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Abstract. We introduce the Concurrent Collections (CnC) programming model. CnC supports flexible combinations of task and

data parallelism while retaining determinism. CnC is implicitly parallel, with the user providing high-level operations along with

semantic ordering constraints that together form a CnC graph.

We formally describe the execution semantics of CnC and prove that the model guarantees deterministic computation. We

evaluate the performance of CnC implementations on several applications and show that CnC offers performance and scalability

equivalent to or better than that offered by lower-level parallel programming models.
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1. Introduction

With multicore processors, parallel computing is

going mainstream. Yet most software is still written

in traditional serial languages with explicit threading.

High-level parallel programming models, after four

decades of proposals, have still not seen widespread

adoption. This is beginning to change. Systems like

MapReduce are succeeding based on implicit paral-

lelism. Other systems like Nvidia CUDA are partway

there, providing a restricted programming model to the

user but also exposing too many of the hardware de-

tails. The payoff for a high-level programming model

is clear – it can provide semantic guarantees and can

simplify the understanding, debugging and testing of a

parallel program.

In this paper we introduce the Concurrent Collec-

tions (CnC) programming model, built on past work

on TStreams [14]. CnC falls into the same family as

dataflow and stream-processing languages – a program

is a graph of kernels, communicating with one another.

In CnC, those computations are called steps, and are re-

lated by control and data dependences. CnC is provably

deterministic. This limits CnC’s scope, but compared

to its more narrow counterparts (StreamIT, NP-Click,

etc.), CnC is suited for many applications – incorpo-

rating static and dynamic forms of task, data, loop,

pipeline and tree parallelism.

Truly mainstream parallelism will require reach-

ing the large community of non-professional program-

mers – scientists, animators and financial analysts –
but reaching them requires a separation of concerns be-
tween application logic and parallel implementation.
We say that the former is the concern of the domain

expert and the latter of the performance tuning expert.
The tuning expert is given the maximum possible free-
dom to map the computation onto the target architec-
ture and is not required to have an understanding of the
domain. A strength of CnC is that it is simultaneously
a dataflow-like parallel model and a simple specifica-
tion language that facilitates communication between
the domain and tuning experts.

We have implemented CnC for C++, Java, .NET
and Haskell, but in this paper we will primarily fo-
cus on the Java and C++ implementations. The con-
tributions of this paper include: (1) a formal descrip-
tion of an execution semantics for CnC with a proof of
determinism and (2) experimental results demonstrat-
ing that CnC can effectively exploit several different
kinds of parallelism and offer performance and scal-
ability equivalent to or better than what is offered by
lower-level parallel programming models.

2. What is CnC?

The three main constructs in CnC are step collec-

tions, data collections and control collections. These
collections and their relationships are defined stati-
cally. But for each static collection, a set of dynamic
instances is generated at runtime.
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A step collection corresponds to a specific computa-

tion (a procedure) and its instances correspond to invo-

cations of that procedure with different inputs. A con-

trol collection is said to prescribe a step collection –

adding an instance to the control collection will cause a

corresponding step instance to eventually execute with

that control instance as input. The invoked step may

continue execution by adding instances to other control

collections and so on.

Steps also dynamically read and write data in-

stances. If a step might touch data within a collection,

then a (static) dependence exists between the step and

data collections. The execution order of step instances

is constrained only by their data and control dependen-

cies. A complete CnC specification is a graph where

the nodes can be either step, data, or control collec-

tions, and the edges represent producer, consumer and

prescription dependencies. The following is an exam-

ple snippet of a CnC specification (where bracket types

distinguish the three types of collections):

// control relationship: myCtrl prescribes

// instances of step

<myCtrl> :: (myStep);

// consume from myData, produce to

// myCtrl, myData

[myData] → (myStep) → <myCtrl>, [myData];

For each step, like myStep above, the domain ex-

pert provides an implementation in a separate program-

ming language and assembles the steps using a CnC

specification. (In this sense CnC is a coordination lan-

guage.) The domain expert says nothing about how

operations are scheduled, which depends on the tar-

get architecture. The tuning expert then maps the CnC

specification to a specific target architecture, creating

an efficient schedule. Thus the specification serves as

an interface between the domain and tuning experts.

In the case where operations are scheduled to execute

on a parallel architecture, the domain expert in effect

prepares the program for parallelism. This differs from

the more common approach of embedding parallelism

constructs within serial code.

A whole CnC program includes the specification,

the step code and the environment. Step code imple-

ments the computations within individual graph nodes,

whereas the environment is the external user code that

invokes and interacts with the CnC graph while it ex-

ecutes. The environment can produce data and control

instances, and consume data instances.

Inside each collection, control, data and step in-

stances are all identified by a unique tag. These tags

generally have meaning within the application. For ex-

ample, they may be tuples of integers modeling an

iteration space. They can also be points in non-grid

spaces–nodes in a tree, in an irregular mesh, elements

of a set, etc. In CnC, tags are arbitrary values that sup-

port an equality test and hash function. Each type of

collection uses tags as follows:

• Putting a tag into a control collection will cause

the corresponding steps (in prescribed step col-

lections) to eventually execute. A control collec-

tion C with tag i is denoted < C : i >.

• Each step instance is a computation that takes a

single tag (originating from the prescribing con-

trol collection) as an argument. The step instance

of collection (foo) at tag i is denoted (foo : i).
• A data collection is an associative container in-

dexed by tags. The entry for a tag i, once writ-

ten, cannot be overwritten (dynamic single as-

signment). The immutability of entries within a

data collection is necessary for determinism. An

instance in data collection x with tag “i, j” is de-

noted [x : i, j].

The colon notation above can also be used to specify

tag functions in CnC. These are declarative contracts

that constrain the data access patterns of steps. For ex-

ample, a step indexed by an integer i which promises

to read data at i and produce i + 1 would be written as

“[x: i] → (f: i) → [x: i+1]”.

Because control tags are effectively synonymous

with control instances we will use the terms inter-

changeably in the remainder of this paper. (We will

also refer to data instances simply as items, and read

and write operations on collections as gets and puts.)

2.1. Simple example

The following simple example illustrates the task

and data parallel capabilities of CnC. This application

takes a set (or stream) of strings as input. Each string is

split into words (separated by spaces). Each word then

passes through a second phase of processing that, in

this case, puts it in uppercase form.

<stringTags> :: (splitString); // step 1

<wordTags> :: (uppercase); // step 2

// The environment produces initial inputs

// and retrieves results:

env → <stringTags>, [inputs];

env ← [results];

// Here are the producer/consumer relations

// for both steps:

[inputs] → (splitString)

→ <wordTags>, [words];

[words] → (uppercase) → [results];
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Fig. 1. A CnC graph as described by a CnC specification. By convention, in the graphical notation specific shapes correspond to control, data and

step collections. Dotted edges represent prescription (control/step relations), and arrows represent production and consumption of data. Squiggly

edges represent communication with the environment (the program outside of CnC). (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-2011-0305.)

The above text corresponds directly to the graph

in Fig. 1. Note that separate strings in [inputs]

can be processed independently (data parallelism) and,

further, the (splitString) and (uppercase)

steps may operate simultaneously (task parallelism).

The only keyword in the CnC specification language

is env, which refers to the environment – the world

outside CnC, for example, other threads or processes

written in a serial language. The strings passed into

CnC from the environment are placed into [inputs]

using any unique identifier as a tag. The elements of

[inputs] may be provided in any order or in paral-

lel. Each string, when split, produces an arbitrary num-

ber of words. These per-string outputs can be num-

bered 1 through N – a pair containing this number

and the original string ID serves as a globally unique

tag for all output words. Thus, in the specification

we could annotate the collections with tag compo-

nents indicating the pair structure of word tags: e.g.,

(uppercase: stringID, wordNum).

The step implementations (user-written code for

splitString and uppercase steps, ommitted

here due to space constraints), specification file and

code for the environment together make up a complete

CnC application. The CnC graph can be specified in

a text file using the syntax described above, or it can

be constructed using a graphical programming tool.1 It

can also be conveyed in the host language code itself

through an API, such as has been done for the Intel®

CnC implementation.

3. Formal semantics

In this section, we introduce Featherweight CnC

and describe its semantics, which is used to prove

its determinism. Featherweight CnC simplifies the full

1Since the 0.5.0 release, Intel® has introduced a preliminary

graphical programming tool for creating CnC programs in Windows.

CnC model without reducing its power. A given CnC

program can be translated to Featherweight CnC by:

(1) combining its data collections into a single, merged

collection (differentiated by an added field in the tags);

(2) enumerating all tag data types in the program

(which assumes countable sets) and thereby mapping

them to integers; and (3) translating serial step code to

the simple (but Turing complete) step language embed-

ded in Featherweight CnC.

3.1. Syntax

Featherweight CnC combines the language for spec-
ifying data and step collections with the base language
for writing the step bodies. A Featherweight CnC pro-
gram is of the form:

f1(int a) {d1 s1}

f2(int a) {d2 s2}

...

fn(int a) {dn sn}

Combining the languages into one grammar allows

us to give a complete semantics for the execution of

a Featherweight CnC program. The full grammar is

shown below. We use c to range over integer constants

and n to range over variable names.

Program : p ::= fi(int a){di si}, i ∈ 1..n
Declaration : d ::= n = data.get(e); d

| ǫ
Statement : s ::= skip

| if (e > 0) s1 else s2

| data.put(e1, e2); s
| prescribe fi(e); s

Expression : e ::= c (integer constant)

| n (local name)

| a (formal parameter name)

| e1 + e2

Each fi is a step, the a is the tag passed to a step in-

stance, and the di and si make up the step body. The
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di are the initial gets for the data needed by the step

and the si are the statements in the step bodies. Writ-

ing a data item to a data collection is represented by

the data.put(e1, e2) production. The expression e1 is

used to compute the tag and the expression e2 is used

to compute the value. Control collections have been re-

moved in favor of directly starting a new step using the

prescribe statement. A computation step consists of a

series of zero or more declarations followed by one or

more statements. These declarations introduce names

local to the step and correspond to performing a get on

a data collection. A step must finish all of its gets be-

fore beginning any computation. The computation in a

step is limited to simple arithmetic, writing to a data

collection and starting new computation steps.

3.2. Semantics

For an expression e in which no names occur, we

use [[e]] to denote the integer to which e evaluates. Fur-

ther, we use A to denote the state of the array data,

a partial function whose domain and range are inte-

gers. If A[i] is undefined, we say that A[i] = ⊥
and we use A[n1 := n2] to extend A. We use A0

to denote the empty mapping, where dom(A) = {}.

We define an ordering ⊑ on array mappings such that

A ⊑ A′ if and only if dom(A) ⊆ dom(A′) and for all

n ∈ dom(A) : A(n) = A′(n).

We will now define a small-step operational seman-

tics for the language. Our main semantic structure is a

tree defined by the following grammar:

Tree: T ::= T ‖ T | (d s).

We assert that ‖ is associative and commutative, that

is:

T1 ‖ (T2 ‖ T3) = (T1 ‖ T2) ‖ T3,

T1 ‖ T2 = T2 ‖ T1.

A state in the semantics is a pair (A, T ) or error. We

use σ to range over states. We define an ordering � on

states such that σ � σ′ if and only if either σ′
= error,

or if σ = (A, T ) and σ′
= (A′, T ), then A ⊑ A′.

We will define the semantics via a binary relation on

states, written σ → σ′. The initial state of an execution

of s is (A0, s). A final state of the semantics is either

of the form (A, skip), of the form error, or of the form

(A, T ) in which every occurrence in T of (d s) has that

property that d is of the form n = data.get(e); d′ and

A[[[e]]] = ⊥ (e.g., a “blocked” read).

We now show the rules that define →.

(A, skip ‖ T2) → (A, T2), (1)

(A, T1 ‖ skip) → (A, T1), (2)

(A, T1) → error

(A, T1 ‖ T2) → error
, (3)

(A, T2) → error

(A, T1 ‖ T2) → error
, (4)

(A, T1) → (A′, T ′

1)

(A, T1 ‖ T2) → (A′, T ′

1 ‖ T2)
, (5)

(A, T2) → (A′, T ′

2)

(A, T1 ‖ T2) → (A′, T1 ‖ T ′

2)
, (6)

(A, if (e > 0) s1 else s2) → (A, s1)
(7)

(if [[e]] > 0),

(A, if (e > 0) s1 else s2) → (A, s2)
(8)

(if [[e]] � 0),

(A, data.put(e1, e2); s) → (A[[[e1]] := [[e2]]], s)
(9)

(if A[[[e1]]] = ⊥),

(A, data.put(e1, e2); s) → error
(10)

(if A[[[e1]]] �= ⊥),

(A, prescribe fi(e); s)

→ (A, ((di si)[a := [[e]]]) ‖ s) (11)

(the body of fi is (di si)),

(A, n = data.get(e); d s)

→ (A, (d s)[n := A[[[e]]]]) (12)

(if A[[[e]]] �= ⊥).

Notice that because Rules (11) and (12) perform

substitution on step bodies, in a well-formed program

all evaluated expressions, [[e]], are closed. Now, given

the semantics above, we formally state the desired

property of determinism:

If σ →∗ σ′ and σ →∗ σ′ ′,

and σ′, σ′ ′ are both final states, then σ′
= σ′ ′.

3.2.1. Proof of determinism

Lemma 3.1 (Error preservation). If (A, T ) → error

and A ⊑ A′, then (A′, T ) → error.
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Proof. Straightforward by induction on the derivation
of (A, T ) → error; we omit the details. �

Lemma 3.2 (Monotonicity). If σ → σ′, then σ � σ′.

Proof. Straightforward by induction on the derivation
of σ → σ′. The interesting case is for Rule (9) which
is where σ can change and the single-assignment side-
condition plays an essential role. We omit the de-
tails. �

Lemma 3.3 (Clash). If (A, T ) → (A′, T ′) and A[c] =

⊥ and A′[c] �= ⊥ and Ad[c] �= ⊥ and then (Ad, T ) →
error.

Proof. Straightforward by induction on the derivation
of (A, T ) → (A′, T ′); we omit the details. �

Lemma 3.4 (Independence). If (A, T ) → (A′, T ′) and

A′[c] = ⊥, then (A[c := c′], T ) → (A′[c := c′], T ′).

Proof. From (A, T ) → (A′, T ′) and Lemma 3.2 we
have A ⊑ A′. From A ⊑ A′ and A′[c] = ⊥, we have
A[c] = ⊥. The proof is now straightforward by induc-
tion on the derivation of (A, T ) → (A′, T ′); we omit
the details. �

Lemma 3.5 (Diamond). If (A, Ta) → (A′, T ′

a) and

(A, Tb) → (A′ ′, T ′ ′

b ), then there exists σc such that

(A′, T ′

a ‖ Tb) → σc and (A′ ′, Ta ‖ T ′ ′

b ) → σc.

Proof. We proceed by induction on the derivation of
(A, Ta) → (A′, T ′

a). We have twelve cases depending
on the last rule used to derive (A, Ta) → (A′, T ′

a).

• Rule (1). In this case we have Ta = (skip ‖ T2)
and A′

= A and T ′

a = T2. So we can pick σc =

(A′ ′, T2 ‖ T ′ ′

b ) because (A′, T ′

a ‖ Tb) = (A, T2 ‖
Tb) and from (A, Tb) → (A′ ′, T ′ ′

b ) and Rule (6) we
have (A, T2 ‖ Tb) → (A′ ′, T2 ‖ T ′ ′

b ), and because
(A′ ′, Ta ‖ T ′ ′

b ) = (A′ ′, (skip ‖ T2) ‖ T ′ ′

b ) and from
Rule (1) we have (A′ ′, (skip ‖ T2)) → (A′ ′, T2),
and finally from (A′ ′, (skip ‖ T2)) → (A′ ′, T2)
and Rule (5) we have (A′ ′, (skip ‖ T2) ‖ T ′ ′

b )) →
(A′ ′, T2 ‖ T ′ ′

b ).
• Rule (2). This case is similar to the previous case;

we omit the details.
• Rules (3)–(4). Both cases are impossible.
• Rule (5). In this case we have Ta = T1 ‖ T2 and

T ′

a = T ′

1 ‖ T2 and (A, T1) → (A′, T ′

1). From
(A, T1) → (A′, T ′

1) and (A, Tb) → (A′ ′, T ′ ′

b )
and the induction hypothesis, we have σ′

c such
that (A′, T ′

1 ‖ Tb) → σ′

c and (A′ ′, T1 ‖ T ′ ′

b ) →
σ′

c. Let us show that we can pick σc such that

(A′, (T ′

1 ‖ Tb) ‖ T2) → σc and (A′ ′, (T1 ‖ T ′ ′

b ) ‖
T2) → σc. We have two cases:

• If σ′

c = error, then we use Rule (3) to pick σc =

error.

• If σ′

c = (Ac, Tc), then we use Rule (5) to pick

(Ac, Tc ‖ T2).

From (A′, (T ′

1 ‖ Tb) ‖ T2) → σc and (A′ ′, (T1 ‖
T ′ ′

b ) ‖ T2) → σc, the result then follows from ‖
being associative and commutative.

• Rules (6)–(8). All three cases are similar to the

case of Rule (1); we omit the details.

• Rule (9). In this case we have Ta = (item.put(e1,

e2); s) and A′
= A[[[e1]] := [[e2]]] and T ′

a = s
and (A[[[e1]]] = ⊥). Let us do a case analysis of

the last rule used to derive (A, Tb) → (A′ ′, T ′ ′

b ).

• Rule (1). In this case we have Tb = skip ‖ T2

and A′ ′
= A and T ′ ′

b = T2. So we can

pick σc = (A′, s ‖ T2) because (A′, T ′

a ‖ Tb) =

(A′, s ‖ (skip ‖ T2)) and from Rules (1) and (6)

we have (A′, s ‖ (skip ‖ T2)) → (A′, s ‖ T2) =

σc, and because (A′ ′, Ta ‖ T ′ ′

b ) = (A, Ta ‖ T2)

and from Rule (5) we have (A, Ta ‖ T2) →
(A′, s ‖ T2) = σc.

• Rule (2). This case is similar to the previous

case; we omit the details.

• Rules (3)–(4). Both cases are impossible.

• Rule (5). In this case we have Tb = T1 ‖ T2 and

T ′ ′

b = T ′ ′

1 ‖ T2 and (A, T1) → (A′ ′, T ′ ′

1 ). We

have two cases:

• If [[e1]] ∈ dom(A′ ′), then we can pick σc =

error because from (A′ ′[[[e1]]] �= ⊥) and

Rules (5) and (10) we have (A′ ′, Ta ‖ T ′ ′

b ) →
σc, and because from (A, Tb) → (A′ ′, T ′ ′

b )

and (A[[[e1]]] = ⊥) and (A′ ′[[[e1]]] �= ⊥)

and (A′[[[e1]]] �= ⊥) and Lemma 3.3, we

have (A′, Tb) → error, and so from Rule (4)

we have (A′, T ′

a ‖ Tb) → σc.

• If [[e1]] /∈ dom(A′ ′), then we define Ac =

A′ ′[[[e1]] := [[e2]]] and we pick σc = (Ac,

T ′

a ‖ (T ′ ′

1 ‖ T2)). From (A[[[e1]]] = ⊥) and

(A, Tb) → (A′ ′, T ′ ′

b ) and [[e1]] /∈ dom(A′ ′)

and Lemma 3.4, we have (A′, Tb) → (Ac,

T ′ ′

b ), and then from Rule (6) we have (A′,

T ′

a ‖ Tb) → (Ac, T ′

a ‖ T ′ ′

b ) = σc. From

Rules (6) and (9) and [[e1]] /∈ dom(A′ ′), we

have (A′ ′, Ta ‖ T ′ ′

b ) → σc.

• Rule (6). This case is similar to the previous

case; we omit the details.
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• Rules (7)–(8). Both cases are similar to the case

of Rule (1); we omit the details.

• Rule (9). In this case we have Tb = (item.
put(e′

1, e′

2); s′) and A′ ′
= A[[[e′

1]] := [[e′

2]]]

and T ′ ′

b = s′ and (A[[[e′

1]]] = ⊥). We have two

cases:

• If [[e1]] = [[e′

1]], then we can pick σc = error

because (A′[[[e1]]] �= ⊥) and (A′ ′[[[e1]]] �=
⊥) and from Rule (10) we have both (A′,

T ′

a ‖ Tb) → σc and (A′ ′, Ta ‖ T ′ ′

b ) → σc.

• If [[e1]] �= [[e′

1]], then we define Ac =

A[[[e1]] := [[e2]]][[[e′

1]] := [[e′

2]]] and we

pick σc = (Ac, s ‖ s′). From (A[[[e′

1]]] = ⊥)

and [[e1]] �= [[e′

1]], we have (A′[[[e′

1]]] = ⊥).

From Rules (6) and (9) and (A′[[[e′

1]]] =

⊥) we have (A′, T ′

a ‖ Tb) → σc. From

(A[[[e1]]] = ⊥) and [[e1]] �= [[e′

1]], we have

(A′ ′[[[e1]]] = ⊥). From Rules (5) and (9) and

(A′ ′[[[e1]]] = ⊥) we have (A′ ′, Ta ‖ T ′ ′

b ) →
σc.

• Rule (10). This case is impossible.

• Rules (11)–(12). Both cases are similar to the

case of Rule (1); we omit the details.

• Rule (10). This case is impossible.

• Rules (11)–(12). Both of cases are similar to the

case of Rule (1); we omit the details. �

The standard notion of Local Confluence says that:

if σ → σ′ and σ → σ′ ′, then there exists σc such that

σ′ →∗ σc and σ′ ′ →∗ σc. We will prove a stronger

property that we call Strong Local Confluence.

Lemma 3.6 (Strong Local Confluence). If σ → σ′

and σ → σ′ ′, then there exists σc, i, j such that σ′ →i

σc and σ′ ′ →j σc and i � 1 and j � 1.

Proof. We proceed by induction on the derivation of

σ → σ′. We have twelve cases depending on the last

rule use to derive σ → σ′.

• Rule (1). We have σ = (A, skip ‖ T2) and σ′
=

(A, T2). Let us do a case analysis of the last rule

used to derive σ → σ′ ′.

• Rule (1). In this case, σ′
= σ′ ′, and we can then

pick σc = σ′ and i = 0 and j = 0.

• Rule (2). In this case we must have T2 = skip

and σ′ ′
= (A, skip). So σ′

= σ′ ′ and we can

pick σc = σ′ and i = 0 and j = 0.

• Rule (3). This case is impossible because it re-

quires (A, skip) to take a step.

• Rule (4). In this case we have σ′ ′
= error and

(A, T2) → error. So we can pick σc = error

and i = 1 and j = 0 because (A, T2) → error

is the same as σ′ → σc and σ′ ′
= σc.

• Rule (5). This case is impossible because it re-

quires skip to take a step.

• Rule (6). In this case we have σ′ ′
= (A′,

skip ‖ T ′

2) and (A, T2) → (A′, T ′

2). So we can

pick σc = (A′, T ′

2) and i = 1 and j = 1 be-

cause from Rule (1) we have σ′ ′ → σc, and we

also have that (A, T2) → (A′, T ′

2) is the same

as σ′ → σc.

• Rules (7)–(12). Each of these is impossible be-

cause T = skip ‖ T2.

• Rule (2). This case is similar to the previous case;

we omit the details.

• Rule (3). We have σ = (A, T1 ‖ T2) and σ′
=

error and (A, T1) → error. Let us do a case analy-

sis of the last rule used to derive σ → σ′ ′.

• Rule (1). This case impossible because it re-

quires T1 = skip which contradicts (A, T1) →
error.

• Rule (2). In this case we have T2 = skip and

σ′ ′
= (A, T1). So we can pick σc = error

and i = 0 and j = 1 because σ′
= σc and

(A, T1) → error is the same as σ′ ′ → σc.

• Rule (3). In this case, σ′
= σ′ ′, and we can then

pick σc = σ′ and i = 0 and j = 0.

• Rule (4). In this case, σ′
= σ′ ′, and we can then

pick σc = σ′ and i = 0 and j = 0.

• Rule (5). In this case we have (A, T1) →
(A′, T ′

1) and σ′ ′
= (A′, T ′

1 ‖ T2). From the in-

duction hypothesis we have that there exists σ′

c

and i′ � 1 and j′ � 1 such that error →i′

σ′

c

and (A′, T ′

1) →j′

σ′

c. Given that error has no

outgoing transitions, we must have σ′

c = error

and i′
= 0. Additionally, given that (A′, T ′

1) �=
error we must have j′

= 1. So we can pick

σc = error and i = 0 and j = 1 because σ′
=

σc and because from Rule (3) and (A′, T ′

1) →j′

σ′

c and j′
= 1, we have σ′ ′ → error.

• Rule (6). In this case we have (A, T2) →
(A′, T ′

2) and σ′ ′
= (A′, T1 ‖ T ′

2). In this case we

can pick σc = error and i = 0 and j = 1 be-

cause σ′
= σc and because from (A, T1) →

error and (A, T2) → (A′, T ′

2) and Lemmas 3.1

and 3.2 we have (A′, T1) → error, so from

Rule (3) we have we have σ′ ′ → σc.

• Rules (7)–(12). Each of these is impossible be-

cause T = T1 ‖ T2.
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• Rule (4). This case is similar to the previous case;

we omit the details.

• Rule (5). We have σ = (A, T1 ‖ T2) and σ′
=

(A′, T ′

1 ‖ T2) and (A, T1) → (A′, T ′

1). Let us do

a case analysis of the last rule used to derive

σ → σ′ ′.

• Rule (1). This case is impossible because for

Rule (1) to apply we must have T1 = skip, but

for Rule (5) to apply we must have that (A, T1)

can take a step, a contradiction.

• Rule (2). In this case, we must have T2 = skip

and σ′ ′
= (A, T1). So we can pick σc =

(A′, T ′

1) and i = 1 and j = 1 because from

Rule (2) we have σ′ → σc, and we also have

that (A, T1) → (A′, T ′

1) is the same as σ′ ′ →
σc.

• Rule (3). In this case we have (A, T1) → error

and σ′ ′
= error. From the induction hypothe-

sis we have that there exists σ′

c and i′ � 1 and

j′ � 1 such that error →i′

σ′

c and (A′, T ′

1) →j′

σ′

c. Given that error has no outgoing transitions,

we must have σ′

c = error and i′
= 0. Addition-

ally, given that (A′, T ′

1) �= error we must have

j′
= 1. So we can pick σc = error and i = 1

and j = 0 because σ′ ′
= σc and because from

Rule (3) and (A′, T ′

1) →j′

σ′

c and j′
= 1, we

have σ′ → error.

• Rule (4). In this case we have (A, T2) → error

and σ′ ′
= error. So we can pick σc = error

and i = 1 and j = 0 because σ′ ′
= error and

because from (A, T2) → error and (A, T1) →
(A′, T ′

1) and Lemmas 3.1 and 3.2 we have

(A′, T2) → error, so from Rule (4) we have

σ′ → error.

• Rule (5). In this case we must have σ′ ′
=

(A′ ′, T ′ ′

1 ‖ T2) and (A, T1) → (A′ ′, T ′ ′

1 ). From

(A, T1) → (A′, T ′

1) and (A, T1) → (A′ ′, T ′ ′

1 ),

and the induction hypothesis, we have that

there exists σ′

c and i′ � 1 and j′ � 1 such that

(A′, T ′

1) →i′

σ′

c and (A′ ′, T ′ ′

1 ) →j′

σ′

c. We have

two cases.

• If σ′

c = error, then we can pick σc =

error and i = 1 and j = 1 because from

(A′, T ′

1) →i′

σ′

c and i′ � 1 we must have

i′
= 1 so from (A′, T ′

1) →i′

σ′

c and i′
= 1

and Rule (3) we have σ′ → σc, and because

from (A′ ′, T ′ ′

1 ) →j′

σ′

c and j′ � 1 we must

have j′
= 1 so from (A′ ′, T ′ ′

1 ) →j′

σ′

c and

j′
= 1 and Rule (3) we have σ′ ′ → σc.

• If σ′

c = (Ac, Tc), then we can pick σc =

(Ac, Tc ‖ T2) and i = i′ and j = j′ because

from (A′, T ′

1) →i′

σ′

c and Rule (5) we have

σ′ →i σc, and because from (A′ ′, T ′ ′

1 ) →j′

σ′

c and Rule (5) we have σ′ ′ →i σc.

• Rule (6). In this case we must have σ′ ′
=

(A′ ′, T1 ‖ T ′

2) and (A, T2) → (A′ ′, T ′

2). From
(A, T1) → (A′, T ′

1) and (A, T2) → (A′ ′, T ′

2) and
Lemma 3.5, we have that there exists σc such
that (A′, T ′

1 ‖ T2) → σc and (A′ ′, T1 ‖ T ′

2) →
σc, that is, σ′ → σc and σ′ ′ → σc. Thus we
pick i = 1 and j = 1.

• Rules (7)–(12). Each of these is impossible be-
cause T = T1 ‖ T2.

• Rule (6). This case is similar to the previous case;
we omit the details.

• Rules (7)–(12). In each of these cases, only one
step from σ is possible so σ′

= σ′ ′ and we can
then pick σc = σ′ and i = 0 and j = 0. �

Lemma 3.7 (Strong One-Sided Confluence). If σ →
σ′ and σ →m σ′ ′, where 1 � m, then there exists

σc, i, j such that σ′ →i σc and σ′ ′ →j σc and i � m
and j � 1.

Proof. We proceed by induction on m. In the base case
of m = 1, then result is immediate from Lemma 3.6.
In the induction step, suppose σ →m σ′ ′ → σ′ ′ ′

and suppose the lemma holds for m. From the induc-
tion hypothesis, we have there exists σ′

c, i′, j′ such that

σ′ →i′

σ′

c and σ′ ′ →j′

σ′

c and i′ � m and j′ � 1. We
have two cases.

• If j′
= 0, then σ′ ′

= σ′

c. We can then pick σc =

σ′ ′ ′ and i = i′
+ 1 and j = 0.

• If j′
= 1, then from σ′ ′ → σ′ ′ ′ and σ′ ′ →j′

σ′

c

and Lemma 3.6, we have σ′ ′

c and i′ ′ and j′ ′ such

that σ′ ′ ′ →i′′

σ′ ′

c and σ′

c →j′′

σ′ ′

c and i′ ′ � 1 and

j′ ′ � 1. So we also have σ′ →i′

σ′

c →j′′

σ′ ′

c . In
summary we pick σc = σ′ ′

c and i = i′
+ j′ ′ and

j = i′ ′, which is sufficient because i = i′
+ j′ ′ �

m + 1 and j = i′ ′ � 1. �

Lemma 3.8 (Strong Confluence). If σ →n σ′ and

σ →m σ′ ′, where 1 � n and 1 � m, then there exists

σc, i, j such that σ′ →i σc and σ′ ′ →j σc and i � m
and j � n.

Proof. We proceed by induction on n. In the base case
of n = 1, then result is immediate from Lemma 3.7.
In the induction step, suppose σ →n σ′ → σ′ ′ ′ and
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suppose the lemma holds for n. From the induction

hypothesis, we have there exists σ′

c, i′, j′ such that

σ′ →i′

σ′

c and σ′ ′ →j′

σ′

c and i′ � m and j′ � n. We

have two cases.

• If i′
= 0, then σ′

= σ′

c. We can then pick σc =

σ′ ′ ′ and i = 0 and j = j′
+ 1.

• If i′ � 1, then from σ′ → σ′ ′ ′ and σ′ →i′

σ′

c

and Lemma 3.7, we have σ′ ′

c and i′ ′ and j′ ′ such

that σ′ ′ ′ →i′′

σ′ ′

c and σ′

c →j′′

σ′ ′

c and i′ ′ � i′ and

j′ ′ � 1. So we also have σ′ ′ →j′

σ′

c →j′′

σ′ ′

c .

In summary we pick σc = σ′ ′

c and i = i′ ′ and

j = j′
+ j′ ′, which is sufficient because i = i′ ′ �

i′ � m and j = j′
+ j′ ′ � n + 1. �

Lemma 3.9 (Confluence). If σ →∗ σ′ and σ →∗ σ′ ′,

then there exists σc such that σ′ →∗ σc and σ′ ′ →∗ σc.

Proof. Strong Confluence (Lemma 3.8) implies Con-

fluence. �

Theorem 1 (Determinism). If σ →∗ σ′ and σ →∗ σ′ ′,

and σ′, σ′ ′ are both final states, then σ′
= σ′ ′.

Proof. We have from Lemma 3.9 that there exists σc

such that σ′ →∗ σc and σ′ ′ →∗ σc. Given that neither

σ′ or σ′ ′ have any outgoing transitions, we must have

σ′
= σc and σ′ ′

= σc, hence σ′
= σ′ ′. �

The key language feature that enables determinism

is the single assignment condition. The single assign-

ment condition guarantees monotonicity of the data

collection A. We view A as a partial function from in-

tegers to integers and the single assignment condition

guarantees that we can establish an ordering based on

the non-decreasing domain of A.

3.3. Discussion

Three key features of CnC are represented directly in

the semantics for Featherweight CnC. First, the single

assignment property only allows one write to a data

collection for a given data tag. This property shows up

as the side condition of Rules (9) and (10). Second, the

data dependence property says a step cannot execute

until all of the data it needs is available. This property

shows up as the side condition of Rule (12). Third, the

control dependence property, captured by Rule (11),

queues a step for execution without saying when it will

execute.

Turing completeness: We argue that the language

provided for writing step bodies is powerful enough to

encode the set of all while programs, which are known

to be Turing complete. While programs have a very

simple grammar consisting of a while loop, a single

variable x, assigning zero to x and incrementing x by

one. We can write a translator that will convert a while

program to a Featherweight CnC program by using re-

cursive prescribe statements to encode the while loop.

The value of x can be tracked by explicitly writing the

value to a new location in the data array at each step

and passing the tag for the current location of x to the

next step.

Deadlock: We do not claim any freedom from dead-

locks in Featherweight CnC. We can see from the se-

mantics that a final state can be one in which there

are still steps left to run, but none can make progress

because the required data is unavailable. We say the

computation has reached a quiescent state when this

happens. In practice, deadlock is a problem when it

happens non-deterministically because it makes errors

difficult to detect and correct. Because we have proved

that Featherweight CnC is deterministic, any compu-

tation that reaches a quiescent final state will always

reach that same final state. Therefore, deadlocks be-

come straightforward to detect and correct.

4. Implementing CnC on different platforms

Implementations of CnC need to provide a transla-

tor and a runtime. The translator uses the CnC specifi-

cation to generate code for a runtime API in the target

language. We have implemented CnC for C++, Java,

.NET and Haskell, but in this paper, we primarily focus

on the Java and C++ implementations.

C++: uses Intel®’s Threading Building Blocks

(TBB) and provides several schedulers, most of which

are based on TBB schedulers, which use work steal-

ing [11]. The C++ runtime is provided as a template

library, allowing control and data instances to be of any

type.

Java: uses Habanero-Java (HJ) [10], an extension of

the X10 language described in [8], as well as prim-

itives from the Java Concurrency Utilities [15], such

as ConcurrentHashMap and Java atomic variables.

For a detailed description of the runtime mapping and

the code translator from CnC to HJ see [3].

.NET: takes full advantage of language generics to

implement type-safe put and get operations on data

and control collections. The runtime and code gener-

ator are written in F#, the step bodies can be written
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in any .NET language (F#, C#, VB.NET, IronPython,

etc.).

Haskell: uses the work stealing features of the Glas-

gow Haskell Compiler to implement CnC and provides

an Haskell-embedded CnC sub-language. Haskell both

enforces that steps are pure (effect-free, deterministic)

and allows complete CnC graphs to be used within pure

Haskell functions.

Following are some of the key design decisions

made in the above implementations.

Step execution and data puts and gets. In all imple-

mentations, step prescription involves creation of an

internal data structure representing the step to be exe-

cuted. Parallel tasks can be spawned eagerly upon pre-

scription, or delayed until the data needed by the task

is ready. The get operations on a data collection could

be blocking (in cases when the task executing the step

is spawned before all the inputs for the step are avail-

able) or non-blocking (the runtime guarantees that the

data is available when get is executed). Both the C++

and Java implementations have a roll back and replay

policy, which aborts the step performing a get on an

unavailable data item and puts the step in a separate

list associated with the failed get. When a correspond-

ing put gets executed, all the steps in a list waiting on

that item are restarted. Both Java and C++ implemen-

tations can delay execution of a step until the items are

actually available.

Initialization and shutdown. All implementations re-

quire some code for initialization of the CnC graph:

creating step objects and a graph object, as well as

performing the initial puts into the data and control

collections. In the C++ implementation, ensuring that

all the steps in the graph have finished execution is

done by calling the run() method on the graph ob-

ject, which blocks until all runnable steps in the pro-

gram have completed. In the Java implementation, en-

suring that all the steps in the graph have completed is

done by enclosing all the control collection puts from

the environment in an Habanero-Java finish con-

struct [10], which ensures that all transitively spawned

tasks have completed.

Safety properties. Different CnC implementations

are more or less safe in terms of enforcing the CnC

specification. The C++ implementation performs run-

time checks of the single assignment rule, while the

Java and .NET implementations also ensure tag im-

mutability and check for CnC graph conformance

(e.g., a step cannot perform a put into an data collection

if that relationship is not specified in the CnC graph).

Finally, CnC guarantees determinism as long as steps

are themselves deterministic – a contract strictly en-

forceable only in Haskell.

Memory reuse. Releasing data instances is a separate

problem from traditional garbage collection. We have

two approaches to determine when data instances are

dead and can safely be released (without breaking de-

terminism). First, [4] introduces a declarative slicing

annotation for CnC that can be transformed into a ref-

erence counting procedure for memory management.

Second, our C++ implementation provides a mech-

anism for specifying use counts for data instances,

which are discarded after their last use. (These can

sometimes be computed from tag functions, and other-

wise are set by the tuning expert.) Irrespective of which

of these mechanisms is used, data collections can be

released after a graph is finished running. Frequently,

an application uses CnC for finite computations inside

a serial outer loop, reclaiming all memory between it-

erations.

Distributed memory. All the above implementations

assume a shared memory platform for execution. In ad-

dition, Intel®’s C++ implementation provides a proto-

type of a distributed runtime, which requires only min-

imal additions to a standard CnC program [17]. The

runtime intercepts puts and gets to tag and item col-

lections. The runtime uses a simple default algorithm

to determine the host on which to execute the put or

get, or the user can provide a custom partitioning. Each

item has its home on the process which produces it. If

a process finds an item unavailable when issuing a get,
it requests it from all other processes. The program-

mer can also specify the home of the item, in which

case the runtime requests the item only from the home

process. The owner sends the item as soon as it be-

comes (or is) available. This strategy is generic and

does not require additional information from the pro-

grammer, such as step and item partitioning or map-

ping. Still, it is close to optimal for cases with good

locality, i.e., those that are good candidates for distrib-

uted memory.

5. Experimental results

In this section, we present experimental results ob-

tained using the C++ and Java implementations of

CnC outlined in the previous section.
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5.1. CnC-C++ implementation

We have ported Dedup, a benchmark from the

PARSEC [1] benchmark suite, to the TBB-based C++

implementation of CnC. The Dedup kernel compresses

a data stream with a combination of global and lo-

cal compression. The kernel uses a pipelined program-

ming model to mimic real-world implementations.

Figure 2 shows execution time as a function of the

number of worker threads used, both for our imple-

mentation and a standard pthreads version obtained

from the PARSEC site. The figure shows that CnC has

superior performance to the pthreads implementation

of Dedup. With a fixed number of threads per stage,

load imbalance between the stages limits the paral-

lelism in the pthreads implementation. The CnC imple-

mentation does not have this issue, as all threads can

work on all stages. With pthreads, data is never local

to a thread between stages. CnC’s depth-first scheduler

keeps the data local, and in the FIFO case locality also

occurs in our experiment. The use of conditional vari-

ables in pthreads is expensive.

We have experimented with two CnC scheduling

policies: TBB_TASK and TBB_QUEUE. TBB_TASK

wraps a step instance in a tbb::task object and

eagerly spawns it, thereby delegating the scheduling to

TBB without much overhead. TBB_QUEUE provides

a global FIFO task queue, populated with scheduled

steps that are consumed by multiple threads. This pol-

icy is a good match for a pipelined algorithm such as

Dedup.

In addition to improved performance, the CnC ver-

sion also simplifies the work of the programmer, who

simply performs puts and gets without the need to

think about lower-level parallelism mechanisms such

as explicit threads, mutexes and conditional variables.

The second CnC-C++ example that we evaluated

was a Cholesky Factorization [7] of size 2000 × 2000.

The tiled Cholesky algorithm consists of three steps:

the conventional sequential Cholesky, triangular solve,

and the symmetric rank-k update. These steps can

be overlapped with one another after initial factoriza-

tion of a single block, resulting in an asynchronous-

parallel approach. There is also abundant data paral-

lelism within each of these steps.

This is an interesting example because its perfor-

mance is impacted by both parallelism (number of

cores used) and locality (tile size), thereby illustrating

how these properties can be taken into account when

tuning a CnC program. Figure 3 shows the speedup rel-

ative to a sequential version on an 8-way Intel® dual

Xeon Harpertown SMP system.

Finally, we have also tested CnC microbenchmarks

such as NQueens and the Game of Life and observed

that the CnC-C++ implementation matched the scal-

ability of the TBB and OpenMP implementations. We

omit the detailed performance results for these two

benchmarks, but still discuss their behavior below.

NQueens. We compared three parallel implemen-

tations of the same NQueens algorithm in C++:

OpenMP, TBB (parallel_for) and CnC. We used

Fig. 2. Execution time for pthreads and CnC-C++ implementations of the PARSEC Dedup benchmark with 45 MB input size on a 16-core Intel®

Caneland SMP, as a function of number of worker threads used. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-2011-0305.)
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Fig. 3. Speedup results for C++ implementation of 2000 × 2000 Cholesky Factorization CnC program on an 8-way (2p4c) Intel® dual Xeon

Harpertown SMP system. The running time for the baseline (1 thread, tile size 2000) was 24.9 s. (Colors are visible in the online version of the

article; http://dx.doi.org/10.3233/SPR-2011-0305.)

the CnC implementation with the default tbb::

parallel_while scheduler. CnC performed sim-

ilarly to OpenMP and TBB. TBB and particularly

OpenMP provide a convenient method to achieve par-

allelization with limited scalability. CnC’s straightfor-

ward specification of NQueens allows extreme scala-

bility, but the fine grain of such steps prevents an ef-

ficient implementation. To create sufficiently coarse-

grain steps, we used a technique which unrolls the

tree to a certain level. We found that implementing

this in CnC was more intuitive than with OpenMP and

TBB, since with CnC we could express the cutoff se-

mantics in a single place while TBB and OpenMP

required additional and artificial constructs at several

places.

Game of life. When implementing Game of Life with

CnC, grain size was an issue again. With a straightfor-

ward specification, a CnC step would work on a cell,

but again such a step is too fine grained. For sufficiently

coarse granularity, the CnC steps work on tiles rather

than on cells. Interestingly, even our OpenMP version

shows better performance when applied to the tiled al-

gorithm. CnC performs similarly with OpenMP and

TBB(parallel_for) on the same algorithm. CnC’s

potential to concurrently execute across generations re-

sults in good scalability.

5.2. CnC-Java implementation

The Blackscholes [1] application is an Intel® RMS

benchmark. It calculates the prices for a portfolio

of European options analytically with the Black–

Scholes partial differential equation. Figure 4 shows

the speedup of the HJ CnC Cholesky factorization

and Blackscholes implementations on a 16-way Intel®

Xeon SMP, using four different strategies for data syn-

chronization when performing puts and gets on the

data collection: (1) coarse-grain blocking on the whole

data collection, (2) fine-grain blocking on individual

items in the data collection, (3) data-driven compu-

tation using a roll-back and replay, and (4) a non-

blocking strategy using the delayed async con-

struct. The speedups reported in Fig. 4 are relative

to the sequential Cholesky and Blackscholes imple-

mentations in Java. For Cholesky, we observe that the

CnC infrastructure adds moderate overhead (28–41%,

depending on the synchronization strategy) in a sin-

gle thread case, while Blackscholes only shows min-

imal (1–2%) overhead. Data-driven and non-blocking

strategies scale very well, while we can see the nega-

tive effects of coarse-grain and even fine-grain block-

ing beyond 8 processors. For Blackscholes, since all of

the data is available to begin with, and we can evenly

partition the data, we do not see much difference be-

tween implementation strategies.
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Fig. 4. Speedup results for CnC-Java implementation of 2000 × 2000 Cholesky Factorization CnC program with tile size 100 and Blackscholes

CnC program on a 16-way (4p4c) Intel® Xeon SMP system.

Figure 5 shows the speedup for the 64-threads case
for Cholesky and Blackscholes on the UltraSPARC T2
(8 cores with 8 threads each). We see very good scal-
ing for Blackscholes using 64-threads but we can start
to see the negative effects of the coarse-grain blocking
strategy for both applications. Even though the data is
partitioned among the workers, the coarse-grain block-
ing causes contention on data collections which re-
sults in worse scalability than the fine-grained and non-
blocking versions. Cholesky, which is mostly floating
point computation, achieves a better than 8× speedup
for 64 threads, which is a very reasonable result con-
sidering that the machine has only 8 floating point
units.

6. Related work

We use Table 1 to guide the discussion in this sec-
tion. This table classifies programming models accord-
ing to their attributes in three dimensions: Declarative,
Deterministic and Efficient. For convenience, we in-
clude a few representative examples for each distinct
set of attributes, and trust that the reader can extrapo-
late this discussion to other programming models with
similar attributes in these three dimensions.

A number of lower-level programming models in
use today – e.g., Intel® TBB [16], .Net Task Parallel
Library, Cilk, OpenMP [6], Nvidia CUDA, Java Con-

currency [15] – are non-declarative, non-deterministic

and efficient.2 Deterministic Parallel Java [2] is an in-

teresting variant of Java; it includes a subset that is

provably deterministic, as well as constructs that ex-

plicitly indicate when determinism cannot be guaran-

teed for certain code regions, which is why it contains

a “hybrid” entry in the Deterministic column.

The next three languages in the table – High Perfor-

mance Fortran (HPF) [13], X10 [8], Linda [9] – con-

tain hybrid combinations of imperative and declara-

tive programming in different ways. HPF combines a

declarative language for data distribution and data par-

allelism with imperative (procedural) statements, X10

contains a functional subset that supports declarative

parallelism, and Linda is a coordination language in

which a thread’s interactions with the tuple space is

declarative. Linda was a major influence on the CnC

design, but CnC also differs from Linda in many ways.

For example, an in() operation in Linda atomically

removes the tuple from the tuple space, but a CnC get()
operation does not remove the item from the collec-

tion. This is a key reason why Linda programs can be

non-deterministic in general, and why CnC programs

are provably deterministic. Further, there is no separa-

2We call a programming model efficient if there are known im-

plementations that deliver competitive performance for a reasonably

broad set of programs.
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Fig. 5. Speedup results for CnC-Java implementation of 2000 × 2000 Cholesky Factorization CnC program with tile size 80 and Blacksc-

holes CnC program on a 8 core 64 thread UltraSPARC T2 Sun Niagara system. The acronyms stand for Blocking Coarse-Locking (BCL),

Blocking Fine-Locking (BFL), Rollback and Replay (RR) and Delayed Async (DA). (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-2011-0305.)

Table 1

Comparison of several parallel programming models

Parallel programming model Declarative Deterministic Efficient implementation

Intel TBB [16] No No Yes

.Net task par. lib. No No Yes

Cilk No No Yes

OpenMP [6] No No Yes

CUDA No No Yes

Java concurrency [15] No No Yes

Det. parallel Java [2] No Hybrid Yes

High perf. Fortran [13] Hybrid No Yes

X10 [8] Hybrid No Yes

Linda [9] Hybrid No Yes

Asynch. seq. processes [5] Yes Yes No

StreamIt Yes Yes Yes

LabVIEW [18] Yes Yes Yes

CnC [this paper] Yes Yes Yes

tion between tags and values in a Linda tuple; instead,

the choice of tag is implicit in the use of wildcards. In

CnC, there is a separation between tags and values, and

control tags are first class constructs like data items.

The last four programming models in the table are

both declarative and deterministic. Asynchronous Se-

quential Processes [5] is a recent model with a clean

semantics, but without any efficient implementations.

In contrast, the remaining three entries are efficient as

well. StreamIt is representative of a modern stream-

ing language and LabVIEW [18] is representative

of a modern dataflow language. Both streaming and

dataflow languages have had major influence on the

CnC design.

The CnC semantic model is based on dataflow in that

steps are functional and execution can proceed when-

ever data is ready, without unnecessary serialization.

However, CnC differs from dataflow in some key ways.

The use of control tags elevates control to a first-class

construct in CnC. In addition, data collections allow

more general indexing (as in a tuple space) compared

to dataflow arrays (I-structures).
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CnC is like streaming in that the internals of a step

are not visible from the graph that describes their

connectivity, thereby establishing an isolation among

steps. A producer step in a streaming model need

not know its consumers; it just needs to know which

buffers (collections) to perform read and write opera-

tions on. However, CnC differs from streaming in that

put and get operations need not be performed in FIFO

order, and (as mentioned above) control is a first-class

construct in CnC.

We observe that CnC’s dynamic put/get operations

on data and control collections is a general model

that can be used to express many kinds of applica-

tions (such as Cholesky factorization) that would not

be considered to be dataflow or streaming applica-

tions. In summary, CnC has benefited from influences

in past work, but we’re not aware of any other paral-

lel programming model that shares CnC’s fundamen-

tal properties as a coordination language, a declara-

tive language, a deterministic language, and a language

amenable to efficient implementation.

For completeness, we also include a brief compari-

son with graphical coordination languages in a distrib-

uted system, using Dryad [12] as an exemplar in that

space. Dryad is a general-purpose distributed execu-

tion engine for coarse-grain data-parallel applications.

It combines sequential ‘vertices’ with directed commu-

nication ‘channels’ to form an acyclic dataflow graph.

Channels contain full support for distributed systems

and are implemented using TCP, files, or shared mem-

ory pipes as appropriate. The Dryad graph is specified

by an embedded language (in C++) using a combina-

tion of operator overloading and API calls. The main

difference with CnC is that CnC can support cyclic

graphs with first-class tagged controller–controllee re-

lationships and tagged data collections. Also, the CnC

implementations described in this paper are focused on

multicore rather than distributed systems.

7. Conclusions

This paper presents a programming model for par-

allel computation. A computation is written as a CnC

graph, which is a high-level, declarative representation

of semantic constraints. This representation can serve

as a bridge between domain and tuning experts, fa-

cilitating their communication by hiding information

that is not relevant to both parties. We prove determin-

istic execution of the model. Deterministic execution

simplifies program analysis and understanding, and re-

duces the complexity of compiler optimization, test-

ing, debugging, and tuning for parallel architectures.

We also present a set of experiments that show several

implementations of CnC with distinct base languages

and distinct runtime systems. The experiments confirm

that the CnC model can express and exploit a variety of

types of parallelism at runtime. When compared to the

state of the art lower-level parallel programming mod-

els, our experiments indicate that the CnC program-

ming model implementations deliver competitive raw

performance and equal or better scalability.
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[3] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney,

R. Newton, J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach
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