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Abstract
We develop and analyze concurrent algorithms for the disjoint set union (“union-find” ) problem in the shared memory,
asynchronous multiprocessor model of computation, with CAS (compare and swap) or DCAS (double compare and swap)
as the synchronization primitive. We give a deterministic bounded wait-free algorithm that uses DCAS and has a total work

bound of O

(
m ·

(
log

( np
m + 1

) + α
(
n, m

np

)))
for a problem with n elements andm operations solved by p processes, where

α is a functional inverse of Ackermann’s function. We give two randomized algorithms that use only CAS and have the same
work bound in expectation. The analysis of the second randomized algorithm is valid even if the scheduler is adversarial. Our
DCAS and randomized algorithms take O(log n) steps per operation, worst-case for the DCAS algorithm, high-probability
for the randomized algorithms. Our work and step bounds grow only logarithmically with p, making our algorithms truly
scalable. We prove that for a class of symmetric algorithms that includes ours, no better step or work bound is possible.
Our work is theoretical, but Alistarh et al (In search of the fastest concurrent union-find algorithm, 2019), Dhulipala et al
(A framework for static and incremental parallel graph connectivity algorithms, 2020) and Hong et al (Exploring the design
space of static and incremental graph connectivity algorithms on gpus, 2020) have implemented some of our algorithms on
CPUs and GPUs and experimented with them. On many realistic data sets, our algorithms run as fast or faster than all others.
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1 Introduction

As data sets get bigger and bigger, it becomes more andmore
important to harness the potential of parallelism to solve
computational problems—even linear time is too slow. In
the late twentieth century, many beautiful and efficient algo-
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rithms were developed in the PRAM (parallel random access
machine) model, which assumes a memory shared among
many synchronized processors. In practice, however, syn-
chronization is expensive or may not be possible. A weaker
model that has attracted much attention in the distributed
systems community is the APRAM (asynchronous parallel
random access machine) model, in which a common mem-
ory is shared among many unsynchronized processors. In
the most general version of this model, any processor can be
arbitrarily slow compared to any other.

Obtaining efficiency bounds in the APRAM model is
extremely challenging: the use of locks, for example, seems
to make it impossible to guarantee efficiency, since one
process could set a lock and then go to sleep indefinitely,
blocking progress by any other process that needs access
to the same resource. To overcome this problem, systems
researchers have invented synchronization primitives that do
not use locks, notably CAS (compare and swap) [18], trans-
actional memory [20], and others. These primitives allow at
least the possibility of obtaining good efficiency bounds for
asynchronous concurrent algorithms. Yet, except for “embar-
rassingly parallel” computations, this possibility is almost
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unrealized. Indeed, we know of only one example of a con-
current data structure (other than our work, to be described)
for which a work bound without a term at least linear in
the number of processes has been obtained. This is an imple-
mentation by Ellen andWoefel [11] of a fetch-and-increment
object.

An important problem in data structures that could benefit
from an efficient concurrent algorithm is disjoint set union,
also known as the union-find problem. The simplest version
of this problem requires maintaining a collection of disjoint
sets, each containing a unique element called its leader, under
two operations:

find(x): return the leader of the set containing element x .
unite(x , y): if elements x and y are in different sets, unite

these sets into a single set and designate some element in the
new set to be its leader; otherwise, do nothing.

Each initial set is a singleton, whose leader is its only
element. Note that the implementation is free to choose the
leader of each new set produced by a unite. This freedom sim-
plifies concurrent implementation, as we discuss in Sect. 4.
Other versions of the problem add operations for initializing
singleton sets and for maintaining and retrieving information
about the sets such as names or sizes. We study the simplest
version but comment on extensions in Sect. 9.

Applications of sequential disjoint set union include
storage allocation in compilers [32], finding minimum span-
ning trees using Kruskal’s algorithm [31], maintaining the
connected components of an undirected graph under edge
additions [10,17,44], testing percolation [40], finding loops
and dominators in flow graphs [12,42,43], and finding strong
components in directed graphs. Some of these applications,
notably finding connected components [24,27,33,37,39,41]
and finding strong components, are on immense graphs
and could potentially benefit from the use of concurrency
to speed up the computation. For example, model check-
ing requires finding strong components in huge, implicitly
defined directed graphs [4,6,46]. There are sequential linear-
time strong components algorithms [38,41], but these may
not be fast enough for this application. The sequential algo-
rithmsuse depth-first search [41],which apparently cannot be
efficiently parallelized [36]. If one had an efficient concurrent
disjoint set union algorithm one could use it in combina-
tion with breadth-first search to potentially speed up model
checking. This application, described to the second author
by Leslie Lamport, was the original motivation for our work.

The classical sequential solution to the disjoint set union
problem is the compressed tree data structure [13,15,22,
44,45]. With appropriate tree linking and path compaction
rules, m operations on sets containing a total of n elements
take O(m α(n,m/n)) time [16,44,45], where α is a func-
tional inverse of Ackermann’s function, defined in Sect. 3.
Three linking rules that suffice are linking by size [44], link-
ing by rank [45], and linking by random index [16]; three

compaction rules that suffice are compression [16,44,45],
splitting [16,45], and halving [16,45].

Perhaps surprisingly, there has been almost no previous
research on wait-free concurrent disjoint set union. We have
found only one such effort, that of Anderson and Woll [3].
Their work contains a number of significant ideas that are the
genesis of our results, but it has many flaws that reveal the
subtlety of the problem. We use their concurrency model. In
one of our linking algorithmswe useDCAS (double compare
and swap) as a synchronization primitive, whereas they used
only the weaker CAS (compare and swap) primitive.

Anderson and Woll considered an alternative formulation
of the problem in which sets do not have leaders and the two
operations are same-set(x , y), which returns true if x and
y are in the same set and false otherwise, and unite(x , y),
which combines the sets containing x and y into a single set
if these sets are different. (We discuss same-set further in
Sect. 4.) They attempted to develop an efficient concurrent
solution that combines linking by rank with a concurrent
version of path halving. They claimed a bound of O(m ·
(p + α(m, 1)) on the total work, where p is the number of
processors. (They did not treat n as a separate parameter.).
Their linking method can produce paths of �(p) nodes of
equal rank. The O(mp) term in their work bound accounts
for such paths. Their proof of their upper bound is not correct,
because they did not consider interference among different
processes doing halving on intersecting paths.Whether or not
their bound is correct, it is easy to show that their algorithm
can take �(np) work to do n−1 unite operations, compared
to the O(nα(n, 1)) time required by one process. Thus in the
worst case their work bound gives essentially no speedup.

Anderson and Woll also claimed a work bound of O(m ·
(α(m, 1)+ log∗ p)) for a synchronous PRAM algorithm that
uses deterministic coin tossing [9] to break up long paths of
equal-rank nodes. They provided no details of this algorithm
and no proof of the work bound. We think that their bound
is incorrect and that the work bound of their algorithm is
�(n log p), since it is easy to construct sets of operations that
do linking by rank exactly but such that concurrent finds with
halving take �(log p) steps per find, even on a PRAM. See
Sect. 8. Deterministic coin tossing is a good idea, however:
Using it along with the ideas in the present paper and a new
one we have developed deterministic set union algorithm in
the APRAM model using only CAS for synchronization, at
the cost of a multiplicative log∗ p factor in the work bound.
See Sect. 9

In this paper we apply the ideas of Anderson andWoll and
some additional ones to develop several efficient concurrent
algorithms for disjoint set union. We give three concurrent
implementations of unite, one deterministic and the other
two randomized. The deterministic method uses DCAS to
do linking by rank. The randomized methods use only CAS:
one does linking by random index, the other does randomized

123

414



Concurrent disjoint set union

linking by rank. We also give two concurrent implemen-
tations of path splitting, one-try and two-try splitting. The
former is simpler, but we are able to prove slightly better
bounds for the latter, bounds that we think are tight for the
problem.

We prove that any of our linking methods in combination
with one-try splitting does set union in

O
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log

(
np2

m + 1
)

+ α
(
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)))
work, and in combi-

nation with two-try splitting in

O
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( np
m + 1

) + α
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np

)))
work. Each set oper-

ation takes O(log n) steps. These bounds are worst-case for
deterministic linking and high-probability for randomized
linking. The O(log n) step bound per operation holds even
without path splitting; without splitting, the work bound is
O(m log n). The work and step bounds for randomized link-
ing by rank hold even for an adversarial scheduler, provided
that scheduling is basedonlyon information sent to the sched-
uler, or we allow a form of CAS that writes a random bit.
The work and step bounds for linking by random index hold
provided that the randomization is independent of the order
in which the unite operations are executed, or, more pre-
cisely, independent of the “linearization order” of the unite
operations. (We define linearization order in Sect. 2.) We

also show that �

(
m ·
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( np
m + 1

) + α
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)))
work is

needed in the worst case for any algorithm satisfying a sym-
metry assumption, which implies that our work bound for
two-try splitting is best possible for such algorithms.

Our work is theoretical, but [1,10,17] have implemented
someof our algorithmsonCPUs andGPUs and experimented
with them. On many realistic data sets, our algorithms run as
fast or faster than all others.

The remainder of our paper contains 8 sections. Section 2
describes our concurrency model. Section 3 describes the
compressed tree data structure and sequential algorithms
for disjoint set union. Section 4 presents concurrent link-
ing by index, a special case of which is concurrent linking by
random index, and one-try and two-try splitting. Section 5
presents preliminary versions of deterministic and random-
ized linking by rank. These versions rely on some simplifying
assumptions that we eliminate in Sect. 6. Section 7 gives
upper bounds on the total work of our algorithms. Section 8
presents lower bounds. Section 9 contains somefinal remarks
and open problems.

2 Concurrencymodel

Our concurrency model is the same as that of Anderson and
Woll: a shared memory multiprocessor, otherwise known
as an asynchronous random-access machine (APRAM).

We assume that p processes run concurrently but asyn-
chronously, each doing a different set operation. Eachprocess
has a private memory. In addition, all processes have access
to a shared memory that supports concurrent reads but not
concurrent writes.

To provide synchronization of writes to shared memory,
we use the compare and swap primitive CAS(x , y, z). Given
the address x of a block of shared memory and two values
y and z, this operation tests whether block x holds value
y; if so, it stores value z in block x (overwriting y) and
returns true; if not, it returns false. We also consider the two-
block extension DCAS(u, v, w, x , y, z). Given the addresses
u and x of two blocks of shared memory and four values
v, w, y, and z, this operation tests whether block u holds
value v and block x holds value y; if both are true, it stores
value w in block u and value z in block x and returns true;
if not, it returns false. These operations are atomic: once
one starts, it completes before any other operation can read,
write, CAS, or DCAS the affected block or blocks. Although
both CAS and DCAS return a value indicating success or
failure, many of our algorithms do not actually use these
values.

In one version of our randomized linking algorithmwe use
the following randomized version of CAS: atomic operation
CAS(x , y, $) tests whether the value of x is y and, if so, sets
the value of x equal to true or false, eachwith probability 1/2.
Such a randomized atomic write operation has been used in
algorithms for achieving consensus [7].

Many current hardware designs includeCASas an instruc-
tion; DCAS was supported on the Motorola 68030 [35] but
not on any current hardware, as far asweknow.Aswedemon-
strate in Sect. 5, it is straightforward to implement linking by
rank using DCAS, but much harder using only CAS.

We study concurrent algorithms for disjoint set union
that are linearizable [23] and bounded wait-free [18]. To
be linearizable means that (i) the outcome of a concur-
rent execution is the same as if each set operation were
executed instantaneously at some distinct time (its lineariza-
tion time) during its actual execution and (ii) the sequential
execution sequence given by the linearization times is cor-
rect; that is, all find operations produce answers that are
correct at their linearization times. The linearization times
define a total order of the operations, called the lineariza-
tion order. Although we focus on linearizable algorithms,
some applications of disjoint set union may not require lin-
earizability for correctness. We briefly discuss this issue in
Sect. 9, and leave further investigation as an open prob-
lem.

To be bounded wait-free means that every operation fin-
ishes in a bounded number of its own steps. The total work
done by a concurrent solution is the total number of steps
done by all processes to complete all operations.
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Two weaker progress properties than bounded wait-
freedom are wait-freedom and lock-freedom [21]. A concur-
rent solution is wait-free if every process is guaranteed to
finish. It is lock-free if every operation can execute its next
step when it chooses to do so, and at least one process is guar-
anteed to finish its operation. In general a lock-free solution
need not be wait-free, and a wait-free solution need not be
bounded wait-free. In our version of disjoint set union, the
number of elements is fixed, which makes it easy to guar-
antee bounded wait-freedom. This remains true if we add an
operation that allows the creation of singleton sets containing
new elements, as long as the total number of set operations is
bounded. If we allow an unbounded number of singleton sets
to be created, then our solutions are no longer wait-free, but
they remain lock-free. In this case there are no meaningful
work bounds.

3 Data structure and sequential algorithms

Our concurrent disjoint set union algorithms use the same
data structure as the best sequential algorithms: a compressed
forest. This forest contains one rooted tree per set, whose
nodes are the elements of the set and whose root is the set
leader. Each node x has a pointer x .p, to its parent if it has a
parent or to itself if it is a root.

In this section we explain the sequential set union algo-
rithms. We present pseudo-code for the same-set and find
procedures as Algorithm 1, and procedures for unite and its
helper-method link as Algorithm 2. The sequential algorithm
pseudo-code we present is not optimized for brevity. Rather,
we take care to present pseudo-code that is as similar to the
forthcoming concurrent algorithms as possible, thereby high-
lighting the key observations and distinctions that arise in the
concurrent code.

The sequential algorithm for find(x) follows parent point-
ers from x until reaching a node u that points to itself,
optionally compacts the find path (the path of ancestors from
x to u) by replacing the parent of one or more nodes on the
find path by a proper ancestor of its parent, and returning
u. Naïve find does no compaction. Three good compaction
rules are compression, splitting, and halving. Compression
replaces the parent of every node on the find path by the root
u. Splitting replaces the parent of every node on the find path
by its grandparent. Halving replaces the parent of every other
node on the find path by its grandparent, starting with x . Fig-
ure 1 illustrates how these algorithms restructure a path of
nodes when find is called on node 8, the bottom-most node.

The sequential implementation of same-set(x , y) does
find(x) and find(y), returning the roots u and v of the trees
containing x and y, respectively, and returns true if u = v,
false otherwise. Algorithm 1 is the pseudo-code for same-set
and the variations of find.

1: procedure same-set(x, y)
2: u ← find(x)
3: v ← find(y)
4: return u = v

5: procedure findNaïve(x)
6: u ← x ; v ← u.p
7: while v �= u do
8: u ← v; v ← u.p

9: return v

10: procedure findCompress(x)
11: root ← findNaïve(x)
12: u ← x
13: while u �= root do
14: v ← u.p; u.p ← root; u ← v

15: return root
16: procedure findSplit(x)
17: u ← x ; v ← u.p; w ← v.p
18: while v �= w do
19: u.p ← w; u ← v; v ← u.p; w ← v.p

20: return v

21: procedure findHalve(x)
22: u ← x ; v ← u.p; w ← v.p
23: while v �= w do
24: u.p ← w; u ← w; v ← u.p; w ← v.p

25: return v

Algorithm 1: Sequential same-set algorithm with alternative
implementations of find. The pseudo-code iswritten tomatch
the forthcoming concurrent version as closely as possible, so
that the key differences are more clear.

1: procedure unite(x, y)
2: u ← find(x)
3: v ← find(y)
4: if u �= v then link(u, v)

5: procedure linkByRank(u, v)

6: r ← u.r ; s ← v.r
7: if r < s then u.p ← v

8: else if r > s then v.p ← u
9: else
10: v.r ← v.r + 1
11: u.p ← v

12: procedure linkBy Index(u, v)

13: if u < v then u.p ← v

14: else v.p ← u

15: procedure linkBySize(u, v)

16: if u.si ze ≤ v.si ze then
17: u.p ← v

18: v.si ze ← v.si ze + u.si ze
19: else
20: v.p ← u
21: u.si ze ← u.si ze + v.si ze

Algorithm 2: Sequential unite algorithm, with multiple
implementations of link. The pseudo-code iswritten tomatch
the forthcoming concurrent version as closely as possible so
that the key differences are clear.
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Fig. 1 The results of running
find(8) on the original path with
the three different types of
compaction: compression links
all the nodes on the find path
directly to the root, thereby
“compressing” the path; halving
links alternating nodes on the
find path to their grandparents,
thereby creating a path of “half”
the length with nodes hanging
off; splitting links every node on
the find path to its grandparent,
thereby “splitting” one path in
two

The sequential implementation of unite(x , y) does find(x)
and find(y), returning the roots u and v of the trees containing
x and y, respectively, and tests whether u = v. If u �= v, it
links u and v by making one the parent of the other. Three
good linking rules are linking by size, linking by rank, and
linking by random index. Linking by size maintains the si ze
(number of nodes) of each tree in its root, and makes the
root of the tree of larger size the parent of the other, breaking
a tie arbitrarily. Linking by rank maintains a non-negative
integer rank for each root, initially zero, and makes the root
of larger rank the parent of the other, breaking a tie by adding
one to the rank of one of the roots. In the pseudo-code, we
use u.r to represent node u’s rank. Linking by index chooses
a fixed total order of the nodes and makes the root of larger
index the parent of the other. Linking by random index is the
special case of linking by index that chooses the total order of
nodes uniformly at random. Algorithm 2 is the pseudo-code
for unite and the variations of link.

Linking by size, rank, or random index combined with
naïve find, compression, splitting or halving gives an algo-
rithm that takes O(log n) time for an operation on a set or
sets containing n elements, worst-case for deterministic link-
ing, high-probability for linking by random index. Use of
compaction improves the amortized time per operation: any
combination of compression, splitting, or halving with link-
ing by size, rank, or random index gives an algorithm that
takes O(m ·α(n,m/n)) time to dom operations on sets con-
taining a total of n elements. The bound is worst-case for
linking by size or rank, average-case for linking by random-
ized index. Here α is a functional inverse of Ackermann’s
function defined as follows. We recursively define Ak(n) for

non-negative integers k and n as follows:

A0(n) = n + 1; Ak(0) = Ak−1(1) if k > 0;
Ak(n) = Ak−1(Ak(n − 1)) if k > 0 and n > 0.

For a non-negative integer n and non-negative real-valued
d,

α(n, d) = min{k > 0 | Ak(�d�) > n}

Lemma 1 Ak(n) < min{Ak+1(n), Ak(n + 1)}, i.e., Ak(n) is
strictly increasing in k and n.

Proof The proof is by double induction on k and n. A0(n) =
n + 1 < n + 2 = A0(n+ 1), and A0(0) = 1 < 2 = A1(0).
Let k > 0. Suppose the lemma holds for k′ < k and all n.
Then Ak(0) < Ak(0) + 1 = A0(Ak(0)) ≤ Ak−1(Ak(0)) =
Ak(1) = Ak+1(0). Thus the lemma also holds for k and
n = 0. Let k > 0 and n > 0. Suppose the lemma holds
for k′ < k and all n, and for k and n – 1. Then Ak(n) <

Ak(n) + 1 = A0(Ak(n))Ak−1(Ak(n)) = Ak(n + 1), and
Ak(n) = Ak(A0(n − 1)) < Ak(Ak+1(n − 1)) = Ak+1(n).

	

Corollary 1 α(n, d) is non-decreasing inn andnon-increasing
in d.

Our goal is to extend at least one sequential set union
algorithm to the concurrent model of Sect. 2 and to obtain an
almost-linear work bound that grows sublinearly with p, the
number of processes. For convenience in stating bounds, we
assume that 2 ≤ p ≤ n ≤ m, and that there is at least one
unite of different elements.Wedenote the base-two logarithm
by lg.
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4 Concurrent linking and splitting

Concurrency significantly complicates the implementation
of the set operations. One complication is that processes can
interfere with each other by trying to update the same field
at the same time, requiring our algorithms to be robust to
such interference. Consider doing unites concurrently. To do
unite(x,y), we can start as in the sequential case by finding the
rootsu and v of the trees containing x and y, respectively.Then
we can try to link u and v by doing a CAS tomake v the parent
of u or vice-versa. But we must allow for the possibility that
the CAS can fail, for example if it tries to make v the parent
of u but in the meantime some other process makes another
node the parent of u. If this happens we must retry the unite.
When retrying, we start the new finds at u and v rather than
at x and y, to avoid revisiting nodes. Anderson and Woll [3]
proposed this method; the following pseudocode implements
it. Method link(u, v), to be defined, tries to make one of two
roots u and v the parent of the other.

1: procedure unite(x, y)
2: u ← find(x); v ← find(y)∗
3: while u �= v do
4: link(u, v)∗
5: u ← find(u); v ← find(v)∗

Algorithm 3: : Concurrent unite algorithm.

In this and subsequent implementations, asterisks denote
linearization points. The linearization point of a unite is the
linearization point of the successful link if there is one, or
the linearization point of the last find if no link is successful.

Concurrency also imposes constraints on the linking rule.
We need to prevent concurrent links from creating a cycle of
parent pointers other than a loop at a root. For example, three
concurrent links might make v the parent of u, w the parent
of v, and u the parent of w. The simplest way to prevent such
cycles is to do linking by index, which we can implement
using CAS. We denote the total order of nodes by “<” . The
following pseudocode implements linking by index:

1: procedure link(u, v)

2: if u < v then CAS(u.p, u, v)∗
3: else CAS(v.p, v, u)∗

Algorithm 4: : Concurrent linking by index algorithm.

The linearization point of the link is its CAS. A link is
successful if its CAS returns true. For any total order, linking
by index guarantees acyclicity. Linking by random index is
the special case of linking by index that chooses the total
order uniformly at random.

With this implementation of link, a link can succeed even
though the new parent itself becomes a child of another node
at the same time. Fortunately this affects neither correctness
nor efficiency.Wecouldprevent this anomalybyusingDCAS
to do links, which allows us to guarantee that the new parent
remains a root. But this has two drawbacks. First, it uses
DCAS, whereas our goal is to use only CAS if possible.
Second, if all links are done using DCAS, the total work can
be linear in p, as we discuss in Sect. 5.1.

Next we consider finds. Concurrent naïve finds do not
interfere with each other, since such finds do not change the
data structure. Thus we can do such finds exactly as in the
sequential case. The following pseudocode implements con-
current naïve find:

1: procedure find(x)
2: u ← x ; v ← u.p∗
3: while v �= u do
4: u ← v; v ← u.p∗
5: return u

Algorithm 5: : Concurrent Naïve find algorithm.

The linearization point of a find is the last update of v.
Concurrent finds with compaction can interfere with each

other. Consider a sequential find with splitting. Let u be the
current node visited by the find. One step of the find consists
of setting v = u.p; settingw = v.p; and, if v �= w, replacing u.p
by w and then setting u = v. Steps continue until v = w, when
the find finishes by returning v. The only update to the data
structure in a step is the replacement of u.p by w. We obtain
a concurrent version of splitting by using CAS(u.p, v, w) to
do the update. The following pseudocode implements this
method, which we originally presented in [28] and which is
based on Anderson and Woll’s version of find with halving:

1: procedure find(x)
2: u ← x ; v ← u.p; w ← v.p∗
3: while v �= w do
4: CAS(u.p, v, w); u ← v; v ← u.p; w ← v.p∗
5: return v

Algorithm 6: : Concurrent Find with One-Try Splitting algo-
rithm.

The linearization point of a find is the last update of w.
We call this method one-try splitting because it tries once to
update u.p and then changes the current node from u to v,
whether or not the update of u.p has succeeded.

Concurrent splits can produce anomalies that are not pos-
sible if splits are sequential, as a simple example shows. (See
Fig. 2) Suppose a, b, c, d, e is a path in a tree built by link-
ing by index, and that four processes, 1, 2, 3, and 4 begin
concurrent finds with one-try splitting starting at a, a, b, and
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Fig. 2 Interference in concurrent splitting: process 1 updates a’s parent to a node that is not its ancestor; process 2’s CAS fails. These difficulties
do not occur in the sequential setting

b, respectively. We denote the local variables of process i
by ui , vi , wi . First, process 1 sets u1 = a, v1 = a.p = b,
and w1 =b.p = c. Second, process 3 sets u3 = b, v3 =
c,w3 = d, and replaces b.p by d. Third, process 4 sets
u4 = b, v4 = d,w4 = e, and replaces b.p by e. Fourth,
process 2 sets u2 = a, v2 = b, and w2 = d. Fifth, process
1 replaces a.p by c. Sixth, process 2 attempts to replace a.p
by d but fails, because process 1 changed a.p after process
2 read it. Observe that just before process 1 replaces a.p by
c, c is not an ancestor of a, even though it was when pro-
cess 1 read it. This threatens correctness. Furthermore, even
though the failure of process 2 to update a.p guarantees that
a.p has changed since process 2 read it, the new value of
a.p, namely c, is not an ancestor of the current grandparent
of a, namely e, violating a property used in the analysis of
sequential splitting. Finally, even though the new parent c of
a is higher in index than the old parent b of a (as we prove
in Theorem 1), the new grandparent d of a is lower than the
old grandparent e of a.

Fortunately, correctness requires only a weak property of
compaction, one that holds for one-try splitting and many
other methods.We introduce an analytic tool called the union
forest in order to explain the property. We assume that if a
compaction changes the parent w.p of a node w by a CAS,
w.p �= w just before the change; that is, w is not a root.
Equivalently, only a link can change the parent of a root.
Suppose we do linking by index. Consider a fixed history,
i.e. a concurrent execution of several unite, same-set, and
find operations by different processes up to some time t . For
this fixed history, the union forest is the set of trees such that
the parent of a node w is the first value, other than w, that
w.p takes on during the history; if w.p = w throughout the
history, then w is a root in the union forest.

Claim The union forest is a forest.

Proof Since linking is by index, when a link changes the
parent of a root w from w to z, z > w. Hence the union
forest contains no cycles of parent pointers other than loops.
Thus the union forest is indeed a forest. 	


We call a compaction method valid if it visits nodes on a
single path in the union forest, each vertex visit takes O(1)
steps, each replacement of a parent w by another node z (of
which there may be none) is such that z is a proper ancestor
of w in the union forest, and the linearization point of the
find doing the compaction is the last read of a parent that
returns the node itself. The parent update requirements are
only with respect to the fixed union forest, not with respect
to the dynamically changing actual forest maintained by the
data structure. In particular, although find with splitting can
change the parent w.p of a node w to a non-ancestor of w

in the actual forest (see Fig. 2), it cannot do so in the union
forest. Indeed, splitting is valid.

The following theorem states the correctness of linking by
index with finds that do valid compactions.

Theorem 1 Anydisjoint set union algorithm that does linking
by index in combination with finds that do valid compaction
is linearizable. The parent of any non-root node has higher
index than the node, and the parents define a set of trees that
partition the nodes into the correct disjoint sets. Furthermore
each set operation stops in O(h) steps, where h is the height
(maximum number of edges on a path) of the union tree, so
the algorithm is bounded wait-free.

Proof An induction on the number of parent changes using
the transitivity of “<” shows that the parent of any node
never has smaller index than the node. This implies that the
only cycles are loops at roots. Parent changes done during
compactions do not change the node partition defined by the
trees. A link that makes v the parent of u must be such that
u is a root before the link, u < v, and u and v are in the
trees containing the two nodes x and y that are the inputs to
the unite that does the link. It follows by induction on the
number of parent changes that at all times the trees correctly
partition the nodes: a find cannot change this partition, and a
link unites the trees containing the nodes that are the inputs
to the corresponding unite. Correctness of the linearization
points follows in a straightforward way by induction on the
number of parent changes: When a find reads the parent of a
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root, that root at thatmoment is the leader of the set containing
the input to the find; when a unite does a link, the partition
remains correct; when a test “u �= v” in unite returns false,
the inputs to the unite are in the same set.

Since the nodes visited during a find are on a single path in
the union forest, and each node visit takes O(1) steps, each
find stops in O(h) steps. (Our assumption that there is at least
one unite of different elements implies h > 0.) The nodes
visited during a unite are on two paths in the union forest.
Consider the node visits in the order they occur. Each node
visit takes O(1) steps, but a node can be visited many times.
This can only happen while it is a root; once it becomes a
child, it can only be visited once more (as the input to a find).
Consider the nodes u and v just before an execution of the
test “u �= v” in unite. Each of u and vwas a root at some time
during the find that computed it. If the test “u �= v” succeeds,
whichever of u and v is smaller in the total order will be a
child after the next link (whether or not the link succeeds).
Suppose without loss of generality it is u. We charge the next
visits to u and v to u becoming a child. There are at most 2h
such events. It follows that the total number of node visits
during the unite, and hence the total number of steps, is O(h).

	

Havingdealtwith correctness,wediscuss concurrent com-

paction in more detail. The monotonicity of parents (each
new parent is higher in index than the old one) allows us to
extend the analysis of sequential splitting to one-try splitting,
although the extension is not straightforward. On the other
hand, the analysis of sequential halving relies on monotonic-
ity of grandparents, which fails in the concurrent setting, as
our example above shows. Anderson and Woll [3] claimed a
good work bound for their concurrent version of halving, but
they overlooked the problem of non-monotonicity. We see
no way to get a good work bound for their method.

Even though we can prove good efficiency bounds for
one-try splitting, we can prove slightly better bounds for a
related compaction method that tries to change each parent
pointer twice instead of once. We call this method two-try
splitting. The following pseudocode implements find with
two-try splitting:

1: procedure find(x)
2: u ← x ; v ← u.p; w ← v.p∗
3: while v �= w do
4: CAS(u.p, v, w); v ← u.p; w ← v.p
5: CAS(u.p, v, w); u ← v; v ← u.p; w ← v.p∗
6: return v

Algorithm 7: : Concurrent Find with Two-Try Splitting algo-
rithm.

The linearization point of a find is the last assignment to
w. If every attempted parent change succeeds, the effect of

a single two-try split is to replace the parent of every other
node on the find path by its great-grandparent. This splits
the original path into two paths, each containing half the
nodes on the original path, but the split is different from that
produced by one-try splitting: if the nodes on the original
path are numbered consecutively from 1, the latter produces
a path of nodes 1, 3, 5, 7. . . and another path of nodes 2, 4,
6, 8. . . ; the former produces a path of nodes 1, 4, 5, 8, 9. . .
and another path of nodes 2, 3, 6, 7, 10, 11. . .

A variant that has the same work bounds as two-try split-
ting is conditional two-try splitting, in which the second try
occurs only if the first one fails. We omit a detailed discus-
sion of this variant, since its pseudocode is a bit longer and
it is unclear whether avoiding extra parent changes improves
efficiency.

Both one-try and two-try splitting are valid compaction
methods, so Theorem 1 holds for both of them.

We conclude this section by presenting Anderson and
Woll’s concurrent implementation of same-set, which gives
an extension of our algorithms to their formulation of the
problem. It is easy to do same-set(x, y) in the sequential set-
ting: find the root u of the tree containing x, find the root v
of the tree containing y, and test whether u = v. As Anderson
and Woll observed, this does not suffice in the concurrent
setting, because u might no longer be a root when the equal-
ity test occurs, possibly invalidating the test. Their solution
has three cases. If u = v, return true: x and y are in the same
tree when the test occurs, and remain in the same tree. If
u �= v, test whether u is still a root. If so, return false: x and
y were in different trees when v was computed, since u and
v were different roots. If not, redo the computation: do new
finds from u and v, and repeat the test or tests. The following
pseudocode implements this method:

1: procedure same-set(x, y)
2: u ← find(x); v ← find(y)∗
3: while u �= v do
4: w ← u.p
5: if u = w then return false
6: u ← find(u); v ← find(v)∗
7: return true

Algorithm 8: : Concurrent same-set algorithm.

The linearization point of a same-set is the last assignment
to v. All our analyses of find and unite extend to include
same-set as an allowed operation.

5 Concurrent linking by rank

To obtain a good work bound, we combine one-try or two-
try splitting with a good linking method. Linking by random
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index is one such method, but our analysis of it assumes
that the scheduling of CAS instructions is independent of
the random node order. This assumption is questionable; if it
fails, the work bound becomes much worse as a function of
p, as we show in Sect. 8. To overcome this, we develop two
concurrent versions of linking by rank, one deterministic and
one randomized, both of which have good work bounds. To
simplify our descriptions, we assume for the moment that the
rank and parent of a node can be stored in a single block of
memory that is updatable by one CAS instruction. In Sect. 6
we show how to eliminate this assumption.

Both of our versions of linking by rank are refinements
of a generic method. The generic method links roots of dif-
ferent ranks using CAS, and links roots of the same rank
using method elink, to be defined. The rank of node u is
u.r, initially zero. The following pseudocode implements the
generic method:

1: procedure link(u, v)

2: r ← u.r ; s ← v.r
3: if r < s then CAS((u.p, u.r), (u, r), (v, r))∗
4: else if r > s then CAS((v.p, v.r), (v, s), (u, s))∗
5: else elink(u, v, r)∗

Algorithm 9: : Concurrent linking by rank algorithm.

Given two roots u and v with ranks r and s, respectively,
this method compares r to s. If r < s, it uses a CAS to
make v the parent of u while guaranteeing that neither the
parent nor the rank of u changes in the meantime. If r > s,
it proceeds symmetrically. If r = s, it does an elink to link u
and v. A link is successful if its CAS returns true or its elink
is successful, in which case the linearization point of the link
is its CAS or that of its elink. Our two versions of linking by
rank differ only in their implementation of elink.

5.1 Linking by rank via DCAS

A simple way to do elink(u, v, r) is to use a DCAS to make v
the parent of u and increment the rank of vwhile guaranteeing
that the ranks and parents of u and v do not change in the
meantime. The following pseudocode implements this idea:

1: procedure elink(u, v, r)
2: DCAS((u.p, u.r), (u, r), (v, r), (v.p, v.r), (v, r), (v, r + 1))∗

Algorithm 10: : Concurrent linking by DCAS algorithm.

An elink is successful if its DCAS returns true, in which
case the linearization point of the elink is its DCAS.

Our first version of linking by rank uses this implemen-
tation of elink. The rank of a node can never decrease, and
can increase only while the node is a root. It follows that the

rank of a child is always strictly less than that of its parent.
Linking by rank is an implicit form of linking by index: the
successful links respect any total order consistent with the
final ranks of nodes. Thus Theorem 1 holds for this method.

The following lemma and theorem extend known bounds
on sequential linking by rank [45] to linking by rank via
DCAS:

Lemma 2 With linking by rank via DCAS, the sum of ranks is
at most n− 1, the number of nodes of rank k is at most n/2k ,
and the maximum rank and the height of the union forest are
at most lg n.

Proof For a node to increase in rank by 1, it must be a root,
and another root must become its child at the same time. It
follows that the number of rank increments, and hence the
sum of ranks, is at most n – 1, one per root that becomes a
child. An induction on k shows that at most n/2k nodes can
ever attain rank k. The bounds on the maximum rank and the
height of the union forest follow, since no node can have rank
exceeding lgn. 	

Theorem 2 Linking by rank via DCAS in combination with
any valid compaction method maintains the invariant that
the parents define a set of trees that partition the nodes into
the correct disjoint sets, and the rank of a child is less than
that of its parent. Furthermore each set operation stops in
O(log n) steps, so the algorithm is bounded wait-free.

Proof The first half of the theorem follows by induction on
the number of steps as in the proof of the first half of The-
orem 1. A find takes O(log n) steps by the argument in the
proof of Theorem 1, since the height of the union forest is
O(log n) by Lemma 2. We prove the bound for unites by an
extension of the argument in the proof of Theorem 1. The
nodes visited during a unite are on two paths in the union
forest, and on each path they are visited in increasing order
by rank. Each node visit takes O(1) steps, but roots can be
visited many times. We charge each repeated visit to a root
either to a root becoming a child or to a root increasing in
rank. Consider the nodes u and v just before an execution
of the test “u �= v” in unite. Each of u and v was a root at
some time during the find that computed it. Suppose the test
“u �= v” succeeds. The next execution of link sets r to the
rank of u and s to the rank of v. If r < s, then after the CAS
either the rank of u has increased or u has become a child,
whether or not the CAS succeeds. We charge the next visits
to u and v to the rank increase of u or to u becoming a child.
The symmetric argument applies if r > s. If r = s, at least
one of u and v has increased in rank or become a child after
the elink. We charge the next visits to u and v to whichever
of these events has occurred. There are at most 2 lg n roots
that become children and at most 2 lg n rank increases by
Lemma 2, since for each of the two paths in the union forest

123

421



S. V. Jayanti, R. E. Tarjan

the rank increases sum to at most lg n. It follows that the total
number of node visits during the unite, and hence the total
number of steps, is O(log n). 	


The efficiency of this linking method (though not its cor-
rectness) depends critically on using CAS to link nodes of
different ranks, reserving DCAS for the equal-rank case. An
attempted link of equal-rank nodes u and v using DCAS
fails only if some other process makes u or v a non-root,
or increases the rank of u or v. In the proof of Theorem 2
we charge extra node visits resulting from the failure of the
DCAS to whichever of these events occurs. If we were to use
DCAS to try to make a node v the parent of a node u of lower
rank, the DCAS could fail because another process made v
the parent of another nodew. This changes neither the parent
nor rank of u, nor of v, leaving us with no event to charge for
extra node visits. In the worst case, O(n) such links could
produce �(pn) failures, resulting in total work linear in p.
Using CAS to link nodes of different ranks eliminates these
failures. Although we can avoid such interference in the dis-
joint set union problem as we have defined it, this is much
harder to do in some extensions of the problem, as we discuss
in Sect. 9.

5.2 Randomized linking by rank

To link equal-rank nodes using CAS, we need to do the par-
ent change and the rank increment separately. The question is
which one to do first.Making this decision randomly gives an
approximation to linking by rank that produces few enough
rank ties that we are able to get good work bounds. Since
this method allows rank ties, we use linking by index to break
such ties, in order to prevent the creation of non-trivial cycles
of parent pointers. Assume that “<” is an arbitrary total order
of the nodes. To link two equal-rank roots u and v such that
u < v, we flip a fair coin. If it comes up heads, we attempt
to make v the parent of u; if it comes up tails, we attempt
to increase the rank of u. The following pseudocode imple-
ments this idea. Random Boolean method flip returns true
with probability 1/2 and false otherwise, independent of all
other flips.

1: procedure elink(u, v, r)
2: if u < v then
3: if flip then CAS((u.p, u.r), (u, r), (v, r))∗
4: else CAS((u.p, u.r), (u, r), (u, r + 1))
5: else
6: if flip then CAS((v.p, v.r), (v, r), (u, r))∗
7: else CAS((v.p, v.r), (v, r), (v, r + 1))

Algorithm11: : Concurrent randomized linking by rank algo-
rithm.

An elink is successful if it does a CAS that changes a
parent pointer, in which case the linearization point of the
elink is its CAS.

Our second version of linking by rank uses this imple-
mentation of elink. Observe that the CAS done after a flip is
almost the samewhether the flip returns true or false, the only
difference being the updated field (parent or rank, respec-
tively). In our analysis we shall assume that the success or
failure of the CAS following a flip is independent of the out-
come of the flip. In Sect. 6 we describe how to modify the
implementation to eliminate the need for this independence
assumption. Randomized linking by rank is an implicit form
of linking by index: links respect the total order defined by
final node ranks with ties broken by “<” .

Lemma 3 With randomized linking by rank, (i) any node x
has O(1) ancestors of the same rank, in expectation; (ii) the
sum of ranks is at most n in expectation and n + O(n1/2)
with probability 1 − 1/nc for any constant c > 0, where the
constant factor in the “O” depends on c; (iii) the expected
number of nodes of rank at least k is at most n/2k , and with
probability at least 1−n/2k , all nodes have rank less than k;
(iv) the maximum rank is at most lg n + 3 in expectation and
is at most (c + 1) lg n with probability at least 1 − 1/nc for
any positive constant c; (v) the depth of the union forest is at
most 3 lg n + 9 in expectation and O(log n) with probability
at least 1− 1/nc for any constant c > 0, where the constant
factor inside the “O” depends on c; and (vi) for a large
enough constant c and any k > 0, the expected number of
nodes of rank less than k and height at least ck in the union
forest is at most n/2k .

Proof Consider only flips that result in successful CAS
operations. Each such flip produces a rank increment with
probability 1

2 ; otherwise, it makes a root into a child.
(i) The probability that a node has k ancestors of the same

rank is at most 1/2k−1. Summing gives the bound.
(ii) There are at most n – 1 flips that make a root into a

child. The sum of ranks, which is the number of rank incre-
ments, is thus at most the number of heads in a sequence of
coin flips containing at most n tails, which is at most n in
expectation, and at most n + O(n1/2) with probability 1 – nc

for any constant c > 0 by a Chernoff bound [8], with the
constant factor in the “O” depending on c.

(iii) The rank of a given node is at least k with probability
at most 1/2k . The expected number of nodes of rank at least
k is thus at most n/2k . By a union bound, all nodes have rank
less than k with probability at least 1 – n/2k .

(iv) For c > 0, the probability that the maximum rank
is at least lgn + c is at most n/2lgn+c = 1/2c. It fol-
lows that the expected maximum rank is at most lgn +∑∞

i=1 i/2
i lgn + 2 lgn + 3, and the probability that the

maximum rank exceeds (c + 1)lgn is at most 1/2clgn =
1/nc.
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(v) A node gains a proper ancestor of the same rank with
probability at most 1/2. Thus the expected number of proper
ancestors of the same rank as that of a given node is at most∑∞

i=1 i/2
i = 2, which implies by (ii) that the expected depth

of the union forest is at most 3lgn + 9. Let c > 0. By (ii)
the maximum node rank is at most (c + 3)lgn with prob-
ability at least 1 – 1/nc+2. For any node, the probability
that it has at least (b + c + 3)lgn proper ancestors in the
union forest is at most the probability that a sequence of
fair coin flips containing at most (c + 3) lg n heads contains
at least blgn tails. By a Chernoff bound, for b sufficiently
large, this probability is at most 1 – 1/nc+2. The proba-
bility that at least one of the n nodes has more than (b +
c + 3)lgn proper ancestors in the union forest is at most
2n/nc+2 ≤ 1/nc.

(vi) Let x be any node. We claim that for some c > 0
the probability that x has an ancestor y of rank less than k
such that the path from x to y contains ck edges is at most
1/2k . Part (vi) follows from the claim by a union bound.
To prove the claim, consider the edges on the path from x
to y in the union forest. Call such an edge good if its ends
have different ranks and bad otherwise. Each edge has prob-
ability at least 1/2 of being good, independent of the status
of all other edges. The claim follows by a Chernoff bound.

	


Theorem 3 Randomized linking by rank in combination with
any valid compaction method maintains the invariant that
the parents define a set of trees that partition the nodes into
the correct disjoint sets. The parent of any non-root node
has rank no less than that of the node, and if the ranks are
equal, the parent has larger index. Each set operation stops in
O(log n) steps with probability 1−1/nc for any c > 0, where
the constant factor in the “O” depends on c. The algorithm
is bounded wait-free.

Proof Except for the fact that the algorithm is bounded wait-
free, the theorem follows from parts (iv) and (v) of Lemma 3
by a proof like those of Theorems 1 and 2.

To prove that the algorithm is bounded wait-free, we
observe that for a node to increase in rank some larger node
must have the same rank. It follows by induction that the i th

largest node has rank at most i − 1, so the maximum rank is
at most n − 1. 	


5.3 Linking by random index

With an appropriate definition of rank, Lemma 3 and The-
orem 3 hold for linking by random index, under a strong
independence assumption. We define the rank of node x to
be lgn – lg(n – x + 1). Thus node n has rank lgn, nodes n – 1
and n – 2 have rank lgn – 1, and so on. The rank of a child
is no greater than that of its parent. We use these ranks only

in the analysis; the implementation of the algorithm does not
use them.

We assume that the random node order is independent of
the linearization of the unite operations. More precisely, we
assume that the node order and linearization are generated
together in the following way. The implementation main-
tains a set U of unordered pairs {u, v} that are candidates for
linking, initially empty, and a partial order P of the nodes,
initially empty, that is a total order on the nodes of any set
defined by the links done so far, and that leaves any two nodes
in different sets unordered. To do link(u, v), a process adds
the unordered pair {u, v} to U.

The scheduler sequentially removes pairs from U in
arbitrary order. When removing a pair {u, v} from U, the
scheduler performs three actions. First, itmodifiesP bymerg-
ing the total orders of the sets containing u and v, with each
possible merged order equally likely. Second, if u < v it sets
u.p = v, if v < u it sets v.p = u. This unites the sets containing
u and v. The link corresponding to the pair {u, v} succeeds.
Third, the scheduler deletes fromU all other pairs containing
u or v. Each link corresponding to such a pair fails. When a
pair is deleted from U, the process that added the pair to U
proceeds with its next operations, which are the recomputing
of its u and v.

The updating of P maintains the invariant that the total
order of the nodes in any set defined by the links done so far
is uniformly random. If there is more than one set after all
unites have been done, we can extend the final partial order
to a total order by merging the total orders on the final sets,
with each possible merged order equally likely. The result is
a uniformly random permutation of the nodes, equivalent to a
uniformly random numbering of the nodes from 1 to n. Thus
this implementation does linking by random index, subject
to the restriction imposed on the scheduler. The execution
does not change if we initially number the nodes uniformly
at random but reveal to the scheduler only the total order
within each set formed so far.

This implementation restricts the behavior of linking by
random index in at least two different ways: in the actual
implementation, the CAS operation for a link is defined by
an ordered pair, not an unordered pair, so the scheduler gets
information about the node order before it needs to decide
which such CAS to do next. Also, in the actual implemen-
tation a link can make a root the child of a non-root, which
cannot happen with the scheduler constraint. We think the
latter restriction is inconsequential, but the former is signifi-
cant. We thus view our analysis of linking by random index
as suggestive, not definitive.

Lemma 4 With linking by random index, if the scheduler
restriction holds, then parts (i), (v), and (vi) of Lemma 3
are true, as well as the following strengthened versions of
parts (ii), (iii), and (iv): (ii) the sum of ranks is at most n,
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(iii) the number of nodes of rank at least k is at most n/2k ,
and (iv) the maximum node rank is at most lg n.

Proof Parts (ii), (iii), and (iv) are immediate from the defini-
tion of ranks. Parts (i), (v), and (vi) follow as in the proof of
Lemma 3 from the following claim: 	


(*) Given a node x, each successive ancestor of x in the
union forest has probability at least 1/2 of having higher rank
than its parent, independent for each ancestor.

To prove (*), consider a node x. Given an execution of
the algorithm, we modify the linearization by delaying links
uniting sets not containing x until such a set is a subset of
a set about to be united with x. That is, let S be the current
set containing x, let {u, v} be the next pair deleted from U
with u but not v in S, and let S ′ be the current set containing
v. We modify the schedule to delay all the links forming S ′
until just before the link of u and v. This does not change
the steps done by the execution, only their linearization order.
We generate the partial order P by generating a numbering of
the nodes incrementally and revealing to the scheduler only
the total order within each set constructed so far. Initially
we assign a number uniformly at random to x. Subsequently
when the scheduler removes a pair {u, v} from U, if u and/or
v is unnumbered we assign it a number chosen uniformly at
random from the numbers not yet assigned.

Suppose the scheduler removes a pair {u, v} fromPwith u
the root of the tree containing x, and v in another tree, and that
the corresponding link succeeds. Let S and S ′, respectively,
be the sets containing u and v just before {u, v} is removed
from U. Just before the links forming S ′ are done, the only
numbered nodes are those in S, and u has the largest number.
Among the numbers larger than that of u, at least half have
rank larger than that of u. When S ′ is formed, its nodes are
numbered uniformly at random from among the unassigned
numbers. Given that a number assigned to a node in S ′ is
larger than that of u, it has probability at least 1/2 of being
larger than the rank of u. Since v has largest number among
the nodes in S ′, if the link makes v the parent of u the rank of
v is greater than that of u with probability at least 1/2. The
claim (*) follows by induction on the number of steps.

Theorem 4 Theorem 3 holds for linking by random index if
the scheduler restriction holds.

Proof The theorem follows from parts (iv) and (v) of
Lemma 4 in the same way that Theorem 3 follows from parts
(iv) and (v) of Lemma 3. 	


6 Indirection and helping

The algorithms in Sects. 5.1 and 5.2 require that CAS (and
DCAS in 5.1) support testing and updating of storage blocks

able to store both the parent and the rank of a node. In this
section we present two ways to eliminate the need for blocks
to containmultiple fields. Bothmethods increase the number
of steps per operation, but by at most a constant factor. We
also discuss how to modify the implementation of the ran-
domized linking algorithm of Sect. 5.2 to eliminate the need
for an unrealistic independence assumption in its analysis.

The first method to reduce the block size, proposed by
Anderson and Woll [3] is to use indirection. Specifically,
each node contains only one field, a pointer to a ledger that
contains the parent and rank of the node. To do a link via a
CAS, a process creates a new ledger containing the updated
information for the node being linked and then uses a CAS to
attempt to replace the old ledger of the node by the newone.A
link via aDCAS is similar, except that the process creates two
new ledgers and uses aDCAS to replace the old ledgers of the
two affected nodes. Parent updates done by splitting are done
directly on the appropriate ledgers, without allocating new
ones. The ledger method requires a way to allocate ledgers,
and care must be taken to avoid the reuse of ledgers. The
algorithm of Sect. 5.1 needs at most 3n − 2 + 2p = O(n)

ledgers, one per initial set plus at most two per successful
link plus at most two per process. The algorithm of Sect. 5.2
needs O(n) ledgers with high probability. If ledgers are used
to implement randomized linking by rank, the independence
assumption needed by the analysis becomes much weaker
and quite realistic: the success or failure of a CAS can depend
on all inputs to the CAS, in particular the ledger addresses,
but not on the contents of the ledgers.

Allocating ledgers efficiently is itself a challenging prob-
lem, which Anderson and Woll ignored. One way to do it is
to use the concurrent fetch and increment method of Ellen
and Woelfel [11]. If ledgers are allocated individually, the
number of steps to allocate a ledger is O(log p). If ledgers
are allocated in groups of O(log p), the amortized time per
allocation is O(1) and the number of ledgers used will be
O(n) provided p = O(n/ log n). If we are willing to use
O(n + p2) memory, hazard pointers [34] and related tech-
niques [2] can be used.

The secondmethod is helping, as described for example in
[19]. The idea is to allow processes to complete the tasks of
other processes. We number the processes from 1 to p. Each
node u has an extra field, u.process, which can hold a process
number or 0, and is initially 0. Each process has a descriptor
in which it records a sequence of steps it wants to perform.
To update a node, a process writes appropriate instructions
into its descriptor and then does a CAS or DCAS to write
its process number into the process field of the affected node
or nodes. Any other process that wants to update a node
containing a non-zero process number must first execute the
instructions in the corresponding descriptor. When the last
instruction is executed, the process number in the affected
node or nodes is reset to 0, allowing further updates to the
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node or nodes. As long as the number of instructions needed
to do an update is bounded by a constant, the use of descrip-
tors increases the total work by only a constant factor.

In using helping to link nodes of equal rank, we have to
solve theABA problem: A helping process, having completed
the instructions in a descriptor, resets the process number in
the relevant node to zero, but in the meantime the process
being helped has reset the process number to zero, initiated
a new update, and set the process number to its own number
again. The helping process has no way to detect that a new
update has been initiated by the process that initiated the old
one. In our application, we can solve the ABA problem by
using the monotonicity of ranks. This requires that a CAS be
able to update the rank and the process number of a node as
an atomic operation. Since ranks are small and in any realistic
application p � n, we think this is a reasonable assumption.

The deterministic algorithm of Sect. 5.1 does links using
helping as follows. Each descriptor contains two nodes and a
rank. To link root x of rank r to root y, a process, say process
i, writes x, y, and r into its descriptor. If y has rank greater
than r, it uses a CAS to write i into node x while verifying
that the process number of x is 0 and the rank of x is r. If
y has rank r, it uses a DCAS to write i into both x and y
while verifying that the process numbers of x and y are 0
and the ranks of x and y are r. A process wanting to update
a node that finds a non-zero process number i in the node
reads the corresponding descriptor. Suppose the descriptor
contains nodes x and y and rank r. The process sets z = y.p
and does a CAS to set the parent of x to z while verifying
that x was a root before the update. It then tests whether y is
a root of rank r. If so, it does a CAS to change the rank of
y to r + 1 and the process number of y to 0 while verifying
that the rank and process number of y were r and i before the
update.

This method uses a couple of optimizations. It does not
reset the process number of a node that becomes a non-root,
since no subsequent link will try to change its parent or rank.
Instead of making y the parent of x, it makes y.p the parent
of x. The reason to do the link this way is that some other
process can make y a non-root just before process i does
its CAS or DCAS to write i into x , or into x and y. If this
happens, y.p will have rank greater than r when x becomes
its child, preserving the invariant that ranks strictly increase
from child to parent. If this does not happen and the rank of y
is r, the helping process adds one to the rank of y and resets
the process number of y to 0.

The randomized algorithm of Sect. 5.2 does helping using
descriptors containing a node y, a rank r, and a flag whose
value is null, true, or false. A flag of true indicates that y
should become the parent of the root containing the process
number of the descriptor; a flag of false indicates that the rank
of this node should be changed from r to r + 1. If process
i wants to link root x of rank r to root y, it writes y and r

into its descriptor. If y has rank greater than r, it sets the
flag to true; if the rank of y equals r, it flips a fair coin and
sets the flag correspondingly. Then it uses a CAS to set the
process number of x equal to i while verifying that the rank
and process number of x were r and 0 before the update.
A process wanting to update a node x that finds a non-zero
process number i in x reads the corresponding descriptor. If
the flag is true it does a CAS to set the parent of x to y while
verifying that x was a root before the update. If the flag is
false it does a CAS to set the rank and process number of x
to r + 1 and 0 while verifying that they were r and i before
the update.

The analysis of this method relies on the same indepen-
dence assumption as the method using ledgers: scheduling
decisions are independent of the contents of descriptors. A
variant of the method is to set the flag after the process num-
ber of the descriptor is written into x : the first step of a
helping process is to change the flag from null to true or false
using the randomized CAS operation mentioned in Sect. 2.
If this operation is available, no independence assumption
is needed. Algorithms 13 and 14 in Appendix A contain the
pseudo-code for an implementation using randomized CAS.
Appendix A also contains a detailed line-by-line explanation
of the implementation. This implementation of randomized
linking by rank satisfies the Anderson-Woll requirement that
a randomized algorithm be efficient even if the scheduler
knows the outcome of previous random choices. We think,
though, that it is reasonable to assume that the scheduler
makes its decisions only on the basis of the inputs to the
CAS operations, or that it cannot read the private memories
of the processes. If either of these assumptions hold, we do
not need randomized CAS.

7 Upper bounds

The results of Sects. 5 and 6 give us the following theorem:

Theorem 5 With any of the three linking methods of Sect. 5
combined with any valid compaction method, the total work
is O(m log n). This bound is worst-case for the determin-
istic linking method, high-probability for the randomized
methods. If randomized linking by rank is implemented as
described in Sect. 6, the bound is valid even for an adversar-
ial scheduler.

Proof The theorem is immediate from the results of Sects. 5
and 6. 	


The use of splitting instead of naïve find improves the
total work bounds significantly if p � n. We show this by
extending the analysis of sequential splitting [16,45] to one-
try and two-try splitting.
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We define the density d of a set union problem instance to
be m/(np) if splitting is two-try, m/(np2) if splitting is one-
try.We shall obtain a bound of O(m ·(α(n, d)+log(1+1/d)))
on the total work if either kind of splitting is used in com-
bination with any of the three linking methods. The main
obstacle we encounter in extending the sequential analysis
to the concurrent setting is accounting for unsuccessful CAS
operations. Accounting for such operations adds the loga-
rithmic term to the work bound.

We call a problem instance sparse if d < 1 and dense oth-
erwise. The logarithmic term in the work bound dominates
only in sparse instances. We start with the analysis of dense
instances, which is simpler than that of sparse ones.

We call a child a zero child if its rank is the same as that
of its parent. Zero children only exist if a randomized linking
method is used.

With deterministic linking by rank or linking by random
index, ranks are at most lgn. With randomized linking by
rank, they are at most n − 1, although large ranks occur with
exponentially small probability (Lemma 3 part (iii)).

7.1 The dense case

Throughout this section we assume d ≥ 1.

Lemma 5 The number of finds is O(m), worst-case unless
randomized linking by rank is used, in which case the bound
is with high probability.

Proof There are at most two finds per unite plus at most two
per process per root that increases in rank or becomes a child,
for a total of O(m + np) = O(m). For randomized linking,
this bound follows from part (ii) of Lemmas 3 and 4 and is
high-probability for randomized linking by rank, worst case
for linking by random index. 	


We call a node low if its rank is less than d and high
otherwise. All nodes have rank at most n − 1. During a find,
a visit to a node is an iteration of the find loop in which the
node is the value of u. (See the pseudocode in Sect. 4.)

Lemma 6 The number of visits to low nodes during finds
is O(m), worst-case if linking is deterministic, expected if
randomized.

Proof Consider three successive visits to low nodes during a
find, to u, v, and w. Let I be the interval of time between the
visits of u and w. We claim that at least one of the following
events occurs during I:u or v becomes a child,u.p.r increases,
or u or v loses an ancestor of the same rank. The number of
such events for fixed u and v is O(d): a node only becomes
a child once, its parental rank can increase at most d times
before it exceeds d and its parent is not low; a node has
O(1) ancestors of the same rank in expectation by part (i) of
Lemmas 3 and 4.We charge the visit to u to the corresponding

event (or any such event if there ismore than one). Each event
is charged for at most 2p visits, at most two per process. (The
factor of two comes from the two nodes associated with a
visit, the node itself and the next node visited.) Summing
over all nodes, we obtain a bound of O(npd) = O(m) on
visits to low nodes.

Suppose the claim is false. Then u and v are childrenwhen
u is visited.

After the CAS following the visit to u, the parent of u has
changed; after the CAS following the visit to v, the parent of v
has changed. If either u or v is a zero child when u is visited,
at least one of them becomes a non-zero child or loses an
ancestor of the same rank during I. Thus neither u nor v is a
zero child when u is visited. But then the rank of the parent
of u increases by the time the CAS after the visit to u finishes,
making the claim true. 	


Bounding visits to high nodes is more complicated. For
each high child x, we measure the progress of compaction
by keeping track of an increasing function of the rank of the
parent of x, called the count of x. We define counts using
Ackermann’s function. Our formulation is an extension of
that of Kozen [30]. We define the level x.a of a high node x,
and the index x.b and count x.c of a high child x, as follows:

x .a = min {k|Ak(x .r) > x .p.r};
x .b = max {i |Ax .a(i) ≤ x .p.r};
x .c = x .r · x .a + x .b.

We bound the range of levels, indices, and counts by using
the properties of Ackermann’s function:

Lemma 7 If x is a high node, 0 ≤ x .a ≤ α(n, d) and x .a = 0
if and only if x.r = x.p.r. If x is a high child, 0 ≤ x.b < x.r
and 0 ≤ x .c < (α(n, d) + 1)x .r . The values of x.a and x.c
never decrease, and if x.a or x.b increases, x.c increases by
at least as much.

Proof Since A0(x.r) = x.r + 1, x.a = 0 if and only if
x.r = x.p.r, and x .a ≥ 0 if it is defined. If x is a high
node, Aα(n,d)(x .r) ≥ Aα(n,d)(�d�) > n > x .p.r . Thus
x.a is defined and is at most α(n, d). (Here for random-
ized linking by rank we use the assumption that all ranks
are less than n.) Suppose x is a high child. If x.a = 0, x.b
= x.r – 1 since x .r ≥ d ≥ 1. If x.a > 0, Ax .a(0) =
Ax .a−1(1) ≤ Ax .a(x.r) ≤ x.p.r, so x.b is defined. Since
Ax .a(x.r) > x.p.r, x.b < x.r. The bounds on x.c follow from
those on x.a and x.b. While x is a root, x.a = 0. Once x is a
child, x.r is constant and x.p.r cannot decrease, so x.a can-
not decrease by Lemma 1. While x.a is constant, x.b cannot
decrease for the same reason. If x.a increases by one, x.b can
decrease by at most x.r – 1, resulting in an increase of at least
one in x.c. If x.a increases by at least k, x.c increases by at
least (k – 1)x.r + 1. 	
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Lemma 8 The sum of the counts of all high children is
O(nα(n, d)), worst-case unless linking is randomized by
rank, in which case the bound is high-probability.

Proof By Lemma 7, the sum of the counts of high children
is O(α(n, d)) times the sum of the ranks of all nodes. By
Lemmas 2 and 4, the sum of ranks is less than n for deter-
ministic linking by rank and linking by random index. For
randomized linking by rank, it is O(n) with high probability
by Lemma 3. 	


The following lemma is the key to the analysis of splitting.

Lemma 9 Consider a time t at which u is a high child whose
parent v is also a (high) child. Let w the parent of v at time t,
and let u.a, v.a, and w.r be the levels of u and v and the rank
of w at time t, respectively. Suppose that at time t or later the
parent of u changes from v to a node x of rank at least w.r. If
v.a > u.a, the parent change increases u.a and u.c by at least
v.a – u.a; if v.a = u.a, the parent change increases u.c by at
least 1 or causes u to lose an ancestor of the same rank.

Proof Let u.r and v.r be the ranks of u and v at time t, respec-
tively. Let x.r be the rank of x when it becomes the parent
of u. Since Av.a−1(u.r) < Av.a−1(v.r) ≤ w.r ≤ x.r, the level
of u after the parent change is at least v.a. If v.a > u.a, the
parent change increases the level and hence the count of x
by at least v.a – u.a by Lemma 7. Suppose v.a = u.a. If u.a =
0, the parent change causes u to lose v as an ancestor. Sup-
pose u.a > 0. Since Au.a(u.b + 1) = Au.a−1(Au.a(u.i)) ≤
Au.a−1(v.r) ≤ w.r ≤ x.r, the parent change increases either
the level or the index of u and hence increases the count of
u. 	


To count visits to high nodes, we use a credit argument.
One credit pays for one high-node visit. We allocate a certain
number of credits to each find when it starts, and additional
credits when high nodes increase in count or lose ancestors
of the same rank. We show via a credit invariant that these
credits suffice to pay for all the high-node visits. A bound on
the total number of credits gives a bound on the number of
high-node visits.

We begin by analyzing two-try splitting: even though it is
more complicated than one-try splitting, its analysis is sim-
pler. We call a find active while it is being executed. When a
find starts, we allocate it α(n, d)+1 credits. When the count
of a high child increases by k, we allocate 2k credits to each
active find, for a total of at most 2pk. When a high child loses
an ancestor of the same rank, we allocate one credit to each
active find, for a total of at most p.

Lemma 10 With two-try splitting, the number of allocated
credits is O(mα(n, d)), worst-case if linking is deterministic,
average-case if randomized.

Proof By Lemma 5, the number of credits allocated to finds
when they start is O(mα(n, d)). By Lemma 8, the number
of credits allocated to finds as a result of increases in count
is O(npα(n, d)) = O(mα(n, d)). By Lemmas 3 and 4, the
expected number of credits allocated to finds as a result of
nodes losing ancestors of the same rank is O(np) = O(m).

	

Lemma 11 With two-try splitting, just after a high node u is
visited by a find, the find has at least u.a credits.

Proof We prove the lemma by induction on the number of
high-node visits done by a find. When the find starts, it has
α(n, d)+ 1 credits. The first visit costs one, leaving α(n, d),
which is enough to make the lemma true just after this visit.
Suppose the lemma holds just after u is visited, and let v be
the next node visited. We denote by unprimed and primed
variables their values just after the visit to u and just before
the visit to v, respectively. The lemma holds after the visit to
v provided that the find accrues at least v.a′ – u.a + 1 credits
between the visits to u and v. To show that this happens, we
need the following crucial inequality, which follows from
Lemma 9:

(*) u.a′ ≥ v.a
To prove (*), we refer to the implementation of two-try

splitting. Let t be the first time u.p = v. Time t is after the visit
to u, since u.p changes between the first and second times that
the find sets its variable v after the visit to u, as a result of the
first CAS during the visit to u succeeding or failing. Let w be
the parent of v at time t. Consider the change to u.p resulting
from the second CAS after the visit to u. This change satisfies
the hypothesis of Lemma 8, since the new parent of u must
have been the parent of v at time t or later. By Lemma 9, just
after this change to u.p, the level of u is at least the level of
v at time t. Since levels are non-decreasing, (*) holds.

Between the visits to u and v, the find accrues at least
2(u.a′ – u.a + v.a′ – v.a) = (v.a′ – u.a) + (u.a′ – u.a) + (v.a′ –
v.a) + (u.a′ – v.a) credits as a result of level increases. Each of
the last three terms is non-negative, the last one by (*). Thus
the find accrues at least v.a′ – u.a + 1 credits between the
visits, unless the levels of u and v are equal and unchanging
between the visits. Suppose the levels of u and v are equal
and unchanging between the visits. By Lemma 9, the find
accrues at least one credit when the parent of u changes from
v. 	

Lemma 12 With two-try splitting, the number of visits to high
nodes is O(mα(n, d)), worst-case if linking is deterministic,
average-case if randomized.

Proof The lemma is immediate from Lemmas 10 and 11. 	

Nowwe extend the analysis to one-try splitting. The proof

of Lemma 11 fails for one-try splitting, because a CAS done
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by one process, say process 1, can fail as a result of a suc-
cessful CAS done by another process, say process 2, that sets
its value of v before process 1’s most recent high-node visit.
That is, time t in the proof of Lemma 9 can precede the visit.
This invalidates the use of Lemma 9 in the proof.

To overcome this problem, we allocate additional credits
to node count increases, and we allow active finds to shift
some of their credits to the other active finds. Specifically,
when a find starts, we allocate it α(n, d) + 1 normal credits.
When a high child loses an ancestor of the same rank, we
allocate one normal credit to each active find.When the count
of a high node increases by k, we allocate 2k normal credits
and 2k(p− 1) extra credits to each active find. When a CAS
in a find succeeds, we shift a 1/(p − 1) fraction of the find’s
extra credits to each other active find. Shifted extra credits
become normal; that is, we shift a credit at most once.

Lemma 13 With one-try splitting, the number of allocated
credits is O(mα(n, d)), worst-case if linking is deterministic,
average-case if randomized.

Proof The bound holds for normal credits by the proof
of Lemma 10. By Lemma 8, the number of extra cred-
its allocated to finds as a result of increases in count is
O(np2α(n, d)) = O(mα(n, d)) since d = m/(np2). 	

Lemma 14 With one-try splitting, just after a high node u is
visited by a find, the find has at least u.a normal credits.

Proof The proof is an extension of that of Lemma 11. Con-
sider a find, say find 1. The credits allocated to the find when
it starts make the lemma true just after its first high-node
visit. Suppose the lemma holds just after find 1 visits u, and
let v be the next node it visits. We consider three cases. If the
CAS during the visit of find 1 to u succeeds, the lemma holds
just after the visit to v by an argument like that in the proof of
Lemma 11. (This case does not use shifted credits.) Suppose
this CAS fails, because a CAS done by another find, say find
2, changes u.p from v to another value. Let t be the last time
that find 2 set its variable v before its successful CAS. If t
is after find 1 visits u, the lemma holds just after the visit to
v by an argument like that in the proof of Lemma 11, again
without the use of shifted credits.

The third, new case is if t precedes the visit of find 1
to u. Let t′, t′′, and t′′′ be the times find 1 visits u, find 2
does its CAS, and find 1 visits v, respectively. We denote by
unprimed, primed, double-primed, and triple-primed values
their values at times t, t′, t′′, and t′′′, respectively. Applying
Lemma 8 to time t and the successful CAS of find 2 gives
u.a′′ ≥ v.a; and, if u.a ≤ v.a, the count of u increases by at
least 1 or u loses an ancestor of the same rank when find 2
does its CAS.

At time t′, find 1 has at least u.a′ normal credits by the
induction hypothesis. Between times t′ and t′′′, it accrues at

least 2(u.a′′′ – u.a′ + v.a′′′ – v.a′) normal credits. Between
times t and t′′, find 2 accrues at least 2(p – 1)(u.a′′ – u.a +
v.a′′ – v.a) ≥ 2(p – 1)(u.a′ – u.a + v.a′ – v.a) extra credits, of
which at least 2(u.a′ – u.a + v.a′ – v.a) are shifted to find 1
and become normal at time t′′: find 1 is active at t′′ since its
CAS fails as a result of the CAS by find 2 succeeding. Thus
between t′ and t′′′ find 1 accrues at least 2(u.a′′′ – u.a + v.a′′′
– v.a) ≥ (v.a′′′ – u.a′) + (u.a′′′ – u.a) + (v.a′′′ – v.a) + (u.a′′
– v.a) normal credits. Since u.a′′ ≥ v.a, this is at least v.a′′′
– u.a′ + 1, enough to make the lemma true for the visit to v,
unless u and v have equal and unchanging levels from t to
t′′′, in which case find 1 accrues a normal credit when find 2
does its CAS. 	

Lemma 15 With one-try splitting, the number of visits to high
nodes is O(mα(n, d)), worst-case if linking is deterministic,
average if randomized.

Proof The lemma is immediate from Lemmas 13 and 14. 	


7.2 The sparse case

In this section we modify the analysis of Sect. 7.1 to handle
sparse instances. Throughout this section we assume d < 1.
We need to change the definition of low and high nodes, add
an additional node type, middle, and (for the purpose of the
analysis only) redefine the ranks of nodes.

Let l = lg(1 + 1/d). Since d < 1, l > 1. A node is low if
its rank is less than l and its height is less than cl, where c
is the constant in part (vi) of Lemmas 3 and 4; middle if its
rank is less than l but its height is at least cl, and high if its
rank is at least l. Middle nodes can exist only if linking is
randomized.

Lemma 16 The number of non-lownodes is atmost 2nd, as is
the sum of the ranks of such nodes. This bound is worst-case
if linking is deterministic, average-case if randomized.

Proof By part (vi) of Lemmas 3 and 4, the expected number
of middle nodes is at most n/2l ≤ n/2lg(1/d) = nd if linking
is randomized. (It is zero if not.). By Lemma 2 or part (iii) of
Lemma 3 or 4 depending on the linking method, the number
of high nodes is also at most n/2l ≤ nd, worst-case if linking
is deterministic or by randomized index, average-case if by
randomized rank. The bound on the sum of ranks follows
from the node boundby the argument in the proof ofLemma2
if linking is deterministic, by that in the proof of part (ii) of
Lemma 3 or 4 if randomized. 	

Lemma 17 The number of finds that visit at least one non-low
node is O(m), worst-case if linking is deterministic, average-
case if randomized.

Proof Consider the finds during unites that visit at least one
non-low node. At most two per unite also visit a low node.
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Of those that visit only non-low nodes, there are at most two
per unite plus at most 2p per non-low node that becomes a
child or has a rank increase, two per process doing a unite
while the event in question takes place. By Lemma 16, the
number of such finds is O(npd) = O(m). 	

Lemma 18 The number of visits to low nodes is O(ml),
worst-case.

Proof The analysis of node visits in the proof of Theorem 2
restricted to nodes of rank less than l and height less than
cl gives a bound of O(l) low-node visits for each find and
unite. 	

Lemma 19 If linking is randomized, the expected number of
visits to middle nodes is O(ml).

Proof By Lemma 17, the expected number of finds that visit
middle nodes is O(m). During such a find, each visit to a
middle node except the last two is followed by a middle
node losing a child of the same rank or the parent of a middle
node x increasing in rank. The latter can only happen l times
before x has a parent that is not a middle node; subsequently,
x can only be the last middle node visited during a find. We
charge each visit to a middle node other than the last two of
a find to the corresponding event. The charge per event is at
most p, and the expected number of events is at most ndl
rank increases and O(nd) losses of same-rank ancestors, the
latter by part (i) of Lemma 3 or 4. Such events account for
O(npdl) = O(ml) visits. Adding the last two per find gives
the lemma. 	


To count visits to high nodes, we define the effective rank
of a high node x to be x.er = x.r – l + 1. We define lev-
els of high nodes and indexes and counts of high children,
using effective ranks in place of ranks. Since the effective
rank of a high node is at least one, levels of high nodes
and indices and counts of high children are well-defined.
We allocate credits exactly as in Sect. 7.1. Lemmas 7 and 9
remain true. By Lemma 16, the sum of counts of high chil-
dren is O(ndα(n, d)), worst-case if linking is deterministic,
high-probability if randomized. We allocate credits exactly
as in Sect. 5.1. Lemmas 11 and 14 remain true. If split-
ting is two-try, the number of allocated credits is O((m +
ndp)α(n, d)) = O(mα(n, d)) since d = m/(np); if split-
ting is one-try, it is O((m + ndp2)α(n, d)) = O(mα(n, d))

since d = m/(np2). We conclude that Lemmas 10, 12, 13,
and 15 hold in the sparse case (with the new definition of a
high node).

7.3 The total work bound

Combining the results of Sects. 7.1 and 7.2, we obtain the
following theorem:

Theorem 6 With any of the three linking methods of Sect. 5
and either one-try or two-try splitting, the total work is
O(m(α(n, d)+log(1+1/d))), worst-case if linking is deter-
ministic, average-case if randomized, where d = m/(np2) if
splitting is one-try, d = m/(np) if splitting is two-try.

Proof The theorem follows from Lemmas 6, 12, 15, 18, and
19. 	


8 Lower bounds

In this section, we derive lower bounds on the worst-case
and amortized efficiency of set union algorithms. In the first
subsection, we prove lower bounds on the work efficiency
of the algorithms described in this paper by explicitly pro-
viding worst-case executions—both the operations and the
adversarial schedules. At a high level, our executions are
constructed by the following observations and steps. For
each algorithm, we describe operations that build a tree of
logarithmic height using unite operations. We observe that
shadowing schedules in which all processes are scheduled
in lock-step while performing the same expensive find oper-
ations result in worst-case behavior. We apply a shadowing
schedule to processes performing a find on the deepest node
in the aforementioned tree to prove that the logarithmic term
in our upper bounds is tight. Then, we combine the idea of
shadowing schedules with previous sequential lower bounds
of Tarjan et al. and Fredman et al. [14,45] to show that the
inverse-Ackermann term in our upper bounds is tight. Our
algorithmic lower bounds section proves that our amortized
upper bound analyses are tight when find operations are done
with two-try splitting.

In the second subsection, we show general lower bounds
that apply to the concurrent set unionproblem.First,weprove
that, in the worst-case, any concurrent set-union algorithm
must do at least �(logmin{n, p}) work in expectation for

a single operation. When p = nω( 1
log log n ), this lower bound

is stronger than the sequential lower bound of �
(

log n
log log n

)
given by Fredman and Saks [14] in the cell probe model.
It also shows a separation in work complexity between the
sequential and concurrent versions of the set-union prob-
lem, since Blum [5] presented an algorithm that does at

most O
(

log n
log log n

)
work per operation in the sequential set-

ting. Furthermore, whenever log p = �(log n), i.e. when
p = nε , this lower bound establishes that randomized link-
ing with any form of compaction yields an algorithm with
optimal expected work per operation. Finally, we generalize
the worst-case lower bound using shadowing schedules to
show that our algorithm obtained by combining randomized
linking with two-try splitting is optimal amongst a class of
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symmetric algorithms that includes all known algorithms for
the concurrent disjoint set union problem.

8.1 Algorithmic lower bounds

In order to prove the tightness of the inverse-Ackermann term
in our upper bounds, we recall a sequential cell probe lower
bound on the set union problem given by Fredman and Saks.

Lemma 20 ([14]) Let A be any randomized algorithm that
solves the sequential set union problem. For any fixed number
of nodes n, and any M ≥ n, there is a sequence of operations
σM, that makesA perform �(Mα(n, M/n)) expected work.

We use Lemma 20 to establish a concurrent lower bound.

Lemma 21 LetA be any of the algorithms we have described
for concurrent set-union. There is some sequence of m
operations using p processes on n nodes that requires

�
(
m · α

(
n, m

np

))
work in expectation.

Proof Any concurrent algorithm is also a sequential algo-
rithm if it is run by a single process. So, for any givenM ≥ n,
we can take a worst-case sequence σM of operations from
Lemma 20. That is, a single process running the sequence
of operations σM will perform �(Mα(n, M/n)) work in
expectation. In the remainder of the proof, we use shadow-
ing schedules, in which processes run in lock-step with each
other and thereby do not gain locally from any compaction
attempts of other processes, to get the lower bound.

We consider two cases for m:

Case 1: If m ≥ np, then we choose M = m/p ≥ n.
If each of the p processes runs σM and is scheduled in
lock-step (so that the processes all walk up find sequences
together and do not benefit from each other’s compaction
attempts), then the total number of operations is pM = m
and the total amount of work is �(pMα(n, M/n)) =
�

(
mα

(
n, m

np

))
.

Case 2: If m < np, we choose M = n. Then, σM per-
formed by a single process takes �(nα(n, 1)) expected
work. We observe that m/n < p and assign m/n pro-
cesses the operation sequence σM , thus assigning m
operations. If the processes are scheduled in lock-step,
the total expected work performed by them is �(m/n ·
nα(n, 1)) = �

(
mα

(
n, m

np

))
.

	
We can also show that the logarithmic term log( npm +1) is
an amortized lower bound for all our algorithms. The sched-
ule that builds binomial trees with a single process andmakes
all the processes shadow each other up the longest branch of
these trees yields the lower bound.

Lemma 22 For randomized linking by rank and linking by
DCAS, regardless of what type of compaction is used in find
operations, and for any positive integer k ∈ [1, n], there is a
sequence of k − 1 unite operations that will build a tree with
k nodes with height �(log k).

Proof For simplicity, we initially assume that k is a power of
2. Let Bj be the binomial tree of height j . All the nodes are
initially in singleton trees, i.e. B0 trees. We proceed in lg k
rounds. In round r , we start with k

2r−1 trees of type Br−1, and
simply unite their roots pairwise. After lg k rounds we end
up with a single tree of type Blg k . If k were not a power of 2,
we perform the above procedure with the largest power of 2
less than k and simply unite the remaining nodes to the root
of the main tree. 	


A slightly more complex construction allows us to prove
a similar lemma for linking by index.

Lemma 23 For randomized linking by index, regardless of
what type of compaction is used in find operations, and for
any positive integer k ∈ [1, n], there is a sequence of k − 1
unite operations by a single process that will build a tree with
k nodes in which the depth of a uniformly randomly picked
node is �(log k) in expectation.

Proof The proof is constructive. The construction of these
trees is inspired by binomial trees, and is done in multiple
rounds such that each round fully finishes before the next
round starts. Without loss of generality let k be a power of
2, as otherwise we could just use the greatest power of 2
less than k in the following construction. Initially, we let
the nodes be in singleton trees T1,1, . . . , Tk,1. In each round
we will combine pairs of trees, and each tree T will have a
designated node ν(T ). In the initial trees the designated node
is the only node. In the first round we combine pairs of trees
by performing

unite(ν(T1,1), ν(T2,1)), unite(ν(T3,1), ν(T4,1)), . . . , unite(ν(Tk−1,1), ν(Tk,1))

to produce tree T1,2, . . . , Tk/2,2. The designated node ν(Ti,2)
is chosen to be one of the designated nodes of the subtrees
that formed Ti,2. We call this process of picking the new
designated nodes as a subset of the old ones refining. The
subsequent rounds are done similarly by combining pairs of
trees from the previous round and refining designated nodes,
until only the tree T1,lg k remains.

We now make the following observations about this pro-
cess:

(1) All trees Ti,r of a given round r have the same number
of nodes 2r .

(2) A designated node always has depth at most 2. (This
follows from the way find does compactions.)
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(3) A node of depth δ in any of the trees Ti,r has at most( 1
2

)δ · |Ti,r | successors.

The links in the rounds raise the depth of half the nodes
due to (1), and the compactions in the find operations of the
rounds reduce the average depth of a node in the forest by
at most 1

4 due to (2) and (3). Thus, each round increases the
average depth of a node in the forest by at least 1

2 − 1
4 = 1

4 .
Since there are log(k) rounds, the proof is complete. 	


Combining the previous lemmas yields our best algorith-
mic lower bound result.

Lemma 24 Let A be a concurrent disjoint set union algo-
rithm obtained by combining linking by DCAS, randomized
linking by rank, or linking by random index with find with
no compaction, one-try splitting, or two-try splitting. There
is a schedule of m operations on n nodes by p processes that
forces A to perform �

(
m log

( np
m + 1

))
work. The bound

holds in expectation for the linking by random index algo-
rithm even under the independence assumption.

Proof We prove the theorem for linking by the DCAS and
randomized linking by rank algorithmsfirst. The lower bound
is non-trivial only whenm/p < n. In this case, we describe a
particular sequence of operations and schedule that performs
the requisite work. Divide the nodes intom/p groups of size
n/(m/p) = np/m. Lemma 22 allows us to link each group
of nodes into a tree of height �

(
m log

( np
m + 1

))
. For each

such tree, perform find(x) on the deepest node x of that tree
simultaneously with each of the processes. Now consider
the schedule in which processes shadow each other in all the
finds. In this schedule, each process does�

(
m log

( np
m + 1

))
work per find, and one find per group. The total number of
operations is m/p× p = m, and the total amount of work is
�

(
m log

( np
m + 1

))
.

In the case of the linking by random index algorithm under
the independence assumption,wemodify the above argument
by replacing the use of Lemma 22 with Lemma 23, and per-
forming find(x) on a uniformly randomly picked node x in
the tree. 	


Combining the previous lemmas yields our best algorith-
mic lower bound result.

Theorem 7 Let A be a concurrent disjoint set union algo-
rithm obtained by combining linking by DCAS, randomized
linking by rank, or linking by random index with find with
no compaction, one-try splitting, or two-try splitting. There
is a schedule of m operations on n nodes by p processes

that forcesA to perform�
(
m

(
log

( np
m + 1

) + α
(
n, m

np

)))
work. The bound holds in expectation for the linking by ran-
dom index algorithm even under the independence assump-
tion.

Proof Combine the results of Lemmas 21 and 24. 	

As the final algorithmic lower bound, we prove that the

independence assumption we have been using to analyze the
linking by random index algorithm is indeed necessary. In
particular, we present a super-logarithmic work lower bound
for the algorithm if the independence assumption does not
hold.

Lemma 25 Concurrent set union via the linking by random
index algorithmperforms�(m

√
p) expectedwork to dom =

n
√
p operations if

√
p ≤ n, regardless of which compaction

rule the find operations use.

Proof We will show an explicit example. Assume
√
p < n,

and pick a set S of
√
p nodes. Let p/2 processes attempt to do

unite(x, y)where each pair of x, y in S is tried by at least one
process. The scheduler can wait to see the outcomes of the
node comparisons and decide to schedule the processes so
that the nodes of S get linked into a linear path of length

√
p.

If the remaining p/2 processes all perform find(x) where x
is chosen randomly from S, and are scheduled in lock-step,
they will perform, in expectation, �(

√
p) work each, since

the expected depth of x is
√
p/2.

Performing the same process on each of the
⌊

n√
p

⌋
sets of

nodes leads to �(np) work to do m = n
√
p operations. The

average operation takes �(
√
p) work. 	


8.2 Problem lower bounds

In this subsection, we prove that any concurrent set-union
algorithm must do �(logmin{n, p}) work for a single oper-
ation in the worst case. Furthermore, we build on the
worst-case lower bound to show an�(log(np/m+1)) amor-
tized work lower bound for all symmetric algorithms, where
we say an algorithm is symmetric if:

(1) The algorithm’s code for the unite and find procedures
does not use process ids.

(2) The algorithm does not use the return values of CAS
operations.

All our algorithms and all algorithms known to us can be
made symmetric without effecting the upper bound analyses
of the algorithms. For instance, this can be done if we assume
that all CAS operations return false. This does not effect the
correctness of our algorithms since we only use the return
value of a CAS operation in the unite operation to determine
if a link has been successful. However, if we do not perform
this check atomically, our algorithms remain correct, since a
process that has successfully united two trees together will
realize this shortly afterwards when its u and v pointers meet
at the root of the united tree. The work efficiency analysis
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increases by at most a factor of two, because we can always
imagine the case where processes work in pairs (p, q), and
each pair performs operations together and are always sched-
uled in lock-step. In this case, if p ever performs a successful
link CAS(u.p, u, v) and returns, then q’s attempt to perform
the same link will fail; thus q will only return after it tra-
verses the whole tree and discovers that some other process
has already finished the link it wanted to do. Themodification
we propose to symmetrize the algorithm will simply make p
do the same work as q.

Our lower boundsmake use of a result on a problem called
“wake-up”. The wake-up problem on k processes asks for a
wait-free algorithm with two properties: (i) every process
returns a boolean value and at least one process returns true,
and (ii) a process may return true only if every process has
already executed at least one step. The following lemma is
a lower bound on the complexity of wake-up that follows
straightfowardly from Jayanti’s lower bound in [26].

Lemma 26 ([25,26]) For any k process wake-up algorithm
that uses variables supporting read, write, and CAS, there is
a schedule in which some process performs �(log k) steps
in expectation.

We solve wake-up via set-union to get our lower bounds
below.

Lemma 27 The reduction (below) solves the wake-up prob-
lem for k processes using a disjoint set union instance with
k + 1 nodes, in which each process executes one unite and
two find operations.

Proof Let q1, . . . , qk be the k processes and let the nodes
be labelled 0, . . . , k. The reduction below correctly solves
wake-up because:

1: procedure WakeUp
2: unite( j − 1, j); x ← find(0); y ← find(k); return x = y

Reduction : q j ’s code in wake-up solution.

(i) the last process to complete unite finds that the leaders
of nodes 0 and k are the same and thus returns true, and (ii)
no process returns true before all processes have completed
unite, since no leader of k can be the same as any leader of
0 until they are in the same set, i.e. until the last of the unite
operations is linearized. 	

Theorem 8 LetA be a linearizable wait-free concurrent dis-
joint set union algorithm using read, write, and CAS. There
is a schedule of m operations on n nodes by p processes that
forces A to perform �(logmin{n, p}) work in expectation.

Proof Instantiate Lemma 27 with k = min{n − 1, p}. The
most expensive of the three set union operations of the pro-
cess that performs the most work in the adversarial schedule
of Lemma 26 must do �(logmin{n, p}) expected work. 	

Corollary 2 The disjoint set union algorithm obtained by
combining randomized linkingwith any formof finddescribed
in this paper gives an algorithm with optimal worst-case
work per operation up to constant factors when log p =
�(log n).

Remark 1 Theorem 2 shows that our set union algorithms
with randomized linking have optimal work per operation
when p = nε for constant ε.

Remark 2 Theorem 8 establishes a separation in worst-
case work complexity between sequential and concurrent

set-union when p = nω( 1
log log n ) since Blum’s sequential

set-union algorithm has a worst-case work complexity of
O(

log n
log log n ) [5].

Lemma 28 LetA be a linearizable wait-free symmetric con-
current disjoint set union algorithm using read, write, and
CAS. There is a schedule of m operations on n nodes by
p processes that forces A to perform �(m log(np/m + 1))
work.

Proof Divide the n nodes into g = m
p groups of size k + 1,

where k = np
8m (disregard any additional nodes); label the

groups G1, . . . ,Gg . Note that m ≥ p and m ≥ n
2 , so k ≤ p

4 .
We divide p

2 (out of the p) processes into two sets A =
{q1, . . . , qk} and B = {qk+1, . . . , qp/2}. Note that |B| ≥ p

4
and |A ∪ B| = p

2 .
Consider running the wake-up algorithm of Lemma 27 on

the k processes in A using the k+1 nodes in G1. By Lemma
26 there is a schedule σ1 in which some process qi per-
forms �(log k) steps. Assign to each process in B the same
sequence of three set union operations that qi performs, and
define schedule σ ′

1 to be the schedule σ1, with the processes
of B interleaved in to run in lockstep with qi . In this sched-
ule, the processes q1, . . . , qp/2 perform �(p log k) work to
do p set union operations. Repeating this procedure on each
group G j produces schedules σ ′

j , each of which performs
�(p log k) work. Therefore, in the concatenated schedule
of σ ′

1σ
′
2 · · · σ ′

g , the processes q1, . . . , qp/2 perform a total of
�(gp log(k+1)) = �(m log(np/m+1)) work to do a total
of gp = m operations. 	

Theorem 9 Let A be any linearizable wait-free symmet-
ric concurrent disjoint set union algorithm using read,
write, and CAS. There is a schedule of m operations
on n nodes by p processes that forces A to perform

�
(
m

(
log

( np
m + 1

) + α
(
n, m

np

)))
work in expectation.
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Proof Combine the results of Lemma 21, whose argument
applies to all symmetric algorithms, with Lemma 28. 	

Remark 3 Theorem 9 shows that the set union algorithm
obtained by combining randomized linking with two-try
splitting has optimal amortized work efficiency amongst all
symmetric algorithms (up to a constant factor).

The ideas behind our collection of upper and lower bounds
lead us to make the following conjecture about the expected
work complexity of concurrent disjoint set union.

Conjecture 1 The expected work complexity of the concur-
rent set union problem is

�

(
m ·

(
log

(np
m

+ 1
)

+ α

(
n,

m

np

)))
.

In light of Theorem 6, which shows that randomized link-
ing with two-try splitting satisfies the conjectured upper
bound, a refutation of Conjecture 1 would imply a more
efficient algorithm than randomized linking with two-try
splitting. On the other hand, a demonstration of the conjec-
ture would involve proving a universal lower bound; namely,
showing that Theorem 9 holds for all algorithms (as opposed
to only symmetric ones). While this paper proves a universal
lower bound on the worst-case complexity of a single oper-
ation, it does not prove any universal lower bounds on the
total work complexity of m operations. The only such lower
bound that is known for the problem is exponentially weaker
than the conjectured one. We state this bound, by Jayanti et
al., below.

Theorem 10 ([29]) Let A be any linearizable wait-free con-
current disjoint set union algorithm using read, write, and
CAS. There is a schedule of m operations on n nodes by p
processes that forces A to perform �

(
m

(
log log

( np
m + 1

)
+α

(
n, m

n

)))
work in expectation.

9 Remarks and open problems

We have presented three linking methods and two splitting
methods for concurrent disjoint set union. With any of the
linking methods, with or without compaction, the number of
steps per operation is O(log n), worst-case if linking is deter-
ministic, high-probability if randomized. With any of the
linking methods and either of the splitting methods, the total
work is O(m(α(n, d) + log(1 + 1/d))), worst-case if link-
ing is deterministic, average-case if randomized, where the
problem density d is m/(np2) if splitting is one-try, m/(np)
if splitting is two-try. No matter what the density, the cost of
concurrency is at most a factor of log p, making our algo-
rithms truly scalable. The proofs of the bounds for linking

by random index require assuming that the scheduler is non-
adversarial, as discussed in Sect. 5.3. The bounds differ for
the two splitting methods only for a narrow range of densi-
ties: if m/n = O(1) or m/n = �(p2), the bounds are the
same; if m/n = ω(1) and m/n = o(p2), the bounds differ
by a factor of at most log p.

The O(log n) step bound is tight for all our algorithms.
The work bounds for splitting are almost tight: any symmet-
ric algorithm (as defined in Sect. 8) has a work bound of

�

(
m ·

(
log

( np
m + 1

) + α
(
n, m

np

)))
. We conjecture that the

same lower bound can be shown for asymmetric algorithms
also (Conjecture 1), but leave the proof or refutation of this
statement as an open problem.

Our results leave open the question of whether there is
an efficient deterministic algorithm that uses only CAS:
our deterministic algorithm uses DCAS. Recently we have
developed a surprisingly simple algorithm that answers this
question positively. The algorithm combines two ideas: the
use of latent links, which represent unites started but not
finished, and deterministic coin tossing [9], which provides
a deterministic way to break ties. The worst-case and amor-
tized time bounds for finds are the same as those in the present
paper; the bounds for unites are larger by a factor of lg∗ n,
reducible to lg∗ p. We shall describe this result in a forth-
coming paper.

In some applications of disjoint set union, such as com-
puting flow graph information [42,43] each set has a name
or some other associated value, such as the number of ele-
ments in the set. We can extend the compressed tree data
structure to support set values by storing these in the set
roots. In the sequential setting, it is easy to update set value
information in O(1) time during a link. But in the concur-
rent setting, updating the value in the new root during a link
requires a DCAS or somemore-complicated implementation
usingCAS.Updating root values usingDCAS invalidates our
analysis. Consider n singleton sets {1}, {2}, . . . , {n}. Sup-
pose p = n, and unite(1, n), unite(2, n),. . ., unite(n – 1, n)
are performed concurrently using linking by rank via DCAS.
Assume the tie-breaking total order is numeric. At most one
link will succeed initially, say the link of 1 and n. After this
link, all nodes except n will still have rank 0, and n will
have rank 1. The algorithm of Sect. 5.1 does all the remain-
ing links concurrently using CAS, since none affects node
n. But if each such link needs to update the value in node n,
the remaining links must be done one-at-a-time, resulting in
overall work �(np).

We think this problem can be overcome, and that the con-
current set union problem with set values can be solved in
a work bound that is quasi-linear in m and poly-logarithmic
in p. But doing so may well require relaxing the lineariza-
tion requirement: instead of continuing to try to link each
node i and n, suppose the algorithm does a different set of
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links to reduce the contention. For example, the algorithm
could link roots in pairs, then the remaining roots in pairs,
and so on. The set resulting from all the links would be the
same, but the intermediate sets would not correspond to any
linearization of the original unites. Even though it violates
linearization, such an algorithm might suffice in many if not
all applications.

An algorithm of this kind needs a mechanism to restruc-
ture the links. We think some sort of binary tree structure,
like the one used by Ellen and Woelfel [11] in their fetch-
and-increment algorithm but more dynamic, may suffice.We
leave open the development of this idea or some other idea
to solve the problem of concurrent sets with values.

Although our results are for a shared memory model, we
think they will fruitfully extend to a distributed-memory,
message-passing setting.

Our work is theoretical, but others [1,10,17] have imple-
mented some of our algorithms on CPUs and GPUs and
experimented with them. On many realistic data sets, our
algorithms run as fast or faster than all others.
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A: Our algorithm with randomized compare-
and-swap

There are several ways of implementing randomized link-
ing by rank using randomized CAS. We present what we
think is the clearest and most concise implementation below.
Our implementation uses a compressed tree structure, just as
do the other sequential and concurrent algorithms we have
presented, but with a small modification discussed below.
The forest contains one rooted tree per set, whose nodes are
the elements of the set and whose root is the set leader. We
assume that the nodes have indices 1 through n and thus can
be compared via ‘<’. Each node x has a field x .p to store the
address of a parent node, a field x .r to store a non-negative
integer rank, and a field x .b to store a single root-bit signify-
ing whether or not x is the root of its tree. Initially, x .p = x ,

x .r = 0, and x .b = 1. The rank is never more than n, and
thus needs only �log n� bits of storage. We shall assume that
all three fields of a node are stored in a single word in mem-
ory, as a triple x . f = [x .p, x .r , x .b]. The memory words
are of size 2 �log n� + 1 = O(log n) in this representation.
In fact, with high probability the maximum rank is O(log n),
and each node requires only log n + O(log log n) bits.

A note about our representation: If the root-bit x .b is
set to 1, x is a root, in which case our implementation ignores
the value of the parent field x .p. In this way our represen-
tation differs from the classic representation, in which the
parent field x .p = x for a root node x . This fact is crucial to
understanding the pseudo-code.

In the pseudo-code, $ represents a random bit, i.e. a value
with Bernoulli(1/2) distribution.

Algorithm 13 is the pseudo-code for unite and link. The
implementation of the find(x) procedure used in the code is
discussed in the next subsection. To do unite(x, y), we start
as in the sequential case by finding the roots u and v of the
trees containing x and y, respectively (Line 2). If u = v, then
x and y are already in the same set and nothing needs to be
done (Line 3). Otherwise, x and y are in different trees, so we
can try to link u and v by doing a CAS to make v the parent
of u, or vice-versa (Line 4). We mark the link on Line 4 and
subsequent linearization points with an asterisk in the code.
Further explanation of the pivotal link procedure is in the next
paragraph. But we must allow for the possibility of the CAS
failing, which can happen for example if it tries to make
v the parent of u but in the meantime some other process
makes another node the parent of u. Notably, the CAS fails
if the other process does exactly the same CAS and makes
v the parent of u. A solution that works in either case is to
simply continue walking up the tree from the present u and v

(Line 5), until the paths intersect or another attempt at linking
is necessary.Thismethodwasfirst proposedbyAnderson and
Woll [3] and was subsequently used by Jayanti and Tarjan
[28].

1: procedure unite(x, y)
2: u ← find(x); v ← find(y)∗
3: while u �= v do
4: link(u, v)∗
5: u ← find(u); v ← find(v)∗

6: procedure link(u, v)

7: [u p, r , ub] ← u. f
8: [vp, s, vb] ← v. f
9: if r < s then CAS(u. f , [u p, r , 1], [v, r , 0])∗
10: else if s < r then CAS(v. f , [vp, s, 1], [u, s, 0])∗
11: else
12: if u < v then CAS(u. f , [u p, r , 1], [v, r + 1, $])∗
13: else CAS(v. f , [vp, s, 1], [u, s + 1, $])∗

Algorithm 13: : Pseudo-code to unite x and y.
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An explanation of our Linking heuristic: Link initially
reads the fields of u and v (Lines 7-8). If r , the rank of u,
is less than s, the rank of v, the link attempts to change the
parent of u to v and the root-bit of u to 0 (“not a root”), while
leaving the rank of u unchanged (Line 9). If s is less than r ,
the link proceeds symmetrically (Line 10). The interesting
case is r = s: if u < v (check on Line 12 succeeds), the
algorithm tries to change the parent of u to v and increment
the rank of u, and set the root-bit of u randomly (Line 12).
This case deviates from our presentation in Algorithm 11, so
we now explain why the algorithm tries to change both the
parent and rank fields. If the update succeeds and the root-
bit, u.b, gets set to 1, then u continues to be a root, and thus
the parent field is disregarded by the algorithm, so it does
not matter that it was changed to v. On the other hand, if the
update succeeds and root-bit gets set to 0, then u is no longer
a root, and the rank field is subsequently disregarded by the
algorithm, so it does not matter that it was changed to r + 1.
Therefore, although syntactically the algorithm changes both
the parent and the rank fields, semantically only the parent
or the rank changes. Thus the implementation matches the
idea in Algorithm 11. Line 13 acts symmetrically in the case
that u.r = v.r and v < u.

Note: for the purpose of the analysis only, we think of
the rank as not incremented if Line 12 or 13 makes a root a
non-root.

A.1: The find procedure

We present the two different implementations of find(x),
namely naïve and two-try splitting in Algorithm 14. These
procedures reproduce Algorithm 5 and Algorithm 7 using
the node representation with three fields (parent, rank, and
root-bit) per node.

An explanation of Naïve find: Naïve find uses an aux-
iliary variable u (Line 2) that follows parent pointers up the
tree (Line 4) until it reaches a root (Line 3). find(x) returns
this node as the leader (Line 5). The linearization point of
this procedure is the time at which u is discovered to be a
root.

An explanation of the two-try splitting find pseudo-
code: Find uses an auxiliary variable u to walk up the tree
(Line 7). If u is not a root (Line 8), its parent v, and grand-
parent v.p = w are read (Line 9). If v is a root, Find has
succeeded and can return v (Line 10); otherwise, an improve-
ment is attempted on Line 11. A successful CAS on Line 11
changes only the parent of u, without modifying the other
fields of u. After a second attempt to improve the same node
u (Lines 12-14), u is replaced by its parent v, in order to keep
walking up the tree (Line 15). Finally, if u becomes the root
(Line 8), it is returned on Line 16. The linearization point of
the procedure is the time when the root-bit of the returned

1: procedure find(x)
2: u ← x
3: while not u.b∗ do
4: u ← u.p

5: return u

6: procedure find(x)
7: u ← x ;
8: while not u.b∗ do
9: [v, r , ub] ← u. f ; [w, s, vb] ← v. f ∗
10: if vb then return v

11: CAS(u. f , [v, r , 0], [w, r , 0])
12: [v, r , ub] ← u. f ; [w, s, vb] ← v. f ∗
13: if vb then return v

14: CAS(u. f , [v, r , 0], [w, r , 0])
15: u ← v

16: return u

Algorithm 14: : Find algorithms naïve and two-try splitting,
respectively

node is read, since this is the time when the returned node is
surely the root of the tree.

Note:Removing the secondattempt to improveu (Lines 12-
14) from the pseudo-code of find with two-try splitting
produces pseudo-code for find with one-try splitting.
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