
CONCURRENT DESIGN ERROR SIMULATION FOR HIGH-LEVEL 
MICROPROCESSOR IMPLEMENTATIONS 

Jorge Campos 
University of California 

One Shields Ave 
Davis, CA 95616 

jcampos@ece.ucdavis.edu 

Hussain Al-Asaad 
University of California 

One Shields Ave 
Davis, CA 95616 

halasaad@ece.ucdavis.edu 
 
 
 

Abstract — A high-level concurrent design 
error simulator that can handle various design 
error/fault models is presented. The simulator 
is a vital building block of a new promising 
method of high-level testing and design vali-
dation that aims at explicit design error/fault 
modeling, design error simulation, and model-
directed test pattern generation. We first de-
scribe how signals are represented in our 
concurrent fault simulation and the method of 
performing operations on these signals. We 
then describe how to handle the challenges in 
executing conditional statements when the 
signals used by the statements are augmented 
by an error/fault list. We further describe the 
method in which the error models are embed-
ded into the simulator such that the result of a 
concurrent simulation matches that of a se-
quence of HDL simulations with the set of er-
rors/faults inserted manually one by one. We 
finally demonstrate the application of our con-
current design error simulator on a typical Mo-
torola microprocessor. Our simulator was able 
to detect all detectable and modeled design 
errors/faults for a given test sequence and 
was able to reveal valuable information about 
the behavior of erroneous designs. 

INTRODUCTION 

Modern microprocessor implementations have 
become dependent on intricate instruction flow 
techniques and functional units to promote peak 
instruction throughput. These implementations, 
however critical for performance, result in proces-
sors that are more difficult to validate in their pre-
liminary design stages, and are more difficult to 
test after fabrication. As a result of the increase in 
complexity of modern microprocessor implemen-
tations, extensive analysis needs to be done at 

the preliminary design stages to expose design 
errors and testing complications prior to design 
layout and fabrication. Given that preliminary mi-
croarchitecture implementations are developed 
under a high-level hardware description language 
(HDL) such as VHDL or Verilog HDL, it has be-
come important to develop the tools that are ca-
pable of effectively validating and analyzing the 
testability of these high-level implementations. 
 
Mutation-based validation techniques attempt to 
circumvent the complexity problem introduced by 
exploring any coverage measure exhaustively by 
using models for design errors as guidance. Error 
modeling is used to create an artificial collection of 
simple design errors that span throughout the 
corner cases of an implementation. As a conse-
quence to the coupling effect between simple and 
complex design errors [1], a test sequence that is 
capable of detecting these known simple errors is 
implicitly capable of detecting complex design er-
rors as well. Therefore, one application for our 
concurrent error model simulator is to grade a test 
sequence’s ability to traverse the design space by 
concurrently and efficiently applying it to the com-
plete set of simple design errors and reporting its 
coverage. The design error model used for this 
paper is described later in the paper. 
 
One other promising application of mutation-
based circuit simulation is that of mutation-based 
testing. Testing efforts require a coverage meas-
ure that is capable of affecting the maximal set of 
possible physical fault sites. Once this is defined, 
an error model can be designed to span the com-
plete coverage measure. These error models, 
known as physical fault models, can be used in 
conjunction with our concurrent error model simu-
lator to grade a test sequence’s ability to detect 

1



possible physical faults and to give an architect 
valuable statistics on his implementation. 
 
It is the goal of this paper to demonstrate that con-
current simulation of a large set of modeled 
design errors can be performed on a synthesiz-
able HDL design. The rest of the paper is organ-
ized as follows. We first describe related work and 
then describe how signals are implemented and 
how operations on signals are executed to sup-
port our concurrent design error simulation. Then 
we introduce the problem encountered when 
propagating fault lists across condition state-
ments, and we present a technique for handling 
conditional statements. We then briefly discuss 
the method in which the simulator is orchestrated, 
and we discuss the method in which the error 
models are embedded into the simulation such 
that concurrent error simulation generates identi-
cal results to sequential error simulation. Finally, 
we discuss how error models can be used for sys-
tem validation and present the results obtained 
from our simulation experiments. The notion of the 
affected signal threshold and its relevance to our 
research is also discussed. 

RELATED WORK 

Analysis of controllability and observability meas-
ures through concurrent simulation methods has 
been previously investigated via a tag simulation 
calculus [2]. Under this simulation method, a sin-
gle tag is propagated throughout the simulation to 
designate a possible change in a signal value due 
to an error. This method, however, results in an 
estimation of observability given that mutations on 
a signal are represented by a ∆ tag that only 
represents a positive or negative polarity. Fur-
thermore, this method requires the modification of 
the hardware description when condition state-
ments are involved in order to compute the effects 
of the fault model when it causes the wrong path 
to be taken. The methods in [3] are an improve-
ment as behavioral fault simulations are imple-
mented with fault lists such that Petri Nets are 
used to propagate the fault lists in their event-
triggered simulation environment. They fell short 
of creating a concurrent fault simulation environ-
ment because they use a fault free simulation 
phase to guide the subsequent simulation with 
fault-list propagation phase. Other related papers 
discuss methods of generating mutations of a 
hardware description as a means to find a test 
pattern that can distinguish a program from its 
faulty versions [4][5], but rely on a sequential 

simulation approach for the set of mutant imple-
mentations. 
 
One concern raised from performing fault simula-
tions on HDL implementations comes from the 
loss of resolution in the fault model due to the ab-
straction in the implementation. This concern is 
alleviated by related research that shows how the 
results of fault simulation on HDL implementations 
are comparable to those of performing fault simu-
lation on gate-level implementations [6]. These 
results are therefore a basis to performing pre-
liminary fault simulations on HDL implementations 
as a means to detect testing bottlenecks prior to 
the migration of the implementation to a lower 
level of abstraction where modifications become 
more costly. 

FAULT-LIST ENABLED SIGNALS 

The initial step in developing our high-level con-
current error simulator consists of determining 
how a signal should maintain its fault list, and how 
the basic signal operations should be performed 
on the complete fault lists. To accomplish this, a 
signal is first defined as an object that consists of 
a fault-free value along with a list of mutant val-
ues, where each mutant m in the signal S is a re-
sult of the corresponding parent error model. We 
denote the parent error model of a mutant value m 
by π(m) such that ∀mi in the signal S: Π(S) = 
∪i π(mi). It is common that aliasing occurs be-
tween the fault-free value and one or more mutant 
values, in which case it is advantageous to col-
lapse the error lists as a means to reduce the 
memory demand and the number of operations 
required by each list. 
 
Our simulator takes as input a collection of error 
models E which are used to generate and insert a 
mutant into a specific fault site when appropriate. 
Let ai be the set of fault values in signal A, such 
that ai=0 denotes the fault-free value and ai≠0 de-
notes the mutant value associated with the error 
model π(ai) that has an ID value i. Let a○b denote 
an arbitrary operation on two signal values, and 
let A○B denote the same arbitrary operation per-
formed over all signal values ai and bi in signals A 
and B, respectively, such that an operation ai○bj,i≠j 
is not allowed because an operation cannot be 
performed across design error models. In the 
case where Π(A) ≠ Π(Β), a request for an implicit 
(non-existent) mutant value ai≠0 results in the gen-
eration of the requested value from the fault-free 
value. We will denote the generation process by 

2



a0→i. In the rest of this paper, a value generated 
from the fault-free value is referred to as an im-
plicit value and a value extracted directly from the 
fault list is referred to as an explicit value. 
 
There is no distinction between an aliased mutant 
value and a mutant value corresponding to an 
error model that has not been activated, therefore 
we can assume that any mutant value not present 
in a fault list has been aliased, and it is correct to 
generate the corresponding mutant value from the 
implied fault-free value upon demand. This allows 
us to perform an operation across two fault lists 
that don’t contain mutant values from the exact 
set of error models, and we can describe this op-
eration by the following equation: 
 
Z = A○B: 

Z = ∪{ai○bi} (2.1)
 ∀πi ∈ Π(A) ∪ Π(B)  i 

 
To illustrate the above equation, let us consider 
the example where A={a0, a3, a5} and B={b0, b4, 
b5}. The operation Z=A○B is decomposed into the 
set of sub-operations {z0=a0○b0, z3=a3○b0→3, 
z4=a0→4○b4, z5=a5○b5} as depicted in Figure 1. Fur-
thermore, if the value generated by the operation 
a5○b5 is aliased by the value generated by the 
operation a0○b0, then the resulting set of values in 
signal Z will be Z={z0, z3, z4} after fault collapsing. 
 
We next describe the basic operations on fault 
lists. 
 
INSERT_MUTANT (L, m): 
Inserts the mutant m into the fault-list L while pre-
serving fault-collapsing and L’s ordering of in-
creasing mutant ID. Each fault list is implemented 
by a linked list of mutant values, and is referenced 

by a starting pointer and an ending pointer. This 
configuration allows for an insertion to the end of 
the fault list to be completed in Ο(1) time. Other-
wise if the mutant being inserted belongs some-
where within the fault list, the insertion is com-
pleted in Ο(n), where n is the current size of the 
fault list. INSERT_MUTANT is typically called 
from either an operation on a signal, or from the 
mutant generator itself. The mutant generator only 
executes at most once per simulation iteration, 
thus if only basic operations are being performed 
on signals, then the many Ο(1) time insertions by 
operations on signals far outweighs the few Ο(n) 
insertions by the mutant generator. 
 
ARBITRARY_OPERATION (f, L1, L2): 
Performs the basic arbitrary operation f on all 
items of the fault lists L1 and L2 by the rules de-
scribed earlier, such that f is a simple operation 
assumed to execute in Ο(1) time. Given that the 
items in each fault list are sorted in the order of 
increasing error model ID, this operation is best 
implemented by assigning a traveling pointer to 
each input list and traversing these lists in the or-
der of increasing ID. This technique allows the 
arbitrary operator to execute in linear time be-
cause INSERT_MUTANT can insert a mutant m 
into a list L in Ο(1) time if m belongs at the end of 
L. Therefore, performing an operation f on all 
items of the operand lists L1 and L2 takes Ο(|L1| 
+ |L2|) time. 
 
Other operations critical to high-level hardware 
descriptions are more difficult to implement than 
that of the arbitrary operator, and do not run in 
linear time, such as operations on signal arrays. 
The index of the array is a signal implemented by 
a fault-list, thus the value accessed by the index is 
the union of the values accessed from the fault-
free index location with the mutant values ac-
cessed from every mutant index location. In other 
words, the operations on signal arrays can be rep-
resented by: 
 
A = M[X]: (2.2) 
∀ i ∈ Π(M[x0])–Π(X),

∀ j ∈ Π(X)
A = M[x0]0 ∪ M[x0]i ∪ M[xj]j 

i
   

j 
M[X]=A: (2.3) 

∀ i ∈ Π(A)–Π(X),  M[x0] = a0 ∪ ai 
i 

∀ j ∈ Π(X)  M[xj] = (M[xj]–M[xj]j) ∪ aj 
j 

A B 

b5 
a4 

b4 
a3 

b3 
a0 

b0 

z5 

z4 

z3 

z0 

 
 
 
 z4

z3

z0

Z 

a0→4 
b0→3 

a5 

Input 
signals 

Mutant 
value 

generation 

Individual 
operations 

Mutant value 
insertion with 
alias checking

Figure 1. Implementation of an arbitrary operator.

3



CONDITION STATEMENTS 

The next important step in the development of our 
concurrent error simulator for high-level hardware 
descriptions required the conceptualization of a 
method to implement conditional execution on 
signals containing a fault list. The problem of exe-
cuting a statement based on a fault list enabled 
condition is that the condition will be met by some 
of the error models and not by others. As a result, 
the fault list of the signals in the condition state-
ment must be split into two partitions: the set of 
error models that meet the condition, and the set 
of error models that do not. 
 
When executing a condition statement, the follow-
ing actions need to be performed by the simulator: 

i) The condition needs to be evaluated using 
comparison operators as described earlier, 
resulting in the creation of a Boolean fault list. 

ii) All the signals used within the condition 
statement need to be initialized via partitioning 
such that the target partition for each fault-list 
item is specified in the condition fault list. 

iii) The TRUE partition of each signal is used 
within the then portion of the condition state-
ment, and the FALSE partition of each signal 
is used within the else portion of the condition 
statement. 

iv) Upon termination of the condition statement, 
all initialized signals must have their fault list 
re-built via the recombination process. The 
partition that corresponds to the fault-free 
condition (C0) is merged with the values ex-
tracted from the other partition that are explic-
itly identified by the condition fault list 

 
Let us analyze the scenario provided in Figure 2.  
Notice that the presence of C1 in the condition 
variable is used by the simulator to generate the 

mutant value B1 from B’s FALSE partition during 
the recombination phase in step (iv). A similar op-
eration occurs when performing the recombination 
process on the signal Z such that Z1 is generated 
from the fault-free value of the FALSE partition. In 
this situation however, Z1 is collapsed as it is in-
serted into the fault list due to redundancy with the 
fault-free value Z0. It is important to note that the 
TRUE and FALSE partitions exist as signal instan-
tiations themselves, thus nested condition state-
ments are handled in a nested fashion. 

ORCHESTRATING THE SIMULATOR 

The techniques mentioned in the previous sec-
tions are first developed and validated with small 
code segments and later with a high-level micro-
processor implementation. We have decided to 
manually construct an internal representation of a 
high-level microprocessor implementation using 
the aforementioned techniques to obtain our simu-
lation results. Our goal was not to produce a com-
plete simulation environment, but to produce the 
basic tools that allow us to explore the techniques 
required in performing a correct concurrent simu-
lation of a set of error models. 
 
When taking the concepts learned from the previ-
ous two sections, it becomes obvious that the 
concurrent error model simulator needs to exe-
cute both paths of each condition statement in 
order to update both the TRUE and FALSE parti-
tions. As a result of this observation, the 
if(condition) statements of a hardware description 
are used to initialize the signals using 
INIT_CONDITION, the then{} statements are used 
to guide every signal to operate on the TRUE par-
tition, and the else{} statements are used to guide 
every signal to operate on the FALSE partition. 
Moreover, the CASE statements can be imple-

Initial Values: A = {A0=2, A1=7} B = {B0=4, B2=5} Z = {Z0=6, Z3=3} 
VHDL Condition Statement Corresponding Actions Required for Concurrent Simulation 
IF (A<B) STEP i:  C = A<B = {C0=T, C1=F, C2=T} = {C0=T, C1=F} 

STEP ii:  A.T <= {A_T0=2}, A.F <= {A_F0=2, A_F1=7} 
  B.T <= {B_T0=4, B_T2=5}, B.F <= {B_F0=4} 
  Z.T <= {Z_T0=6, Z_T3=3}, Z.F <= {Z_F0=6} 

THEN STEP iii: Use the TRUE partition of signals A, B, Z 
 B <= Z;  B.T <= Z.T  => B.T = {B_T0=6, B_T3=3} 
ELSE STEP iii: Use the FALSE partition of signals A, B, Z 
 A <= Z;  A.F <= Z.F  => A.F = {A_F0=6} 
END IF; STEP iv:  A <= A.T ∪ {A_F0→1=6} = {A0=2, A1=6} 

  B <= B.T ∪ {B_F0→1=4} = {B0=6, B1=4, B3=3} 
  Z <= Z.T ∪ {Z_F0→1=6} = {Z0=6, Z0→1=6, Z3=3} = {Z0=6, Z3=3} 

 

Figure 2. Concurrent design error simulation for a condition statement. 

4



mented by a series of if-then-elseif statements. 
 
Preliminary error-model simulations are performed 
using a VHDL description of the Motorola 6800 
microprocessor. The microprocessor description 
is imported into C++ with the following modifica-
tions: 

i) VHDL statements are imported to C++ using 
overloaded operators within the signal class. 

ii) Access of sub-vectors in the VHDL syntax is 
imported using the bitvector_signal class. 

iii) VHDL condition statement handlers are im-
ported to execute TRUE and FALSE parti-
tions. 

iv) Placing each process in the hardware descrip-
tion into a module construct object that han-
dles the signal initialization, process execu-
tion, and signal propagation tasks. 

v) A netlist is a set of module constructs. 
 
Given that the simulation granularity of this pre-
liminary simulator is the same as the VHDL proc-
ess level, a significant number of statements in a 
process are being fired unnecessarily because the 
sensitivity list in a process is used to fire every 
statement in that process. This limitation is of no 
concern at this time because the goal of this re-
search is to develop and justify concurrent error 
simulation techniques. The correctness of the 
concurrent simulation techniques presented in this 
paper have been validated by comparing the re-
sults of simulating numerous error models under 
our concurrent error simulator with the corre-
sponding set of sequential error simulations ob-
tained by the Synopsys CAD tools. 

MUTANT VALUE GENERATION 

It should be clear at this point that the core con-
current error-model simulator does not produce 
mutant values; its purpose is simply to propagate 
them. The mutant values are generated by sepa-
rate engine(s) we call mutant value generator(s). 
This results in a simulation environment that is 
adaptable to any design-based/fault-based error 
models by creating the appropriate error model 
generator(s) that are in charge of inserting the 
appropriate mutant values into the appropriate 
signal(s) under the appropriate condition(s). 
 
In order to conjecture on the methods of generat-
ing mutant values, let us take a feedback circuit 
into account. When an error model is first acti-
vated in the circuit, it generates a mutant value 
that might feed back to the same activation site to 
re-activate the error model. At this point, it gener-

ates a mutant value from an already mutant sig-
nal. As a result, a mutation generator is activated 
by signals where its corresponding mutant value 
is given higher preference over the fault-free 
value. That is to say that the mutation generator 
uses a signal’s fault-free value if and only if a mu-
tant value of corresponding ID tag does not exist. 
Furthermore, any mutant values that are inserted 
into a signal will replace the previous correspond-
ing mutant value if it exists. 

USING DESIGN ERROR MODELS FOR 
SYSTEM VALIDATION 

Based on previous work in [7], a mutation control 
error (MCE) has been defined as the quintuplet (i, 
c, s, vc, ve) such that i is the current instruction, c 
is the cycle in the processor pipeline, s is the con-
trol signal that will experience the mutant signal, 
vc is the correct value of the control signal, and ve 
is the erroneous value that will be inserted into the 
fault list of the control signal s. The above defini-
tion can be applied directly to a structural descrip-
tion of a microprocessor where the instruction is 
deciphered by the hardware description and the 
processor cycle is obtainable from the implemen-
tation. Unfortunately, not all hardware descriptions 
have implementations with explicit instruction and 
processor cycles, such as with microprocessor 
implementations based on a finite state machine 
(FSM). Under this situation, the structural MCE 
design error model needs to be adapted into the 
quadruplet (s, c, vc, ve) such that s corresponds 
to the explicit processor state, c is the control sig-
nal that will experience the mutant signal, vc is the 
correct value of the control signal, and ve is the 
erroneous value that will be inserted into the fault 
list of the control signal s. This modification is 
possible because the combination of the instruc-
tion i and the processor cycle c of a structural mi-
croprocessor represent the processor state. 
 
We have used the modified MCE model to imple-
ment an automatic design error generator for the 
FSM-based implementation of the Motorola 6800 
microprocessor by John E. Kent [opencores.org]. 
The exhaustive set of MCEs for this implementa-
tion consists of 300,092 errors, and the four dis-
tinct simulation runs described in Figure 3 were 
performed for observation purposes. 
 
The first two simulation runs were performed by 
only labeling the primary outputs (POs) as the 
observation points, and a second pair of simula-
tions were later performed by adding the ac-

5



cumulator registers A and B (acca, accb), the 
stack pointer register (SP) and the program 
counter register (PC) into the set of observation 
points to determine the effectiveness of increasing 
this implementation’s observability. 
 
Figure 4 graphs the total number of design errors 
detected across each simulation run. It is interest-
ing to notice that increasing the observability did 
not result in a significantly greater number of de-
sign errors being detected. Furthermore, data set 
1 demonstrates how the first simulation begins an 
unproductive simulation path at around test vector 
number 1100 but reaches a highly productive 
state sequence at test vector 1928 that allows it to 
almost reach the performance results of the sec-
ond simulation. This sudden change in productiv-
ity along with the sudden peak in data set 1 of 
Figure 6a demonstrate the possibility of achieving 
a higher detection rate if a test sequence is gen-
erated that maintain a high error model activation 
count. 
 
Figure 5 graphs the number of design errors 
dropped from the simulation after a percentage of 
internal signals are affected; this percentage is 
being denoted as TAS (affected signal threshold). 
From the graph, we can see that the most com-
mon threshold occurs at 10%, letting us know that 
most of the error models were dropped after they 
affected 10% of the internal signals. The driving 
concept behind the affected signal threshold relies 
on the fact that as the number of internal signals 
experiencing the effect of specific design error 
increases, the probability that a primary output is 
also affected will also increase. Therefore, it is 
expected that design errors will reach a high 
probability of being dropped from the simulation 
after affecting a threshold of internal signals (TAS). 
Thus naturally, if the hardware description is opti-
mized by observability measures in such a way 
that the TAS level is substantially low, then it is 
expected that an improved number of error mod-
els will be detected per test sequence. Further-

more, fault-dropping plays a larger role on a de-
sign with a low TAS level, as it confines the num-
ber of signals that the average error model affects 
before that error model is dropped.  
 
Figure 6 graphs the number of design errors acti-
vated by each vector for simulation runs 1 through 
4. Figure 6a corresponds to two simulations la-
beled data sets 1 and 2. It is clear that the second 
simulation run affected a lower average number of 
design errors, but had more distributed peaks that 
helped it detect a larger number of design errors. 
Figure 6b corresponds to the two simulations la-
beled as data sets 3 and 4. The development of 
the third data set in the form of a step function 
might lead one to assume that the extra observa-
tion points have resulted in the sudden drops in 
active error counts as error models are removed 
from the simulation. This anomaly, however, does 
not correspond to the extra observation points and 
must be disregarded. To prove this, we must 
compare data between Figures 4 and 6b to notice 
that each sudden drop in data set 3 of Figure 6b 
does not have a corresponding steep incline in 
data set 3 of Figure 4. Instead, we must observe 
that each sudden incline of a curve in Figure 4 
corresponds to a sudden peak in the correspond-
ing graph of Figure 6. 

 Figure 3. Description of simulation methods used.

 
Number of 

MCE 
Errors 

Test 
Sequence 

Observation 
Points 

Data 
Set 
1,2 

Exhaustive 
300,092 

2000 
random 
vectors 

Primary 
outputs 

Data 
Set 
3,4 

Exhaustive 
300,092 

2000 
random 
vectors 

Primary outputs 
 Registers (acca, 
accb, SP, PC ) 

 

Figure 5. Number of occurrences per TAS value.

 

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Affected Signal Threshold TAS (%)

N
um

be
r 

of
 O

cc
ur

en
ce

s

Data Set 1
Data Set 2
Data Set 3
Data Set 4

Figure 4. Detection of design errors across each 
test sequence for simulation runs 1 through 4. 

0

2000

4000

6000

8000

10000

12000

14000

0 97 19
4

29
1

38
8

48
5

58
2

67
9

77
6

87
3

97
0

10
67

11
64

12
61

13
58

14
55

15
52

16
49

17
46

18
43

19
40

Test Vector

N
um

be
r 

of
 D

et
ec

te
d 

E
rr

or
s

Data Set 1
Data Set 2
Data Set 3
Data Set 4

6



 
The previous graphs bring to our attention the dif-
ficulty in generating tests to detect design errors 
given that an approximate average of 100 out of a 
collection of 300,092 (less than 0.1%) design er-
rors are active at any point in the simulation, and 
a peak of 525 design errors are active (0.175%). 
On a positive note, the low activation rate of de-
sign errors serves to encourage the implementa-
tion of a concurrent design error simulator for the 
validation technique introduced earlier because an 
exhaustive set of error models can be simulated 
with an acceptable performance cost. 

CONCLUSIONS 

In this paper we have introduced a method of 
simulating mutation-based modeled design errors 
on high-level microprocessor implementations. 
Furthermore, we have discussed the challenges 
of concurrent error model simulation in the pres-
ence of condition statements and we have pre-
sented an effective way of handling them. Finally, 
this paper has demonstrated the practicality of our 
simulation technique and demonstrated that an 
modeled error has a high probability of being 
dropped after affecting a threshold of the internal 

signals. Furthermore, we have provided a versa-
tile simulation system capable of concurrently 
simulating distinct error model types ranging from 
design error models geared towards system vali-
dation to fault models geared towards controllabil-
ity and observability analysis or post-silicon sys-
tem testing. 

ACKNOWLEDGEMENT 

This material is based upon work supported by 
the National Science Foundation under Grant No. 
0092867. 

REFERENCES 

[1] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints 
on test data selection: Help for the practicing pro-
grammer”, IEEE Computer, vol. 11, pp. 34-41, April 
1978. 

[2] F. Fallah, S. Devadas, and K. Keutzer, “OCCOM: 
Efficient computation of observability-based code 
coverage metrics for functional verification”, Proc. 
Design Automation Conference, 1998, pp. 152-
157. 

[3] F. Dominique, B. Paul, and S. Jean-Francois, “Be-
havioral fault simulation: Implementation and ex-
periments results”, Proc. IEEE International Work-
shop on Electronic Design, Test and Applications, 
2002, pp. 81-85. 

[4] I. Ghosh and M. Fujita, “Automatic test pattern 
generation for functional register-transfer level cir-
cuits using assignment decision diagrams”, IEEE 
Transactions on Computer-Aided Design, vol. 20, 
pp. 402-415, March 2001. 

[5] J. Shen and J.A. Abraham, “An RTL abstraction 
technique for processor microarchitecture valida-
tion and test generation”, Journal of Electronic 
Testing: Theory and Applications, vol. 16, pp. 67-
81, February-April 2000. 

[6] L.-C. Wang and M.S. Abadir, “On efficiently pro-
ducing quality tests for custom circuits in 
PowerPCTM microprocessors”, Journal of Elec-
tronic Testing: Theory and Applications, vol. 16, 
pp. 121-130, February-April, 2000. 

[7] H. Al-Asaad, Lifetime Validation of Digital Systems 
via Fault Modeling and Test Generation, Ph.D. 
Dissertation, University of Michigan, Ann Arbor, 
September 1998. 

[8] F. Corno et. al., “Automatic test program genera-
tion from RT-level microprocessor descriptions”, 
Proc. International Symposium on Quality Elec-
tronic Design, 2002, pp. 120-125. 

[9] G. Al-Hayek and C. Robach, “From design valida-
tion to hardware testing: A unified approach”, Jour-
nal of Electronic Testing: Theory and Applications, 
vol. 14, pp. 133-140, April 1999. 

Figure 6. Number of active error models across 
each test sequence for simulation runs 1 to 4. 

0

100

200

300

400

500

600
0 94 18
8

28
2

37
6

47
0

56
4

65
8

75
2

84
6

94
0

10
34

11
28

12
22

13
16

14
10

15
04

15
98

16
92

17
86

18
80

19
74

Test Vector

A
ct

iv
e 

Er
ro

r C
ou

nt

Data Set 1
Data Set 2

(a) 

0

50

100

150

200

250

300

350

400

450

500

0 94 18
8

28
2

37
6

47
0

56
4

65
8

75
2

84
6

94
0

10
34

11
28

12
22

13
16

14
10

15
04

15
98

16
92

17
86

18
80

19
74

Test Vector

A
ct

iv
e 

Er
ro

r 
Co

un
t

Data Set 3
Data Set 4

(b) 

7


