
Concurrent Average Memory Access Time

Xian-He Sun Dawei Wang
Illinois Institute of Technology

sun@iit.edu, david.albert.wang@gmail.com

ABSTRACT
Concurrency is a common technique used in modern memory
systems. However, the effectiveness of memory concurrency is
application dependent. It varies largely from application to
application and from implementation to implementation.
Understanding and utilizing memory concurrency is a vital and
timely task for data intensive applications. Traditional memory
performance metrics, such as Average Memory Access Time
(AMAT), are designed for sequential data accesses, and have
inherent limitations in characterizing concurrency. In this study,
we propose Concurrent Average Memory Access Time (C-
AMAT) as an accurate metric for modern memory systems. C-
AMAT has the ability to examine the impact of concurrent
memory behavior at both the component and system level of
modern memory systems. It is a good guide for design choices,
while other conventional memory metrics often mislead in
measurement when concurrency is present.

Keywords
Memory concurrency; memory metric; memory performance
measurement

1. INTRODUCTION
The unbalanced technological advancements in processor and
memory over the past thirty years have led directly to the
“memory wall” problem [1] [2], which means there is an ever
increasing gap between CPU and memory performance. Cache
hierarchies are the most effective mechanism for hiding the long
delay of off-chip main memory accesses. As the “memory wall”
problem becomes worse, the long delays exist not only in main
memory, but also penetrate into the cache hierarchies. For
instance, in the Intel Nehalem architecture CPU, each L1 data
cache has a 4-cycle hit latency; and each L2 cache has a 10-cycle
hit latency. Additionally, the IBM Power6 has a 4-cycle L1 cache
hit latency, and a L2 cache hit latency of 24 cycles. For Last Level
Caches (LLC) of modern multi-core processors, latencies can
even exceed one hundred cycles. In order to alleviate the effect of
these performance gaps, intensive research has been conducted to
improve the concurrency of memory systems. Multi-port cache,
multi-banked cache and pipelined cache [3] are advanced cache
design techniques which improve cache hit concurrency; whereas,
non-blocking cache [4] is the main technique to improve cache
miss concurrency. Processor ILP (Instruction Level Parallelism)
techniques, such as out-of-order execution, multiple issue
pipeline, SMT (Simultaneous Multi-Threading), CMP (Chip
Multi-Processing), etc., can dramatically improve both cache hit
and miss concurrency. With these advanced cache optimizations
and processor ILP techniques, tens of or even hundreds of
cache/memory accesses may coexist in the memory hierarchy at
the same time. Thus, a single cache miss is no longer a determine

factor of the overall memory system performance. However,
existing memory metrics, such as Miss Rate (MR), Average Miss
Penalty (AMP), and Average Memory Access Time (AMAT), are
still measured based on single access activity, which does not
reflect the reality of cache/memory concurrency. While it
becomes increasingly important, understanding the contributions
of various concurrencies of modern memory systems remains
elusive for researchers and practitioners. In this study, we extend
concurrency to the widely-used AMAT metric to create the
Concurrent AMAT (named C-AMAT in short) metric. Similar to
AMAT, C-AMAT formulates the memory access delay into a
summation of memory hierarchy access delays. It introduces two
new average concurrency parameters at each level of the memory
hierarchy, namely hit concurrency and miss concurrency. C-
AMAT argues that hit concurrency will improve performance
while a cache miss may or may not reduce the overall memory
system performance, depending on hit concurrency. When the
sum of the two concurrencies equals to one, that is when the data
access is sequential, C-AMAT is the same as AMAT. Similar to
AMAT, C-AMAT is a powerful tool to evaluate architecture
design choices, from hit/miss ratio to hit/miss concurrency.

APC (memory Access Per Cycle) is a new performance metric
designed to measure concurrent memory system performance [5].
First, through proving the C-AMAT formulation is the reciprocal
of the APC measurement [5], we confirm the correctness of the C-
AMAT definition. Then, we exam the relation between C-AMAT
and AMAT, and formally introduce the associated hit and miss
concurrency definition. Finally, we examine the impact of the
configuration of processor microarchitecture and cache using C-
AMAT and other existing memory performance metrics.
Experimental results confirm that only C-AMAT always captures
the characteristic of modern commercial processors, whereas
conventional memory metrics often provide misleading
information.

2. DEFINITION AND FORMULATION

2.1 Definition
C-AMAT is defined as the average memory access time with the
consideration of concurrent hit and miss accesses. Quantitatively
speaking, C-AMAT is equal to the total memory access cycles
divided by the total number of memory accesses. Let TMemCycle

represent the total number of cycles executed in which there is at
least one outstanding memory reference; let CMemAcc represent the
total number of memory accesses. Therefore

The definition of C-AMAT is very simple. The tacit concurrency
of Eq.(1) is that the memory cycles are parallel cycles. That is
when there are several memory accesses co-existing during the
same cycle, TMemCycle only increases by one. On other words,
when counting memory access cycles, an overlapping mode is

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

adopted. Due to the advanced structures of modern cache and
memory systems, such as pipelined cache, multi-ported cache,
non-blocking cache, etc., multiple hit accesses and miss accesses
could be overlapped with each other. TMemCycle catches this
concurrency. Another important feature of TMemCycle is that
TMemCycle only includes the clock cycles with memory access
activities; the cycles without memory references are excluded.
According to the definition of APC (memory Access Per Cycle)
[5], the C-AMAT is the reciprocal of APC. Based on the
measurement methodology of APC proposed in [5], the final
value of C-AMAT can be obtained.

Paper [5] used the statistical variable correlate coefficient to
verify the correctness and accuracy of APC, and introduced a
practical method to measure APC. The direct relation of C-AMAT
and APC translates the correctness, accuracy, and feasibility of
APC to C-AMAT.

Eq. (2) provides the correctness of C-AMAT. Correctness,
however, is only part of the story. C-AMAT is an analytic tool.
Like AMAT, a component-based, parameterized formula of C-
AMAT needs to be derived in order to put C-AMAT in use.

2.2 Extend AMAT Formula with
Concurrency
The traditional AMAT is calculated as HitCycle+MR×AMP.
HitCycle (marked as H in equation 3) is the hit time of memory
accesses; MR is the miss rate of cache accesses; and AMP is the
average miss penalty. AMP is calculated as the sum of all single
miss access latency divided by the total number of miss accesses.
AMAT does not consider the concurrency of memory accesses, in
either the hit or the miss section of the formula. It assumes that the
memory accesses are sequential, one after another. Furthermore,
with concurrent accesses, hits and misses may co-exist at the same
cycle. The sequential view of AMAT is simple and worked well
in the past, but is impeded toward modern processor architectures
and memory systems where concurrency is paramount. To
properly analyze the concurrency, we extend AMAT with
concurrency parameters for hit and miss accesses, and propose a
new counting method for MR and AMP which considers the
relation between concurrent hits and misses. The extended
formula is shown in (3).

The first parameter CH represents the hit concurrency; the second
parameter CM represents the miss concurrency. The CH could be
contributed by multi-port cache, multi-banked cache or pipelined
cache structures. The CM could be contributed by non-blocking
cache structure. In addition, processor ILP design techniques,
such as out-of-order execution, multiple issue pipeline, SMT,
CMP, etc., can both increase the hit concurrency and miss
concurrency. The Miss Rate in formula (3) is re-defined as the
number of pure misses over the total number of accesses. The
pure miss here means that the miss contains at least one miss
cycle which does not have any hit access activity. When
measuring private caches for CMP processors, e.g. L1 data cache,
the pure misses are measured based on “per-core” mode, which
means every core has its own detecting logic, and that logic only
measures that core’s private cache accesses. When a miss occurs
without a hit access inside the private cache, the correspondent

cycle is measured as a “pure miss cycle” for that core. For shared
caches, e.g. L2 or L3 caches, the pure miss cycles are measured
based on “all-core” mode, which means when there is no cache hit
access from any of the cores, then a miss cycle is counted as “pure
miss cycle”. AMP is also re-defined as the average number of
pure miss cycles per miss access.

C-AMAT can be calculated using hit and miss concurrency
factors for architecture design choices. The critical question is
how to obtain an accurate average CH and CM. Here a weighted
method is applied to calculate the average value.

Let CH be the average hit cache concurrency, by definition it is
equal to

N is the total number of cache hit phases. In each hit phase the
value of Ci does not change; Ci is the hit concurrency during
phase i; ti is the number of cycles of phase i. Note these hit access
phases only include cache cycles containing at least one cache hit
activity, clock cycles without any hit accesses cannot be counted
into a hit access phase. TH is the total hit cycles in the overlapping
mode, therefore

Similar, the definition of CM can be given as below,

M is the total number of pure cache miss phases. In each miss
phase, the value of Cj does not change; Cj is the miss concurrency
during the phase j; tj is the number of cycles of phase j. Note that
the pure miss phases only include the cache cycles that contain at
least one pure cache miss activity. If one clock cycle contains
miss access as well as hit access or does not contain any miss
access, this cycle is not counted in pure miss phases. TM is the
total pure miss cycles in the overlapping mode, therefore

In the following, we will analytically prove formula (1) is equal to
formula (3) based on their definitions and show how the C-AMAT
formulation (3) can be extended recursively from L1 cache down
to LLC.

2.3 Proof of Equality
In order to prove formula (1) and formula (3) are equivalent, more
detailed descriptions of the related variables are listed below.

H is the number of hit cycles when accessing the current cache
layer. Every cache access needs to spend H cycles to determine
whether this is a hit or a miss access. Note H is a constant value in
our cache model.

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

MR (Miss Rate) in this study is an extended version of the
traditional miss rate definition with the consideration of
concurrency. Only when a miss access has no overlapping with
any hit accesses, then this miss access is a pure miss access. Thus,

CMemPMiss is the total number of pure misses.

AMP is the average miss penalty which only considers pure miss
accesses.

TMemPMiss is the sum of total pure miss cycles. The pure miss
cycles are the cache miss access cycles without any hit access.
Thus

Because,

Thus,

So,

According to formula (5), there are five important parameters
determining the overall memory performance, namely hit latency,
hit concurrency, miss rate, average miss penalty, and miss
concurrency. Though the concepts of miss rate and average miss
penalty in C-AMAT are similar to the counterparts used in
AMAT, C-AMAT excludes hit and miss accesses overlapping
cycles.

Without considering concurrency, the traditional memory metrics
often provide an unhelpful measurement, which may lead to
improper design considerations. Only by considering concurrency
will the memory performance reflect the impact of micro-
architectural design choices correctly. Also as we will see in
section 5, different processor and cache design choices will affect
different C-AMAT parameters, sometimes a technique might
improve one factor while deteriorating others. These parameters
in turn affect the overall data access time, and therefore determine
the design choices. Only comprehensively considering all factors
can determine the most appropriate system configuration of a
memory system.

3. CACHE CONCURRENCY
MEASUREMENT
As introduced in formula (5), two concurrencies exist at each
layer of a memory hierarchy, namely hit concurrency and miss
concurrency. Hit concurrency reflects the parallelism of cache
tags query and cache data access. It does not matter whether a
cache access finally turns out to be a hit or a miss access; this
cache access requires the system to spend a certain fixed cycles
performing a cache tags query. Considering advanced cache
design techniques such as multi-ported cache and pipelined cache,
the maximum hit cache concurrency is (#cache port × #cache
pipeline stage). For example, the AMD Opteron CPU has a two-
port L1 data cache, and a 3-cycle pipeline stage for cache access
[6], thus the maximum hit concurrency is 2×3=6. The miss
concurrency is usually determined by the number of MSHR (Miss
Status Holding Register) entries. The maximum miss concurrency
is equal to the number of outstanding cache misses that MSHR
can support.

Compared with the traditional AMAT miss rate measurement, C-
AMAT does not include any miss cycles which overlap with a hit
cycle. Because when a hit occurs, the memory does not block
CPU performance. Only pure miss access cycles cause the CPU to
discontinue execution. Thus, the challenge of measuring miss
concurrency is the elimination of overlapping cycles which
contain hit accesses. In other words, the miss concurrency
detector needs to simultaneously be aware of both cache hit
accesses and miss accesses. Only pure miss cycles, defined as
miss cycles which do not overlap with hit cycles, are counted in
C-AMAT as miss cycles. A detailed cache hit and miss
concurrency detecting structure is shown in Fig. 1.

Figure 1. C-AMAT Detecting Structure

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

The Hit Concurrency Detector (HCD) counts the total hit cycles
and records each hit phase in order to calculate the average hit
concurrency. The hit cycles are the clock cycles containing at
least one hit access activity. The HCD also tells the Miss
Concurrency Detector (MCD) whether a current cycle has a hit
access or not. The MCD is a monitor unit which counts the total
number of pure miss cycles and records each pure miss phase in
order to calculate the average miss concurrency, pure miss rate,
and pure miss penalty. With the information provided by the
HCD, the MCD is able to tell whether a cycle is a pure miss cycle,
and whether a miss is pure miss. Furthermore with all miss
information, the pure miss rate and average pure miss penalty can
be calculated. Finally with formula (5), C-AMAT can be
measured with the five parameters at the right-side of the
equation. Similar to AMAT, the AMP in Eq. (5) can be further
extended as a composition of the hit and miss of the next level
cache of the memory hierarchy. The extension is straightforward.

4. MICROARCHITECTURE IMPACT
To demonstrate their contributions to cache concurrency, several
processor microarchitectures and advanced cache design choices
are presented herein. From a processor microarchitecture aspect,
critical ILP technologies, such as out-of-order execution, multiple
issue pipeline, load/store unit, issue buffer and reorder buffer,
have not only a large impact on instruction parallelism, but also
on cache/memory access concurrency. SMT allows a processor to
execute multiple threads’ instructions in one cycle; while CMP
allows the execution of multiple independent applications
concurrently within different processor cores on the same die.
Both of these techniques can dramatically increase cache hit and
miss concurrency. Advanced cache design techniques, such as
multi-port cache, multi-banked cache, pipelined cache, can
directly affect maximum cache hit concurrency; other cache
advanced technologies, such as non-blocking cache, cache
prefetching, main memory bank-level parallelism, greatly
influence cache miss concurrency.

We select three basic and fundamental techniques to verify the
accuracy and practical usefulness of C-AMAT. They are multiple
issue pipeline, non-blocking cache, and chip multi-processing.

Multiple Issue Pipeline
Multiple issue pipeline allows multiple instructions to be fetched,
decoded, issued, executed and committed in the same cycle. It is a
very important ILP design technique widely used in modern
commercial processors. Due to data dependency of algorithms,
high penalty of branch mis-prediction, missing load data, and
“power wall” problems, over-increasing pipeline width is not a
good design choice. Usually commercial processors adopt a 4 to 8
width pipeline at different stages [3]. In this study, we assume
each stage has the same width for simplicity.

Non-blocking Cache
To cooperate with modern processor technologies, such as out-of-
order speculation, multiple issue, multi-threading, and multi-core
technologies, modern CPUs, such as Intel Core, Itanium [7], and
IBM POWER3, employ non-blocking cache heavily at each level
of a memory hierarchy in order to enhance memory access
parallelism. Non-blocking caches can continue supplying data
under certain number of cache misses by adopting a Miss Status
Holding Register (MSHR) [4]. The MSHR is a structured table,
which records cache miss information such as access type
(load/store), access address, and return register, etc. When the
MSHR table is empty, there are no outstanding cache misses.

When the MSHR is attached to LLC (Last Level Cache) and
empty, there are no outstanding main memory accesses. When the
MSHR table is full, the cache cannot afford more cache accesses,
and the CPU's memory accesses or next-level memory accesses
are blocked. Therefore, the number of MSHR entries can directly
determine miss access concurrency.

Chip Multi-Processor
Due to the “power wall” problem and limited performance gain
from ILP technologies, increasing the number of processor cores
on the same die is becoming the most important and efficient
method of increasing total system performance. In CMP
processor, different cores share a Last Level Cache. Increasing the
number of cores can directly increase LLC hit and miss
concurrency.

5. EXPERIMENT TESTING
A detailed CPU model in the GEM5 simulator [8] was adopted,
which supports out-of-order, speculative execution, superscalar,
and multi-threading for a single core, and complicated cache
hierarchies for multi-cores with different cache coherency
protocol. Unless stated otherwise, the experiments assume the
following default processor and cache configuration showing in
Table I.

Table 1. Default Simulation Configuration Parameters

Parameter Value

Processor

Function units

ROB, LSQ size

1core, 4 GHz, 4-issue width,

6 IntALU 1 cycle, 1 IntMul 3 cycles,

2 FPAdd 2 cycles, 1 FPCmp 2 cycles,

1 FPCvt 2 cycles,

1 FPMul 4 cycles, 1 FPDiv 12 cycles

ROB 64, LQ 48, SQ 24

L1 caches

32KB Inst/32KB Data, 2-way, 64B line,

hit latency: 4 cycle Inst/4 cycle Data,

ICache 8 MSHR Entry,

DCache 8 MSHR Entry

L2 cache 512KB, 16-way, 64B line,

24-cycle hit latency, 16 MSHR Entry

DRAM latency/Width 240-cycle access latency/64 bits

In this study, there are three different sets of configurations based
on the default configuration. Each of them only changes one or
two parameter of the simulation in order to show the influence of
each design choice on the cache concurrency and C-AMAT. The
three design choices, as stated in Section 4, are multiple issue
pipeline, non-blocking cache, and multi-core design choices. The
variation of all memory performance metrics, including MR,
AMP, AMAT and C-AMAT were used to distinguish the
correctness of each memory performance metric. The winner
should always correlate to processor design choices.

The simulations were conducted using 24 benchmarks from SPEC
CPU2006 suite [9]. Some benchmarks in the set were omitted
because of compatibility issues with the simulator. The
benchmarks were compiled using GCC 4.3.2 with -O2
optimization. The reference input sizes provided by the
benchmark suite were adopted for all benchmarks. For each
benchmark, 10 million instructions were simulated to collect
statistics. The memory performance results presented are the
average value for all 24 benchmarks. The advantage and accuracy

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

of the C-AMAT measurement already verified in [5] in terms of
APC. The experimental testing herein is focused on the credential
and usefulness of C-AMAT formulation in evaluating memory
design choices. The measurement and discussion are for a general
purpose memory system design. For a special designed memory
system for a particular benchmark (application), the measurement
and discussion can be narrowed in for that particular benchmark.

By comparing results of C-AMAT and AMAT for each design
choice, it is clear that only C-AMAT always matches actual
design choices for modern processors.

5.1 Impact of Multiple Issue Pipeline Width
Multiple issue pipeline is an important processor
microarchitecture design to improve ILP. Most modern general
purpose CPUs have an issue width between 4 and 8. From Figure
2 (b)~(d), it can be observed that only the memory performance
reflected by C-AMAT can correctly match the performance
improvement trend of practical processor design considerations.
Other memory performance metrics, including Miss Rate,
Average Miss Penalty, and AMAT do not correctly reflect the
memory performance variation trend.

Fig. 2(a) shows the average hit concurrency, and average pure
miss concurrency of an L1 data cache as issue width is increased
from 1 to 8. It can be observed that the average hit concurrency
increases at a greater rate than average pure miss concurrency
when the pipeline width is larger than 4. According to Fig. 2(b),
the traditional AMAT increases when the pipeline width
increases, which means the memory performance is decreasing.
This is a contradiction with the fact that application performance
should be improved with the increased width of issue pipeline
width [3]. On the contrary, C-AMAT not only correctly describes
that the overall memory performance is increasing, but also
correctly reflects the diminishing returns which occur when the
issue width of the pipeline is larger than 4. It is interesting to note
that this C-AMAT result confirms that the current design
methodology of choosing an issue width size of between 4 and 6
is optimal for general purpose processors. This demonstrates the
practical usefulness of C-AMAT. According to Fig. 2(c) and Fig.
2(d), the MR and AMP are also ineffective at measuring memory
performance. Only the comprehensive memory metric C-AMAT
which considers hit and miss access delay, proportion and
concurrency can correctly reflect the overall memory
performance.

Figure 2(a). L1 DCache Concurrency when Changing Issue
Pipeline Width

Figure 2(b). L1 DCache AMAT and C-AMAT when
Changing Issue Pipeline Width

Figure 2(c). L1 DCache Miss Rate and Pure Miss Rate when

Changing Issue Pipeline Width

Figure 2(d). L1 DCache AMP and Pure AMP when Changing

Issue Pipeline Width
Please notice that the difference between MR and Pure MR, AMP
and Pure AMP are very small. For miss rate the average
difference is 1.2%, for miss penalty the difference is 7.1%. The
correctness of C-AMAT is mainly determined by the concurrency
of memory accesses. That is reasonable, since changing pipeline
issue width changes concurrency.

In the following sub-sections, we demonstrate that different
architecture choices have different impacts on the five parameters
of the C-AMAT equation. All the five parameters, therefore, are
essential for modeling the overall memory performance. C-
AMAT adds some complexity to AMAT, but the complexity is a
necessity for understanding and analyzing the overall performance
of modern memory systems.

5.2 Impact of MSHR Size
The size of MSHR table can directly determine the maximum
miss concurrency; however, it does not have direct impact on hit
concurrency. As shown in Fig. 3(a), when the number of MSHR
entry is increased, the average hit concurrency stays
approximately the same, whereas the average pure miss
concurrency constantly increases. According to Fig. 3(b), the
larger the MSHR table is, the smaller the miss concurrency gain;
similarly when the number of MSHR entry increases, C-AMAT
decreases while AMAT increases. This AMAT increase
inappropriately describes a memory performance decrease; but C-

0

0.5

1

1.5

2

2.5

3

3.5

Width1 Width2 Width4 Width8
L1DAvgHitConcur L1DAvgPureMissConcur

0

5

10

15

20

Width1 Width2 Width4 Width8

C
yc

le
s

0

0.02

0.04

0.06

0.08

0.1

Width1 Width2 Width4 Width8

L1DMissRate L1DPureMissRate

100

105

110

115

120

125

130

Width1 Width2 Width4 Width8

C
yc

le
s

L1D AMP L1D PureAMP

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

AMAT accurately portrays the performance improvement create
from the wide adoption of the non-blocking cache technique in
modern processor design [7]. In the meantime, AMAT fails
miserably in describing the concurrency variation of MSHR.

Figure 3(a) L1 DCache Concurrency when Changing

MSHR Size

Figure 3(b) L1 DCache AMAT and C-AMAT when Changing
MSHR Size

5.3 Impact of the Number of Cores
In CMP processors, several different cores on the same die share
one Last Level Cache (LLC). Increasing the number of cores can
directly increase LLC access concurrency. In this paper, we
assume L2 is the last level cache. When changing core number
with value of 1 2 4 8, L2 cache size changes according to
core number with value of 512KB 1MB 2MB 4MB.
According to Fig. 4(a), the L2 cache concurrencies increase with
the number of cores. The miss rates are also increased due to the
increase of conflicts (see Fig. 4(b)). Without considering
concurrency, the AMAT metric suggests that the overall
performance of the L2 cache has decreased. However, this
obviously conflicts with the widespread use of multi-core
processors. Under C-AMAT, the overall memory performance of
L2 cache shows an increase. This observation again illustrates the
importance of concurrency in data accesses.

More performance comparison of C-AMAT and AMAT can be
found in [10]

Figure 4(a) L2 Cache Concurrency when Changing Core
Number

Figure 4(b) L2 Cache Miss Rate when Changing Core

Number

Figure 4(c) L2 Cache AMAT and C-AMAT when Changing

Core Number

5.4 Related Work
There are three commonly used performance metrics for
evaluating memory systems [3], namely Miss Rate (MR), Average
Miss Penalty (AMP), and Average Memory Access Time
(AMAT). MR only reflects the proportion of the data in or out of
the cache; it does not reflect the penalty of the miss access when
memory concurrency exists. AMP only catches the penalty of the
cache miss access for that particular data access; it doesn't show
the performance degradation of the memory system when memory
concurrency exists. AMAT is a comprehensive memory metric,
but it is still based on the single data access viewpoint. It does not
consider the memory hit and miss access concurrency. Memory-
bandwidth is usually used to measure the peak performance of
memory systems with intensive memory workloads. Similar to
APC [5], memory-bandwidth is a useful measurement, but lacks a
mathematical formulation for analytical study. C-AMAT is an
extension of AMAT to consider memory concurrency, which
makes it easy to adopt for anyone already familiar with AMAT. It
is a useful analysis tool to evaluate the design choices of modern
memory systems.

6. CONCLUSIONS
AMAT is a widely-used conventional tool for architecture
analysis and design. In this study, we argue that memory
concurrency has become a vital factor of memory performance
and introduce an extended AMAT, the C-AMAT (Concurrent
AMAT), to consider data access concurrency in modern memory
systems. We have theoretically proved the correctness of the C-
AMAT formulation, and presented the measurement methodology
of C-AMAT. Extensive simulations were conducted to confirm
that C-AMAT is effective in evaluating modern memory system
design and architecture configuration. C-AMAT evaluation leads
to the same optimum design choices as the rule of thumb used in
today’s industry. That demonstrates the practical value of C-

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

L1DAvgHitConcur L1DAvgPureMissConcur

0

2

4

6

8

10

12

14

16

1 2 4 8 16

L1D AMAT L1D C-AMAT

0

1

2

3

4

5

6

Core1 Core2 Core4 Core8

L2AvgHitConcur L2AvgPureMissConcur

0.26

0.28

0.3

0.32

0.34

0.36

Core1 Core2 Core4 Core8
L2MissRate L2PureMissRate

0

20

40

60

80

100

120

Core1 Core2 Core4 Core8
C

yc
le

s
L2 AMAT L2 C-AMAT

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

AMAT. C-AMAT is an extension of AMAT. When access
concurrency remains unchanged, C-AMAT produces the same
results as AMAT. However, when the memory access
improvement comes from concurrence by using ILP or other
advanced cache design techniques, such as multiple issue pipeline,
non-blocking cache, etc., AMAT cannot correctly reflect the
memory performance changes, and often provides misleading
information, while C-AMAT can understand the improvements
due to concurrency. AMAT is known for its simplicity. But, it is
designed to characterize memory hierarchy, not concurrency.
Concurrency has become pervasive technique in modern memory
systems. This study presents a compelling investigation in the
vital role of concurrency in current memory systems, and in how
to evaluate the increasing complexity created by concurrency. C-
AMAT has a unique importance in practical and analytical
architectural study, for today and for tomorrow.

Acknowledgment
This research was supported in part by National Science
Foundation under NSF grant CCF-0621435, CNS-0751200, and
CCF-0937877.

7. REFERENCES

[1] X.-H. Sun, and L. Ni, Another View on Parallel Speedup, Proc. of
IEEE Supercomputing'90, NY, Nov. 1990.

[2] W. Wulf and S. McKee. Hitting the wall: Implications of the
obvious. ACM SIGArch Computer Architecture News, Mar. 1995.

[3] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 4th edition, September
2006.

[4] David Kroft, "Lockup-free Instruction Fetch/Prefetch Cache
Organization", in Proceedings of the 8th annual symposium on
Computer Architecture (ISCA '81), Los Alamitos, CA, USA, 1981.

[5] X.-H. Sun and D. Wang, "APC: A Performance Metric of Memory
Systems", ACM SIGMETRICS Performance Evaluation Review,
Volume 40, Issue 2, 2012.

[6] Hans de Vries, "Understanding the detailed Architecture of AMD's
64 bit Core", http://chip-
architect.com/news/2003_09_21_Detailed_Architecture_of_AMDs_
64bit_Core.html, September, 2003.

[7] Intel, Reference Manual, "Introduction to Microarchitectural
Optimization for Itanium® 2 Processors", http://developer.intel.com,
2011, April

[8] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S.
Reinhardt. The M5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52{60, July-Aug. 2006.

[9] C. D. Spradling. SPEC CPU2006 benchmark tools. ACM SIGARCH
Computer Architecture News, 2007.

[10] D. Wang and X.-H. Sun, "Concurrent Average Memory Access
Time", Illinois Institute of Technology Technical Report (IIT/CS-
SCS-2012-05), 2012.

Xian-He Sun is a Professor of Computer Science and the
Chairman of the Department of Computer Science at the Illinois
Institute of Technology (IIT). He is the director of the Scalable
Computing Software laboratory at IIT, an IEEE fellow, and is a
guest faculty in the Mathematics and Computer Science Division
at the Argonne National Laboratory. Before joining IIT, he
worked at DoE Ames National Laboratory, at ICASE, NASA
Langley Research Center, and at Louisiana State University,
Baton Rouge. Dr. Sun's research interests include parallel and
distributed processing, memory and I/O systems, software
systems, and performance evaluation and optimization.
Contact Information: Xian-He Sun
Mailing Address: Department of Computer Science, Illinois
Institute of Technology, 10W 31st street, Chicago, IL
60616, USA
Email: sun@iit.edu
Phone: 1-312-567-5260

Dawei Wang received the Ph.D. degree in Computer
Science in the Institute of Computing Technology, Chinese
Academy of Sciences in 2009. He worked as a postdoctoral
researcher at the Scalable Computing Software laboratory
in the Illinois Institute of Technology during 2010 and
2012. He is currently working at Juniper Networks for
next-generation High-throughput Ethernet Routers. His
research interests include computer architecture, large scale
interconnection networks, and architectural simulation &
emulation.
Contact Information: Dawei Wang
Mailing Address: 1909 Silva Place, Santa Clara, CA,
95054.
Email: david.albert.wang@gmail.com
Phone: 1-408-705-0786

Digital Object Indentifier 10.1109/MC.2013.227 0018-9162/$26.00 2013 IEEE

This article has been accepted for publication in Computer but has not yet been fully edited.
Some content may change prior to final publication.

