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Concurrent Error Detection Using Watchdog 
Processors-A Survey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A bstract-This is a survey of concurrent system-level error 

detection techniques using a watchdog processor. A watchdog 

processor is a small and simple coprocessor that detects errors by 

monitoring the behavior of a system. Like replication it does not 
depend on any fault model for error detection. However, it 

requires less hardware as compared to replication. It is shown 

that a large number of errors can be detected by monitoring the 

control flow and memory access behavior. Two techniques of 

control flow checking are discussed and compared to the current 

error detection techniques. A scheme for memory access checking 

based on capability-based addressing is described. The design of a 

watchdog for performing reasonableness checks on the output of 

a main processor, by executing assertions, is also discussed. 

Index Tenns-Capability-based addressing, concurrent check- 

ing, control flow checking, coprocessor, distributed computing, 
executable assertions, microprogramming, parallel computing, 

signature analysis, system-level error detection, watchdog proces- 

sor. 

I. INTRODUCTION 

ONCURRENT (on-line or implicit) error detection C techniques used in digital systems can be divided into two 
classes: circuit-level techniques and system-level techniques. 
The use of single error correcting and double error detecting 
codes for memories, parity bits for data buses, residue codes 
for ALU’s, and self-checking circuits are all examples of 
circuit-level techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[58]. Capability-based addressing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 171, watchdog timers [47], fault-tolerant data structures [63], 

and use of replication (ESS-IA [60], FTMP [23], SIFT [66], 

C.vmp [57], and N-Version programming [9]) are some of the 
examples of the techniques used to detect errors at the system 
level. 

A .  Watchdog Processors 

A watchdog processor [35], [42] is a small and simple 
coprocessor used to perform concurrent system-level error 
detection by monitoring the behavior of a main processor. The 
watchdog is an extension of the idea of a watchdog timer [lo], 

[47], [48]. The organization of a system using a watchdog 
processor is shown in Fig. 1 .  Error detection by means of a 
watchdog is a two phase process. In the first phase (setup 
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Fig. 1. Error detection using a watchdog. 

phase) the watchdog is provided with some information about 
the processor or process to be checked. During the second 
(checking) phase, it monitors the processor and collects the 
relevant informatjon concurrently. Error detection is done by 
comparing the information collected concurrently with the 
information provided during the setup phase. The information 
provided to the watchdog to detect errors can be about the 
memory access behavior [43], the control flow [15], [26], 

[27], [36], [44], [46], [55], [59], [65], [67], the control signals 
[ 141, or the reasonableness of results [28], [37], 1411, [49]. 

In terms of complexity, the watchdog lies between the 
current circuit-level and system-level techniques. Like other 
system-level techniques it does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot require a simplistic fault 
model (single stuck-at, unidirectional, etc.), but it is cheaper 
than replication. Moreover, as the checking is done concur- 
rently, the performance of the system does not suffer 
significantly. The use of watchdogs for concurrent (on-line) 
testing can be compared to functional (off-line) testing of 
microprocessors [MI. In both cases, the checking is done at a 
level higher than the circuit level. The watchdog can be added 
to any system without major changes to the system. If the 
system being monitored uses circuit-level error detection 
techniques, then the use of a watchdog can increase the 
reliability of the system by detecting errors which escape 
detection at the lower level. Another advantage of using a 
watchdog processor is that the checking circuitry is totally 
independent of the checked circuitry. This provides protection 
against common or related errors because of design diversity 
[6]. Other schemes use complementary logic [54] or proces- 
sors from different manufacturers, as in Boeing 737-300 

airplane [68], to overcome this problem. The very use of a 
watchdog processor provides protection against such errors. 
The use of a watchdog not only detects hardware errors but 
also software and design errors if reasonableness checks are 
performed on the output of the checked processor. Recently 
there has been a trend towards distributed computing using 
dedicated processors to perform specialized functions like 
floating-point calculations and input/output processing. [ 131 is 
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IPF: 

IOA: 
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IRA: 

IOC: 

IWA: 

TABLE I 
ERROR DETECTION MECHANISMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[52] 

Invalid Program Flow 

Incorrect Opccde Address 

Improper sequence of instructions 

Fetching instruction from 
non-instruction address 

Unused Memory Memory access to existent but 

unused memory 

Read access (for data) to 
instruction area, or 
non-existent memory 

Invalid Read Address 

Invalid Opcode Illegal instruction 

Invalid Write Address Attempt to write into 
non-aiterable memory 
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Fig. 2. Comparison of different mechanisms [52]. 

NEM: Non-Existent Memory Access to a location with 
each individual mechanism. The highest point of the bar for 
each mechanism gives the total coverage, with ,different 
shaded portions indicating the time of detection relative to the 

no memory 

an example of design where a specialized processor is used for 
both I/O processing and error detection. Also, many systems 
are using special console processors for off-line diagnostics 
[5], 1341. The popularity of these techniques further supports 
the idea of using a watchdog coprocessor for concurrent error 
detection. 

The paper is organized as follows: 1) Section 11 describes 
the experimental results about the error coverage of different 
system-level error detection techniques, 2) two kinds of 
control flow checking techniques are discussed in Section 111, 
which also deals with detecting errors in hardwired and 
microprogrammed control units, 3) Section IV describes 
memory access checking, and 4) Section V discusses the use of 
a watchdog processor for performing reasonableness checks 
on the output of a main processor by executing assertions. 

other mechanisms. The first area indicates the percentage of 
time that the particular mechanism was the first to expose the 
fault, the second area indicates the percentage it was second, 
and so forth. The average latency from fault to detection is 
listed on the top of each bar. Fig. 3 shows the performance of 
each mechanism depending on where the fault was injected. It 
is clear from Figs. 2 and 3 that invalid program flow (IPF) was 
the best in detecting faults, both in terms of coverage (63 

percent) and latency (8 ps). Moreover, most of the mecha- 
nisms did a good job of detection if the fault was on the address 
lines, but performed poorly if the injected fault was on the data 
line. 

Similar results were obtained in an independent experimen- 
tal study [33]. In this particular case, a software model of the 
processor (Texas Instrument SBR 9900) was used. This 
provided the opportunity to insert faults inside the processor 
and not just on the external pins. 11. EXPERIMENTAL EVALUATION OF DIFFERENT ERROR 

DETECTION MECHANISMS 

A major decision in the design of a watchdog processor is 
the choice of a system characteristic to monitor. The chosen 
characteristic must satisfy the following requirements: 1) it 
should not make the watchdog complex, 2) it should provide 
good error coverage, 3) it should not require major changes to 
be made in the design of the checked processor, and 4) it 
should not result in high overhead to the monitored system. 
Many different mechanisms that can be used to detect errors at 
the system level were studied experimentally in [33] and [52]. 

In [52] the seven mechanisms shown in Table I were studied 
by means of simulation. Faults (temporary and permanent) 
were injected on the external piils of the 2-80 microprocessor 
and the subsequent system response was recorded. For each 
mechanism, the relevant features of the response were 
extracted and compared to the response of the system with do 

faults. Any difference in the faulty and fault-free run was 
viewed as a successful detection of the fault by that particular 
mechanism. A total of 539 faults were injected. Of these 73 

percent were detected by at least one of the mechanisms within 
250 ps (250 ps being the maximum time for which the state of 
the system was observed). Fig. 2 describes the performance of 

III. CONTROL FLOW CHECKING 

It is obvious from the results presented in Section I1 that 
control flow and memory access checking can be used very 
effectively for detecting errors at the system level. Control 
flow checking is discussed in this section and memory access 
checking is described in Section IV. 

Any program can be represented graphically, with nodes 
representing some program unit and arcs representing the flow ' 
of control. A node can be a single statement, a block of 
statements with no jumps allowed from or into the block 
(branch-free interval), a loop-free interval, or a single 
procedure. All schemes of control flow checking are based on 
associating a signature or token with a node (called node 
signature). The watchdog is provided with the signatures and 
the relationship among signatures. This becomes the watch- 
dog program. During execution of a program, the watchdog 
monitors the control flow of the program, computes the node 
signature concurrently (or accepts the signature explicitly 
transmitted by the main processor), and compares it to the 
signature provided earlier. Any discrepancy in the two 
signatures is taken as an indication of error. Many schemes for 



IEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31, NO. 2, FEBRUARY 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80- 

2 -  
e 

% -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 60- 
I- 

3 
-I 40-  
U. 

m W 

IOP 

DATA LINES 

E ADDRESS LINES ~~~ 

CONTROL LINES 
ALL LINES 

C IWA NEM 

UPSET EXPOSURE MECHANISM 

Fig. 3.  Error coverage depending on fault type 1521. 

checking control flow have been proposed [141, [27], [361, 
[44], [59], [67]. These schemes differ in their definition of a 
node and the node signature and in their derivation and 
representation of the watchdog program. In some schemes, the 
node is a high-level language construct [36] and in others it is a 
branch-free interval consisting of Assembly language instruc- 
tions [MI. The signatures associated with the nodes can be 
either assigned arbitrarily (for example, using prime numbers) 
or they can be derived from the instructions in the node. 
Checking techniques in which the signatures are associated 
arbitrarily with the nodes will be called assigned-signature 
control flow checking and the techniques in which the 
signatures are derived from the nodes will be called derived- 
signature control flow checking. In both cases, the watchdog 
program is homomorphic to the control flow structure of the 
main program. However, the method of computing the node 
signature has an important bearing on the error detection 
capability of different schemes. 

On the basis of their error detection capability, the schemes 
for checking control flow can be divided into three classes: 1) 
the schemes that check that the nodes are executed in an 
allowed sequence, 2) the schemes that verify the sequencing of 
the contents of a node, and 3) the schemes that do both. The 
schemes that use assigned-signature checking fall into the first 
category and the schemes that use derived-signature checking 
fall into the last two categories. As an example, consider the 
program and its graph shown in Fig. 4(a). Fig. 4(b) shows the 
watchdog program that only checks that the nodes are 
executed in an allowed sequence. (The allowed sequences are 
[Vl V2 Y4] and [Vl V3 V41.) The node signatures are 
assigned arbitrarily in this case and explicitly transmitted to 
the watchdog. Most errors in the execution of the node itself, 
for example, change of an add instruction into a subtract 
instruction, are not detected. One advantage of such a scheme 
is that the watchdog program can be generated directly from a 
program written in a high-level language. Another advantage 
is that the two processors can operate asynchronously without 
making the watchdog complex. [36] is an example of such a 
technique. 

Fig. 4(c) shows the watchdog program that only checks the 
sequencing of the contents of a node (with the node signature 

computed from the contents of the node). The watchdog has to 
be informed which node is being executed by the main 
processor. An example of such a scheme is [14]. Fig. 4(d) 
shows an example of a watchdog program whose execution by 
the watchdog results not only in checking the node transitions 
but it also detects errors in sequencing of the contents of the 
node itself. Signatures in both these cases [Fig. 4(c) and (d)] 
are not transmitted explicitly by the main processor but are 
computed concurrently by the watchdog. [15], [44], and [59] 
are examples of the technique shown in Fig. 4(d). 

It should be pointed out that these schemes for control flow 
checking only verify that the nodes are executed in an allowed 
sequence and not necessarily the correct sequence (a sequence 
may be allowed but incorrect). Table I1 illustrates the main 
properties of different control flow checking schemes. These 
schemes are discussed later in Sections 111-A, 111-B, and 111-C. 

A.  Assigned-Signature Control Flow Checking 

Examples of such techniques are [27], [36], and [67]. In 
[36] a technique called structural integrity checking (SIC), 
which is based on recognizing high-level control flow struc- 
tures in computer programs, labeling these structures with 
signatures or labels, and checking the integrity of these 
structures at run time using a watchdog processor, is pre- 
sented. The concept of SIC is based on the theory of formal 
languages and automata. It uses syntax-driven methods for 
encoding program structures and automatically generating two 
programs, one for the main processor and the other for the 
watchdog processor, from the original program. The schemes 
described in [27] and [67] also assign labels to program 
constructs. However, the method used for arriving at the 
labels in SIC results in much simpler implementation as 
compared to these two techniques. 

A typical software configuration is shown in Fig. 5, using 
the language Pascal as an example. The SIC preprocessor 
reads in the Pascal source program and analyzes the program 
for four constructs: concatenation, selection, repetition, and 
abstraction (procedures). Table 111 shows examples of some of 
these constructs. Labels (signatures) are attached to these 
constructs and a program known as a Labeled Structured 
Program is generated for the main processor. The second 
output of the preprocessor is the Structural Reference Program 
for the watchdog. The structure of this program mimics the 
structure of the source program. In place of computations in 
the source program, the structural reference program contains 
statements to receive and check labels from the main proces- 
sor. As the structural reference program does not contain code 
to execute the actions of the program being checked, the 
computational requirements for the watchdog are less than 
those for the main processor. As the main processor executes 
the labeled structured program, it transmits each label it 
encounters. The watchdog receives these labels and compares 
them to the labels generated within the watchdog by the 
structural reference program. In case of a mismatch, an error 
is signaled to the system component that manages error 
detection and recovery. The operations of SIC can be 
abstractly modeled as the activities of two automata. One 
automaton is the execution of the labeled structured program 
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SCHEME 

SIC 

BASIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP S I  

GEN P S I  

BAH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8085 CHECKEI 

CERBERUSIO 

RYP 

SIC 
PSA 
BAH 
RMP 
ASYNC 
SYNC 
n 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EXECUTE NODE(V1); 

(* COND SET DURING V1*) 

IP COND = TRUE THEN 

EXECUTE NODE(V2) 

ELSE 

EXECUTE NODE(V3); 

EXECUTE NODE(V4); 

ACCEPT SIG(VI), CASE NODE OF ACCEPT SIG(V1). CHECK SIG(V1). 

EITHER VI CHECK SIG(VI), EITHER 

ACCEPT SIG(V2) V2 CHECK SIG(V2). ACCEPT SIG(V2). CHECK SIG(V2) 

OR V3 CHECK SIG(V3). OR 

ACCEPT SIG(V3). V4 CHECK SIG(V4). ACCEPT SIG(V3). CHECK SIG(V3). 

ACCEPT SIG(V4). END, ACCEPT SIG(V4). CHECK SIG(V4). 

(b) (c) (a 
Fig. 4. Different schemes for control flow checking. (a) Main program. 

Watchdog programs for (b) checking node transitions, (c) checking the 
node, and (d) checking both. 

PROPERTIES 01 

SIBNATURE 

LANG CONSTRUCT. 

BRANCH.FREE I DERIVED 
INTERVAL 

BRANCH-FREE DERIVED 
INTERVAL I 

I 

DER I V E D I MACRO- 
INSTRUCTION 

BRANCH-FREE I DERIVED 
INTERVAL 

TABLE I1 
DIFFERENT CONTROL FLOW CHECKING SCHEMES 

VARIABLE ASYNC 

ONE NODE 

NODES 

SEOUENCEOF I YES I YES I SYNC 
NODES 

ONENODE I YES ~~ 1 NO I SYNC 

SEOUENCEOF I YES I YES I SYNC 
NODES 

SEOUENCEOF I YES I YES I ASYNC 
NODES 

OVERHEAD OVERHEAD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
H I H  

4- 
L I H  

-+- 
STRUCTURAL INTEGRITY CHECKING 
PATH SIGNATURE ANALYSIS 
BRANCH ADDRESS HASHING 
ROVING MONITORING PROCESSOR 
ASYNCHRONOUS 
SYNCHRONOUS 
HIGH 
LOW . 

PASCAL 

COMPILER for LABELED 

PROGRAM MAIN PROCESSOR 
STRUCTURED 

SIC PASCAL 

PREPROCESSOR SOURCE 

I 

PASCAL 

COMPILER for 

WATCHDOG 

STRUCTURAL 
REFERENCE 

Fig. 5. Typical software configuration (SIC). 
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MAIN WATCHDOG 

begin 

send (x); 
a;  

send (Y); 
b; 

begin 

a; 

b; 

end; 

begin 

i f  token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< > x then error; 

< check a > 
if token < > y then error; 

<check b >  

if a then 

b 

else 

C: 

SELECTION 

i f  a then 

begin 

send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( - x ) ;  
b 

end 

begin 

C. 

end, 

else 

send (-Y). 

if token = - x  then 

<check b > 

else 

<check c s  

Token : Same a s  Label or Signature. 

< Check Declaration >: Apply SIC recursively to abstractions In 

declarations. 

in the main processor and the second automaton is the 
execution of the structural reference program in the watchdog 
processor. The strings of labels produced by the execution of a 
labeled structured program can be described by a context-free 
grammar. The structural reference program is so constructed 
that the watchdog acting as a push-down automaton accepts 
exactly those strings described by the context-free grammar 
and rejects any other strings. As an example consider a part of 

a program shown in Table IV(a). From this program two 
programs shown in Table IV(b) and (c) are generated. The 
first one is executed by the main processor and the second one 
is executed by the watchdog processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Derived-Signature Control Flow Checking 

An example of derived-signature control flow checking is 
path signature analysis (PSA) [U] (only programs that do not 
modify themselves are considered). First, the basic scheme 
(called Basic PSA) will be discussed and then the modified 
scheme (called Generalized PSA) will be described. 

In the Basic PSA Scheme, a deterministic signature is 
derived for each node of the graph (where each node is a 
branch-free interval) ; the signature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnode represents some 
characteristic of that node. For example, the result of mod-2 
addition, a checksum, or linear feedback shift register (LFSR) 

signature of the instruction words in a node can be defined as 
the signature of that node. The signature is inserted at the 
beginning of each node. Two tag bits are used to differentiate 
signatures from the rest of instructions in the node. The 
watchdog monitors the data bus and captures the signatures as 
they appear, using tag bits to differentiate them from the rest 

TABLE I V  

STRUCTURAL INTEGRITY C H E C K I N G .  (a) S O U R C E  P R O G R A M .  (b) M A I N  

PROCESSOR PROGRAM. (c) W A T C H D O G  PROGRAM. 

read(input,  number) ; 
repeat  

if number < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 then begin 
negsum := negsum + number; 
number := number - 1 ;  

end ; 
sum := sum + number; 
read(input,  number); 

u n t i l  (number I 0) or ( e o l n ( i n p u t ) ) ;  

send( 50) ; 
read(input,  number) ; 
send(187);  
begin 

repeat  
send(-82); 
( *  -82 means loop executed *) 
if nmber < 0 then begin 

send (-12); 
negsum := negsum + number; 
send(28);  
nmber := number -1; 

end else send(-13): 
send(155);  
sum :S sum + number; 
send( 48) ; 
read( input,  number) ; 

u n t i l  (number = 0) o r  ( e o l n ( i n p u t ) ) ;  
send (-83); ( a  terminate loop *) 

end : 

(b) 
~~ 

if token <> 50 then error;  

if token <> 187 then error;  
begin (. check repeat  loop * )  

i f  token <> -82 then error;  
repeat  
( *  loop terminated when 

token not  equal to -82 *) 
i f  token = -12 then begin 
( *  -12 means ' i f '  executed a)  

if taken <> 28 then error:  

end : 
i f  token <> 155 then error;  

i f  token <> 48 then error;  

u n t i l  token <> -82; 

end : 

(C) 

of instructions. The main processor executes a NOP instruc- 
tion whenever a signature is fetched. For the rest of the 
instructions in the node, the watchdog computes the signature 
concurrently. At the end of the node, the watchdog compares 
the computed signature to the actual signature. Fig. 6 shows a 
typical structure of a node. Fig. 7(a) shows a sample program 
for the 68000 microprocessor with its corresponding graph. 
Fig. 7(b) shows the same program with signatures added. The 
signatures were computed using the Exclusive-oR operation. 
The scheme described in [59] is very similar to the above 
mentioned technique. The main difference is that in [59] the 
signatures are added to the nodes such that the signature 
computed on-line at the end of node is all-one. This simplifies 
the checking circuitry because instead of a comparator, a 
simple gate is enough to generate an error signal. 

1) Improvements: The insertion of explicit signatures in the 
instruction stream increases the memory overhead and reduces 
the performance. The schemes to be described next compute 
signature in such a way that each signature checks a greater 
number of instructions (compared to the Basic PSA), thereby 
reducing the total number of explicit signatures that need to be 
stored. 

The first such scheme Generalized PSA, is described in 
[U]. In this scheme, the signatures are computed for 
sequences of nodes, that is, paths rather than single nodes. The 
program graph is broken into path sets and one signature is 
derived for each path set. Each path set contains one or more 
paths, with each path in the path set starting from the same 
node. As there is only one signature for each path set, each 
path in the path set must result in the same signature. In order 
to make this possible, sometimes pseudosignatures, called 
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v3 

Structure of a typical nodi D (PSA). 

I I -  
001018 v3 llCl6OOl L2: M0VE.B DL.DATA3 
OOlOlC 4E75 RTS 

(a) 

00lOoo 01 IC46 Ll: (NOP) 
001002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 207CoooO6002 M0VEA.L IIDATAI,AO 
oom8 00 orni CLR.B D I  
OOlOOA 00 10386OOO M0VE.B DATA2,DO 
00100E 00 KMwxH)9 CMP.6 119,DO 
001012 I I  6208 BH1.S L2 

001014 01 5ABO (NOP) 
001016 00 4880 EXT.W DO 
001018 00 1230 M0VE.B 0 (AO,DO),OI 
OOlOlA I 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoooO 

00lOlC 01 3FB5 L2: (NOP) 
OOlOlE 00 llC16001 M0VE.B DI.DATA3 
001022 11 4E75 RTS 

(b) 

Fig. 7.  Basic path signature analysis. (a) A program for the 68000 
processor. (b) The same program with signatures added. 

r 

Fig. 8. A program graph to illustrate Generalized PSA. 

justifying signatures, are added to the paths in the path set 
(assuming that the inverse of the signature exists), so that no 
matter what path is executed in the path set, the same signature 
results. 

As an example, consider the program graph shown in Fig. 
8. It has one path set that consists of four different paths. In 
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order to make all these paths equisignature, the signatures of 
the nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu3 and u6 are justified by assigning two justifying 
signatures to these nodes. (It is assumed that the Exclusive-OR 
operation is being used for computing signatures.) 

h'(u3) = h(u3) o h(u2) (justifying signature at node u3) 

h'(u6)=h(u6) e h(u5) (justifying signature at node u6). 

After this modification, the signatures of the paths would be 

P1: H 1  =h(u1) o h(u2) e h(u4) 0 h(u5) e h(u7) 

P2: H2=h(u l )  8 h(u3) h'(u3) 

h ( ~ 4 )  o h(u5) o h(u7)=H1 

P3: H3=h(ul)  e h(u2) Q h ( ~ 4 )  

8 h(u6) h'(u6) h(u7)=H1 

P4: H4=h(u l )  Q h(u3) h'(u3) 

Q h(u4) Q h(u6) h'(u6) Q h(u7)=H1 

where h(ui) is the signature of a single node. 
The common signature of these paths (Hl) is stored at the 

node U 1. The total number of signatures for this example is 
three which is less than that in the Basic Scheme (seven). Fig. 
9 shows the same program as in Fig. 7(a) with signatures 
added based on the Generalized method. The total number of 
signatures in this case is two, which is less than that in the 
basic method. 

The second scheme, Branch Address Hashing (BAH) 
described in [55]  improves the Basic PSA by combining some 
of the signatures with branch target addresses, thereby 
reducing the overhead for storing signatures by 50 percent. 
There are some notable differences between this scheme and 
the Basic PSA. The program graph is partitioned differently 
and the signatures are inserted at the end of nodes rather than 
at the beginning of nodes. Instead of embedding one signature 
immediately preceding every branch instruction, the branch 
address of the branch instruction is modified at assembly time 
such that during execution, the changed branch address 
combined with the concurrently computed signature gives the 
correct branch address. An explicit signature still needs to be 
embedded preceding every branch-in point (labeled instruc- 
tion). In the case of an error, the concurrently computed 
signature and, hence, the computed branch address will be' 
incorrect, resulting in the execution of a branch to an 
erroneous destination. The error will be detected when the 
next embedded signature is encountered. This is shown in Fig. 
10. For the programs written in the Assembly language of the 
MC 68000 microprocessor, the signatures are embedded by 
using a pseudo-branch instruction (psbr). A psbr instruction is 
an unconditional branch to the location PC -t 2. A 16-bit 
embedded signature as shown in Fig. 11, is stored immedi- 
ately following the psbr instruction. The psbr instruction 
signals the monitoring hardware of the embedded signature. 
Use is made of the one-word prefetch of the MC 68000 
microprocessor during the decode of psbr instruction. As the 
psbr instruction is being decoded, the embedded signature is 
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001000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 23F3 LI: (NOP) ;Path signature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
001002 00 107C00006002 M0VEA.L IIDATA1,AO 

001008 00 4201 CLR.B DI 
OOIOOA 00 10386000 M0VE.B DATA2,DO 
OOIOOE 00 OC000009 CMP.B I19,DO 
001012 00 6208 BH1.S L2 

001014 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 5ABO (NOP) :JustlfvinK 
signature- 

001016 00 4880 EXT.W DO 
001018 00 1230 M0VE.B 0 (AO,DO),DI 
OOIOIA 00 0000 

OOlOlC 00 llC16001 L2: M0VE.B Dl,DATA3 
001020 I 1  4E76 RTS ;Terminal node 

F ig .  9. The same program as in F ig .  7(a) with signatures added using the 

generalized method.  

CONCURRENTLY COMPUTED 
SIGNATURE 

0000 
3D08 
F7A5 

a: 8863 

BOC5 

51 B5 
b: 0000 

7D22 .L10000: 

SOURCE CODE 

jsbr input 

movl d0,tie 

cmpl % I .  dO 

in  .L10000 

cmpl #384,d0 

jle .Le1 
psbr .L10000 
movl #13. sp@. 

a: Concurrently computed signature is combined with the 

address given in the source code to compute the actual 

address. 

b: Pseudo-Branch for inserting an explicit signature. 

F ig .  10. Branch address hashing [SI. 

EMBEDDED SIGNATURE 

I <NEXT INS’IRUC?1ON z I 
Fig .  1 1 .  A n  embedded signature (BAH).  

prefetched, detected, and compared to the running (concur- 
rently computed) signature. In actual implementation, the 
inverse of the signature is stored so that the running signature 
is all-zeros, thereby making the comparison easier. 

In order to understand how branch address hashing works, 
consider Fig. 10. Starting from the first instruction, the 
signature is computed concurrently as each instruction is 
fetched. At point marked zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“a” in the figure, in the Basic PSA, 
concurrently computed signature would have been compared 
to the signature inserted explicitly in the beginning of the 
node. However, in this case, comparison is only made when a 
pseudobranch instruction is encountered, which is before a 
branch-in point (labeled instruction). In case the jump is not 
taken at point “a,” the signature is continued to be computed 
as instructions are fetched. If the jump is taken, then the jump 
address is computed by combining the signature computed up 
to that point with the address given in the jump instruction. 
This scheme has been actually implemented and experiments 
are being conducted to determine the error coverage. 

2) Independent Watchdog Processors: All the techniques 

for derived-signature control flow checking presented so far 
require that the signatures be inserted in the instruction stream. 
This increases the execution time of a program. However, by 
storing signatures in the local memory of a watchdog, this 
overhead can be removed. Two such schemes will be 
discussed. The first is a synchronous scheme for checking 
uniprocessor systems [46] and the second is an asynchronous 
scheme for monitoring multiprocessor systems [ 151, [65]. 

The watchdog processor which uses the first scheme is 
called Cerberus-16. The information about the program graph 
and path signatures is moved into (the environment of) the 
watchdog processor. The program executed by the watchdog 
has the same control flow structure as the program being 
executed in the main processor; that is, the graphs of both 
programs are identical. A node in the graph (G)  of the 
program (P)  being executed on the main processor represents 
a branch-free interval, whereas the node in the program zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P’) 
being executed in the watchdog consists of a single instruction 
that contains some information (such as signature or the size of 
node) about the corresponding node in graph G.  

The architecture and organization of Cerberus-16 differs 
from most existing processors in two respects: 1) most 
instructions of this processor are control transfer instructions 
and 2) there is no ALU in this processor. The instructions for 
Cerberus-16 can be divided into two categories. The instruc- 
tions in the first category are used for representing control 
flow in the program graphs. The general format of such 
instructions is 

where Z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ,  and D represent the node size, the next node 
address (label), and the node signature, respectively. L and D 
fields are optional. The instructions in the second category are 
used for initialization and communication with the main 
processor. They have the following format. 

OP or OP D. 

Any program graph can be represented by a set of watchdog 
instructions. Depending on the type of a node, a suitable 
instruction is used to represent that node. As that node is 
executed by the main processor, the instruction corresponding 
to that node is executed by the watchdog. After zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz instructions 
have been executed by the main processor, the watchdog then 
expects a signal from the branch detecting circuitry to indicate 
whether a branch was taken by the main processor or not. If it 
detects a branch, then the watchdog also executes a branch 
using the L field to calculate the target address of the next 
instruction. The next watchdog instruction corresponds to the 
node which should be executed by the main processor after the 
branch. In case no branch is detected, the watchdog executes 
the next instruction in sequence. As each instruction is 
executed by the watchdog, the value in the D field (signature) 
is fed to the data compression unit whose output is saved in a 
register. As an example of how this architecture can be used 
for control flow checking, consider a program, with graph as 
shown in Fig. 12(a), being executed on the main processor. 
The corresponding program executed by the watchdog is 
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$1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv5 

LO: l ds ig  0 

L1: b rc  z l , L3 ,d l  

Lz: b r a  zZ.L4,dZ 

L3: cont z3.d3 

L 4  brc  z4,L6,d4 

L5: b rc  z5,L5,d5 

L6: brc.v z6,L l ,d6 

L7: r s t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b) 

SIGNATURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID BUS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .  

Fig. 12. Control flow checking with Cerberus-16. (a) The graph of the 

program executed by the main processor. (b) The corresponding program 
executed by Cerberus-16. 

shown in Fig. 12(b). There are exactly six instructions 
corresponding to the six nodes of the main program. The Zi 
and di (i = 1 6) parameters in each instruction represent 
the size and the signature of the corresponding node in the 
main program, respectively. The instruction LDSIG initializes 
the signature register (S) to zero. At any given time, the 
register S contains the accumulated signature of the executed 
path. For example, if the main processor executes the node 
sequence (ul, u2, u4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 5 ,  u5,  u5 ,  u6) and the compression 
function selected is XOR, then the watchdog executes the 
instructions at addresses (Ll ,  L2, L4, L5, L5, L5, L6) and 
the accumulated signature after the execution of this path 
would be 

h = d l  @ d 2  d 4  d 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 d 5  @ d 5  @ d6. 

The instruction corresponding to the node v6 is BRC.V 
(branch conditional and verify) instruction. This instruction 
signals the end of the path. The signature computed by the 
watchdog at this point is compared to the actual signature of 
the path. 

The same watchdog can be used for collecting statistical 
data about a system by changing the data [D] field of the 
watchdog instruction. An example of such data is the 
frequency of different instructions. It is interesting to note that 
the earliest design of a processor for monitoring another 
processor was for the purpose of collecting performance data 
[ 161. However, the watchdog is much simpler compared to the 
earlier design. 

The above mentioned design of Cerberus-16 requires the 
watchdog to be tightly synchronized with the main processor. 
An asynchronous version of the above scheme is discussed in 
[ 151. It is based on storing the control flow information of the 
program being executed on the monitored processor as the 
signature graph in the local memory of the monitoring 
processor. The graph is stored in the form of a linked list data 
structure. As each node is executed in the main processor, its 
signature is transmitted to the monitoring processor through a 
signature queue. The monitoring processor uses the signature 
graph to check that the next signature it receives belongs to a 
set of nodes which can be reached from the current node. This 
scheme can also be used for monitoring more than one 
processor if a different signature queue is used for each 
processor and signature graphs of all the programs being 

I RMP I - 
Fig. 13. Roving monitoring system [65]. 

executed on different processors are stored in the local 
memory of the monitoring processor. 

[65] discusses the actual implementation of the processor 
(called Roving Monitoring Processor or RMP) described in 
[15]. Fig. 13 shows the general configuration of Roving 
Monitoring System. There is one hardware signature genera- 
tor (HSG) for each application processor (AP). Each HSG 
generates a stream of signatures for its corresponding AP and 
stores it in the signature queue (SQ). The RMP samples the 
SQ’s according to some policy and checks that the signature 
stream generated by the AP corresponds with its signature 
graph, already stored in the local memory of RMP. Only eight 
instruction types, shown in Table V, are sufficient to represent 
the program graph. Signature words containing signature and 
processor ID arrive at the RMP from SQ via the common 
signature bus. The processor ID field is used by the RMP to 
access the appropriate program counter from the program 
counter register file. The prototype for RMP has been 
designed and implemented. It uses 90 MSI/SSI packages 
(excluding memory) and can monitor 16 processors. A series 
of fault insertion experiments, designed to determine the error 
coverage and error latency are being conducted. 

3) Overhead: The memory overhead for storing signatures 
can be as high as 20 percent if the Basic PSA scheme described 
in Section 111-B is used. However, if the improvements 
discussed in Section III-B-1 (Generalized PSA and branch. 
address hashing) are used, then the overhead can be reduced to 
10 percent. The hardware required to implement the watchdog 
itself can be as little as 20 percent of the complexity of the MC 
68000 microprocessor [40]. 

4) Error Coverage: Derived-signature control flow check- 
ing techniques discussed in Section HI-B can detect both 
memory and control flow errors. Examples of control flow 
errors are incorrect sequence of instructions, branch to wrong 
address, branch from a wrong address, etc. These control flow 
errors can be the result of failures in the instruction register, 
the program counter, the address register, decoding circuitry, 
memory addressing circuitry, etc. It was shown in [40] that 
control flow errors can be modeled as memory errors for the 
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TABLE V 
INSTRUCTIONS FOR RMP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[65] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CMPS S,SRP Compare signature with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, branch 
relative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto SRP if match 

CMPSE SSRP Compare signature with S, branch 
relative to SRP if match. Error if no match. 

CMPIE S Compare signature with S, go to 
the next instluction if match. Error if no match 

HASH Short relative branch, based on 
lower signature bits. 

PUSH LPTR Push current address to stack, jump 
long to location LPTR 

POP Pop current address from stack 

POPSE Compare signature and pop the next 
address from stack. Error if no match. 

LJMP LPTR Unconditional jump to location LPTR - ‘w’ Bits - 
1 Word 4 

t 
1 Column 

Fig. 14. A single node 

T 
’n’ Words 

purpose of calculating error coverage. The problem is thus 
transformed to that of calculating coverage for errors in a 
block of data. The error coverage when parallel linear 
feedback shift register (PLFSR or MISR) is used to compute 
the signature is discussed in [40]. The results described in [40] 
are based on the properties of linear feedback shift registers 
[8], [20], [21] and on the observation that the number of 
instructions in a node is small 1241, [56]. Suppose that the 
node has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“n” words, each “w” bits wide (that is, each 
memory word is “w” bits wide), as shown in Fig. 14. Using a 
PLFSR to compute the signature of the node, it was shown in 
[40] that all single word errors are detected and most single 
column errors are detected. If n = 10 and w = 16, then the 
percentage of errors not detected due to aliasing (when the 
signature is same even in the presence of error), assuming all 
errors are independent and equally likely, is 0.0015 percent. 
Although the above results are for Basic PSA, they apply 
equally well to the other schemes (Generalized PSA, BAH). 

These results are true not only for memory errors but also for 
control flow errors. This is because control flow errors can be 
modeled as memory errors as described earlier. 

In order to study the error coverage in more detail suppose 
that “w,” the width of a node, is 32 bits. Further assume that 

the memory consists of 32 chips each with 1 bit/chip. If at 
most one memory module fails at one time, then at most one 
column (of the node) can be in error. If the size of a node, “n” 
(number of memory words in a node), is less than the width of 
the node, then all the errors will be detected [40]. If the size is 
greater than “w,” then the ratio of undetected errors to the 
total possible errors is (2,-, - 1)/(2” - 1). For large “n,” 
this can be approximated by 2- ,. Since at most one column 
can be in error, fault masking cannot occur. As an example, 
assume that the distribution of node sizes is as shown in Table 
VI. This distribution is based on the number of instructions 
executed between successful branches and is described in [24]. 
For each node size, the percentage of errors detected is shown 
in column “e” in Table VI. It can be seen that more than 99.9 
percent of the errors are detected. If there is more than 1 bit/ 
chip, then single chip failure can result in multiple column 
error. However, even then the error coverage is greater than 
90 percent as shown in [40]. 

Most of the memory errors will appear as column errors. 
Stuck faults on the data lines can also be modeled as column 
errors. Control flow errors can be represented as word errors. 
Such errors can be divided into two classes: one in which a 
node is mapped into an erroneous node of the same size and 
the other in which the size of erroneous node is different. If the 
checlung scheme used by Cerberus-16 (Section 111-B-2) is 
used, then any change in the node size is immediately 
detected. This is because the node size of each node is stored 
with the signature of that node. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo only the errors which 
change a node into a different node of the same size can go 
undetected. For detection purposes, such errors can be 
modeled as some or all bits in a data block have been changed. 
As described earlier, for a node size of 10 words each 16 bits 
wide, the percentage of errors not detected due to aliasing is 
only 0.0015 percent. As an example of an error that changes 
the node size, consider a node of size “n.” Suppose that as a 
result of a control flow error, words 0 to b - 1 of the node are 
not executed and the execution starts from the bth word. Then 
the signature computed after executing the words b to n - 1 in 
the node will be the same as if all the words in the node (0 to n 
- 1 )  were executed with the words 0 to b - 1 replaced by all 
zero words. This means that jumping in the middle of node and 
starting the execution from the bth word is equivalent to the 
first b words being in error. This is shown in Fig. 15. If only 
the first word is missed, then this error (equivalent to a single 
word error) is guaranteed to be detected (assuming that the 
missed word was not all zero itself) [40]. Many other errors, 
like illegal opcode, illegal memory readlwrite, addition of a 
branch to a node, omission of a branch from a node, etc., can 
also be modeled as word errors. Hence, the results derived for 
memory errors also hold in the case of control flow errors. 

The results described above are based on the assumption 
that all errors are equally likely. Although this assumption has 
been challenged for off-line (explicit) testing, there is as yet no 
reason to doubt its validity for concurrent testing. However, 
the best way to confirm the above results is by means of 
experimental studies. Such studies are being conducted at 
Carnegie-Mellon University [53] in which the schemes de- 
scribed in [55] and [65] are being evaluated experimentally. 
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TABLE VI 
ERROR COVERAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR 32-BIT WIDE MEMORY WITH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 BITKIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Node S i z e  

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

2-3 

4- 7 

8-15 

16-3 1 

>3 1 

OVERALL 

Detec ted  

.OB64 I 100 
I 

.2381 1 :!i ~~~ 

.3522 

.I499 

.1539 99.9 

:OVERAGE T f *e  

f * e  

1.921x 

8.64511 

23.8 1 X 

35.22X 

14.991 

15.3 BX 

99.93 

n = node size 

f= f requency 

e = X e r r o r  de tec ted  

Erroneous Nodes Cor rec t  Node 

t t  
Same S ignature  

EFFECT: FIRST b-WORDS I N  ERROR 

Fig. 15. An example of a control flow error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Checking the Control Section of a Processor 

Some of the techniques used for control flow checking can 
also be used for checking the control section of a processor. A 
design for checking the sequence of control signals corres- 
ponding to each opcode, for hardwired control units, is 
discussed in [ 141. It is based on assigning a unique signature to 
each opcode (some opcodes like branches require more than 
one signature). The signature is computed by compacting the 
sequence of control signals using a PLFSR. These signatures 
are stored in a ROM. When a particular opcode is executed by 
the processor, a signature is computed concurrently by using a 
PLFSR. The same opcode is used to fetch the stored signature 
from the ROM. A checker for the 8085 microprocessor was 
implemented using SSI/MSI chips. Seven control signals 
(visible at the pins) were monitored: ALE, SO, S1, IO/M, RD, 
WR, and INTA. The implementation required approximately 
535 gates which is about 11 percent of the complexity of 8085. 

The techniques used for checking the control flow of 
programs written in Assembly language, and discussed in 
Section UI-B, can also be used for checking microprogrammed 
control units. However, this can result in high memory 
overhead and performance degradation. This is because the 
node size can be very srnqll, especially if horizontal microin- 
structions are used. Ta overcome this difficulty, the schemes 
have been modified fqr checking microprogrammed control 
units. All +e modifications are aimed at extending the 
microinstructions and inserting the signatures in parallel to 
microinstructions, thereby improving the performance. More 
details can be found in [40], [45], [59], and [26]. The schemes 
described in [40], [45], and [59] use deeved signature 
checking, whereas [26] is based on assigned signature check- 
ing. 

I )  Comparison to the ESS-3A Processor: The ESS-3A 
(Electronic Switching Systems) is a microprogrammed proces- 
sor [ l l ] ,  [61] and is designed to control the No. 3 ESS [25], a 
small electronic switching system, which can handle from 500 
to 5000 telephone lines. ESS3A was chosen for comparison 
for two reasons. First it has a very high availability require- 
ment (down time of a few minutes per year), and second, it 
does not use duplication at the system level for error detection. 
Instead, it relies on the error detection circuitry built into the 
processor to detect faults. The techniques used in the control 
section for fault detection are as follows: 1) each of the two 8- 
bit fields of a microinstruction is encoded in the 4-out-8 code, 
2) two parity bits are used to check the sequencing of 
microinstructions, and 3) the instruction decoder is checked 
with a self-checking checker. The overhead of checking 
circuitry in the control section is about 30 percent. This does 
not include the memory overhead due to the 4-out-8 encoding 
and the two extra parity bits. The microprogram ROM 
contains 1024 words (extendable to 4096), each 32 bits wide. 
The memory overhead is about 14.28 percent. The redun- 
dancy in the control section provides protection against the 
following errors: 1) all unidirectional errors in the micropro- 
gram ROM, 2) some sequencing and addressing errors, and 3) 
decoding errors. 

It was shown in [40], using the same results as described in 
Section III-B-4, that the watchdog processor provides better 
error coverage for comparable overhead cost. More than 90 
percent of the memory errors are detected as was shown 
previously. All single word errors in the node are detected and 
very high error coverage is obtained for column errors 
(because of the small node size). This technique also provides 
much better protection against sequencing and addressing 
errors. If the signature is formed at the output of the decoder, 
instead of at the output of the microprogram ROM, then the 
decoding errors can also be detected. 

The memory overhead can be as low as 7 percent (as 
compared to 14 percent in ESS3A). The nonmemory over- 
head for the watchdog is comparable to the hardware dedicated 
to checking in ESS3A. 

IV. MEMORY ACCESS CHECKING 

The watchdog can also detect errors in the main processor 
by monitoring the memory access behavior [43]. In fact, the 
watchdog discussed in Section III-B-2 (Cerberus-16) can be 
modified easily to check the memory access along with th& 
control flow [46], thereby improving the error coverage. The 
design of a watchdog for memory access checking as 
described in [43] is based on the capability-based addressing 
[17] scheme in which each accessing object has to provide a 
capability (a protection key) for accessing another object. 
Each capability uniquely specifies an object. In the scheme 
described in [43], and shown in Fig. 16, explicit access to the 
physical memory segments is checked by an external watch- 
dog processor. Basically, the set of all active objects (code or 
data) at any given time is represented by a directed graph 
(object graph). The object graph is stored in the watchdog 
processor in a table called segment access table (SAT). The 
SAT has one row for each code object; the entries in each row 
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A.  Special Purpose Watchdog 

The time overhead for transferring data to the watchdog can 
be reduced and the watchdog design simplified by designing 
the watchdog to suit a particular application. There are many 
applications in which the flow of data (the sequence in which 
the data appear on the data bus) is known and invariant. For 
such applications, the data need not be transferred explicitly to 
the watchdog [37]. Instead, the code for assertions is stored in 
the local memory of the watchdog and the instructions which 
assign values to the variables needed by the watchdog are 
tagged. The watchdog monitors the data bus and captures the 
tagged data. It uses the data flow information to recognize the 
data. Examples of problems that can be solved using this 
technique are solution of system of equations using Gaussian 
elimination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 191, discrete Fourier transform, eigenvalues, etc. 

Special purpose watchdog processors can also be used for 
some real-time systems. Telephone switching systems [ 11 and 
digital flight control systems [7] are examples of two such 
systems. The software used in these two systems has some 
special characteristics which can be used to transfer data to the 
watchdog with very little time overhead. The programs used in 
these systems are cyclic in nature and they use a large number 
of global variables. Executable assertions which use these 
variables can be stored in the local memory of the watchdog 
and the data transferred by simultaneously writing to both the 
main memory and the local memory of the watchdog (making 
use of global variables). Since the programs are cyclic in 
nature, the watchdog processor uses the classic dual buffer 
scheme to execute assertions. One buffer is used to capture the 
data and the second is used to execute assertions on the data 
captured during the previous cycle. 

B. General Purpose Watchdog 

The design of a general purpose watchdog to execute 
assertions concurrently still remains an area of active research. 
The major problem is in transferring the data from the main 
processor to the watchdog without complicating the design. 
There are two models of parallel execution: shared memory 
(multiprocessor) and message passing (distributed comput- 
ing). The use of shared memory can result in complex 
software because of timing and synchronization problems. The 
other option is to explicitly send data to the watchdog in the 
form of messages as suggested in [51]. The hardware 
organization (based on message passing) is as shown in Fig. 
17. The main processor writes to the shared buffer and the 
watchdog reads from it. Both the processors also have their 
local memories besides the shared buffer. The software 
structure is as follows. 

1) The underlying hardware is transparent to the program- 
mer who writes assertions as they would be written for the 
program to be executed on a uniprocessor. The code inserted, 
for checking purposes only, can be separated from the rest of 
the program by using a special syntax. Table VU shows an 
example of such a syntax. Another example is that of ANNA 
(Annotated ADA) [29] which is an extension of language 
ADA. 

2) Once the code inserted for checking is identified, the 
preprocessor replaces all the code for one assertion with a 
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BUFFER 

Fig. 17. Hardware organization for assertion checking. 

single write statement 

write-buffer(assertion-number, space-needed, data) 

where assertion-number is the assertion identifier, space- 
needed is memory space needed by the data, and data are the 
values of all the variables which are used in executing the 
assertion. The code for the assertions is transferred to the 
environment of the watchdog. All variables are renamed and 
referenced with respect to the start of the data packet for that 
particular assertion. The transformed programs for the main 
processor and the watchdog are shown in Table VIII. 

3) During execution, the main processor writes to the shared 
buffer and the watchdog reads from the shared buffer. 

The data must be transferred from the main processor to the 
watchdog as fast as possible to reduce the time overhead to the 
main processor. The transfer time includes time to write data 
to the shared buffer, time spent in handshaking protocol, and 
time spent waiting to get access to the buffer because of 
memory conflicts. The time to write data can be reduced by 
using small and fast buffers and handshaking time can be 
reduced by implementing most of the functions in hardware. 
The time wasted due to memory conflicts can be minimized by 
using clever buffering techniques. The use of dual buffers, 
queues, or dual-ported memories are examples of some of 
these techniques. 

The watchdog can be specially designed to execute asser- 
tions very fast. One way to implement the watchdog would be 
to use RISC-type architecture. The code for assertions is 
stored in the local memory of the watchdog. The code is 
organized as shown in Fig. 18. The table-driven execution of 
assertions is needed because the sequence in which the 
assertions will be executed is data dependent (assertions can be 
in a multiple branching statement or in a loop). Each data pack 
sent by the main processor has an assertion number in it. The 
assertion number is used for table lookup to find the pointer to 
the executable code for that particular assertion (as done in 
microprogramming). All the data are referenced from the start 
of packet. As most of the time the watchdog will be doing 
comparisons, special hardware support is provided for this 
purpose. 

The same watchdog can also be used to check for control 
flow errors explicitly, as described in [41]. This is done by 
representing the sequence in which assertions can be executed 
as a control flow graph, and then checking concurrently that in 
fact the assertions are executed in the order as specified by the 
control flow graph. 

VI. SUMMARY AND CONCLUSIONS 

A watchdog processor is a small and simple coprocessor 
used to perform concurrent system-level error detection by 
monitoring the behavior of a system. It detects errors in a main 
processor by comparing the relevant information, collected 
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T A B L E  VI11 

THE TRANSFORMED PROGRAMS FOR ASSERTION CHECKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Maln Processor Program Watchdog Program 

begin begin 
read-nee (assertion-number); 
case assertion-number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 

write-buffer (1, space-needed, data); 1: get (data); execute ASSERTION-1, 
2: get (data): execute ASSERTION-2; 

write-buffer (n, space-needed, data); n: get (data); execute ASSERTION-n; 
end; 

end; end; 

Fig. 18. 

concurrently, to 
mation provided 

ADDRESS of ASSERIION n 

ASSERnON 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~ 

Memory organization for assertion checking. 

the information provided earlier. The infor- 
to the watchdog to detect errors can be about 

the memory access behavior, the control flow, the control 
signals, or the reasonableness of the results. 

Two experimental studies were described that show that 
control flow and memory access checking can be used very 
effectively to detect errors. In schemes in which the watchdog 
monitors control flow, it detects errors by checking that the 
main processor traverses the control flow graph correctly. 
This is done by associating a signature (token or label) with 
each node (where a node represents some program unit). The 
same signatures are provided to the watchdog. During the 
execution of a program, the watchdog monitors the control 
flow, computes the node signatures concurrently (or accepts 
them from the main processor), and compares them to the 
signatures provided earlier. Two schemes were discussed; 
assigned-signature control flow checking in which the signa- 
tures are associated with the nodes arbitrarily and derived- 
signature control flow checking in which the signatures are 
derived from the nodes. It was shown that assigned-signature 
control flow checking only verifies that the nodes are executed 
in the allowed sequence, whereas derived-signature control 
flow checking can be used either to check the sequencing of 
the contents of the node or to do both, that is, verify the 
sequencing of the contents of a node and also check transitions 
among nodes. Structural integrity checking (SIC) is an 
example of the former technique and Basic Path Signature 
Analysis (PSA) is an example of the latter technique. The main 
advantages of assigned-signature checking are 1) depth and 
resolution of checking can be controlled by the programmer, 
and 2) asynchronous checking is easier. The disadvantage is 
that the signatures have to be explicitly transferred to the 

watchdog, which is not the case with derived-signature 
checking. Moreover, derived-signature checking provides 
much higher coverage of memory errors. Many schemes that 
reduce the time and memory overhead in Basic PSA, were 
discussed. One such scheme is branch address hashing in 
which some of the signatures can be combined with the branch 
addresses. Further improvement can be obtained by moving 
the signatures to the local memory of a watchdog. Both 
synchronous (Cerberus-16) and asynchronous (RMP) versions 
were discussed. It was shown that more than 90 percent of the 
memory and control flow errors can be detected with such 
schemes with hardware overhead (not including memory) of 
10-20 percent and memory overhead of 10 percent. The 
techniques used for checking control flow can also be used for 
monitoring control units. Schemes for checking both 
hardwired and microprogrammed control units were de- 
scribed. The use of a watchdog processor for concurrent 
control flow checking was compared to the techniques used in 
the ESS-3A processor. It was shown that a watchdog provides 
better error coverage, especially for control flow errors, at 
comparable overhead cost. 

A scheme for detecting errors by monitoring the memory 
access behavior was also discussed. The scheme is based on 
capability-based addressing. The watchdog which monitors 
the control flow can be extended easily to check the memory 
access, thereby providing higher error coverage. 

Control flow and memory access checking do not detect 
semantic or data manipulation errors. Such errors can be 
detected by having a watchdog execute assertions concurrently 
about the program being executed on the main processor. The 
main problem is to be able to transfer data from the main 
processor to the watchdog without excessive time overhead. 
Design of special purpose watchdogs that make use of either 
the data flow information or the cyclic nature of some 
programs to transfer data were described. Also, a design of a 
general purpose watchdog based on message passing was 
discussed. It was shown how the same watchdog can be used 
both for control flow and data checking. 

From the details presented in this paper, it is reasonable to 
conclude that watchdog processors provide a viable alternative 
to the current concurrent error detection schemes. They 
(watchdog processors) can be used independently or in 
addition to the existing circuit-level error detection techniques. 
Error detection by means of watchdogs does not rely on 
traditional fault models nor does it use massive replication. A 

great advantage of the watchdog processor is that it provides 
an independent circuitry for error detection, at a reasonable 
overhead cost. Moreover, the use of watchdog processors is 
more in the spirit of distributed computing, where dedicated 
processors are used to perform specialized tasks. There are 
many ways of increasing the reliability of the watchdog itself. 
The use of built-in self test is one way. The other is the 
duplication of the watchdog. 
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