
Concurrent Engineering for Automatic Test Station Development zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
James C. Lisonbee Kenneth C. Chisolm Mano Sithivong

Software Engineering Division Software Engineering Division Software Engineering Division

Ogden Air Logistics Center Ogden Air Logistics Center Ogden Air Logistics Center
Hill Air Force Base, Utah 84056 Hill Air Force Base, Utah 84056 Hill Air Force Base, Utah 84056

LisonbeJ@oftware. hill.af.mil ChisolmK(iisoftware.hill.af.mil SithivoMOsoftware.hitl.af.mil

(TISAD) (TISAD) (TISAD)

801-775-4442 801-775-4445 801-775-4502 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- During the planning stage for development of a
new test station or upgrade, one becomes very aware that
there are many tasks to accomplish in a short period of time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It is offen important to maintain a.short development cyde
while accomplishing both hardware and soffware tasks such
as hardware selection and driver development. Concurrent
Engineefing allows for a simultaneous acfivity of hardware
and soffware personnel during test station development.
This paper will discuss the application of concurrent
engineering during development of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF-I6 Analog Jest
Station Sustainment (FATSS) project and how these
principles can easily be appled to other development efforts.

INTRODUCTION

The F-16 analog depot test stations are in critical need
of modification in order to maintain repair capability
for the F-16 aircraft. Most items in the test stations
are both obsolete and unsupportable. As vital parts in
the test stations fail, the stations will be down
indefinitely.

The FATSS project came about as a result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the
need to support the F-16s life cycle through the year
2020. The goal of the FATSS Project is to re-
establish supportability and to maintain depot repair
capability.

When a project is first looked at, several problems
exist. One of the most important problems during
development of a new test station is the limited time
to complete the entire task. Another problem occurs
when there are few people available to work on the
project. A well thought out and documented
development plan is needed to schedule tasks.

During the development plan, Concurrent Engineering
principles can be used to task simultaneous activity

between hardware and software personnel. This
coordinated effort can drastically reduce
developmental time.

PRELIMINARIES

There are a couple preliminaiy tasks that need to be
accomplished before the bulk of the project can be
started. These tasks can be accomplished at the
same time utilizing both hardware and software
personnel to their fullest capacity.

These tasks include hardware and software selection.
Be prepared for the hardware selection phase as
described below to take much longer than the software
selection task.

Hardware Selection

When making the decision of what hardware needs to
be replaced in the new test station, it is a good idea to
remember the life cycle of the test station. Because
of this, the FATSS project team wished to use
Commercial Off The Shelf (COTS) instruments. We
desired to use as much VXI equipment as would meet
or specification instead of using GPlB instruments that
may not be supported into the new millennium. Many
vendors that were called mentioned that their GPlB
instrument would only be supported for a couple more
years. This poses significant discouragement from
choosing their instruments.

Our hardware selection was based on Critical Item
Product Function Specifications. Where the hardware
specifications were not met, design philosophies in the
software were needed to bridge this gap. In the case
of a voltage peak to peak we could not find a single
instrument that would measure these voltages across

U S . Government work not protected by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUS. copyright 121

http://hill.af.mil
http://ChisolmK(iisoftware.hill.af.mil
http://SithivoMOsoftware.hitl.af.mil

the entire range required by the FATSS hardware
specification.

To solve this problem, we would modify instrument-
handling subroutines within the translator to assign
voltage peak to peak requests to hardware with
sufficient capabilities. If a single instrument becomes
available later to perform the task, we could make a
change to a single subroutine in the Translator and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe
prepared to move on.

The coordination of the hardware and software
personnel regarding availability of software drivers
facilitated in software tools selection. Once
instruments were found that met our specifications, we
narrowed our selection to those that included
instrument drivers and electronic manuals. If these
were not readily available we asked that they be
provided in a format that met our software needs.
Electronic manuals would be used for an Electronic
TO.

Once the FATSS group decided on test station
replacement hardware a comprehensive conversion
plan was developed. Hardware was ordered and
purchased for our prototype. This gives us a way to
verify that the hardware really met the design
specifications of the vendor.

The FATSS hardware selection team was always
mindful of having suitable substitutes available for
every instrument possible. We did find some
instruments that did not meet vendors specifications.
For these cases we would turn to our suitable
substitute and go through the same process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof
verification of vendor specifications for it. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Software Tools Selection

When choosing software, the FATSS software design
group found it best to use COTS software. This saves
the design team from writing their own soflware that is
readily available.

The selection of software is imperative to accomplish
at the beginning of the development phase. This
decision drives the remaining soflware design
throughout the project.

Once the software selection is complete, the software
selection team can begin working on the soflware
tasks.

SOFTWARE TASKS

Once software personnel are moved to the software
tasks, the most important task to begin is the creation
of the Interface Control Document (ICD). While many
software personnel are tasked to create this
document, additional personnel may begin writing or
modifying a Test Executive.

Interface Control Document

The ICD allows driver development and translator
development to happen simultaneously with minor
changes. This task can take place while hardware
selections are still being made.

The ICD is simply a means for mapping the output of
the Translator to the input of the drivers. The software
team must design a common interface that the
Translator can produce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso the drivers can easily
gather needed information from.

The FATSS soflware design team chose a common
interface to be used with every driver that was to be
written [I]. The translated code calls a single public
access function within a given driver. This common
interface to the public access function allows for
variable amounts of information to be passed in. To
facilitate closing multiple relays we need only make
one call to the relay driver rather than multiple calls to
the same driver.

The ICD is the key for development of the Translator
and the Drivers. The software design team must take
a look at the legacy code and become familiar with i t
from an instrument point of view. The ICD is
developed purely from instrument parameters given in
the legacy code. There is no other place to get these
parameters. It is easy to see how to develop the ICD
parameters because ATLAS parses nicely to legacy
hardware.

The desired data to be passed to the software driver
was placed in the ICD in a FATSS standardized
format. This format allowed multiple software
personnel to design pieces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the ICD specific to the
hardware they were in charge of.

Another purpose of the ICD is to specify what the
translated run-time code will use as parameters to
pass to the Test Executive. With this information the
Translator can produce code that is needed to
interface with the Test Executive.

122

Translator Development zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Converts legacy code to a generic and specified
format from the ICD. The Translator can push all the
inputloutput concepts into driver public access calls.
These calls can be written to facilitate windows
messaging to the Test Executive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA121.

Driver Development

It is imperative that the soflware personnel coordinate
activities with the hardware personnel. Before drivers
can be completed. hardware must be selected. To
test the drivers it is best to have hardware on loan
from the vendor or already purchased.

When following a completed ICD for a given driver,
development can be done quickly. The ICD allows for
efficient coding of the driver. The inputs are specified
in the same format for each driver making it possible
to find similarities between drivers that allow for copy
and paste or code reuse.

The driver is responsible to take the specified list of
parameters and convert them to something that the
vendor's supplied drivers can recognize. This
conversion process is done in two layers of the
developed driver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I]. The public access function
simply moves information from parameters that are
passed in to a function call that we cal! the hardware
driver layer. This layer then organizes its parameters
to call vendor supplied driver's function calls.

Information passed to the driver is necessarily limited
to what the legacy code had as parameters. For this
reason, all parameters passed to the hardware driver
layer that are not available to the public access
function must be hard coded using default values.
The driver developer needs to be aware of this
possible gap. An example of this is when a dc-offset
is not present in the legacy code. The vendor's
supplied driver may need a dGOffSet as a parameter
to one of its function calls. The driver developer must
supply a default value of 0.0 for this case.

Hardware initially selected for a given task may not
work properly. Do not worry! Driver development
using multiple layers has a limited impact when
hardware is changed. It may take only a few days to
swap out a function generator. It could possibly take a
couple of weeks to swap out to a poorly documented
piece of hardware.

Test Executive

The Test Executive is the operator's interface to the
test station. We were able to take portions of legacy
hardware and implement it in software.

Many Test Executive decisions can be made prior to
the ICD being complete. The operator's interface can
nearly be completed without much of this information.

The Translator and Test Executive need only
understand what kind of objects they are writing to and
reading from. This is the information provided in the
ICD that is needed.

OTHER TASKS

These other tasks can be worked on mostly afler
hardware selection is made. System documentation
should be developed throughout the project.

Cable Design and Build

Wiring diagrams can be worked on without a complete
haaware selection with the knowledge that
connections are to be determined. This is not
recommended since it may cause a lot of rework. It
would really be best to wait until the hardware is
selected.

There are two main problems that exist in cabling to
accomplish the task in a timely manner. First, the
design of the cable needs to be done as soon as the
hardware is selected. Second, the building of a test
cable for driver testing should be done as soon as the
hardware is known.

A cabling group can be created or utilized to build a
mock-up of the test station. This can be expensive in
the use of manpower, but will aid in integration of
instrument placement. Remember that extra
connectors will need to be purchased for a mock-up to
work properly. If your group desires to use the
prototype as the real life mock-up then these
connectors are not needed. You may need to
coordinate with the people that have the instrument in
their possession at times to measure for cable lengths
and various other things. Using the prototype may
prolong the time for cable build for this reason.

Once instruments are placed whether on the prototype
or mock-up, cable lengths can be determined and
documented for later use in kit proofing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

123

System Integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
During system integration placement of the
instrumentation is finalized, cabling is completed,
testing instruments through the translated code using
developed drivers is validated & verified and all the
design ideas fall apart on you.

Be prepared during this phase to modify everything
imaginable to facilitate making the hardware and
sofhvare work together as planned.

System Documentation

This can be accomplished during all phases of
development. When people become available to work
on documentation, they can gather information
needed for creating things like an Electronic TO. Pay
attention to these electronic manuals during hardware
selection.

Remember that documentation takes considerable
amounts of time. If you can create a process to
document as you go you will be time ahead.

Kit Proofing

Once all of the tasks are complete. kit proofing can be
completed. The kit proofing task can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe started during
the cable build task and when system integration is
close to completion. As with system documentation,
document as you go.

DETAILS

When looking at various aspects of your project,
remember that the key to success is to follow a
process that enables you to multi-task. Concurrent
Engineering through coordinated efforts of both
sofhvare and hardware personnel aids in completion of
the task on schedule and on budget. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

REFERENCES

[I] L. Vuu and A. Khan, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhstfument Driver Design,
I999 IEEE

1.21 J. Evans, J. Lisonbee and L. Allred, Using
Windows Messaging to Control Automatic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATest
Equipment, 1999 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 24

