [7]. In the meantime, AMAT fails 
miserably in describing the concurrency variation of MSHR.  

Figure 3(a) L1 DCache Concurrency when Changing  

MSHR Size 

Figure 3(b) L1 DCache AMAT and C-AMAT when Changing 
MSHR Size 

5.3 Impact of the Number of Cores 
In CMP processors, several different cores on the same die share 
one Last Level Cache (LLC). Increasing the number of cores can 
directly increase LLC access concurrency. In this paper, we 
assume L2 is the last level cache. When changing core number 
with value of 1 2 4 8, L2 cache size changes according to 
core number with value of 512KB 1MB 2MB 4MB. 
According to Fig. 4(a), the L2 cache concurrencies increase with 
the number of cores. The miss rates are also increased due to the 
increase of conflicts (see Fig. 4(b)). Without considering 
concurrency, the AMAT metric suggests that the overall 
performance of the L2 cache has decreased. However, this 
obviously conflicts with the widespread use of multi-core 
processors. Under C-AMAT, the overall memory performance of 
L2 cache shows an increase. This observation again illustrates the 
importance of concurrency in data accesses. 

More performance comparison of C-AMAT and AMAT can be 
found in [10] 

 

Figure 4(a) L2 Cache Concurrency when Changing Core 
Number 

 
Figure 4(b) L2 Cache Miss Rate when Changing Core 

Number 

 
Figure 4(c) L2 Cache AMAT and C-AMAT when Changing 

Core Number 

5.4 Related Work 
There are three commonly used performance metrics for 
evaluating memory systems [3], namely Miss Rate (MR), Average 
Miss Penalty (AMP), and Average Memory Access Time 
(AMAT).  MR only reflects the proportion of the data in or out of 
the cache; it does not reflect the penalty of the miss access when 
memory concurrency exists. AMP only catches the penalty of the 
cache miss access for that particular data access; it doesn't show 
the performance degradation of the memory system when memory 
concurrency exists. AMAT is a comprehensive memory metric, 
but it is still based on the single data access viewpoint. It does not 
consider the memory hit and miss access concurrency. Memory-
bandwidth is usually used to measure the peak performance of 
memory systems with intensive memory workloads. Similar to 
APC [5], memory-bandwidth is a useful measurement, but lacks a 
mathematical formulation for analytical study. C-AMAT is an 
extension of AMAT to consider memory concurrency, which 
makes it easy to adopt for anyone already familiar with AMAT. It 
is a useful analysis tool to evaluate the design choices of modern 
memory systems. 

6. CONCLUSIONS  
AMAT is a widely-used conventional tool for architecture 
analysis and design. In this study, we argue that memory 
concurrency has become a vital factor of memory performance 
and introduce an extended AMAT, the C-AMAT (Concurrent 
AMAT), to consider data access concurrency in modern memory 
systems. We have theoretically proved the correctness of the C-
AMAT formulation, and presented the measurement methodology 
of C-AMAT. Extensive simulations were conducted to confirm 
that C-AMAT is effective in evaluating modern memory system 
design and architecture configuration. C-AMAT evaluation leads 
to the same optimum design choices as the rule of thumb used in 
today’s industry. That demonstrates the practical value of C-

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

L1DAvgHitConcur L1DAvgPureMissConcur

0

2

4

6

8

10

12

14

16

1 2 4 8 16

L1D AMAT L1D C-AMAT

0

1

2

3

4

5

6

Core1 Core2 Core4 Core8

L2AvgHitConcur L2AvgPureMissConcur

0.26

0.28

0.3

0.32

0.34

0.36

Core1 Core2 Core4 Core8
L2MissRate L2PureMissRate

0

20

40

60

80

100

120

Core1 Core2 Core4 Core8
C

yc
le

s
L2 AMAT L2 C-AMAT

Digital Object Indentifier 10.1109/MC.2013.227             0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.



AMAT. C-AMAT is an extension of AMAT. When access 
concurrency remains unchanged, C-AMAT produces the same 
results as AMAT. However, when the memory access 
improvement comes from concurrence by using ILP or other 
advanced cache design techniques, such as multiple issue pipeline, 
non-blocking cache, etc., AMAT cannot correctly reflect the 
memory performance changes, and often provides misleading 
information, while C-AMAT can understand the improvements 
due to concurrency. AMAT is known for its simplicity. But, it is 
designed to characterize memory hierarchy, not concurrency. 
Concurrency has become pervasive technique in modern memory 
systems. This study presents a compelling investigation in the 
vital role of concurrency in current memory systems, and in how 
to evaluate the increasing complexity created by concurrency. C-
AMAT has a unique importance in practical and analytical 
architectural study, for today and for tomorrow. 
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