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The proliferation of commercial shared-memory multiprocessor machines has brought about
significant changes in the art of concurrent programming. Given current trends towards low-
cost chip multithreading (CMT), such machines are bound to become ever more widespread.

Shared-memory multiprocessors are systems that concurrently execute multiple threads
of computation which communicate and synchronize through data structures in shared
memory. The efficiency of these data structures is crucial to performance, yet designing
effective data structures for multiprocessor machines is an art currently mastered by few.
By most accounts, concurrent data structures are far more difficult to design than sequential
ones because threads executing concurrently may interleave their steps in many ways, each
with a different and potentially unexpected outcome. This requires designers to modify the
way they think about computation, to understand new design methodologies, and to adopt a
new collection of programming tools. Furthermore, new challenges arise in designing scalable
concurrent data structures that continue to perform well as machines that execute more
and more concurrent threads become available. This chapter provides an overview of the
challenges involved in designing concurrent data structures, and a summary of relevant work
for some important data structure classes. Our summary is by no means comprehensive;
instead, we have chosen popular data structures that illustrate key design issues, and hope
that we have provided sufficient background and intuition to allow the interested reader to
approach the literature we do not survey.

1.1 Designing Concurrent Data Structures

Several features of shared-memory multiprocessors make concurrent data structures signif-
icantly more difficult to design and to verify as correct than their sequential counterparts.
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acquire(Lock);
oldval = X; oldval = X;
X = oldval + 1; X = oldval + 1;
return oldval; release(Lock);

return oldval;

FIGURE 1.1: Code fragments for sequential and lock-based fetch-and-inc operations.

The primary source of this additional difficulty is concurrency: Because threads are exe-
cuted concurrently on different processors, and are subject to operating system scheduling
decisions, page faults, interrupts, etc., we must think of the computation as completely
asynchronous, so that the steps of different threads can be interleaved arbitrarily. This
significantly complicates the task of designing correct concurrent data structures.

Designing concurrent data structures for multiprocessor systems also provides numerous
challenges with respect to performance and scalability. On today’s machines, the layout
of processors and memory, the layout of data in memory, the communication load on the
various elements of the multiprocessor architecture all influence performance. Furthermore,
the issues of correctness and performance are closely tied to each other: algorithmic en-
hancements that seek to improve performance often make it more difficult to design and
verify a correct data structure implementation.

The following example illustrates various features of multiprocessors that affect concur-
rent data structure design. Suppose we wish to implement a shared counter data structure
that supports a fetch-and-inc operation that adds one to the counter and returns the
value of the counter immediately before the increment. A trivial sequential implementation
of the fetch-and-inc operation contains code like that shown on the left in Figure 1.1:1

If we allow concurrent invocations of the fetch-and-inc operation by multiple threads,
this implementation does not behave correctly. To see why, observe that most compilers
will translate this source code into machine instructions that load X into a register, then
add one to that register, then store that register back to X. Suppose that the counter is
initially 0, and two fetch-and-inc operations execute on different processors concurrently.
Then there is a risk that both operations read 0 from X, and therefore both store back 1
and return 0. This is clearly incorrect: one of the operations should return 1.

The incorrect behavior described above results from a “bad” interleaving of the steps
of the two fetch-and-inc operations. A natural and common way to prevent such inter-
leavings is to use a mutual exclusion lock (also known as a mutex or a lock). A lock is a
construct that, at any point in time, is unowned or is owned by a single thread. If a thread
t1 wishes to acquire ownership of a lock that is already owned by another thread t2, then
t1 must wait until t2 releases ownership of the lock.

We can obtain a correct sequential implementation of the fetch-and-inc operation by
using a lock as shown on the right in Figure 1.1. With this arrangement, we prevent the bad
interleavings by preventing all interleavings. While it is easy to achieve a correct shared
counter this way, this simplicity comes at a price: Locking introduces a host of problems
related to both performance and software engineering.

1Throughout our examples, we ignore the fact that, in reality, integers are represented by a fixed number
of bits, and will therefore eventually “wrap around” to zero.
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1.1.1 Performance

The speedup of an application when run on P processors is the ratio of its execution time on
a single processor to its execution time on P processors. It is a measure of how effectively
the application is utilizing the machine it is running on. Ideally, we want linear speedup:
we would like to achieve a speedup of P when using P processors. Data structures whose
speedup grows with P are called scalable. In designing scalable data structures we must
take care: naive approaches to synchronization can severely undermine scalability.

Returning to the lock-based counter, observe that the lock introduces a sequential bot-
tleneck : at any point in time, at most one fetch-and-inc operation is doing useful work,
i.e. incrementing the variable X. Such sequential bottlenecks can have a surprising effect on
the speedup one can achieve. The effect of the sequentially executed parts of the code on
performance is illustrated by a simple formula based on Amdahl’s law [110]. Let b be the
fraction of the program that is subject to a sequential bottleneck. If the program takes 1
time unit when executed on a single processor, then on a P -way multiprocessor the sequen-
tial part takes b time units, and the concurrent part takes (1− b)/P time units in the best
case, so the speedup S is at most 1/(b + (1 − b)/P ). This implies that if just 10% of our
application is subject to a sequential bottleneck, the best possible speedup we can achieve
on a 10-way machine is about 5.3: we are running the application at half of the machine’s
capacity. Reducing the number and length of sequentially executed code sections is thus
crucial to performance. In the context of locking, this means reducing the number of locks
acquired, and reducing lock granularity, a measure of the number of instructions executed
while holding a lock.

A second problem with our simple counter implementation is that it suffers from mem-
ory contention: an overhead in traffic in the underlying hardware as a result of multiple
threads concurrently attempting to access the same locations in memory. Contention can
be appreciated only by understanding some aspects of common shared-memory multipro-
cessor architectures. If the lock protecting our counter is implemented in a single memory
location, as many simple locks are, then in order to acquire the lock, a thread must repeat-
edly attempt to modify that location. On a cache-coherent multiprocessor2 for example,
exclusive ownership of the cache line containing the lock must be repeatedly transferred
from one processor to another; this results in long waiting times for each attempt to modify
the location, and is further exacerbated by the additional memory traffic associated with
unsuccessful attempts to acquire the lock. In Section 1.1.7, we discuss lock implementations
that are designed to avoid such problems for various types of shared memory architectures.

A third problem with our lock-based implementation is that, if the thread that currently
holds the lock is delayed, then all other threads attempting to access the counter are also
delayed. This phenomenon is called blocking , and is particularly problematic in multipro-
grammed systems, in which there are multiple threads per processor and the operating
system can preempt a thread while it holds the lock. For many data structures, this diffi-
culty can be overcome by devising nonblocking algorithms in which the delay of a thread
does not cause the delay of others. By definition, these algorithms cannot use locks.

Below we continue with our shared counter example, discussing blocking and nonblocking
techniques separately; we introduce more issues related to performance as they arise.

2A cache-coherent multiprocessor is one in which processors have local caches that are updated by
hardware in order to keep them consistent with the latest values stored.
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1.1.2 Blocking Techniques

In many data structures, the undesirable effects of memory contention and sequential bot-
tlenecks discussed above can be reduced by using a fine-grained locking scheme. In fine-
grained locking, we use multiple locks of small granularity to protect different parts of the
data structure. The goal is to allow concurrent operations to proceed in parallel when
they do not access the same parts of the data structure. This approach can also help to
avoid excessive contention for individual memory locations. For some data structures, this
happens naturally; for example, in a hash table, operations concerning values that hash to
different buckets naturally access different parts of the data structure.

For other structures, such as the lock-based shared counter, it is less clear how contention
and sequential bottlenecks can be reduced because—abstractly—all operations modify the
same part of the data structure. One approach to dealing with contention is to spread
operations out in time, so that each operation accesses the counter in a separate time interval
from the others. One widely used technique for doing so is called backoff [3]. However,
even with reduced contention, our lock-based shared counter still lacks parallelism, and is
therefore not scalable. Fortunately, more sophisticated techniques can improve scalability.

One approach, known as a combining tree [36, 37, 51, 138], can help implement a scalable
counter. This approach employs a binary tree with one leaf per thread. The root of the
tree contains the actual counter value, and the other internal nodes of the tree are used to
coordinate access to the root. The key idea is that threads climb the tree from the leaves
towards the root, attempting to “combine” with other concurrent operations. Every time
the operations of two threads are combined in an internal node, one of those threads—call
it the loser—simply waits at that node until a return value is delivered to it. The other
thread—the winner—proceeds towards the root carrying the sum of all the operations that
have combined in the subtree rooted at that node; a winner thread that reaches the root of
the tree adds its sum to the counter in a single addition, thereby effecting the increments of
all of the combined operations. It then descends the tree distributing a return value to each
waiting loser thread with which it previously combined. These return values are distributed
so that the effect is as if all of the increment operations were executed one after the other
at the moment the root counter was modified.

The technique losers employ while waiting for winners in the combining tree is crucial
to its performance. A loser operation waits by repeatedly reading a memory location in
a tree node; this is called spinning . An important consequence in a cache-coherent multi-
processor is that this location will reside in the local cache of the processor executing the
loser operation until the winner operation reports the result. This means that the waiting
loser does not generate any unnecessary memory traffic that may slow down the winner’s
performance. This kind of waiting is called local spinning , and has been shown to be crucial
for scalable performance [97].

In so-called non-uniform memory access (NUMA) architectures, processors can access
their local portions of shared memory faster than they can access the shared memory por-
tions of other processors. In such architectures, data layout—the way nodes of the combining
tree are placed in memory—can have a significant impact on performance. Performance can
be improved by locating the leaves of the tree near the processors running the threads that
own them. (We assume here that threads are statically bound to processors.)

Data layout issues also affect the design of concurrent data structures for cache-coherent
multiprocessors. Recall that one of the goals of the combining tree is to reduce contention
for individual memory locations in order to improve performance. However, because cache-
coherent multiprocessors manage memory in cache-line-sized chunks, if two threads are ac-
cessing different memory locations that happen to fall into the same cache line, performance
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suffers just as if they had been accessing the same memory location. This phenomenon is
known as false sharing, and is a common source of perplexing performance problems.

By reducing contention for individual memory locations, reducing memory traffic by using
local spinning, and allowing operations to proceed in parallel, counters implemented using
combining trees scale with the number of concurrent threads much better than the single
lock version does [51]. If all threads manage to repeatedly combine, then a tree of width P
will allow P threads to return P values after every O(log P ) operations required to ascend
and descend the tree, offering a speedup of O(P/ log P ) (but see Section 1.1.4).

Despite the advantages of the combining tree approach, it also has several disadvantages.
It requires a known bound P on the number of threads that access the counter, and it
requires O(P ) space. While it provides better throughout under heavy loads, that is, when
accessed by many concurrent threads, its best-case performance under low loads is poor: It
must still traverse O(log P ) nodes in the tree, whereas a fetch-and-inc operation of the
single-lock-based counter completes in constant time. Moreover, if a thread fails to combine
because it arrived at a node immediately after a winner left it on its way up the tree, then
it must wait until the winner returns before it can continue its own ascent up the tree.
The coordination among ascending winners, losers, and ascending late threads, if handled
incorrectly, may lead to deadlocks: threads may block each other in a cyclic fashion such
that none evers make progress. Avoiding deadlocks significantly complicates the task of
designing correct and efficient implementations of blocking concurrent data structures.

In summary, blocking data structures can provide powerful and efficient implementations
if a good balance can be struck between using enough blocking to maintain correctness,
while minimizing blocking in order to allow concurrent operations to proceed in parallel.

1.1.3 Nonblocking Techniques

As discussed earlier, nonblocking implementations aim to overcome the various problems
associated with the use of locks. To formalize this idea, various nonblocking progress condi-
tions—such as wait-freedom [49, 83], lock-freedom [49], and obstruction-freedom [54]—have
been considered in the literature. A wait-free operation is guaranteed to complete after a
finite number of its own steps, regardless of the timing behavior of other operations. A
lock-free operation guarantees that after a finite number of its own steps, some operation
completes. An obstruction-free operation is guaranteed to complete within a finite number
of its own steps after it stops encountering interference from other operations.

Clearly, wait-freedom is a stronger condition than lock-freedom, and lock-freedom in turn
is stronger than obstruction-freedom. However, all of these conditions are strong enough to
preclude the use of blocking constructs such as locks.3 While stronger progress conditions
seem desirable, implementations that make weaker guarantees are generally simpler, more
efficient in the common case, and easier to design and to verify as correct. In practice,
we can compensate for the weaker progress conditions by employing backoff [3] or more
sophisticated contention management techniques [55].

Let us return to our shared counter. It follows easily from results of Fischer et al. [32]
(extended to shared memory by Herlihy [49] and Loui and Abu-Amara [93]) that such
a shared counter cannot be implemented in a lock-free (or wait-free) manner using only

3We use the term “nonblocking” broadly to include all progress conditions requiring that the failure
or indefinite delay of a thread cannot prevent other threads from making progress, rather than as a
synonym for “lock-free”, as some authors prefer.



1-6

bool CAS(L, E, N) {
atomically {

if (*L == E) {
*L = N;
return true;

} else
return false;

}
}

FIGURE 1.2: The semantics of the CAS operation.

load and store instructions to access memory. These results show that, in any proposed
implementation, a bad interleaving of operations can cause incorrect behaviour. These
bad interleavings are possible because the load and store are separate operations. This
problem can be overcome by using a hardware operation that atomically combines a load and
a store. Indeed, all modern multiprocessors provide such synchronization instructions, the
most common of which are compare-and-swap (CAS) [62, 64, 137] and load-linked/store-
conditional (LL/SC) [63, 70, 132]. The semantics of the CAS instruction is shown in
Figure 1.2. For purposes of illustration, we assume an atomically keyword which requires
the code block it labels to be executed atomically, that is, so that that no thread can observe
a state in which the code block has been partially executed. The CAS operation atomically
loads from a memory location, compares the value read to an expected value, and stores a
new value to the location if the comparison succeeds. Herlihy [49] showed that instructions
such as CAS and LL/SC are universal : there exists a wait-free implementation for any
concurrent data structure in a system that supports such instructions.

A simple lock-free counter can be implemented using CAS. The idea is to perform the
fetch-and-inc by loading the counter’s value and to then use CAS to atomically change
the counter value to a value greater by one than the value read. The CAS instruction fails
to increment the counter only if it changes between the load and the CAS. In this case, the
operation can retry, as the failing CAS had no effect. Because the CAS fails only as a result
of another fetch-and-inc operation succeeding, the implementation is lock-free. However,
it is not wait-free because a single fetch-and-inc operation can repeatedly fail its CAS.

The above example illustrates an optimistic approach to synchronization: the
fetch-and-inc operation completes quickly in the hopefully common case in which it does
not encounter interference from a concurrent operation, but must employ more expensive
techniques under contention (e.g., backoff).

While the lock-free counter described above is simple, it has many of the same disad-
vantages that the original counter based on a single lock has: a sequential bottleneck and
high contention for a single location. It is natural to attempt to apply similar techniques as
those described above in order to improve the performance of this simple implementation.
However, it is usually more difficult to incorporate such improvements into nonblocking im-
plementations of concurrent data structures than blocking ones. Roughly, the reason for this
is that a thread can use a lock to prevent other threads from “interfering” while it performs
some sequence of actions. Without locks, we have to design our implementations to be cor-
rect despite the actions of concurrent operations; in current architectures, this often leads
to the use of complicated and expensive techniques that undermine the improvements we
are trying to incorporate. As discussed further in Section 1.1.7, transactional mechanisms
make it much easier to design and modify efficient implementations of complex concurrent
data structures. However, hardware support for such mechanisms does not yet exist.
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1.1.4 Complexity Measures

A wide body of research is directed at analyzing the asymptotic complexity of concurrent
data structures and algorithms in idealized models such as parallel random access machines
[35, 122, 135]. However, there is less work on modelling such data structures in a realistic
multiprocessor setting. There are many reasons for this, most of which have to do with the
interplay of the architectural features of the hardware and the asynchronous execution of
threads. Consider the combining tree example. Though we argued a speedup of O(P/ log P )
by counting instructions, this is not reflected in empirical studies [52, 129]. Real-world
behavior is dominated by other features discussed above, such as cost of contention, cache
behavior, cost of universal synchronization operations (e.g. CAS), arrival rates of requests,
effects of backoff delays, layout of the data structure in memory, and so on. These factors
are hard to quantify in a single precise model spanning all current architectures. Complexity
measures that capture some of these aspects have been proposed by Dwork et al. [28] and by
Anderson and Yang [7]. While these measures provide useful insight into algorithm design,
they cannot accurately capture the effects of all of the factors listed above. As a result,
concurrent data structure designers compare their designs empirically by running them
using micro-benchmarks on real machines and simulated architectures [9, 52, 97, 103]. In
the remainder of this chapter, we generally qualify data structures based on their empirically
observed behavior and use simple complexity arguments only to aid intuition.

1.1.5 Correctness

It is easy to see that the behavior of the simple lock-based counter is “the same” as that
of the sequential implementation. However, it is significantly more difficult to see this is
also true for the combining tree. In general, concurrent data structure implementations are
often subtle, and incorrect implementations are not uncommon. Therefore, it is important
to be able to state and prove rigorously that a particular design correctly implements the
required concurrent data structure. We cannot hope to achieve this without a precise way
of specifying what “correct” means.

Data structure specifications are generally easier for sequential data structures. For ex-
ample, we can specify the semantics of a sequential data structure by choosing a set of
states, and providing a transition function that takes as arguments a state, an operation
name and arguments to the operation, and returns a new state and a return value for the
operation. Together with a designated initial state, the transition function specifies all ac-
ceptable sequences of operations on the data structure. The sequential semantics of the
counter is specified as follows: The set of states for the counter is the set of integers, and
the initial state is 0. The transition function for the fetch-and-inc operation adds one to
the old state to obtain the new state, and the return value is the old state of the counter.

Operations on a sequential data structure are executed one-at-a-time in order, and we
simply require that the resulting sequence of operations respects the sequential semantics
specified as discussed above. However, with concurrent data structures, operations are not
necessarily totally ordered. Correctness conditions for concurrent data structures generally
require that some total order of the operations exists that respects the sequential semantics.
Different conditions are distinguished by their different requirements on this total ordering.

A common condition is Lamport’s sequential consistency [81], which requires that the
total order preserves the order of operations executed by each thread. Sequential consistency
has a drawback from the software engineering perspective: a data structure implemented
using sequentially consistent components may not be sequentially consistent itself.

A natural and widely used correctness condition that overcomes this problem is Herlihy
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and Wing’s linearizability [58], a variation on the serializability [16] condition used for
database transactions. Linearizability requires two properties: (1) that the data structure be
sequentially consistent, and (2) that the total ordering which makes it sequentially consistent
respect the real-time ordering among the operations in the execution. Respecting the real-
time ordering means that if an operation O1 finishes execution before another operation O2

begins (so the operations are not concurrent with each other), then O1 must be ordered
before O2. Another way of thinking of this condition is that it requires us to be able to
identify a distinct point within each operation’s execution interval, called its linearization
point , such that if we order the operations according to the order of their linearization
points, the resulting order obeys the desired sequential semantics.

It is easy to see that the counter implementation based on a single lock is linearizable.
The state of the counter is always stored in the variable X. We define the linearization point
of each fetch-and-inc operation as the point at which it stores its incremented value to X.
The linearizability argument for the CAS-based lock-free implementation is similarly simple,
except that we use the semantics of the CAS instruction, rather than reasoning about the
lock, to conclude that the counter is incremented by one each time it is modified.

For the combining tree, it is significantly more difficult to see that the implementation
is linearizable because the state of the counter is incremented by more than one at a time,
and because the increment for one fetch-and-inc operation may in fact be performed
by another operation with which it has combined. We define the linearization points of
fetch-and-inc operations on the combining-tree-based counter as follows. When a winner
thread reaches the root of the tree and adds its accumulated value to the counter, we linearize
each of the operations with which it has combined in sequence immediately after that
point. The operations are linearized in the order of the return values that are subsequently
distributed to those operations. While a detailed linearizability proof is beyond the scope
of our presentation, it should be clear from this discussion that rigorous correctness proofs
for even simple concurrent data structures can be quite challenging.

The intuitive appeal and modularity of linearizability makes it a popular correctness
condition, and most of the concurrent data structure implementations we discuss in the
remainder of this chapter are linearizable. However, in some cases, performance and scala-
bility can be improved by satisfying a weaker correctness condition. For example, the quies-
cent consistency condition [10] drops the requirement that the total ordering of operations
respects the real-time order, but requires that every operation executed after a quiescent
state—one in which no operations are in progress—must be ordered after every operation
executed before that quiescent state. Whether an implementation satisfying such a weak
condition is useful is application-dependent. In contrast, a linearizable implementation is
always usable, because designers can view it as atomic.

1.1.6 Verification Techniques

In general, to achieve a rigorous correctness proof for a concurrent data structure implemen-
tation, we need mathematical machinery for specifying correctness requirements, accurately
modelling a concurrent data structure implementation, and ensuring that a proof that the
implementation is correct is complete and accurate. Most linearizability arguments in the
literature treat at least some of this machinery informally, and as a result, it is easy to
miss cases, make incorrect inferences, etc. Rigorous proofs inevitably contain an inordinate
amount of mundane details about trivial properties, making them tedious to write and to
read. Therefore, computer-assisted methods for verifying implementations are required.
One approach is to use a theorem prover to prove a series of assertions which together
imply that an implementation is correct. Another approach is to use model checking tools,
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void acquire(Lock *lock) { void release(Lock *lock) {
int delay = MIN_DELAY; *lock = UNOWNED;
while (true) { }

if (CAS(lock,UNOWNED,OWNED))
return;

sleep(random() % delay);
if (delay < MAX_DELAY)

delay = 2 * delay;
}

}

FIGURE 1.3: Exponential backoff lock.

which exhaustively check all possible executions of an implementation to ensure that each
one meets specified correctness conditions. The theorem proving approach usually requires
significant human insight, while model checking is limited by the number of states of an
implementation that can be explored.

1.1.7 Tools of the Trade

Below we discuss three key types of tools one can use in designing concurrent data struc-
tures: locks, barriers, and transactional synchronization mechanisms. Locks and barriers
are traditional low-level synchronization mechanisms that are used to restrict certain inter-
leavings, making it easier to reason about implementations based on them. Transactional
mechanisms seek to hide the tricky details of concurrency from programmers, allowing them
to think in a more traditional sequential way.

Locks

As discussed earlier, locks are used to guarantee mutually exclusive access to (parts of)
a data structure, in order to avoid “bad” interleavings. A key issue in designing a lock
is what action to take when trying to acquire a lock already held by another thread. On
uniprocessors, the only sensible option is to yield the processor to another thread. However,
in multiprocessors, it may make sense to repeatedly attempt to acquire the lock, because
the lock may soon be released by a thread executing on another processor. Locks based
on this technique are called spinlocks. The choice between blocking and spinning is often
a difficult one because it is hard to predict how long the lock will be held. When locks are
supported directly by operating systems or threads packages, information such as whether
the lock-holder is currently running can be used in making this decision.

A simple spinlock repeatedly uses a synchronization primitive such as compare-and-swap
to atomically change the lock from unowned to owned. As mentioned earlier, if locks are
not designed carefully, such spinning can cause heavy contention for the lock, which can
have a severe impact on performance. A common way to reduce such contention is to
use exponential backoff [3]. In this approach, which is illustrated in Figure 1.3, a thread
that is unsuccessful in acquiring the lock waits some time before retrying; repeated failures
cause longer waiting times, with the idea that threads will “spread themselves out” in time,
resulting in lower contention and less memory traffic due to failed attempts.

Exponential backoff has the disadvantage that the lock can be unowned, but all threads
attempting to acquire it have backed off too far, so none of them is making progress. One
way to overcome this is to have threads form a queue and have each thread that releases the
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lock pass ownership of the lock to the next queued thread. Locks based on this approach
are called queuelocks. Anderson [8] and Graunke and Thakkar [38] introduce array-based
queuelocks, and these implementations are improved upon by the list-based MCS queue
locks of Mellor-Crummey and Scott [97] and the CLH queue locks of Craig and Landin and
Hagersten [25, 94].

Threads using CLH locks form a virtual linked list of nodes, each containing a done flag;
a thread enters the critical section only after the done flag of the node preceding its own
node in the list is raised. The lock object has a pointer to the node at the tail of the list, the
last one to join it. To acquire the lock, a thread creates a node, sets its done flag to false
indicate that it has not yet released the critical section, and uses a synchronization primitive
such as CAS to place its own node at the tail of the list while determining the node of its
predecessor. It then spins on the done flag of the predecessor node. Note that each thread
spins on a different memory location. Thus, in a cache-based architecture, when a thread
sets its done flag to inform the next thread in the queue that it can enter the critical section,
the done flags on which all other threads are spinning are not modified, so those threads
continue to spin on a local cache line, and do not produce additional memory traffic. This
significantly reduces contention and improves scalability in such systems. However, if this
algorithm is used in a non-coherent NUMA machine, threads will likely have to spin on
remote memory locations, again causing excessive memory traffic. The MCS queuelock [97]
overcomes this problem by having each thread spin on a done flag in its own node. This
way, nodes can be allocated in local memory, eliminating the problem.

There are several variations on standard locks that are of interest to the data structure
designer in some circumstances. The queuelock algorithms discussed above have more
advanced abortable versions that allow threads to give up on waiting to acquire the lock,
for example, if they are delayed beyond some limit in a real-time application [123, 125],
or if they need to recover from deadlock. The algorithms of [123] provide an abort that
is nonblocking. Finally, [103] presents preemption-safe locks, which attempt to reduce the
negative performance effects of preemption by ensuring that a thread that is in the queue
but preempted does not prevent the lock from being granted to another running thread.

In many data structures it is desirable to have locks that allow concurrent readers. Such
reader-writer locks allow threads that only read data in the critical section (but do not
modify it) to access the critical section exclusively from the writers but concurrently with
each other. Various algorithms have been suggested for this problem. The reader-writer
queuelock algorithms of Mellor-Crummey and Scott [98] are based on MCS queuelocks and
use read counters and a special pointer to writer nodes. In [76] a version of these algo-
rithms is presented in which readers remove themselves from the lock’s queue. This is done
by keeping a doubly-linked list of queued nodes, each having its own simple “mini-lock.”
Readers remove themselves from the queuelock list by acquiring mini-locks of their neigh-
boring nodes and redirecting the pointers of the doubly-linked list. The above-mentioned
real-time queuelock algorithms of [123] provide a similar ability without locking nodes.

The reader-writer lock approach can be extended to arbitrarily many operation types
through a construct called group mutual exclusion or room synchronization. The idea
is that operations are partitioned into groups, such that operations in the same group
can execute concurrently with each other, but operations in different groups must not.
An interesting application of this approach separates push and pop operations on a stack
into different groups, allowing significant simplifications to the implementations of those
operations because they do not have to deal with concurrent operations of different types
[18]. Group mutual exclusion was introduced by Joung [69]. Implementations based on
mutual exclusion locks or fetch-and-inc counters appear in [18, 71].

More complete and detailed surveys of the literature on locks can be found in [6, 117].
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Barriers

A barrier is a mechanism that collectively halts threads at a given point in their code,
and allows them to proceed only when all threads have arrived at that point. The use
of barriers arises whenever access to a data structure or application is layered into phases
whose execution should not overlap in time. For example, repeated iterations of a numerical
algorithm that converges by iterating a computation on the same data structure or the
marking and sweeping phases of a parallel garbage collector.

One simple way to implement a barrier is to use a counter that is initialized to the
total number of threads: Each thread decrements the counter upon reaching the barrier,
and then spins, waiting for the counter to become zero before proceeding. Even if we
use the techniques discussed earlier to implement a scalable counter, this approach still
has the problem that waiting threads produce contention. For this reason, specialized
barrier implementations have been developed that arrange for each thread to spin on a
different location [21, 48, 124]. Alternatively, a barrier can be implemented using a diffusing
computation tree in the style of Dijkstra and Scholten [27]. In this approach, each thread is
the owner of one node in a binary tree. Each thread awaits the arrival of its children, then
notifies its parent that it has arrived. Once all threads have arrived, the root of the tree
releases all threads by disseminating the release information down the tree.

Transactional Synchronization Mechanisms

A key use of locks in designing concurrent data structures is to allow threads to modify
multiple memory locations atomically, so that no thread can observe partial results of an
update to the locations. Transactional synchronization mechanisms are tools that allow
the programmer to treat sections of code that access multiple memory locations as a single
atomic step. This substantially simplifies the design of correct concurrent data structures
because it relieves the programmer of the burden of deciding which locks should be held for
which memory accesses and of preventing deadlock.

As an example of the benefits of transactional synchronization, consider Figure 1.4, which
shows a concurrent queue implementation achieved by requiring operations of a simple se-
quential implementation to be executed atomically. Such atomicity could be ensured either
by using a global mutual exclusion lock, or via a transactional mechanism. However, the
lock-based approach prevents concurrent enqueue and dequeue operations from executing
in parallel. In contrast, a good transactional mechanism will allow them to do so in all but
the empty state because when the queue is not empty, concurrent enqueue and dequeue
operations do not access any memory locations in common.

The use of transactional mechanisms for implementing concurrent data structures is in-
spired by the widespread use of transactions in database systems. However, the prob-
lem of supporting transactions over shared memory locations is different from supporting
transactions over databases elements stored on disk. Thus, more lightweight support for
transactions is possible in this setting.

Kung and Robinson’s optimistic concurrency control (OCC) [80] is one example of a
transactional mechanism for concurrent data structures. OCC uses a global lock, which is
held only for a short time at the end of a transaction. Nonetheless, the lock is a sequential
bottleneck, which has a negative impact on scalability. Ideally, transactions should be
supported without the use of locks, and transactions that access disjoint sets of memory
locations should not synchronize with each other at all.

Transactional support for multiprocessor synchronization was originally suggested by Her-
lihy and Moss, who also proposed a hardware-based transactional memory mechanism for
supporting it [56]. Recent extensions to this idea include lock elision [114, 115], in which the



1-12

typedef struct qnode_s { qnode_s *next; valuetype value; } qnode_t;

shared variables:
// initially null
qnode_t *head, *tail;

void enqueue(qnode_t *n) {
atomically {

if (tail == null)
tail = head = n;

else {
tail->next = n;
tail = n;

}
}

}

qnode_t * dequeue() {
atomically {
if (head == null)

return null;
else {

n = head;
head = head->next;
if (head == null)

tail = null;
return n;

}
}

}

FIGURE 1.4: A Concurrent Shared FIFO Queue.

hardware automatically translates critical sections into transactions, with the benefit that
two critical sections that do not in fact conflict with each other can be executed in parallel.
For example, lock elision could allow concurrent enqueue and dequeue operations of the
above queue implementation to execute in parallel, even if the atomicity is implemented
using locks. To date, hardware support for transactional memory has not been built.

Various forms of software transactional memory have been proposed by Shavit and
Touitou [128], Harris et al. [44], Herlihy et al. [55], and Harris and Fraser [43].

Transactional mechanisms can easily be used to implement most concurrent data struc-
tures, and when efficient and robust transactional mechanisms become widespread, this
will likely be the preferred method. In the following sections, we mention implementations
based on transactional mechanisms only when no direct implementation is known.

1.2 Shared Counters and Fetch-and-φ Structures

Counters have been widely studied as part of a broader class of fetch-and-φ coordination
structures, which support operations that fetch the current value of a location and apply
some function from an allowable set φ to its contents. As discussed earlier, simple lock-
based implementations of fetch-and-φ structures such as counters suffer from contention and
sequential bottlenecks. Below we describe some approaches to overcoming this problem.

Combining

The combining tree technique was originally invented by Gottlieb et al. [37] to be used
in the hardware switches of processor-to-memory networks. In Section 1.1.2 we discussed
a software version of this technique, first described by Goodman et al. [36] and Yew et
al. [138], for implementing a fetch-and-add counter. (The algorithm in [138] has a slight
bug; see [52].) This technique can also be used to implement fetch-and-φ operations for a
variety of sets of combinable operations, including arithmetic and boolean operations, and
synchronization operations such as load, store, swap, test-and-set, etc. [77].

As explained earlier, scalability is achieved by sizing the tree such that the there is one
leaf node per thread. Under maximal load, the throughput of such a tree is proportional
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FIGURE 1.5: A Bitonic Counting Network of Width Four.

to O(P/ log P ) operations per time unit, offering a significant speedup. Though it is pos-
sible to construct trees with fan-out greater than two in order to reduce tree depth, that
would sacrifice the simplicity of the nodes and, as shown by Shavit and Zemach [131], will
most likely result in reduced performance. Moreover, Herlihy et al. [52] have shown that
combining trees are extremely sensitive to changes in the arrival rate of requests: as the
load decreases, threads must still pay the price of traversing the tree while attempting to
combine, but the likelihood of combining is reduced because of the reduced load.

Shavit and Zemach overcome the drawbacks of the static combining tree structures by
introducing combining funnels [131]. A combining funnel is a linearizable fetch-and-φ struc-
ture that allows combining trees to form dynamically, adapting its overall size based on load
patterns. It is composed of a (typically small) number of combining layers. Each such layer
is implemented as a collision array in memory. Threads pass through the funnel layer by
layer, from the first (widest) to the last (narrowest). These layers are used by threads to
locate each other and combine their operations. As threads pass through a layer, they read
a thread ID from a randomly chosen array element, and write their own in its place. They
then attempt to combine with the thread whose ID they read. A successful combination
allows threads to exchange information, allowing some to continue to the next layer, and
others to await their return with the resulting value. Combining funnels can also support
the elimination technique (described in Section 1.3) to allow two operations to complete
without accessing the central data structure in some cases.

Counting Networks

Combining structures provide scalable and linearizable fetch-and-φ operations. However,
they are blocking. An alternative approach to parallelizing a counter that overcomes this
problem is to have multiple counters instead of a single one, and to use a counting network
to coordinate access to the separate counters so as to avoid problems such as duplicated or
omitted values. Counting networks, introduced by Aspnes et al. [10], are a class of data
structures for implementing, in a highly concurrent and nonblocking fashion, a restricted
class of fetch-and-φ operations, the most important of which is fetch-and-inc.

Counting networks, like sorting networks [24], are acyclic networks constructed from
simple building blocks called balancers. In its simplest form, a balancer is a computing
element with two input wires and two output wires. Tokens arrive on the balancer’s input
wires at arbitrary times, and are output on its output wires in a balanced way. Given a
stream of input tokens, a balancer alternates sending one token to the top output wire, and
one to the bottom, effectively balancing the number of tokens between the two wires.

We can wire balancers together to form a network. The width of a network is its number
of output wires (wires that are not connected to an input of any balancer). Let y0, .., yw−1

respectively represent the number of tokens output on each of the output wires of a network
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of width w. A counting network is an acyclic network of balancers whose outputs satisfy
the following step property :

In any quiescent state, 0 ≤ yi − yj ≤ 1 for any i < j.

Figure 1.5 shows a sequence of tokens traversing a counting network of width four based
on Batcher’s Bitonic sorting network structure [13]. The horizontal lines are wires and the
vertical lines are balancers, each connected to two input and output wires at the dotted
points. Tokens (numbered 1 through 5) traverse the balancers starting on arbitrary input
wires and accumulate on specific output wires meeting the desired step-property. Aspnes
et al. [10] have shown that every counting network has a layout isomorphic to a sorting
network, but not every sorting network layout is isomorphic to a counting network.

On a shared memory multiprocessor, balancers are records, and wires are pointers from
one record to another. Threads performing increment operations traverse the data structure
from some input wire (either preassigned or chosen at random) to some output wire, each
time shepherding a new token through the network.

The counting network distributes input tokens to output wires while maintaining the step
property stated above. Counting is done by adding a local counter to each output wire, so
that tokens coming out of output wire i are assigned numbers i, i + w, . . . , i + (yi − 1)w.
Because threads are distributed across the counting network, there is little contention on
the balancers, and the even distribution on the output wires lowers the load on the shared
counters. However, as shown by Shavit and Zemach [129], the dynamic patterns through
the networks increase cache miss rates and make optimized layout almost impossible.

There is a significant body of literature on counting networks, much of which is surveyed
by Herlihy and Busch [22]. An empirical comparison among various counting techniques can
be found in [52]. Aharonson and Attiya [4] and Felten et al. [31] study counting networks
with arbitrary fan-in and fan-out. Shavit and Touitou [127] show how to perform decrements
on counting network counters by introducing the notion of “anti-tokens” and elimination.
Busch and Mavronicolas [23] provide a combinatorial classification of the various properties
of counting networks. Randomized counting networks are introduced by Aiello et al. [5]
and fault-tolerant networks are presented by Riedel and Bruck [118].

The classical counting network structures in the literature are lock-free but not lineariz-
able, they are only quiescently consistent. Herlihy et al. [57] show the tradeoffs involved in
making counting networks linearizable.

Klugerman and Plaxton present an optimal log w-depth counting network [73]. How-
ever, this construction is not practical, and all practical counting network implementations
have log2 w depth. Shavit and Zemach introduce diffracting trees [129], improved count-
ing networks made of balancers with one input and two output wires laid out as a binary
tree. The simple balancers of the counting network are replaced by more sophisticated
diffracting balancers that can withstand high loads by using a randomized collision array
approach, yielding lower depth counting networks with significantly improved throughput.
An adaptive diffracting tree that adapts its size to load is presented in [26].

1.3 Stacks and Queues

Stacks and queues are among the simplest sequential data structures. Numerous issues arise
in designing concurrent versions of these data structures, clearly illustrating the challenges
involved in designing data structures for shared-memory multiprocessors.
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Stacks

A concurrent stack is a data structure linearizable to a sequential stack that provides push
and pop operations with the usual LIFO semantics. Various alternatives exist for the
behavior of these data structures in full or empty states, including returning a special value
indicating the condition, raising an exception, or blocking.

Michael and Scott present several linearizable lock-based concurrent stack implementa-
tions: they are based on sequential linked lists with a top pointer and a global lock that
controls access to the stack [103]. They typically scale poorly because even if one reduces
contention on the lock, the top of the stack is a sequential bottleneck. Combining funnels
[131] have been used to implement a linearizable stack that provides parallelism under high
load. As with all combining structures, it is blocking, and it has a high overhead which
makes it unsuitable for low loads.

Treiber [134] was the first to propose a lock-free concurrent stack implementation. He
represented the stack as a singly-linked list with a top pointer and used CAS to modify
the value of the top pointer atomically. Michael and Scott [103] compare the performance
of Treiber’s stack to an optimized nonblocking algorithm based on Herlihy’s methodology
[50], and several lock-based stacks (such as an MCS lock [97]) in low load situations. They
concluded that Treiber’s algorithm yields the best overall performance, and that this per-
formance gap increases as the degree of multiprogramming grows. However, because the
top pointer is a sequential bottleneck, even with an added backoff mechanism to reduce
contention, the Treiber stack offers little scalability as concurrency increases [47].

Hendler et al. [47] observe that any stack implementation can be made more scalable using
the elimination technique of Shavit and Touitou [127]. Elimination allows pairs of operations
with reverse semantics—like pushes and pops on a stack—to complete without any central
coordination, and therefore substantially aids scalability. The idea is that if a pop operation
can find a concurrent push operation to “partner” with, then the pop operation can take the
push operation’s value, and both operations can return immediately. The net effect of each
pair is the same as if the push operation was followed immediately by the pop operation,
in other words, they eliminate each other’s effect on the state of the stack. Elimination can
be achieved by adding a collision array from which each operation chooses a location at
random, and then attempts to coordinate with another operation that concurrently chose
the same location [127]. The number of eliminations grows with concurrency, resulting in
a high degree of parallelism. This approach, especially if the collision array is used as an
adaptive backoff mechanism on the shared stack, introduces a high degree of parallelism
with little contention [47], and delivers a scalable lock-free linearizable stack.

There is a subtle point in the Treiber stack used in the implementations above that is
typical of many CAS-based algorithms. Suppose several concurrent threads all attempt a
pop operation that removes the first element, located in some node “A,” from the list by
using a CAS to redirect the head pointer to point to a previously-second node “B.” The
problem is that it is possible for the list to change completely just before a particular pop
operation attempts its CAS, so that by the time it does attempt it, the list has the node “A”
as the first node as before, but the rest of the list including “B” is in a completely different
order. This CAS of the head pointer from “A” to “B” may now succeed, but “B” might be
anywhere in the list and the stack will behave incorrectly. This is an instance of the “ABA”
problem [111], which plagues many CAS-based algorithms. To avoid this problem, Treiber
augments the head pointer with a version number that is incremented every time the head
pointer is changed. Thus, in the above scenario, the changes to the stack would cause the
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CAS to fail, thereby eliminating the ABA problem.4

Queues

A concurrent queue is a data structure linearizable to a sequential queue that provides
enqueue and dequeue operations with the usual FIFO semantics.

Michael and Scott [103] present a simple lock-based queue implementation that improves
on the naive single-lock approach by having separate locks for the head and tail pointers
of a linked-list-based queue. This allows an enqueue operation to execute in parallel with
a dequeue operation (provided we avoid false sharing by placing the head and tail locks in
separate cache lines). This algorithm is quite simple, with one simple trick: a “dummy”
node is always in the queue, which allows the implementation to avoid acquiring both the
head and tail locks in the case that the queue is empty, and therefore it avoids deadlock.

It is a matter of folklore that one can implement an array-based lock-free queue for a
single enqueuer thread and a single dequeuer thread using only load and store operations
[82]. A linked-list-based version of this algorithm appears in [46]. Herlihy and Wing [58]
present a lock-free array-based queue that works if one assumes an unbounded size array. A
survey in [103] describes numerous flawed attempts at devising general (multiple enqueuers,
multiple dequeuers) nonblocking queue implementations. It also discusses some correct
implementations that involve much more overhead than the ones discussed below.

Michael and Scott [103] present a linearizable CAS-based lock-free queue with parallel
access to both ends. The structure of their algorithm is very simple and is similar to the
two-lock algorithm mentioned above: it maintains head and tail pointers, and always keeps
a dummy node in the list. To avoid using a lock, the enqueue operation adds a new node
to the end of the list using CAS, and then uses CAS to update the tail pointer to reflect the
addition. If the enqueue is delayed between these two steps, another enqueue operation
can observe the tail pointer “lagging” behind the end of the list. A simple helping technique
[50] is used to recover from this case, ensuring that the tail pointer is always behind the
end of the list by at most one element.

While this implementation is simple and efficient enough to be used in practice, it does
have a disadvantage. Operations can access nodes already removed from the list, and
therefore the nodes cannot be freed. Instead, they are put into a freelist—a list of nodes
stored for reuse by future enqueue operations—implemented using Treiber’s stack. This
use of a freelist has the disadvantage that the space consumed by the nodes in the freelist
cannot be freed for arbitrary reuse. Herlihy et al. [53] and Michael [101] have presented
nonblocking memory management techniques that overcome this disadvantage.

It is interesting to note that the elimination technique is not applicable to queues: we
cannot simply pass a value from an enqueue operation to a concurrent dequeue operation,
because this would not respect the FIFO order with respect to other values in the queue.

Deques

A concurrent double-ended queue (deque) is a linearizable concurrent data structure that
generalizes concurrent stacks and queues by allowing pushes and pops at both ends [74].

4Note that the version number technique does not technically eliminate the ABA problem because the
version number can wrap around; see [106] for a discussion of the consequences of this point in practice,
and also a “bounded tag” algorithm that eliminates the problem entirely, at some cost in space and
time.
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As with queues, implementations that allow operations on both ends to proceed in parallel
without interfering with each other are desirable.

Lock-based deques can be implemented easily using the same two-lock approach used
for queues. Given the relatively simple lock-free implementations for stacks and queues, it
is somewhat surprising that there is no known lock-free deque implementation that allows
concurrent operations on both ends. Martin et al. [96] provide a summary of concurrent
deque implementations, showing that, even using nonconventional two-word synchronization
primitives such as double-compare-and-swap (DCAS) [107], it is difficult to design a lock-
free deque. The only known nonblocking deque implementation for current architectures
that supports noninterfering operations at opposite ends of the deque is an obstruction-free
CAS-based implementation due to Herlihy et al. [54].

1.4 Pools

Much of the difficulty in implementing efficient concurrent stacks and queues arises from the
ordering requirements on when an element that has been inserted can be removed. A con-
current pool [95] is a data structure that supports insert and delete operations, and allows
a delete operation to remove any element that has been inserted and not subsequently
deleted. This weaker requirement offers opportunities for improving scalability.

A high-performance pool can be built using any quiescently consistent counter implemen-
tation [10, 129]. Elements are placed in an array, and a fetch-and-inc operation is used to
determine in which location an insert operation stores its value, and similarly from which
location a delete operation takes its value. Each array element contains a full/empty bit or
equivalent mechanism to indicate if the element to be removed has already been placed in
the location. Using such a scheme, any one of the combining tree, combining funnel, count-
ing network, or diffracting tree approaches described above can be used to create a high
throughput shared pool by parallelizing the main bottlenecks: the shared counters. Alter-
natively, a “stack like” pool can be implemented by using a counter that allows increments
and decrements, and again using one of the above techniques to parallelize it.

Finally, the elimination technique discussed earlier is applicable to pools constructed
using combining funnels, counting networks, or diffracting trees: if insert and delete
operations meet in the tree, the delete can take the value being inserted by the insert
operation, and both can leave without continuing to traverse the structure. This technique
provides high performance under high load.

The drawback of all these implementations is that they perform rather poorly under low
load. Moreover, when used for work-load distribution [9, 19, 119], they do not allow us to
exploit locality information, as pools designed specifically for work-load distribution do.

Workload distribution (or load balancing) algorithms involve a collection of pools of units
of work to be done; each pool is local to a given processor. Threads create work items
and place them in local pools, employing a load balancing algorithm to ensure that the
number of items in the pools is balanced. This avoids the possibility that some processors
are idle while others still have work in their local pools. There are two general classes of
algorithms of this type: work sharing [46, 119] and work stealing [9, 19]. In a work sharing
scheme, each processor attempts to continuously offload work from its pool to other pools.
In work stealing, a thread that has no work items in its local pool steals work from other
pools. Both classes of algorithms typically use randomization to select the pool with which
to balance or the target pool for stealing.

The classical work stealing algorithm is due to Arora et al. [9]. It is based on a lock-free
construction of a deque that allows operations by only one thread (the thread to which
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P: delete(b)
...CAS(&a.next,b,c)...

Q: delete(c)
...CAS(&b.next,c,d)...

b d

c

a

b c da

P: delete(b)
...CAS(&a.next,b,d)...

Q: insert(c)
...CAS(&b.next,d,c)...

Problem: node c not inserted

Problem: node c not deleted

FIGURE 1.6: CAS-based list manipulation is hard. In both examples, P is deleting b from
the list (the examples slightly abuse CAS notation). In the upper example, Q is trying to
insert c into the list, and in the lower example, Q is trying to delete c from the list. Circled
locations indicate the target addresses of the CAS operations; crossed out pointers are the
values before the CAS succeeds.

the pool is local) at one end of the deque, allowing only pop operations at the other end,
and allowing concurrent pop operations at that end to “abort” if they interfere. A deque
with these restrictions is suitable for work stealing, and the restrictions allow a simple
implementation in which the local thread can insert and delete using simple low-cost load
and store operations, resorting to a more expensive CAS operation only when it competes
with the remote deleters for the last remaining item in the queue.

It has been shown that in some cases it is desirable to steal more than one item at a
time [15, 104]. A nonblocking multiple-item work-stealing algorithm due to Hendler and
Shavit appears in [45]. It has also been shown that in some cases it desirable to use affinity
information of work items in deciding which items to steal. A locality-guided work stealing
algorithm due to Acar et al. appears in [1].

1.5 Linked Lists

Consider implementations of concurrent search structures supporting insert, delete, and
search operations. If these operations deal only with a key value, then the resulting data
structure is a set ; if a data value is assosciated with each key, we have a dictionary [24].
These are closely related data structures, and a concurrent set implementation can often
be adapted to implement a dictionary. In the next three sections, we concentrate on imple-
menting sets using different structures: linked lists, hash tables, and trees.

Suppose we use a linked list to implement a set. Apart from globally locking the linked
list to prevent concurrent manipulation, the most popular approach to concurrent lock-
based linked lists is hand-over-hand locking (sometimes called lock coupling) [14, 90]. In
this approach, each node has an associated lock. A thread traversing the linked list releases
a node’s lock only after acquiring the lock of the next node in the list, thus preventing
overtaking which may cause unnoticed removal of a node. This approach reduces lock
granularity but significantly limits concurrency because insertions and deletions at disjoint
list locations may delay each other.

One way to overcome this problem is to design lock-free linked lists. The difficulty in
implementing a lock-free ordered linked list is ensuring that during an insertion or deletion,
the adjacent nodes are still valid, i.e., they are still in the list and are still adjacent. As
Figure 1.6 shows, designing such lock-free linked lists is not a straightforward matter.

The first CAS-based lock-free linked list is due to Valois [136], who uses a special auxiliary
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node in front of every regular node to prevent the undesired phenomena depicted in Fig-
ure 1.6. Valois’s algorithm is correct when combined with a memory management solution
due to Michael and Scott [102], but this solution is not practical. Harris [42] presents a
lock-free list that uses a special “deleted” bit that is accessed atomically with node pointers
in order to signify that a node has been deleted; this scheme is applicable only in garbage
collected environments. Michael [100] overcomes this disadvantage by modifying Harris’s
algorithm to make it compatible with memory reclamation methods [53, 101].

1.6 Hash Tables

A typical extensible hash table is a resizable array of buckets, each holding an expected
constant number of elements, and thus requiring on average a constant time for insert,
delete and search operations [24]. The principal cost of resizing—the redistribution of
items between old and new buckets—is amortized over all table operations, thus keeping
the cost of operations constant on average. Here resizing means extending the table, as it
has been shown that as a practical matter, hash tables need only increase in size [59].

Michael [100] shows that a concurrent non-extensible hash table can be achieved by plac-
ing a read-write lock on every bucket in the table. However, to guarantee good performance
as the number of elements grows, hash tables must be extensible [30].

In the eighties, Ellis [29] and others [59, 78] extended the work of Fagin et al. [30] by
designing an extensible concurrent hash table for distributed databases based on two-level
locking schemes. A recent extensible hash algorithm by Lea [89] is known to be highly
efficient in non-multiprogrammed environments [126]. It is based on a version of Litwin’s
sequential linear hashing algorithm [92]. It uses a locking scheme that involves a small
number of high-level locks rather than a lock per bucket, and allows concurrent searches
while resizing the table, but not concurrent inserts or deletes. Resizing is performed as a
global restructuring of all buckets when the table size needs to be doubled.

Lock-based extensible hash-table algorithms suffer from all of the typical drawbacks of
blocking synchronization, as discussed earlier. These problems become more acute because
of the elaborate “global” process of redistributing the elements in all the hash table’s buckets
among newly added buckets. Lock-free extensible hash tables are thus a matter of both
practical and theoretical interest.

As described in Section 1.5, Michael [100] builds on the work of Harris [42] to provide an
effective CAS-based lock-free linked list implementation. He then uses this as the basis for a
lock-free hash structure that performs well in multiprogrammed environments: a fixed-sized
array of hash buckets, each implemented as a lock-free list. However, there is a difficulty in
making a lock-free array of lists extensible since it is not obvious how to redistribute items
in a lock-free manner when the bucket array grows. Moving an item between two bucket
lists seemingly requires two CAS operations to be performed together atomically, which is
not possible on current architectures.

Greenwald [39] shows how to implement an extensible hash table using his two-handed
emulation technique. However, this technique employs a DCAS synchronization operation,
which is not available on current architectures, and introduces excessive amounts of work
during global resizing operations.

Shalev and Shavit [126] introduce a lock-free extensible hash table which works on current
architectures. Their key idea is to keep the items in a single lock-free linked list instead of a
list per bucket. To allow operations fast access to the appropriate part of the list, the Shalev-
Shavit algorithm maintains a resizable array of “hints” (pointers into the list); operations use
the hints to find a point in the list that is close to the relevant position, and then follow list
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pointers to find the position. To ensure a constant number of steps per operation on average,
finer grained hints must be added as the number of elements in the list grows. To allow these
hints to be installed simply and efficiently, the list is maintained in a special recursive split
ordering . This technique allows new hints to be installed incrementally, thereby eliminating
the need for complicated mechanisms for atomically moving items between buckets, or
reordering the list.

1.7 Search Trees

A concurrent implementation of any search tree can be achieved by protecting it using a
single exclusive lock. Concurrency can be improved somewhat by using a reader-writer lock
to allow all read-only (search) operations to execute concurrently with each other while
holding the lock in shared mode, while update (insert or delete) operations exclude all
other operations by acquiring the lock in exclusive mode. If update operations are rare, this
may be acceptable, but with even a moderate number of updates, the exclusive lock for
update operations creates a sequential bottleneck that degrades performance substantially.
By using fine-grained locking strategies—for example by using one lock per node, rather
than a single lock for the entire tree—we can improve concurrency further.

Kung and Lehman [79] present a concurrent binary search tree implementation in which
update operations hold only a constant number of node locks at a time, and these locks
only exclude other update operations: search operations are never blocked. However, this
implementation makes no attempt to keep the search tree balanced. In the remainder of
this section, we focus on balanced search trees, which are considerably more challenging.

As a first step towards more fine-grained synchronization in balanced search tree imple-
mentations, we can observe that it is sufficient for an operation to hold an exclusive lock on
the subtree in which it causes any modifications. This way, update operations that modify
disjoint subtrees can execute in parallel. We briefly describe some techniques in this spirit
in the context of B+-trees. Recall that in B+-trees, all keys and data are stored in leaf
nodes; internal nodes only maintain routing information to direct operations towards the
appropriate leaf nodes. Furthermore, an insertion into a leaf may require the leaf to be split,
which may in turn require a new entry to be added to the leaf’s parent, which itself may
need to be split to accommodate the new entry. Thus, an insertion can potentially result
in modifying all nodes along the path from the root to the leaf. However, such behavior is
rare, so it does not make sense to exclusively lock the whole path just in case this occurs.

As a first step to avoiding such conservative locking strategies, we can observe that if an
insert operation passes an internal B+-tree node that is not full, then the modifications it
makes to the tree cannot propagate past that node. In this case, we say that the node is safe
with respect to the insert operation. If an update operation encounters a safe node while
descending the tree acquiring exclusive locks on each node it traverses, it can safely release
the locks on all ancestors of that node, thereby improving concurrency by allowing other
operations to traverse those nodes [99, 121]. Because search operations do not modify the
tree, they can descend the tree using lock coupling: as soon as a lock has been acquired on
a child node, the lock on its parent can be released. Thus, search operations hold at most
two locks (in shared mode) at any point in time, and are therefore less likely to prevent
progress by other operations.

This approach still requires each update operation to acquire an exclusive lock on the
root node, and to hold the lock while reading a child node, potentially from disk, so the
root is still a bottleneck. We can improve on this approach by observing that most update
operations will not need to split or merge the leaf node they access, and will therefore
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eventually release the exclusive locks on all of the nodes traversed on the way to the leaf.
This observation suggests an “optimistic” approach in which we descend the tree acquiring
the locks in shared mode, acquiring only the leaf node exclusively [14]. If the leaf does
not need to be split or merged, the update operation can complete immediately; in the
rare cases in which changes do need to propagate up the tree, we can release all of the
locks and then retry with the more pessimistic approach described above. Alternatively,
we can use reader-writer locks that allow locks held in a shared mode to be “upgraded”
to exclusive mode. This way, if an update operation discovers that it does need to modify
nodes other than the leaf, it can upgrade locks it already holds in shared mode to exclusive
mode, and avoid completely restarting the operation from the top of the tree [14]. Various
combinations of the above techniques can be used because nodes near the top of the tree
are more likely to conflict with other operations and less likely to be modified, while the
opposite is true of nodes near the leaves [14].

As we employ some of the more sophisticated techniques described above, the algorithms
become more complicated, and it becomes more difficult to avoid deadlock, resulting in
even further complications. Nonetheless, all of these techniques maintain the invariant that
operations exclusively lock the subtrees that they modify, so operations do not encounter
states that they would not encounter in a sequential implementation. Significant improve-
ments in concurrency and performance can be made by relaxing this requirement, at the
cost of making it more difficult to reason that the resulting algorithms are correct.

A key difficulty we encounter when we attempt to relax the strict subtree locking schemes
is that an operation descending the tree might follow a pointer to a child node that is
no longer the correct node because of a modification by a concurrent operation. Various
techniques have been developed that allow operations to recover from such “confusion”,
rather than strictly avoiding it.

An important example in the context of B+-trees is due to Lehman and Yao [91], who
define Blink-trees: B+-trees with “links” from each node in the tree to its right neighbor at
the same level of the tree. These links allow us to “separate” the splitting of a node from
modifications to its parent to reflect the splitting. Specifically, in order to split a node n,
we can create a new node n′ to its right, and install a link from n to n′. If an operation that
is descending the tree reaches node n while searching for a key position that is now covered
by node n′ due to the split, the operation can simply follow the link from n to n′ to recover.
This allows a node to be split without preventing access by concurrent operations to the
node’s parent. As a result, update operations do not need to simultaneously lock the entire
subtree they (potentially) modify. In fact, in the Lehman-Yao algorithm, update operations
as well as search operations use the lock coupling technique so that no operation ever holds
more than two locks at a time, which significantly improves concurrency. This technique
has been further refined, so that operations never hold more than one lock at a time [120].

Lehman and Yao do not address how nodes can be merged, instead allowing delete oper-
ations to leave nodes underfull. They argue that in many cases delete operations are rare,
and that if space utilization becomes a problem, the tree can occasionally be reorganized
in “batch” mode by exclusively locking the entire tree. Lanin and Shasha [84] incorporate
merging into the delete operations, similarly to how insert operations split overflowed
nodes in previous implementations. Similar to the Lehman-Yao link technique, these imple-
mentations use links to allow recovery by operations that have mistakenly reached a node
that has been evacuated due to node merging.

In all of the algorithms discussed above, the maintenance operations such as node splitting
and merging (where applicable) are performed as part of the regular update operations.
Without such tight coupling between the maintenance operations and the regular operations
that necessitate them, we cannot guarantee strict balancing properties. However, if we relax
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the balance requirements, we can separate the tree maintenance work from the update
operations, resulting in a number of advantages that outweigh the desire to keep search
trees strictly balanced. As an example, the Blink-tree implementation in [120] supports
a compression process that can run concurrently with regular operations to merge nodes
that are underfull. By separating this work from the regular update operations, it can be
performed concurrently by threads running on different processors, or in the background.

The idea of separating rebalancing work from regular tree operations was first suggested
for red-black trees [40], and was first realized in [72] for AVL trees [2] supporting insert and
search operations. An implementation that also supports delete operations is provided
in [109]. These implementations improve concurrency by breaking balancing work down
into small, local tree transformations that can be performed independently. Analysis in
[85] shows that with some modifications, the scheme of [109] guarantees that each update
operation causes at most O(log N) rebalancing operations for an N -node AVL tree. Similar
results exist for B-trees [88, 109] and red-black trees [20, 108].

The only nonblocking implementations of balanced search trees have been achieved using
Dynamic Software Transactional Memory mechanisms [33, 55]. These implementations use
transactions translated from sequential code that performs rebalancing work as part of
regular operations.

The above brief survey covers only basic issues and techniques involved with implementing
concurrent search trees. To mention just a few of the numerous improvements and exten-
sions in the literature, [105] addresses practical issues for the use of B+-trees in commercial
database products, such as recovery after failures; [75] presents concurrent implementations
for generalized search trees (GiSTs) that facilitate the design of search trees without repeat-
ing the delicate work involved with concurrency control; and [86, 87] present several types
of trees that support the efficient insertion and/or deletion of a group of values. Pugh [112]
presents a concurrent version of his skiplist randomized search structure [113]. Skiplists are
virtual tree structures consisting of multiple layers of linked lists. The expected search time
in a skiplist is logarithmic in the number of elements in it. The main advantage of skiplists
is that they do not require rebalancing: insertions are done in a randomized fashion that
keeps the search tree balanced.

Empirical and analytical evaluations of concurrent search trees and other data structures
can be found in [41, 67].

1.8 Priority Queues

A concurrent priority queue is a data structure linearizable to a sequential priority queue
that provides insert and delete-min operations with the usual priority queue semantics.

Heap-Based Priority Queues

Many of the concurrent priority queue constructions in the literature are linearizable ver-
sions of the heap structures described earlier in this book. Again, the basic idea is to use
fine-grained locking of the individual heap nodes to allow threads accessing different parts
of the data structure to do so in parallel where possible. A key issue in designing such
concurrent heaps is that traditionally insert operations proceed from the bottom up and
delete-min operations from the top down, which creates potential for deadlock. Biswas
and Brown [17] present such a lock-based heap algorithm assuming specialized “cleanup”
threads to overcome deadlocks. Rao and Kumar [116] suggest to overcome the drawbacks of
[17] using an algorithm that has both insert and delete-min operations proceed from the
top down. Ayani [11] improved on their algorithm by suggesting a way to have consecutive
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insertions be performed on opposite sides of the heap. Jones [68] suggests a scheme similar
to [116] based on a skew heap.

Hunt et al. [61] present a heap-based algorithm that overcomes many of the limitations
of the above schemes, especially the need to acquire multiple locks along the traversal path
in the heap. It proceeds by locking for a short duration a variable holding the size of the
heap and a lock on either the first or last element of the heap. In order to increase paral-
lelism, insertions traverse the heap bottom-up while deletions proceed top-down, without
introducing deadlocks. Insertions also employ a left-right technique as in [11] to allow them
to access opposite sides on the heap and thus minimize interference.

On a different note, Huang and Weihl [60] show a concurrent priority queue based on a
concurrent version of Fibonacci Heaps [34].

Nonblocking linearizable heap-based priority queue algorithms have been proposed by
Herlihy [50], Barnes [12], and Israeli and Rappoport [65]. Sundell and Tsigas [133] present
a lock-free priority queue based on a lock-free version of Pugh’s concurrent skiplist [112].

Tree-Based Priority Pools

Huang and Weihl [60] and Johnson [66] describe concurrent priority pools: priority queues
with relaxed semantics that do not guarantee linearizability of the delete-min operations.
Their designs are both based on a modified concurrent B+-tree implementation. Johnson
introduces a “delete bin” that accumulates values to be deleted and thus reduces the load
when performing concurrent delete-min operations. Shavit and Zemach [130] show a
similar pool based on Pugh’s concurrent skiplist [112] with an added “delete bin” mechanism
based on [66]. Typically, the weaker pool semantics allows for increased concurrency. In
[130] they further show that if the size of the set of allowable keys is bounded (as is often
the case in operating systems) a priority pool based on a binary tree of combining funnel
nodes can scale to hundreds (as opposed to tens) of processors.

1.9 Summary

We have given an overview of issues related to the design of concurrent data structures for
shared-memory multiprocessors, and have surveyed some of the important contributions in
this area. Our overview clearly illustrates that the design of such data structures provides
significant challenges, and as of this writing, the maturity of concurrent data structures
falls well behind that of sequential data structures. However, significant progress has been
made towards understanding key issues and developing new techniques to facilitate the
design of effective concurrent data structures; we are particularly encouraged by renewed
academic and industry interest in stronger hardware support for synchronization. Given
new understanding, new techniques, and stronger hardware support, we believe significant
advances in concurrent data structure designs are likely in the coming years.
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