
Concurrent Computation of Attribute Filters
on Shared Memory Parallel Machines

Michael H.F. Wilkinson, Senior Member, IEEE, Hui Gao,

Wim H. Hesselink, Jan-Eppo Jonker, and Arnold Meijster

Abstract—Morphological attribute filters have not previously been parallelized mainly because they are both global and

nonseparable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute

openings, closings, thinnings, and thickenings, based on Salembier’s Max-Trees and Min-trees. The image or volume is first

partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently,

the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a

16-processor MIPS 14000 parallel machine and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel

algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a

speed gain of up to 72 percent on a single-core processor due to reduced cache thrashing.

Index Terms—Attribute filters, connected filters, mathematical morphology, parallel computing, algorithms.
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1 INTRODUCTION

PARALLEL processing has often been applied to image
processing for a number of reasons. First of all, the large

data bulk often involved in image processing has meant that
the high performance obtained by parallel systems was
required. Second, many image-processing problems are
readily parallelized [1], usually using the data-parallel
approach. Many low-level image-processing routines have
a high degree of locality, allowing different segments of the
image to be treated independently by different processors.
Other global operators such as the Fourier transform are
separable, allowing the parallelization by treating the image
rowsseparately inahorizontalpass,whereas the columnsare
treated separately in thevertical pass.A similar approachhas
been used for the euclidean distance transform [2], [3].

In mathematical morphology, which is the field this
paper deals with, parallel execution has also been used
frequently, and the parallelization strategies are similar.
However, one class of morphological operator that has, to
date, not been parallelized efficiently is that of connected
filters. Connected filters are a shape preserving class of
image operator [4], [5], [6]. Apart from the older openings

by reconstruction [7], [8], this class contains area openings
and closings [9], [10] that preserve bright and dark image
details of a given minimum area. The class was later
extended to attribute filters [5], [11], which are a general-
ization including both former types [4] and preserve and
retain structures in an image based on a wide range of
criteria. A subset of these filters, called shape filters [12], [13],
has been used for extraction of vessels in 3D angiograms
[14]. An example is shown in Fig. 1.

As will be shown, the difficulty in parallelizing these
filters lies in the fact that they are global but nonseparable;
so, they do not fit into any standard parallelization strategy
employed in image analysis. In this paper, we present a
new concurrent algorithm for a large subclass of these
operators, i.e., extensive and antiextensive connected filters.
The approach combines the Max-Tree and Min-Tree data
structures proposed in [11] with the approach from that in
[15] based on Tarjan’s union-find algorithm [16]. A variant
of the Max-Tree, called component tree [17], can be
constructed by postprocessing. A different algorithm for
the component tree using union find has been proposed by
Najman and Couprie [18], but this is a sequential rather
than parallel algorithm. In this paper, the solution is posed
in graph-theoretical terms, which may allow its application
in other contexts that use undirected graphs with a real-
valued function defined on the vertices. Indeed, the join
trees used to compute contour trees in computational
geometry [19], [20], [21], [22], for which parallel algorithms
have been developed [23], are very closely related to Max-
Trees, especially when they are augmented to include
attribute information in each node [23]. A key difference
between the concurrent Max-Tree algorithm presented here
and the parallel contour tree algorithm is that the latter
assumes that all nodes in the graph have a unique (gray)
value. By contrast, Max-Trees were designed to adminis-
trate flat zones, i.e., connected sets of vertices with the same
gray value. Contour trees are equivalent to level-line trees
[24], which can be constructed from a Max-tree and a Min-
Tree of the same image.
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Apart from the use in image and volume filtering,
computing the Min-tree is used as the initial stage of the
computation of the topological watershed [25], [26], which is
used for image and volume segmentation. Parallel computa-
tion of this initial phase is essential for the development of a
parallel algorithm for the topological watershed.

In what follows, we first give a more formal description
of connected filters in Section 2. In Section 2.2, we focus on
binary attribute filters (including reconstruction operators),
and in Section 2.3, we introduce the Min-Tree and Max-
Tree data structures that allow efficient sequential imple-
mentation of these operators [11]. These data structures
allow separation of the filtering process into a building
phase, in which the trees are constructed, and a filtering
phase, in which it is decided which structures to retain in
the image. We then discuss potential parallelization
strategies and introduce the core idea of our algorithm in
Section 2.4. The bulk of the paper is devoted to formally
describing the algorithm and proving its correctness. To do
this, we cast the problem in graph theoretic terms in
Section 3 and describe how Max-Trees can be constructed
sequentially using a tree structure similar to that used in
Tarjan’s union-find algorithm in Section 4. We then show
how the filtering phase of the algorithm is readily
parallelized in Section 5.

In Section 6, we describe the crucial part of our
algorithm in which multiple Max-Trees are merged.
Section 6.1 describes an algorithm that can merge Max-
Trees of arbitrary image sections into a single Max-Tree of
the image. The algorithm also merges the attributes of the
nodes of the partial trees. In practical applications, optimal
performance can be expected by using the sequential
algorithm for slices of the image that are distributed over
the processors, and then merging the results on these slices
with the alternative algorithm. The complete algorithm,
which merges multiple slices, is described in Section 6.2. In
Section 7, we give a complexity analysis of the algorithm. In
Section 8, the performance of the parallel algorithm is
tested on a 16-processor shared memory computer and an
AMD dual-core Opteron-based system. Finally, in Section 9,
conclusions are presented.

2 CONNECTED OPERATORS

2.1 Preliminaries

Though connected filters can easily be described in terms of
continuous images, for the sake of simplicity, we only
consider discrete images or volumes, which we consider as
undirected graphs. In these graphs, the vertices are the
pixels (or voxels), and the edges define the neighbor
relationships. An undirected graph is modeled as a pair
ðV ;EÞ, where V is the finite set of vertices (the image
domain) and E is the set of edges, which is a symmetric
subset of V � V .

A graph ðV ;EÞ is said to be connected if, for any x,
y 2 V , there exists a path ðx0; x1; . . . ; xnÞ for which every
ðxi; xiþ1Þ 2 E and every xi 2 V , and with x0 ¼ x and
xn ¼ y. In the following, the image domain is connected.

A binary image X is a subset of V that induces a
subgraph ðX;EXÞ of ðV ;EÞ, such that EX ¼ ðX �XÞ \ E.
Set X is said to be connected if ðX;EXÞ is connected. A
connected component C of X is a connected subset of X of
maximal extent. This means that there exist no x 2 X n C
such that C [ fxg is connected. A more detailed discussion
on connectivity in this context can be found in [27] and [28].

A binary image filter � is extensive if X � �ðXÞ for all
X, and antiextensive if �ðXÞ � X. It is idempotent if
�ð�ðXÞÞ ¼ �ðXÞ and increasing if, for any images X and Y ,
X � Y ) �ðXÞ � �ðY Þ.

A gray-level image is defined using a function
f : V ! IR, which assigns a gray level to each vertex. For
h 2 IR, the h-threshold set is defined as the

VhðfÞ ¼ fx 2 V j fðxÞ � hg: ð1Þ

For convenience, we will often use the notation Vh for VhðfÞ
and denote the subgraph induced by it as ðVh; EhÞ.

A peak component or dome Di
h of image f , with k from

some index set, is a connected region in which fðxÞ � h for
all x 2 Di

h, and all neighbors of Di
h have a gray level

smaller than h. Equivalently, peak component Di
h can also
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Fig. 1. (a) Maximum intensity projection of 5123 CT angiogram, and (b) the same volume enhanced by attribute thinning selective for elongated

features. The latter image shows distinct suppression of the background while retaining the vessel structure. Volume data from http://

www.volvis.org/, courtesy of Michael Meißner, Viatronix Inc., USA.



be defined as the ith connected component of the thresh-
old set VhðfÞ.

2.2 Binary Attribute Filters

In this section, we discuss the theory of attribute
operators. More detail can be found in [5], [11], and
[15]. The binary connected or connectivity opening �xðXÞ of
X at point x 2 V yields the connected component of X
containing x if x 2 X and ; otherwise. We use trivial
attribute filters �T with criterion T : PðV Þ ! ffalse; trueg
to determine which components are preserved. If T ðCÞ is
true, �T ðCÞ ¼ C; otherwise, �T ðCÞ ¼ ;. If T is increasing,
i.e., C � D ^ T ðCÞ ) T ðDÞ, �T is a trivial opening;
otherwise, it is a trivial thinning [5]. Usually, T is defined
by using some attribute of the connected set C, such as its
area, and comparing it to a threshold value �. Thus,

T ðCÞ ¼ ðAðCÞ � �Þ; ð2Þ

with A : PðV Þ ! IR some attribute function. We call A
increasing if C � D ) AðCÞ � AðDÞ. It is easy to see that, if
A is increasing, so is T , if it has the form of (2) [5].

Definition 1. The antiextensive binary attribute filter �T of
set X, with criterion T , is given by

�T ðXÞ ¼
[

x2X

�T ð�xðXÞÞ: ð3Þ

If T is increasing, �T is a binary attribute opening; if not, it
is a binary attribute thinning.

By applying the trivial opening or thinning to each of the
connected components ofX, we obtain an attribute opening
or thinning [5].

2.3 Gray-Scale Attribute Filters

A generalization of attribute filters to gray scale can be
made by using thresholded images VhðfÞ, as in (1). The
gray-scale image may be considered as a stack of such
threshold sets, each consisting of, as h increases,
progressively smaller peak components Dk

h. An attribute
AðDk

hÞ is assigned to each of these sets. Fig. 2 also shows
how the peak components can be combined into a tree
structure, called a Max-Tree [11]. Put simply, for any two
domes Dk

h and Dm
h0 with h0 < h, we have either Dk

h � Dm
h0

or Dk
h \Dm

h0 ¼ ;. This inclusion relation determines the
structure of the Max-Tree. The Max-Tree contains both
the hierarchy of connected components in the data set,
and the attributes for each component to use as a filter
criterion. For reasons of memory efficiency, only peak

components Dk
h that contain at least one pixel x for

which fðxÞ ¼ h are stored in the tree.
In a Max-Tree, each node, besides the current gray level

and data to compute each node’s attributes, has a pointer to
its parent, and the nodes corresponding to the components
with the highest intensity are the leaves (see Fig. 2). To
perform extensive filters, we use a Min-Tree, in which all
inequalities are reversed and the leaves correspond to the
minima. The building of this tree structure is called the
construction phase, whereas its use for filtering is called the
filtering phase.

We first consider attribute openings, for which criterion
T is increasing [5].

Definition 2. The gray-scale attribute opening �T of image f

with increasing criterion T is the gray-scale image �T ðfÞ

given by

ð�T ðfÞÞðxÞ ¼ maxfh jx 2 �T ðVhðfÞÞg: ð4Þ

Gray-scale attribute closings can easily be defined by a
duality relationship with the gray-scale attribute openings
[5], [11] and implemented using Min-Trees. Note that,
because �T ðVhðfÞÞ is insensitive to the gray-level distribu-
tion within each connected component, the above definition
rules out the possibility that T depends on that distribu-
tion. Extensions to include such criteria (e.g., using
entropy) are discussed in [11] and can be implemented
using the Max-tree.

If A is an increasing attribute function, AðDk
hÞ

increases along a root path from leaf to root. Filtering
using criterion T as in (2) reduces to descending the
Max-Tree from each leaf, until AðDk

hÞ � �, and removing
all nodes in the traversed path, including any children,
except Dk

h (which meets T ). Indeed, the Max-Tree is not
necessary for computation of these filters [15].

However, if T is nonincreasing, as is shown in Fig. 2,
nodes that meet and do not meet T may alternate in any
root path. Salembier et al. [11] describe four different rules
for the algorithm to filter the tree: the Min, the Max, the
Viterbi, and the Direct decision. This latter method reduces
to direct implementation of (4) for nonincreasing T . In
addition, Wilkinson and Urbach [12] introduced another
strategy, called the Subtractive decision, which is used in
most of our work [13], [14]. For a more thorough
discussion, see the previous references and also [17], which
describes filtering methods that rely on the trace of the
attribute value from current node up to the root. In all
cases, it is the construction phase that is most time
consuming by far.

Fig. 2 shows the peak components of a 1D discrete
signal, their attribute values, and the corresponding Max-
Tree. Apart from filtering, the Max-tree data structure can
also be used to compute univariate and multivariate
pattern spectra efficiently [13].

2.4 Parallelization Strategies

The simplest parallel algorithm for gray-scale area openings
is based on threshold decomposition [29]. By thresholding
the image at all gray levels, performing the binary
connected operator on each thresholded image, and
combining the results into a final gray-scale result, area
openings, and, indeed, many other attribute filters can be
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Fig. 2. (a) A 1D signal f , (b) the corresponding peak components, and
(c) the Max-Tree.



computed. The algorithm is trivial to parallelize, because
each of the threshold images can be treated separately for
the binary attribute filter stage, eliminating the need for a
true parallel connected filter, and the recombination phase
can be done pixel-wise. However, on the average, each
processor will have to perform G=Np binary attribute
operations, with G being the number of gray levels and Np

being the number of processors. Because gray-scale
attribute openings or closings can be performed almost as
fast as a binary attribute opening or closing using the
union-find approach proposed in [15], the computing time
would be increased by a factor of almost G=Np compared
to a gray-scale operator on a single processor, disregarding
the recombination and thresholding stages. Only if Np � G
would any significant speed increase be obtained, which is
unlikely on shared-memory computers, where Np � 64,
typically, whereas G ¼ 256 or 4;096 in our case.

The more restricted class of filters by reconstruction can
be implemented by iterating a conditional dilation or
erosion until stability [8]. The conditional dilation or
erosion itself can be parallelized efficiently. However, this
algorithm can be shown to have a complexity OðN2Þ,
where N ¼ #V , and is far slower than the queue-based
approach in [8]. Again, no real performance gains with
respect to the fastest sequential algorithm should be
expected from this approach.

In [15], some suggestions were made for parallelization
of attribute openings by the union-find approach. By adding
semaphores to each pixel in the image, the algorithm could
in principle be parallelized. We did not pursue this avenue
of research for two reasons: 1) the overhead caused by
OðNÞ semaphores is large, and 2) the algorithm is
unsuitable for attribute thinnings.

The queue-based algorithm in [11] does not lend itself
directly to concurrent implementation. We propose, how-
ever, to partition the image into Np connected disjoint
regions, the union of which is the entire image domain. We
assign each region to one of the Np processors. We can, of
course, build a Max-Tree of each region. The key problem
now becomesmerging theMax-Trees of all the regions into a
single Max-Tree of the image. This requires 1) merging the
peak components Di

h, 2) updating the parent relationships,
and 3) merging the attributes of the peak components. Once
the tree has been built, filtering is easily parallelized.

In Salembier et al.’s approach, the first step cannot be
done efficiently because the pixels of each node of the tree
are given arbitrary numbers as labels. Merging two
regions therefore requires relabeling all of the pixels of
one of the two regions. This problem can be addressed
easily by adopting the tree structures used in Tarjan’s
union find algorithm [16], which has been used for
concurrent computation of connected component labeling
[30]. In this approach, each connected component is
represented by a rooted tree and merging two disjoint
sets is performed by letting the parent pointer of the root
of one of the trees point to the root of the other. This
allows near constant time merging of the peak compo-
nents, as was used in [15], [18], and [31].

We will now cast the problem in a graph theoretic
formulation and describe the concurrent algorithm based
on this general idea. The reason for this formalism is
simple: We need it to prove our algorithm correct, which is
not trivial.

3 CONSTRUCTION OF A MAX-TREE

In this section, our aim is to compute all the connected
components of all threshold sets Vh, as defined in (1), for
all levels h in a single computation. In order to do so, we
regard edge relation Eh ¼ ðVh � VhÞ \ E as a relation on V
rather than on Vh. If we do this, its reflexive transitive
closure E�

h ¼ ðEhÞ
� is an equivalence relation on V . For

every x =2 Vh, the singleton set fxg is an equivalence class
of E�

h. The other equivalence classes of E�
h are the

connected components of Vh. Therefore, now, the aim is
to compute the equivalence classes of all relations E�

h.
For any binary relation R on V , we define the

h-restriction Rh ¼ R \ ðVh � VhÞ. We define R] to be the
symmetric reflexive transitive closure of R, i.e., the least
equivalence relation that contains R. We write R]

h to
denote relation ðRhÞ

], the symmetric reflexive transitive
closure of Rh in V .

Inspired by Tarjan’s union-find algorithm [16], which
was used in a similar way in [30], [32], we represent the
equivalence classes of the relations E�

h by a forest structure
induced by pointers to parent nodes (suggested in [33]).
These pointers are collected in an array par that can be
regarded as a (modifiable) function par : V ! V [ f?g,
where ? stands for a null pointer. We define parn½x� by
repeated application of par. A vertex x 2 V is called a root
of par if and only if (iff) par½x� ¼ ?. Array par is called
acyclic iff ? is the universal ancestor in the sense that, for
every vertex x, there exists a number n such that
parn½x� ¼ ?. We define fð?Þ ¼ 	1, since we want to
exclude ? from all threshold sets Vh. In all, we represent the
Max-Tree structure with this par array, the original image
(needed to store the original gray level, as in [11]), and
pointers to auxiliary data needed to administrate the
attributes. The size of these auxiliary data depends very
much on the attribute used. The only other data structure
needed is the filt array containing the output image. The
par array is the key structure encoding the structure of the
Max-Tree itself.

3.1 Postulates for Parent Pointers

Let P ¼ fðx; par½x�Þjx 2 V g be the binary relation corre-
sponding to array par. We say that par is a Max-Tree of
relation E iff it satisfies the postulates

(S0) E�
h ¼ P ]

h for all levels h,
(S1) fðxÞ � fðpar½x�Þ for all vertices x,

(S2) par is acyclic.

An example is shown in Fig. 3.
Let us assume for the moment that (S0), (S1), and (S2)

hold. These postulates enable us to determine the equiva-
lence classes of E�

h in an efficient way, as follows: For any
vertex x, we define the “oldest ancestor” down to h by
means of the recursive function anc given by

ancðx; hÞ ¼
x if h > fðpar½x�Þ;
ancðpar½x�; hÞ otherwise:

�
ð5Þ

The recursion terminates since par is acyclic by (S2). It
follows from (S1) that

ðx; ancðx; hÞÞ 2 P ]
h for all x 2 V ; h 2 IR: ð6Þ
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Function anc characterizes relation P ]
h by means of

ðx; yÞ 2 P ]
h 
 ancðx; hÞ ¼ ancðy; hÞ

for all x; y 2 V ; h 2 IR:
ð7Þ

This is proved as follows: For fixed h, let Ah be the binary
relation on V defined by the right-hand side of (7). We have
Ah � P ]

h because of

ðx; yÞ 2 Ah

)fdefinition of Ah and ð6Þg

ðx; ancðx; hÞÞ 2 P ]
h ^ ancðx; hÞ ¼ ancðy; hÞ

^ ðy; ancðy; hÞÞ 2 P ]
h

)fP ]
h is an equivalence relationg

ðx; yÞ 2 P ]
h:

On the other hand, we have Ph � Ah because of the easy
property:

ðx; yÞ 2 Ph ) ancðx; hÞ ¼ ancðy; hÞ

for all x; y 2 V ; h 2 IR:

Since Ah is an equivalence relation, this implies P ]
h � Ah,

and hence, P ]
h ¼ Ah. This concludes the proof of (7).

Since E�
h ¼ P ]

h by (S0), function anc characterizes E�
h in

the same way. Indeed, ancðx; hÞ can be chosen as a
representative of the equivalence class of x for relation E�

h.
We define a vertex x to be a level root iff fðxÞ > fðpar½x�Þ.

Clearly, every root of par is a level root because of the
convention fð?Þ ¼ 	1. It is easy to see that fðxÞ � h
implies that x0 ¼ ancðx; hÞ satisfies fðx0Þ � h > fðpar½x0�Þ
and is therefore a level root. We write LeRo for the set of
level roots

LeRo ¼ fx 2 V j fðxÞ > fðpar½x�Þg:

3.2 Sets of Descendants and Path Compression

The final value of par can be used as follows: According
to (S0) and (7), two elements x and y of Vh belong to the
same connected component of threshold set Vh iff
ancðx; hÞ ¼ ancðy; hÞ. It follows that each connected com-
ponent of Vh is characterized by a unique common
ancestor, say, x with fðxÞ � h < fðpar½x�Þ. The component
of x in Vh is the set of descendants:

DðxÞ ¼ fxg [ fp 2 V jð9 n 2 IN n f0g :: parn½p� ¼ xÞg:

Informally, DðxÞ is the set of the nodes of the subtree
rooted on x. The sets DðxÞ and DðyÞ of unrelated vertices x
and y are disjoint. Indeed, it is not difficult to verify the
equivalence:

DðxÞ \DðyÞ 6¼ ; 
 x 2 DðyÞ _ y 2 DðxÞ:

Determination of the sets DðxÞ can be made more
efficient by shortening the parent paths of nodes whenever
ancestors are determined. This is the classical method of
path compression in Tarjan’s union-find algorithm [16]. In
comparison with the classical case, we have to be careful
that the parent path of any node must not lose the level root
at the current level, which is defined by

levrootðxÞ ¼ ancðx; fðxÞÞ:

Path compression can be implemented by replacing
function levroot by the following recursive procedure with
side effect:

procedure levrootðxÞ returns V ¼
if fðxÞ 6¼ fðpar½x�Þ then return x end;

par½x� :¼ levrootðpar½x�Þ;
return par½x�;

end.

Path compression is incorporated in function anc by means
of levroot via

procedure ancðx; sÞ returns V ¼
while fðpar½x�Þ � s do x :¼ levrootðpar½x�Þ
end;

return x;
end.

One may also consider using the union-by-rank criterion
in [16] to resolve the nondeterministic choice between x
and y when fðxÞ ¼ fðyÞ. We did not investigate this
possibility since it would at least complicate the code and
require additional memory proportional to the size of the
graph for storing ranks.

3.3 Accumulation of Attributes

Apart from setting the parent pointers correctly, we wish
to compute some kind of attribute for each of the
components of the threshold sets Vh, for all levels h. The
easiest special case is the attribute 1 for all vertices, in
which case, accumulation of attributes yields the number
of elements of the components, equivalent to area in 2D
and volume in 3D. More complicated attributes are
generally computed by computing some auxiliary data
set per Max-Tree node [11]. For the area of the smallest
bounding (axis-aligned) rectangle, suggested by Breen and
Jones [5], this data set would contain the minimum and
maximum x and y coordinates of pixels in each peak
component. The actual attributes are computed from these
auxiliary data sets during the filtering phase.

We treat a general situation where the attributes of
nodes are defined in terms of their components by means of
a binary operator bþ that must be commutative and

associative, and to have a neutral element b0. Such an
algebraic structure is called a monoid and the set of values
in the monoid is denoted M. The properties of bþ enable us
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Fig. 3. (a) An image and (b) a possible par-tree structure assuming

4-connectivity. Nodes are numbered pðqÞ, where p is the node

number, and q ¼ fðpÞ.



to define an associated “summation” operator cP for

families of attributes. Therefore, for a finite set I and a

function g : I ! M , the summation yields the value
cP

i2IgðiÞ, defined recursively by

dX

i2;

gðiÞ ¼ 0;

dX

i2I

gðiÞ ¼ gðjÞbþ dX

i2Infjg

gðiÞÞ for every j 2 I:

Now, let A : V ! M be a given function that assigns

attributes to vertices. We aim at the computation of
cP

v2CAðvÞ for all connected components C of the threshold

sets Vh. For an arbitrary subset C of V , we introduce the

notation AðCÞ ¼ cP
v2CAðvÞ (in other words, A returns the

attribute value of sets of vertices, as well as single vertices).

Our computations will be based on the basic rules
P

; ¼ b0
and AðfvgÞ ¼ AðvÞ and the union rule that AðC [BÞ ¼

AðCÞ bþAðBÞ whenever C and B are disjoint.

We introduce an array accat to hold accumulated
attributes. Since the components of threshold sets are
obtained as sets DðpÞ for level roots p, we aim at the
postcondition

(Q0) ð8 p 2 LeRo :: accat½p� ¼ AðDðpÞÞ.

Thus, the algorithm to compute the Max-Tree must reach a
postcondition in which both the postulates for the parent
pointers and Q0 hold.

4 INCLUDING UNION-FIND IN THE MAX-TREE
ALGORITHM

We will now adapt Salembier et al.’s recursive algorithm

for Max-Tree construction, including the accumulation of

attributes, to include the tree data structures used in

Tarjan’s union-find method for representation of the Max-

Tree nodes. For simplicity, we assume that the graph is

connected and nonempty. We present a version, shown in

Algorithm 1, of the algorithm by Salembier et al. [11] that

constructs a Max-Tree, i.e., an array par that satisfies the

postulates (S0), (S1), and (S2). For the sake of the analysis,

we assume that initially par½x� ¼ ? holds for all nodes x.
Let Level be a set of values such that fðxÞ 2 Level for all

x 2 V [ f?g. Let xm be a node where f takes its minimal
value. We thus have fðxÞ � fðxmÞ for all x.

Algorithm 1 uses the following additional variables:

hm: Level;

W : set of Node;
set: array Level of set of Node;

lero: array Level of Node [ f?g;
at: Attribute.

Variable hm holds the level for the level set that is currently

under investigation. W stands for the set of nodes that have

been reached by the algorithm. The sets set½k� hold sets of

nodes of level k. Variable lero½k� is used to hold the latest

level root of level k. Initially, all sets are empty, and the

elements of lero are ?.

Algorithm 1. Salembier et al.’s recursive Max-Tree algo-

rithm using the union-find-derived data structure to

represent level components. Procedure flood uses lev and
at as reference parameters as in Pascal or Modula-3. Vp

denotes the section of the image to work on. For a

sequential algorithm, this equals the image domain V.
procedure flood ðvar lev : Level;var at : Attribute;

V p : SectionÞ ¼
accat½lero½lev�� :¼ at;
while set½lev� 6¼ ; do

extract some p from set½lev�;
accat½lero½lev�� :¼ accat½lero½lev��bþAðpÞ;
for all neighbors q 2 Vp of p do

if q =2 W , then

var fq :¼ fðqÞ; atq :¼ 0;
W :¼ W [ fqg;
if lero½fq� ¼ ?, then

lero½fq� :¼ q;
else par½q� :¼ lero½fq� end;
set½fq� :¼ set½fq� [ fqg;
while fq > lev do flood(fq, atq, Vp) end;
accat½lero½lev�� :¼ accat½lero½lev��bþatq;

end end end;

determine m maximal with
m < lev ^ ðlero½m� 6¼ ? _m ¼ 	1Þ;

par½lero½lev�� :¼ lero½m�;
at :¼ accat½lero½lev��;
lero½lev� :¼ ?;

lev :¼ m;

end;

hm :¼ fðxmÞ;
set½hm� :¼ W :¼ fxmg;
lero½hm� :¼ xm;

at :¼ b0;
flood(hm, at, Vp).

The algorithm consists of some initializations and one

call of a recursive procedure, shown in Algorithm 1.

Algorithm 1 differs from Salembier et al.’s original only in

that the nodes of the Max-Tree are labeled using a different

convention. The analysis in [11] therefore also applies to

this algorithm.

5 FILTERING PHASE

When the global Max-Tree has been computed, either

sequentially or concurrently as explained in the next

section, we can perform filtering very efficiently. We

assume that concurrent reading of a memory location is

allowed without using synchronization primitives like

semaphores. During this stage, the Max-Tree is not

modified; therefore, the processes are allowed to read the

data structure simultaneously without using semaphores.
Let K be the number of threads (or processors) to be

employed. We number them from 0 to K 	 1. The set of

vertices V ¼ ½0; NÞ is split in K consecutive subdomains

V p ¼ ½lwbðpÞ; lwbðpþ 1ÞÞ, where lwbðpÞ ¼ p �N div K for

0 � p < K.
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We consider the case of direct filtering, i.e., each pixel is
lowered in gray level to the level of the ancestor in the
Max-Tree with the highest gray level that satisfies the filter
criterion. The algorithm is shown in Algorithm 2. We
introduce an array filt in which we store the filtered data
set. We assume that all points v in the output volume will
have a gray value filt ½v� � 0. For this reason, filt ½v� is
initialized to 	1 for all v 2 V , to flag them as unprocessed.
The only thing a process p has to do for each point v of its
private domain V p is to follow par-pointers until it reaches
an ancestor w of v, which satisfies the filter criterion. When
w is found, filt ½v� is set to fðwÞ.

Algorithm 2. Concurrent implementation of the filtering

phase.
procedure directfilter ðlambda : attribute;V p : SectionÞ ¼
for all v 2 V p do

if filt½v� ¼ 	1 then

w :¼ v;

while par½w� 6¼ ? ^ filt½w� ¼ 	1 ^
ðfðwÞ ¼ fðpar½w�Þ _ accat½w� < lambdaÞ do
w :¼ par½w�;

end;

if filt½w� 6¼ 	1 then

val :¼ filt½w�; (� criterion satisfied at level filt½w� � )
else if accat½w� � lambda then

val :¼ fðwÞ; (� w satisfies criterion �)
else val :¼ 0; end; (� criterion cannot be satisfied �)

end;

(� set filt along par-path from v to w � )
u :¼ v;

while u 6¼ w do

if u 2 V p then

filt½u� :¼ val;

end;

u :¼ par½u�;
end;

if w 2 V p then

filt½w� :¼ val;
end;

end;

end;
end.

6 CONCURRENT MERGING OF MAX-TREES

We will now first discuss how two Max-Trees obtained by
Algorithm 1 from adjacent image sections can be merged
into a single one, followed by a scheme for the merger on
multiple trees efficiently.

6.1 Merging Two Max-Trees

We can split the image into K parts as in the filtering phase
and first neglect all edges that connect one part to another.
These parts with their internal edges can then be
distributed over equally many processors. By application
of Algorithm 1 concurrently on the parts, we can obtain a
data structure that satisfies (Q0) but is restricted to each
domain V p. The edges that connect different parts have yet
to be processed.

We now develop a sequential algorithm to accommodate
the remaining edges. This algorithm mixes the construction
of the forest par with the accumulation of attributes. In
order to do so, we introduce a program variable F to hold a
set of pairs of nodes and replace postulate (S0) by the
invariant

(J0) E�
h ¼ ðF [ P Þ]h for all levels h

while maintaining (S1) and (S2) as invariants. The idea is
that F holds the unprocessed pairs.

We thus assume that the set F and the arrays par and
accat are initialized and satisfy (J0), (S1), (S2), and (Q0).
When merging V p and V pþ1, this means that every ðx; yÞ 2
E such that x 2 V p and y 2 V pþ1 is an element of F . For
every level h, the set Eh is the union of Fh and its converse.
It follows that E�

h ¼ F ]
h for all h and, hence, that (J0) holds.

A general algorithm for merging the results of the
sections can be formulated as

while F 6¼ ; do

extract some pair ðx; yÞ from F ;
connectðx; yÞ;

end.

Removing a pair ðx; yÞ from F violates invariant (J0) but
preserves (Q0), (S1), and (S2) since the latter predicates do
not refer to F . Therefore, the aim of connect is to restore the
invariant (J0) while preserving (Q0), (S1), and (S2).

Procedure connect has to merge the two parent paths of
the vertices x and y. We do this in a repetition where the
vertices x and y serve as local variables. Since we are only
interested in the values of accat½p� for level roots p, we
approximate (J0) by means of the invariant

(J1) x 2 LeRo ^ y 2 LeRo ^
ð8 h :: E�

h ¼ ðF [ fðx; yÞg [ P Þ]hÞ.

Preservation of this invariant is made more convenient by
introducing the function

ParðxÞ ¼ ðpar½x� ¼ ?? ? : levrootðpar½x�ÞÞ:

When applied to a level root, function Par yields the level
root of the next higher level in the tree (= lower gray level!).
We define the set of ancestors of any node x by

AncðxÞ ¼ fp 2 V j; ð9 n 2 IN :: ParnðxÞ ¼ pÞg:

It is useful to notice that DðxÞ � DðpÞ for every vertex
p 2 AncðxÞ.

Modification of array par in the form par½x� :¼ y
changes the descendant sets DðpÞ for the ancestors p of
either x or y. This clearly threatens predicate (Q0). Writing
ffl f o r t h e s ymme t r i c a l d i f f e r e n c e o f s e t s :
C ffl B ¼ ðC nBÞ [ ðB n CÞ, we weaken (Q0) to the invariant

(J2) ð8 p 2 LeRo :: p =2 AncðxÞ ffl AncðyÞ )
accat½p� ¼ AðDðpÞÞ.

If x ¼ y, predicate (J1) implies (J0) and (J2) implies (Q0),
since the pair ðx; xÞ is not needed for the symmetric
reflexive transitive closure in (J0) and the symmetric
difference of two equal sets is empty. We therefore use
x 6¼ y as a guard of the repetition in connect.

Predicate (J2) says nothing about the values accat½p� for
vertices p in the symmetric difference AncðxÞ ffl AncðyÞ, i.e.,
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for the ancestors in the parent paths of x and y as long as
they do not converge. Here, we have to break the symmetry,
since accat½p� may have accumulated more or less than it
deserves. We choose fðxÞ � fðyÞ. We introduce an auxiliary
variable U to hold a set of vertices and cor for its “sum” of
attributes, with the invariant

(J3) fðxÞ � fðyÞ ^ U � DðxÞ ^ cor ¼ AðUÞ
^ ð8 p 2 AncðxÞ nAncðyÞ::

accat½p� ¼ AðDðpÞ n UÞ
^ ð8 p 2 AncðyÞ nAncðxÞ::

accat½p� ¼ AðDðpÞ [ UÞ.

One can see that U holds the vertices in DðxÞ for which
the attributes are accumulated in the ancestors of y,
whereas these attributes should be accumulated in the
ancestors of x. The variable U is not needed in the
algorithm but only in its correctness proof.

Procedure connect has parameters x and y, which also
serve as local variables. The invariants (J1), (J2), and (J3) are
initialized by

Init:

cor :¼ b0; U :¼ ;;
x :¼ levrootðxÞ; y :¼ levrootðyÞ;
if fðyÞ > fðxÞ then swapðx; yÞ end.

In the loop body, we have x 6¼ y and fðxÞ � fðyÞ, and hence,
x 6¼ ?. We also have x 2 AncðxÞ and x =2 AncðyÞ, so that (J3)
implies that corbþaccat½x� ¼ AðUÞbþAðDðxÞ n UÞ ¼ AðDðxÞÞ.
This suggests replacing accat½x� by the value copa ¼
corbþaccat½x�and then replacingxbypar½x�or ratherParðxÞ.

Indeed, since x 6¼ ?, we may consider the vertex
z ¼ ParðxÞ, wh i c h s a t i s f i e s z 2 LeRo [ f?g and
fðxÞ > fðzÞ. Moreover, AncðxÞ ¼ fxg [AncðzÞ. We aim
at replacing the pair ðx; yÞ by ðz; yÞ or ðy; zÞ. We consider
two overlapping cases.

First, assume fðzÞ � fðyÞ. In this case, all three invariants
are preserved by

LaggingBehind: ffðzÞ � fðyÞg
accat½x� :¼ corbþaccat½x�;
x :¼ z.

Next, assume that fðyÞ � fðzÞ and y 6¼ z. We want to
consider the assignment par½x� :¼ y. This assignment has
the effect that some sets DðpÞ change. Actually, DðpÞ can
only change if p 2 AncðyÞ ffl AncðzÞ. For such a vertex p, let
Dp stand for the set DðpÞ after the assignment par½x� :¼ y.
We have that Dp ¼ DðpÞ [DðxÞ if p 2 AncðyÞ nAncðzÞ, and
Dp ¼ DðpÞ nDðxÞ if p 2 AncðzÞ nAncðyÞ. It is this appear-
ance of DðxÞ that inspired us to formulate (J3).

Write U 0 ¼ DðxÞ n U . We have AðU 0Þ ¼ accat½x� by (J3).
If p 2 AncðyÞ nAncðzÞ, then (J3) implies that accat½p� ¼
AðDðpÞ [ UÞ, whereas

DðpÞ [ U ¼ DðpÞ [ ðDðxÞ n U 0Þ ¼ Dp n U 0:

On the other hand, if p 2 AncðzÞ nAncðyÞ, then (J3) implies
accat½p� ¼ AðDðpÞ n UÞ, and since U � DðxÞ � DðpÞ, we
also have

DðpÞ n U ¼ ðDðpÞ nDðxÞÞ [ U 0 ¼ Dp [ U 0:

In this way, one can prove that the assumption implies that

(J3’)fðyÞ � fðzÞ ^ accat½x� ¼ AðU 0Þ
^ ð8 p 2 AncðyÞ nAncðzÞ ::

accat½p� ¼ AðDp n U 0Þ
^ ð8 p 2 AncðzÞ nAncðyÞ ::

accat½p� ¼ AðDp [ U 0Þ.

We thus obtain that the invariants (J1), (J2), and (J3) are
preserved by

Overtaking: ffðyÞ � fðzÞ ^ y 6¼ zg
copa :¼ corbþaccat½x�;
cor :¼ accat½x�;
accat½x� :¼ copa;

par½x� :¼ y; U :¼ DðxÞ n U ;

x :¼ y; y :¼ z.

Putting these arguments together and resolving the non-
determinacy in the simplest way, we obtain

procedure connectðx; yÞ ¼
Init;

while x 6¼ y do

z :¼ ParðxÞ;
if fðzÞ � fðyÞ then LaggingBehind

else Overtaking end

end

end connect.

It now turns out that the variable U is computationally
irrelevant. It is a so-called ghost variable or auxiliary
variable, useful for the proof but superfluous in the
program. Such variables are well known in proofs of
concurrent programs, e.g., see [34], but they are rarely used
for sequential programs. Variable U can be eliminated in
every implementation.

The convention fð?Þ ¼ 	1 can be implemented by
adding a virtual vertex ? to the image. In Algorithm 3, we
have chosen to eliminate this vertex by splitting the loop
into two loops, where the second is taken only if the
parent paths of x and y only merge at ?. An example is
shown in Fig. 4.

Algorithm 3. Merging two Max-Trees while ensuring the

correct accumulation of attributes.
procedure connectðx; yÞ ¼
cor :¼ b0;
x :¼ levrootðxÞ; y :¼ levrootðyÞ;
if fðyÞ > fðxÞ then swapðx; yÞ end
while x 6¼ y ^ y 6¼ ? do

z :¼ ParðxÞ;
if z 6¼ ? ^ fðzÞ � fðyÞ then
accat½x� :¼ corbþaccat½x�;
x :¼ z;

else

copa :¼ corbþaccat½x�;
cor :¼ accat½x�;
accat½x� :¼ copa;

par½x� :¼ y;

x :¼ y; y :¼ z.
end

end

if y ¼ ? then

while y 6¼ ? do

accat½x� :¼ corbþaccat½x�;
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x :¼ ParðxÞ;
end

end

end connect.

6.2 Concurrent Merging of Multiple Trees

Now that we have developed procedure connect, we can
construct the Max-Tree of an image by means of a
concurrent algorithm, shown in Algorithm 4.

Each thread p first executes Algorithm 1 for its own
subdomain V p. After this, the subdomains are merged by
means of a binary tree in which thread p accepts all
subdomains V pþi with pþ i < K and 0 � i < 2a, where 2a is
the largest power of 2 that divides p. In particular, odd-
numbered threads accept no subdomains, and all sub-
domains are eventually collected by thread 0. If K is not a
power of 2, the binary tree is not complete, but the
algorithm stays correct (although one may prefer to use a
more balanced tree for reasons of performance).

A thread that needs to accept the domain of its right-
hand neighbor has to wait until the neighbor has
completed its Max-Tree computation. The final combina-
tion is computed by thread 0. Therefore, all other threads
must wait for thread 0 before they can resume their
computation for the filtering phase. This synchronization is
realized by means of two arrays of K 	 1 binary sema-
phores sa and sb. A binary semaphore s is a shared
variable with values in f0; 1g and two atomic actions V ðsÞ
and P ðsÞ. Action V ðsÞ increments the value of semaphore s
to 1. A process that needs to execute action P ðsÞ waits until
s ¼ 1 and then decrements s in one atomic action to 0. In
our case, all semaphores sa½p� and sb½p� have the initial
values 0.

Algorithm 4. Concurrent construction and filtering of the
Max-Trees, thread p.

process ccaf ðpÞ
find xm such that fðxmÞ � fðxÞ 8x 2 V p;
hm :¼ fðxmÞ;
set½hm� :¼ W :¼ fxmg;
lero½hm� :¼ xm;
at :¼ 0;

floodðhm; at; V pÞ;
var i :¼ 1, q :¼ p;
while pþ i < K ^ q mod 2 ¼ 0 do

P ðsa½pþ i�Þ (� wait to glue with

right-hand neighbor �);
for all edges ðx; yÞ between TreeðpÞ

and Treeðpþ iÞ do
connectðx; yÞ;

end;

i :¼ 2 � i; q :¼ q=2;

end;
if p ¼ 0 then (� release the waiting threads �)
for i :¼ 1 to K 	 1 do V ðsb½i�Þ end

else

V ðsa½p�Þ (� signal left-hand neighbor �);
P ðsb½p�Þ (� wait for thread 0 �)

end;
filterðp; lambdaÞ;

end ccaf.

Here, TreeðpÞ is the data structure of process p, which

consists of the arrays par and accat restricted to the

1808 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008

Fig. 4. Merging two simple Max-Trees: (a) Signal. A simple signal split into two domains, showing correct area attributes. (b) Start; cor=0. The two
Max-Trees showing partial area attributes, initial settings of x, y, z, and cor. (c) Step 1; cor=1. First, the parent pointer of the initial x is updated, and
cor is set to 1. (d) Step 2; cor=1. Next, cor is added to area of top node of right-hand tree. (d)-(g) Stepwise merger, updating cor each time x
switches form left to right tree, or vice versa. (e) Step 3; cor=3. (f) Step 4; cor=3. (g) Step 5; cor=4. (h) Final tree. Note that the root node of the
original left-hand tree is no longer a level root, so its attribute is ignored in further processing.



subdomain
Si	1

j¼0 V
pþj, which is currently the responsibility

of process p.
Array sa of semaphores is used to guarantee that a

thread only starts merging with its right-hand neighbor
when the neighbor is ready for it. Array sb of
semaphores is used to guarantee that the threads only
start with their filtering phase after thread 0 has
concluded the gluing phase.

In order to prove the absence of deadlock with the
semaphores sa, we claim that every semaphore sa½r� with
1 � r < K is incremented precisely once, namely, by
process r, whereas only one process p tries to decrement
it, namely, p ¼ r	 2a, where 2a is the highest power of 2
that divides r. There is no cyclic waiting, since every
process only waits for a semaphore that will be released by
a process with higher number.

The synchronization could also be established using the
pthread primitives of mutexes and condition variables, or
with Java’s wait and notify primitives.

7 COMPLEXITY

The computational complexity of the local flooding depends
on the algorithm of choice. If we build the trees with the
algorithm derived from that by Salembier et al. [11], the
worst-case complexity of the building phase is
OðNðC þGÞ=NpÞ, with N being the number of voxels, G
being the number of gray levels, C being the connectivity (4,
8, 6, or 26 in our case), andNp being thenumber of processors,
as before. As noted in [15], this worst case occurs when the
difference in gray levels between parent and child, and the
number of leaves in the Max-tree are both maximal. Using a
priority queue instead of a simple array to store the
nodeatlevel data (equivalent to lero in Algorithm 1)
yields a complexity of OðNðC þ logGÞ=NpÞ for the building
phase, but is expected to be slower [15]. Alternatively, one
could use the algorithm in [35]. This algorithm has complex-
ity OðNðC þ logGÞÞ, yielding an overall complexity of
OðNðC þ logGÞ=NpÞ. Thiswill also be tested in the following
section. The algorithm by Najman and Couprie [18] is
quasilinear, i.e., OðCN � �ðCN;NÞ=NpÞ, with � the inverse
of the Ackermann function, which increases extremely
slowly. A variant is the algorithm by Berger et al. [31], which
has slightly higher time complexity, but uses far less
memory. Because our main issue is with the merging stage,
we did not test the latter two algorithms.

The merging phase complexity is determined by the
way the volume is subdivided. The simplest way is to
divide the volume into Np slices, so that each process gets
assigned a contiguous block of memory to work in. If
neighboring slices have K connecting edges and the Max-
trees have a maximal depth G, one merging phase requires
OðKG logNÞ worst case, with logN as the complexity of a
single merge using union find with path compression but
without union by rank [16]. This assumes that, for every
merge, we need to descend OðGÞ nodes, which is not the
case in practice. Only the first merge need actually descend
all the way to the root; each next merge will encounter the
condition that x ¼ y long before the root is encountered in
most cases. Using Np parallel slices with equal boundaries,
the total merging has a worst case time complexity

OðKG logN logP Þ. Using oct-trees, however, should re-
duce this to OðKG logNÞ. This is because the final merge
(on one processor) will have K edges to process, the
preceding one K=2, the one before that K=4 per processor,
etc. Unfortunately, the code needs to become much more
complicated in that case.

To cast K in terms of N , consider the following: Assume
6-connectivity in 3D. If a cubic volume of N ¼ M3 pixels is
partitioned into P parallel slices, the sequential preproces-
sing would therefore require OððM3GÞ=P Þ, whereas
K ¼ M2 ¼ N2=3. Merging takes less than preprocessing
when logM logP � M=P .

In our experience, the Max-tree building phase takes
more time than the Max-tree merging phase (typically, only
3-7 percent of CPU time is spent on the merging phase at
16 threads, rising to 12-21 percent for 64 threads). There-
fore, efforts to improve the merging phase, e.g., by
introducing oct-trees have been postponed.

The filtering phase can be performed linearly in the
number of pixels [15] and should have complexity of
OðN=GÞ, yielding an overall complexity of OðGðN=P þ
K logN logP ÞÞ or OðGðN=P þN2=3 logN logP ÞÞ assuming
cubic volumes.

Memorywise, the algorithm is no more costly than the
building algorithm itself. Using the algorithm in [11], we
need a hierarchical queue (requires OðN þGÞ storage), the
original image, par array, auxiliary data, and array filt to
store the output (all OðNÞ). The original sequential
algorithm required the same storage plus a store for the
actual tree structure (OðNÞ worst case).

8 PERFORMANCE TESTING

The above algorithm was implemented in C in two variants:
one for the volume opening in 3D and one for the more
general class of antiextensive attribute filters. Wall-clock
runtimes for numbers of threads equal 1, 2, 4, 6, 8, 12, 16, 32,
and 64 for each of these algorithms were determined. The
elongation measure ’1 used in [14] was used in the second
algorithm. This measure is a 3D equivalent of the first
moment invariant by Hu [36] and is given by

’1ðXÞ ¼
IðXÞ

ðVðXÞÞ5=3
ð8Þ

with VðXÞ the volume of set X and IðXÞ the trace of the
moment-of-inertia tensor of X given by

IðXÞ ¼
VðXÞ

4
þ
X

~r2X

ð~r	~rcmÞ
2 ð9Þ

with ~rcm the center of mass location of X. This attribute
cannot be computed incrementally, but it can be computed
from an auxiliary data set containing volume,

P
x,

P
y,P

z, and
P

x2 þ y2 þ z2, which itself can be computed
incrementally. A similar strategy for using auxiliary data
sets was used in [5] and [11].

Timings were performed on the 16-processor Silicon
Graphics Onyx 3400 shared memory parallel computer of
the Centre for High Performance Computing and Visualisa-
tion, University of Groningen, and on an AMD dual-core,
Opteron-based machine. Each processor of the Onyx is a

WILKINSON ET AL.: CONCURRENT COMPUTATION OF ATTRIBUTE FILTERS ON SHARED MEMORY PARALLEL MACHINES 1809



500-MHz MIPS R14000 processor, and the machine had
20 Gbytes of RAM. The Opteron-based machine has two
dual-core Opteron 280 processors at 2.4 GHz, giving a total
of four processor cores and 8 Gbytes of memory (4 Gbytes
per processor socket). The minimum value of 10 timings
was taken to be most indicative of the speed of the
algorithm. The timings were done on five publicly available
volume data sets that were processed in two versions: 10-bit
or 12-bit original resolution and down sampled to 8 bits per
voxel. All large volume data sets were rotational b-plane CT
scans, and their sources are given in Table 1. The timing
results are shown in Fig. 5. Four other rather smaller data
sets (approx 2563 voxels) from a variety of sources,
including magnetic resonance images besides CT-scans,
were also tested in two gray-level resolutions each. The
timings of these sets follow the same pattern as the large
data sets in Table 1 (data not shown).

On the Onyx 3400, wall-clock computing time for the area
openings drop from an average of 241 s for a single thread
down to20.1 s at 64 threads for 8-bit data and from321 sdown
to 34.8 s for 12-bit data. For attribute thinning using
elongation criteria, these times are 326 s and 29.1 s for 8-bit
data and 429 s and 47.7 s for 12-bit data, respectively. As
expected, the speed-up for 8-bit/voxel volumes is higher
than for 12-bit/voxel images due to the increased height and
complexity of the trees, both of which influence the
performance, though on the Opteron-based machine, the
difference is slight (4.59 versus 4.63 maximum speedup).

A striking result, as shown in Fig. 5, is the fact that the
speed-up increases as we increase the number of threads
beyond the number of processors in our machine (16). For
volume openings on the Onyx, the speedup at 16 threads is
7.68  0.55 and 6.91  0.86 for 8-bit and 12-bit data,
respectively. However, at 64 threads, this has risen to 12.0 
1.6, and 9.2  1.6, respectively. This is probably due to the
fact that, as the slices become smaller, the flood-filling
process needed to build the trees for each slice becomes
more cache friendly. This apparently more than compen-
sates the penalty for doing more work merging the trees
together (and the overhead of multithreading). This result
also means that even more speed-up could be attained
using more processors. For elongation filtering, the results
are similar, if slightly worse, attaining a speed-up of 11.3 
1.2 for 8-bit data and 9.0  1.0 for 12-bit data at 64 threads.

On the Opteron-based machine, the situation is slightly
different, showing a slightly higher than linear speed-up on
2 and 4 threads for the largest data sets (2.17 and 4.11,
respectively, for 12-bit data for elongation filtering and 2.12
and 4.1 for volume openings). This is probably caused by
the fact that more than 4 Gbytes of memory is needed in this
case, which means that, when using a single thread, data
from the other processor’s memory bank is needed from
time to time, increasing average memory latency. When
using multiple threads, this problem is reduced. Using
more threads than CPU cores further increases speed-up to
5.3  0.5 at 64 threads for volume openings and 4.6  0.4 at
16 threads for elongation filtering (both 12 bit/voxel).

Intrigued by this result, we tested the performance of our
algorithm on a single CPU (Intel P4-520, 3.0 GHz). The
speed-up as a function of number of threads for smaller data
sets in Table 1 is shown in Fig. 6. As can be seen, the
performance on 8-bit/voxel data improves by between
49 percent to 72 percent at 32 or 64 threads in three cases.
The xmas8 volume shows a different pattern, increasing
steadily to a 61 percent increase in speed at 128 threads. We
also measured cache hit/miss statistics using valgrind
(http://valgrind.org/) and computed the expected changes
in computing time assuming latency ratio’s of
L1:L2:Memory = 1:9:115. The results of these measurements
are also shown in Fig. 6.

The 12-bit/voxel data (not shown) yield a slightly
different pattern, peaking between 16 and 32 threads, with
the exception of xmas12, which peaks at 64. Performance
gains are also more modest, between 18 percent and
44 percent. These differences can be explained by the
increased cost of merging the trees.

We also tested the algorithm in [35] to build the trees for
each strip instead of that in [11]. However, in the data sets
tested, the former turns out to be consistently 20-30 percent
slower than the latter algorithm.

The difference in speed-up between the 12-bit and 8-bit
data sets can easily be understood from the increased cost
of merging, given the higher value of G. To assess the
average merge cost, we measured the number of nodes
merged on the average per edge processed during the
merging phase, and the average depth of recursion of the
levroot function. All measurements were done using
64 threads. It was found that, for 8-bit data, the average
merge depth is 0.64  0.31 and, for 12-bit data, 4.3  2.2. In
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TABLE 1
Volume Data Sets Used in Performance Testing



both cases, this is far smaller than G (256 and 4,096,
respectively). The mean recursion depth of the levroot

function is 1.14  0.11 for 8-bit data, and 0.81  0.07 for 12-
bit data; again, much lower than the worst case. The
difference is due to the fact that flat zones decrease on the
average as G increases. Unsurprisingly, data sets with
many high-contrast features had comparatively large
merge depths (5-8 at 12 bit/voxel typically for CT-scans

with bony structures), whereas sparser or lower contrast
images volumes yielded lower numbers of merges per edge
(1.6-3.5 at 12 bit/voxel typically for MR-angiograms).

9 CONCLUSIONS

The proposed algorithm shows a good degree of speed-up
(between 7 and 14 on 16 processors of the Onyx and
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Fig. 5. (a) Timings and (b) speed-up of the parallel algorithm for Max-Tree building and filtering as a function of number of threads for attribute
filtering. The top row shows the results for the Onyx 3400, the bottom for the Opteron-based machine (two dual-core chips). In either case, there is
an increase in speed after the number of threads exceeds the number of processor cores.

Fig. 6. Speed-up on a single core CPU (P4-520, 3.0 GHz) of the parallel algorithm for Max-Tree building and filtering as a function of number of
threads, for smaller volume data sets in Table 1: (a) 8-bit data, (b) predicted from cache hit/miss data.



between 3.6 and 5.7 on the four processor cores of the
Opteron-based machine), even on complicated volume
data sets with high gray-level resolution. If the algorithm
is run with the number of threads set to one, it is identical
in speed to the original sequential algorithm [11]. There-
fore, the speed-up is with respect to the sequential
algorithm. Any other sequential algorithm for the Max-
tree that can be adapted to, or actually uses, the union-find
approach to voxel labeling can be inserted into this
framework, and similar speed-ups are to be expected,
provided that the same perfect path-compression per node
is maintained in each slice, i.e., all members at level h of Dk

h

point directly to their level root. Examples of such
algorithms are given in [18], [31], and [35]. The latter
two have been implemented for floating point data as
well, which is important in certain application domains.
However, higher values of G mean higher cost of merging,
so the speed-up may be lower in the floating-point case. In
that case, decreasing the cost of merging by using oct-trees
might be advisable.

In future work, we will study the parallel computation
of the topological watershed [25], [26]. A variant of the
Max-Tree that implements attribute filters with so-called
second-generation connectivities [28], called the Dual-
Input Max-Tree [38], has already been parallellized using
our approach [39].

APPENDIX A
The following list summarizes the notational conventions
used in this paper:

. B, C, and D are arbitrary sets subsets of V .

. AncðxÞ is a set of ancestors of x.

. ancðx; hÞ is a function returning the oldest ancestor
of x down to level h.

. A is an attribute function.

. DðxÞ is a set of descendants of x.

. Di
h, D

k
h is the peak component or dome, a connected

component of threshold set Vh, with indices i and k
from some index set.

. E is a universal set (IRn or ZZn).

. E is a set of edges.

. Eh is a set of edges, restricted to nodes in threshold
set Vh.

. E�
h is a reflexive transitive closure of Eh.

. f is a gray-scale image.

. ’1 is an elongation measure.

. G is a number of gray levels.

. �T is a binary trivial filter.

. �T is a binary attribute filter.

. �T is a gray-scale attribute filter.

. �x is a connected opening at point x 2 E.

. h is a threshold level.

. IðXÞ is a trace of the moment-of-inertia tensor of X.

. K is a number of threads.

. LeRo is a set of level roots.

. levrootðxÞ is a function returning level root of x.

. � is an attribute threshold.

. M is a commutative monoid (for attribute compu-
tation).

. N is a number of pixels (voxels).

. Np is a number of processors.

. PðEÞ is a power set (set of all subsets) of E.

. P is a binary relation corresponding to array par.

. ParðxÞ returns the level root of par½x� unless
par½x� ¼ ?.

. par is an array containing parent pointers for all
vertices x 2 V .

. R is an arbitrary binary relation on V .

. Rh is a restriction of R to Vh.

. R]
h is a symmetric reflexive transitive closure of Rh.

. T is a filter criterion.

. V is an image domain or (equivalently) a set of
nodes.

. Vh is a threshold set at level h (subset of V ).

. V p is a subdomain of V assigned to processor p.

. VðXÞ is a volume of X (in 3D).

. X is a binary image.

. ? is a null pointer.

. A ffl B shows symmetrical difference: A ffl B ¼
ðA nBÞ [ ðB nAÞ.

. bþ is a binary operator of commutative monoid M .

.
cP is a “summation” operator associated with bþ.

.
b0 is a neutral element of bþ.
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