
Concurrent Error Detection of Fault-Based Side-Channel
Cryptanalysis of 128-Bit Symmetric Block Ciphers

Ramesh Karri, Kaijie Wu, Piyush Mishra

ECE Department, Polytechnic University
5 Metrotech Center, Brooklyn, NY, 11201

1-718-260-4011
ramesh@india.poly.edu, kwu03,pmishr01@utopia.poly.edu

Yongkook Kim
IBM Corporation

Poughkeepsie, NY, 12601
1-845-435-7563

yongkook@us.ibm.com

Abstract: Fault-based side channel cryptanalysis is very
effective against symmetric and asymmetric encryption
algorithms. Although straightforward hardware and time
redundancy based concurrent error detection (CED)
architectures can be used to thwart such attacks, they entail
significant overhead (either area or performance). In this
paper we investigate systematic approaches to low-cost,
low-latency CED for symmetric encryption algorithms
based on the inverse relationship that exists between
encryption and decryption at algorithm level, round level
and operation level and develop CED architectures that
explore the trade-off between area overhead, performance
penalty and error detection latency. The proposed
techniques have been validated on FPGA implementations
of AES finalist 128-bit symmetric encryption algorithms.

1. Introduction

Hardware and software implementations of encryption
algorithms leak information via side-channels such as
measurement of time or power consumed by the operations
used and deliberate introduction of faults. Rigorous
mathematical analysis can be combined with such side-
channel information to reveal the secret key and/or the
implementation details of the encryption algorithms. These
side-channel analysis attacks are much more powerful
compared to mathematical analysis based attacks. Kelsey,
Schneier, Wagner, and Hall showed that even a small
amount of side-channel information is sufficient to break
some of the common encryption algorithms [1].

Side-channel attacks can be defeated by carefully
designing the software/hardware to either reduce the
amount of side-channel information that leaks or make the
leakage irrelevant. Denying an attacker the ability to
monitor the internal states can defeat processor flag based
side-channel attack on RC5 encryption algorithm [2] and
Hamming weight based side-channel attack against Data
Encryption Standard (DES) encryption algorithm [3].

Timing attacks use the timing characteristics of the
implementation of operations in an encryption algorithm to
break it [4, 5]. A simple counter measure for such an attack
is to make the time for any operation independent of the
input. Blinding is another counter measure that modifies
the basic computation to produce correct result, but with
the details of the modification invisible to the attacker.
Differential Power Analysis (DPA) exploits the correlation
between the power dissipation and bits of internal stage
during encryption [6]. This attack does not require much
knowledge of the implementation and yields both the key
and enough information to derive a model of the device.
Solutions to thwart DPA include masking the side-channel
power information by performing random calculations,
adding complementary circuits to mirror the real
encryption calculations and varying the order of the
operations in software.

Boneh, DeMillo and Lipton introduced fault-based
side-channel attacks based on the observation that errors
induced in the hardware devices leak information about the
implemented encryption algorithm [7]. They showed that
by exposing an encryption device to ionizing or microwave
radiation, a fault could be induced at a random bit location
in one of the registers at some random intermediate round
in the cryptographic computation that can be used to easily
factor the modulus of an RSA public key encryption
algorithm. While the Number Field Sieve factoring
developed by Lenstra and others have so far broken RSA
implementations using maximum 155-digit (i.e., 431-bit)
modulus [8], a fault-based attack can break RSA
implementations using any length modulus.

Side channel attacks can be applied against a wide
variety of applications, including pay-TV smart cards,
prepayment meter tokens, intellectual proprietary rights
violations and extraction of the secret information stored in
a smart card [9]. Unfortunately, almost all existing counter
measures against side-channel attacks suffer from a variety
of drawbacks including large time and/or hardware
overhead, severe performance degradation, the need to
modify the implemented algorithm and ad-hoc nature.
2. Fault-based side-channel cryptanalysis

Soon after the first attack by Boneh et. al. a University
of Singapore team proposed a fault-based attack against
tamperproof RSA devices based on two fault models [10].
Biham and Shamir presented a fault-based side channel
attack called Differential Fault Analysis (DFA) against

mailto:ramesh@india.poly.edu
mailto:kwu03,
mailto:pmishr01@utopia.poly.edu

DES [11]. DFA can find the last DES round key using less
than 200 cipher texts. Floyd et. al. developed a DFA attack
on RC5 [12]. Biham and Shamir extended their fault model
to show that DFA can uncover the structure of an unknown
cryptosystem implemented in a smart card. Their fault
model was based on the asymmetric properties of
EEPROMs: inducing a 1�0 bit flip is much easier than
inducing a 0�1 bit flip. Anderson and Kuhn described
additional side-channel attacks against tamper resistant
devices that can be launched with moderate difficulty [13].

Concurrent Error Detection (CED) followed by
suppression of the corresponding output has been suggested
as an approach to tolerate fault-based side-channel
cryptanalysis – On detecting a faulty computation the key is
protected by suppressing the cipher text. CED can be
performed by straightforward duplication of encryption
(decryption) hardware and comparison or by use of spares,
though this scheme entails more than 100% hardware
overhead. Based on this observation a hardware
implementation of the 128-bit International Data
Encryption Algorithm (IDEA) called VINCI implemented
spares-based concurrent error detection [14]. However, it
entailed significant hardware overhead and required very
complex interconnections. Time redundancy based CED
approach involves encrypting (decrypting) the data a
second time using the same hardware, followed by a
comparison of the two results. Wolter et. al. developed two
CED schemes for IDEA based on information and time
redundancy respectively [15]. These schemes are expensive
and can tolerate only transient faults if the input traverses
identical paths through the encryption (decryption) data
path both the times.

Another CED approach involves encoding the message
before encryption and checking it for errors after
decryption [16]. This scheme results in significantly less
area overhead as compared to other encoding schemes but
has large fault detection latency and needs modification of
the algorithm to improve its performance. Also, it cannot
tolerate fault-based side-channel cryptanalysis since it
assumes that the encrypted data is transmitted to the
decryption module over a fault-proof channel and detects
the fault, if any, only after decryption.

In this paper, we investigate systematic approaches to
low cost, low latency CED of symmetric encryption
algorithms. These CED techniques exploit the inverse
relationships that exist between encryption and decryption
at various levels; any input data that is passed successively
through encryption and decryption process/round/operation
is recovered. These schemes offer better trade-off between
area and time overhead without severely degrading the
performance or modifying the encryption algorithm.
3. Symmetric encryption algorithms

Symmetric encryption algorithms have an iterative
looping structure as shown in Figure 1. After optional pre
(post) processing, the input plain (cipher) text is subjected
to one round of encryption (decryption) where a series of
operations are performed on it and the round key(s) to
generate the intermediate cipher text. The intermediate

cipher text is then used as input to the next round. After a
pre-determined number of rounds, the output is optionally
post processed to generate the cipher (plain) text.

Decryption is the inverse of encryption, with three
levels of inverse relationships. First inverse relationship is
at the algorithm level, where the order of rounds in
decryption is the reverse of that in encryption. The second
inverse relationship is at the round level wherein the
sequence of operations in a round of decryption is the
reverse of the sequence of operations in a round of
encryption. For example, if a round of encryption starts
with operation 1 and goes on to operation m, the
corresponding round of decryption starts with operation m
and goes on to operation 1. The final inverse relationship
is at the operation level with decryption using the
corresponding inverse operations of encryption.

128-bit plain text

Pre round

Operation 1

Operation 2

Operation i

Post round

128-bit cipher text

128-bit plain text

Pre round

Operation 1

Operation i-1

Operation i

R
ou

nd
 r

R
ou

nd
 1

Post round

128-bit cipher text

Round key 1

Round key r

Operation 1

Operation i-1

Operation i

E
n

c r
yp

tio
n

D
e

cr
yp

tio
n

Operation 1

Operation 2

Operation i
R

ou
n

d
r

R
ou

nd
 1

Figure 1: 128-bit symmetric encryption algorithm

We next discuss Advanced Encryption Standard (AES)
finalist symmetric encryption algorithms within this
framework. All AES algorithms support multiple key
lengths (128, 192 and 256 bit key).

Serpent is a 128-bit encryption algorithm that consists
of 32 rounds and a pre and post-processing step [19]. Each
round uses 1 round key (except for the last round, which
uses 2 round keys). Exclusive-or of 128-bit round key with
128-bit round input, non-linear substitution, and linear
transformation that performs bit-wise exclusive-or on
selected input bits are the operations used in a round of
Serpent encryption.

128-bit Twofish encryption comprises of 16 rounds
with each round using 2 round keys [20]. Four keys each
are used during pre and post processing steps. The
operations in an encryption round are key-dependent non-
linear substitution, GF (28) matrix multiplication, a mixing
operation based on pseudo-Hadamard transformation, key
addition and bit-wise rotation.

RC6 encryption algorithms support multiple data block
sizes. 128-bit RC6 encryption supports 20 rounds with
each round using 2 round keys [17]. 4 additional keys are
used during pre and post rounds. Each round of RC6
encryption uses two multiplications, two additions, two
exclusive-or operations, two fixed rotations and two
variable rotations.

Table 1: Operations used by 128-bit symmetric encryption algorithms

RC6 �(mod 232) 5-bit rot. � Variable rot. +(mod 232) (key)

Rijndael S-box Fixed rot. �(GF (28)) � (key)
Serpent � (key) S-box �(Lin. Transf.)
Twofish S-box �(GF (28)) +(mod 232) +(mod 232) (key) � 1-bit rot.

Rijndael encryption algorithms also support multiple

block sizes. A 128-bit block, 128-bit key Rijndael encryption
supports 10 rounds, each round using 1 round key [18]. An
additional key is used in pre-processing. Rijndael operates
on a two-dimensional table of plain text bytes called the
state. Operations used in a round of Rijndael are: a non-
linear byte substitution operation (byte sub), a cyclic left
shift of the rows in the state (shift row), GF (28)
multiplication with a constant of every column of the state
(mix column) and exclusive-or of round key with the state
(key-xor).

Table 1 summarizes various operations used by these
symmetric encryption algorithms in their encryption rounds.
We have tried to present the operations in the order they are
used within a round. In some encryption algorithms the
order of the operations and the order of the keys in
decryption is the exact inverse of that in encryption.
Rijndael and Serpent decryption use operations that are
inverse of the operations used by their respective encryption.
Detailed description of each of these algorithms can be
found in [17, 18, 19, 20].
4. CED of symmetric encryption algorithms

A typical encryption device consists of an encryption
module, a decryption module, a key RAM, an input port and
an output port. Since a symmetric encryption algorithm uses
the same set of round keys for both encryption and
decryption, they can be generated a priori, stored in the key
RAM and retrieved in any order depending upon whether
encryption or decryption is in progress. We assume that
either encryption or decryption is performed at a time, which
implies that the other module is idle and can be used for
CED. Our proposed scheme combines this fact with the
inverse properties of the symmetric encryption algorithm.
4.1 Algorithm level CED

Algorithm level CED approach shown in Figure 2
exploits the inverse relationship at the algorithm level. Plain
text is processed through the encryption module, which is
then disabled (or processes next block of data) and the
decryption module is enabled to decrypt the cipher text. The
output of decryption is compared with the input plain text.
An error signal is set and the faulty cipher text is suppressed
when there is a mismatch. Algorithm level CED during
decryption is similar. The area overhead includes an
additional register to store the original input, a comparator
module, and a few multiplexers at the input of the
encryption, decryption and comparator modules. Since the
round keys are stored in a key RAM, next block of plain text
(cipher text) cannot be processed until both encryption and
decryption of current plain text (cipher text) is finished
(since otherwise different round keys need to be accessed
simultaneously by the encryption and decryption modules).

Hence, the time overhead of encryption for one block of

data with algorithm level CED is the time it takes for
encryption (without CED) of one block of data. The time to
encrypt N blocks of input data using algorithm level CED is
2N � the time for basic encryption of one block of data.
Although this is identical to the time overhead of encryption
(decryption) with time redundancy based CED, it can detect
permanent faults as well. If the keys are stored in a register
file or are stored in two different key RAMs - encryption
key RAM and decryption key RAM, encryption of the
current block of data can be carried out concurrently with
the decryption (for CED) of the previous block of data. This
reduces the total time for encrypting N blocks of data to
(N+1) � the time for basic encryption of one block of data.

C o m p a r is o n

p la i n t e x t

E
nc

ry
pt

io
n

M
od

ul
e

R o u n d 1

R o u n d 2

R o u n d r

p l a in t e x t

D
ec

ry
pt

io
n

M
od

ul
e

R o u n d 1

R o u n d 2

R o u n d r

Figure 2: Encryption with algorithm level CED

Let us now consider fault detection latency, the duration
between the occurrence and detection of a fault, for this
CED scheme. For an encryption algorithm that has r rounds
and n clock cycle(s) per round, the fault detection latency in
the worst case is rn��2 .
4.2 Round Level CED

A closer look at the symmetric encryption algorithms
reveals that the inverse relationship between encryption and
decryption exists at the round level as well. Passing the
input data successively through one encryption round and
the corresponding decryption round yields the original data.
For almost all the symmetric encryption algorithms, the first
round of encryption corresponds to the last round of
decryption; the second round of encryption corresponds to
the last but one round of decryption and so on. Based on this
observation, the computations can be checked at the round
level. At the beginning of each encryption round
corresponding round key and the input data is stored in
registers before feeding to the round module. After one
round of encryption is over, the output is fed to the
corresponding round of decryption. The output of decryption
round is calculated using the stored key and then compared
with the input data that was previously saved. If there is a
mismatch, the encryption process is halted and an error is

signaled. Encryption with round level CED is shown in
Figure 3.

……

1st round of encryption

plain text

Rth round of decryption

Comparison

Comparison

…… ……

Rth round of encryption

1st round of decryption

Comparison

2nd round of encryption

(R-1)th round of decryption3nd round of encryption

Figure 3: Encryption with round level CED

The performance penalty for encrypting one block of
data with round level CED is now only a round, that is, n
clock cycles. This is because the current round of decryption
(for CED) can start concurrently with the next round of
encryption. Further, the fault detection latency in the worst
case is twice the time required for one round. Since each
round takes n clock cycles, this equals n�2 . The area
overhead of round level CED is due to the additional
registers, comparators, multiplexers and complex control.
Table 2 shows the rounds of encryption and the
corresponding rounds of decryption for each of the AES
symmetric encryption algorithm. For example, in Serpent
(32-round implementation), “round i” of encryption
corresponds to “round (33-i)” of decryption and vice versa.

Table 2: Encryption and corresponding decryption rounds of
AES encryption algorithms satisfying the inverse relationship

RC6 Serpent Twofish Rijndael
Enc Dec Enc Dec Enc Dec Enc Dec
Pre
Whiten

ost
lacken

Whiten
rnd i

lacken
nd 21– i

Post
Whiten

re
lacken

rnd
i

rnd
33 – i

rnd
i

rnd
17-i

rnd
i

rnd
11 –i

4.3 Operation level CED

Depending on the encryption algorithm and its hardware
implementation each encryption (decryption) round can be
partitioned into operations (with each operation consuming
one or more clock cycles) such that the operations of
encryption and corresponding operations of decryption
satisfy the inverse relationship. Consequently, passing the
input data through an operation in the encryption round and
the corresponding inverse-operation in decryption round
yields the original input data. This is shown in Figure 4. The
dotted box on the left shows the rth encryption round while
the dotted box on the right shows the (R-r+1)th decryption
round, where ‘R’ is the total number of rounds in
encryption/decryption.

Further, Figure 4 shows that the first operation of the
encryption round corresponds to the mth (i.e. last) operation
of the decryption round. Such an operation level CED further
improves the fault detection latency. In addition, it localizes
the fault to the hardware implementing the operation.

Operation 1 of rth round
data

Comparison

Comparison

…… ……

Operation m of rth round

Comparison

Operation 2 of rth round

rth
ro

un
d

en
cr

yp
ti

on

Operation m of (R-r+1)th round

Operation 1 of (R-r+1)th round

Operation m-1 of (R-r+1)th round

(R
-r

+
1)

th
ro

un
d

de
cr

yp
ti

on

Figure 4: Encryption with operation level CED

On the other hand, complexity of the design increases
and there is an additional performance penalty because of
the large delay due to additional multiplexers.

Table 3: Encryption and corresponding decryption operations
of AES encryption algorithms satisfying the inverse relationship

RC6 Serpent Rijndael
Enc Dec Enc Dec Enc Dec

Op.
1

Op.
1

Xor Xor S-box S-box-1

S-
box

S-
box-1

Shift-row Shift- row –1

Mix column Mix- column-1

Op.
2

Op.
2

LT LT-1

Key-xor Key-xor

The operation level correspondence between encryption

and decryption for the AES symmetric encryption algorithms
is summarized in Table 3. For Serpent and Rijndael,
operations shown in the column “Enc” are inverses of the
operations shown in the column “Dec”. For RC6 first
operation of “Enc” is identical to (and not the inverse of) the
first operation of “Dec”. In this case, fault detection is
achieved by performing computation on the encryption and
decryption hardware and by comparing the two results.
However, the second operation of encryption and decryption
are inverses of one another. Twofish decryption uses the fact
that the one-half of the output is same as the one-half of the
input to any encryption round and the relation: a xor b xor b
= a. Since there are no inverse operations involved, the only
way of applying operation level CED will be to duplicate
hardware, which is costly and hence not implemented.

Table 4 summarizes the performance and fault detection
latency in terms of clock cycles for different CED
architectures of AES encryption algorithms. The duration of
a clock cycle differs from one encryption algorithm to the

next. Further, for a given encryption algorithm it also differs
from one architecture to another. For example, in our
implementation, one round of RC6 consumes two clock
cycles. This translates into 42 clock cycles for a basic
implementation of 20-round RC6 encryption (20 � 2 + 1
cycle for pre-processing +1 cycle for post-processing).
Number of clock cycles for other algorithms and their
respective CED architectures shown in table 4 has been
computed similarly.

Table 4: Comparison of CED architectures of 128-bit
symmetric encryption algorithms

No
CED

 Algorithm-
level CED

Round-
level CED

Operation-
level CED

Algo.

of
cycl.

of
cycl.

Det.
Lat.

of
cycl.

Det.
Lat.

of
cycl.

Det.
Lat.

RC6 42 84 84 44 4 43 2
Serpent 64 128 128 66 4 65 2
Twofish 34 68 68 36 4 35 2
Rijndael 44 88 88 48 8 45 2

5. FPGA Implementation based validation

To validate the proposed CED techniques, we
implemented the 128-bit symmetric encryption algorithms
with different CED mechanisms in Xilinx Virtex device
XCV1000BG560-6 FPGA (the largest FPGA currently
available). All CED architectures were modeled in VHDL
and functionally verified using Modeltech’s Modelsim
VHDL simulator. Synplify was then used for synthesis and
Xilinx Foundation PAR tool was used for place and route.
The results are presented in Table 5. Area is computed as the
number of Virtex slices used. One Virtex Slice contains two
look-up tables and one look-up table can implement four
input-one output logic functions.

The throughput of an encryption algorithm represents
the total number of data bits encrypted per second and is
calculated as: (no. of bits encrypted) / (no. of clock cycles
for encryption � clock duration). The performance
degradation is obtained as: 1– (throughput of CED
architecture/ throughput of basic architecture). From Table 5
it can be seen that the clock frequency, throughput and fault
detection latency decrease while the area overhead increases
with the granularity of CED. Decrease in fault detection
latency/increase in area and decrease in fault detection
latency/decrease in throughput ratios are more significant
between algorithm level CED and round level CED than it is
between round level CED and operation level CED.
6. CED Case Study: 128-bit Rijndael encryption

In our implementation, one round of Rijndael encryption
(decryption) consumes four clock cycles. Therefore,
encrypting (decrypting) one 128-bit block of plain (cipher)
text consumes 11 x 4 = 44 clock cycles. The round keys are
stored in a register file for use during both encryption and
decryption. The area overhead for algorithm level CED is
one register to store the plain or the cipher text, one
comparator and couple of multiplexers. Fault detection
latency using this approach is 44�2 = 88 clock cycles. Round
level CED has a fault detection latency of 8 clock cycles, 4
cycles each for a round of encryption and decryption (Figure
5). Further, since the comparator is in the critical path
module, the clock duration increased from 21.3ns to 27.74ns.
Operation level CED is implemented for s-box, mix column
and key XOR operations. Figure 6 shows the CED circuit for
s-box and inverse s-box pair. Identical architectures will be
used for the other two operations. The fault detection latency
for the operation level CED will now be reduced to two
clock cycles. Another benefit of operation level CED is that
we can identify the faulty operation module pair.

Table 5: Summary of FPGA implementation of CED architectures of 128-bit symmetric encryption algorithms

 No CED
Algorithm
Level CED

Round
Level CED

Operation
Level CED

Rijndael 3973 4806 4724 5486
RC6 2397 3028 3153 3337

Twofish 3262 3474 3467 N/A
Area (# of slices)

Serpent 8073 9376 9659 9974

Rijndael 46.93 36.44 37.60 36.69
RC6 23.99 21.76 20.740 16.87

Twofish 20.16 18.98 19.072 N/A
Max freq (MHz).

Serpent 28.638 30.369 26.267 26.759
Rijndael 136.53 53.04 100.27 104.36

RC6 73.11 33.16 60.33 50.22
Twofish 75.90 35.73 67.80 N/A

Throughput (Mbps)

Serpent 57.28 30.37 50.95 52.69
Rijndael - 20.97 18.90 38.08

RC6 - 26.3 31.5 39.20
Twofish - 6.49 6.28 N/A

Area Overhead (%)

Serpent 16.14 19.15 23.55
Rijndael - 61.15 26.55 23.56

RC6 - 54.64 17.48 31.31
Twofish - 52.92 10.67 N/A

Perf. Degrad.(%)

Serpent 46.98 11.05 8.01

Figure 5: Rijndael round level CED architecture

?

Figure 6: Rijndael operation level CED of s-box/s-box-inverse

7. Conclusions
We have presented algorithm level, round level and

operation level CED architectures for symmetric encryption
algorithms. Based on the FPGA implementations, we

conclude that round level CED architectures better optimize
the area overhead, performance penalty and fault detection
latencies. However, operation level CED should be chosen
when fault localization is important. From among all the
AES symmetric encryption algorithms, Rijndael and
Serpent are good candidates for implementing algorithm
level, round level and operation level CED. Proposed
scheme introduces moderate area overhead and interconnect
complexity to achieve permanent as well as transient fault
tolerance. This approach assumes that the key RAM,
comparator or both encryption and decryption modules
simultaneously are not under attack or faulty.
8. References
1. J. Kelsey, B. Schneier, D. Wagner, and C. Hall, "Side Channel
Cryptanalysis of Product Ciphers", Proceedings of ESORICS ’98,
Springer-Verlag, September 1998, pp. 97-110.
2. C. Harpes and J. Massey, “Partitioning Cryptanalysis”, Fast Software
Encryption, 4th International Workshop Proceedings, Springer-Verlag,
1997, pp. 13-27.
3. S. Vaudenay, “An experiment on DES Statistical Cryptanalysis”, 3rd
ACM Conference on Computer and Communications Security, ACM
Press, 1996, pp. 139-147.
4. P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems", Proceedings of Advances in Cryptology-
CRYPTO `96, Springer-Verlag, 1996, pp. 104-113.
5. J. F. Dhem, F. Koeune, P. A. Leroux, P. Mestré, J. J. Quisquater and J.
L. Willems, "A Practical Implementation of the Timing Attack",
Proceedings of CARDIS, September 1998.
6. P. Kocher, J. Jaffe, B. Jun, "Introduction to Differential Power Analysis
and Related Attacks", 1998. http://www.cryptography.com/dpa/technical
7. D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking
cryptographic protocols for faults”, Proceedings of Eurocrypt, Vol. 1233,
Springer-Verlag, 1997, pp. 37-51.
8. A. K. Lenstra, E. R. Verheul, “Selecting Cryptographic Key Sizes”,
Public Key Cryptography Conference.
http://www.cryptosavvy.com/cryptosizes.pdf
9. R. J. Anderson “Crypto in Europe – Markets, Law and Policy”,
Cryptography: Policy and Algorithms, Springer LNCS v 1029 pp. 75-89.
ftp://ftp.cl.cam.ac.uk/users/rja14/queensland.ps.Z
10. F. Bao, R. Deng, Y. Han, A. Jeng, T. Nagir, D. Narasimhalu, “A New
Attack to RSA on Tamperproof Devices”, 5th International Workshop on
Security Protocols, 1997, pp 125-136.
11. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems”, Proceedings of Crypto'97, 1997.
12. J. J. Floyd, K.E. Fu, P. Sun, MIT, “6.857 Computer & Network
Security Final Project: Differential Fault Analysis”, December 1996.
http://web.mit.edu/jered/www/publications/rc5-dfa-paper.ps
13. R. Anderson, M. Kuhn, “Low cost attack on tamper resistant devices”,
5th International Workshop on Security Protocols, 1997.
http://www.cl.cam.ac.uk/ftp/users/rja14/tamper2.ps.gz
14. H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, R. ZImmermann, W.
Fichtner, “VINCI: Secure test of a VLSI high-speed encryption system”,
Proceedings of IEEE International Test Conference, 1993, pp. 782 –790.
15. S. Wolter, H. Matz, A. Schubert and R. Laur, “On the VLSI
implementation of the International Data Encryption Algorithm IDEA”,
IEEE International symposium on Circuits and Systems, volume 1, 1995,
pp. 397-400.
16. S. Fernandez-Gomez, J. J. Rodriguez-Andina, E. Mandado,
“Concurrent Error Detection in Block Ciphers”, IEEE International Test
Conference, 2000.
17. R. L. Rivest, M. J. B. Robshaw, R. Sidney, Y. L. Yin, “The RC6TM
block cipher”, ftp://ftp.rsasecurity.com/pub/rsalabs/aes/rc6v11.pdf
18. J. Daemen, V. Rijmen, “AES proposal: Rijndael”,
http://www.esat.kuleuven.ac.be/~rijmen/ rijndael/ rijndaeldocV2.zip
19. R. Anderson, E. Biham, L. Knudsen, “Serpent: A proposal for the
Advanced Encryption Standard”,
http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.tar.gz
20. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, “Twofish: A
128-bit cipher”, http://www.counterpane.com/twofish.pdf

http://www.cryptography.com/dpa/technical
http://www.cryptosavvy.com/cryptosizes.pdf
ftp://ftp.cl.cam.ac.uk/users/rja14/queensland.ps.Z
http://web.mit.edu/jered/www/publications/rc5-dfa-paper.ps
http://www.cl.cam.ac.uk/ftp/users/rja14/tamper2.ps.gz
ftp://ftp.rsasecurity.com/pub/rsalabs/aes/rc6v11.pdf
http://www.esat.kuleuven.ac.be/~rijmen/ rijndael/ rijndaeldocV2.zip
http://www.cl.cam.ac.uk/ftp/users/rja14/serpent.tar.gz
http://www.counterpane.com/twofish.pdf

