
160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

Concurrent Error Detection Using Watchdog
Processors-A Survey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A bstract-This is a survey of concurrent system-level error

detection techniques using a watchdog processor. A watchdog

processor is a small and simple coprocessor that detects errors by

monitoring the behavior of a system. Like replication it does not
depend on any fault model for error detection. However, it

requires less hardware as compared to replication. It is shown

that a large number of errors can be detected by monitoring the

control flow and memory access behavior. Two techniques of

control flow checking are discussed and compared to the current

error detection techniques. A scheme for memory access checking

based on capability-based addressing is described. The design of a

watchdog for performing reasonableness checks on the output of

a main processor, by executing assertions, is also discussed.

Index Tenns-Capability-based addressing, concurrent check-

ing, control flow checking, coprocessor, distributed computing,
executable assertions, microprogramming, parallel computing,

signature analysis, system-level error detection, watchdog proces-

sor.

I. INTRODUCTION

ONCURRENT (on-line or implicit) error detection C techniques used in digital systems can be divided into two
classes: circuit-level techniques and system-level techniques.
The use of single error correcting and double error detecting
codes for memories, parity bits for data buses, residue codes
for ALU’s, and self-checking circuits are all examples of
circuit-level techniques zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[58]. Capability-based addressing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[171, watchdog timers [47], fault-tolerant data structures [63],

and use of replication (ESS-IA [60], FTMP [23], SIFT [66],

C.vmp [57], and N-Version programming [9]) are some of the
examples of the techniques used to detect errors at the system
level.

A . Watchdog Processors

A watchdog processor [35], [42] is a small and simple
coprocessor used to perform concurrent system-level error
detection by monitoring the behavior of a main processor. The
watchdog is an extension of the idea of a watchdog timer [lo],

[47], [48]. The organization of a system using a watchdog
processor is shown in Fig. 1 . Error detection by means of a
watchdog is a two phase process. In the first phase (setup

Manuscript received December 12, 1985; revised July 31, 1986 and
January 26, 1987. This work was supported in part by the National Science
Foundation under Grant DCR-8200129 and by ROLM ML-SPEC Computer,
San Jose, CA.

A. Mahmood was with the Center for Reliable Computing, Computing
Systems Laboratory, Stanford University, Stanford, CA 94305. He is now
with ROLM MIL-SPEC Computers, San Jose, CA 95134.

E. J. McCluskey is with the Center for Reliable Computing, Computing
Systems Laboratory, Stanford University, Stanford, CA 94305.

IEEE Log Number 8716240.

MUN MEMORY U DATA BUS

WATCHDOG MAIN PROCESSOR

Fig. 1. Error detection using a watchdog.

phase) the watchdog is provided with some information about
the processor or process to be checked. During the second
(checking) phase, it monitors the processor and collects the
relevant informatjon concurrently. Error detection is done by
comparing the information collected concurrently with the
information provided during the setup phase. The information
provided to the watchdog to detect errors can be about the
memory access behavior [43], the control flow [15], [26],

[27], [36], [44], [46], [55], [59], [65], [67], the control signals
[141, or the reasonableness of results [28], [37], 1411, [49].

In terms of complexity, the watchdog lies between the
current circuit-level and system-level techniques. Like other
system-level techniques it does zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot require a simplistic fault
model (single stuck-at, unidirectional, etc.), but it is cheaper
than replication. Moreover, as the checking is done concur-
rently, the performance of the system does not suffer
significantly. The use of watchdogs for concurrent (on-line)
testing can be compared to functional (off-line) testing of
microprocessors [MI. In both cases, the checking is done at a
level higher than the circuit level. The watchdog can be added
to any system without major changes to the system. If the
system being monitored uses circuit-level error detection
techniques, then the use of a watchdog can increase the
reliability of the system by detecting errors which escape
detection at the lower level. Another advantage of using a
watchdog processor is that the checking circuitry is totally
independent of the checked circuitry. This provides protection
against common or related errors because of design diversity
[6]. Other schemes use complementary logic [54] or proces-
sors from different manufacturers, as in Boeing 737-300

airplane [68], to overcome this problem. The very use of a
watchdog processor provides protection against such errors.
The use of a watchdog not only detects hardware errors but
also software and design errors if reasonableness checks are
performed on the output of the checked processor. Recently
there has been a trend towards distributed computing using
dedicated processors to perform specialized functions like
floating-point calculations and input/output processing. [131 is

0018-9340/88/0200-0160$01 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1988 IEEE

MAHMOOD AND McCLUSKEY: ERROR DETECTION USING WATCHDOG PROCESSORS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA161 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IPF:

IOA:

UNM: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IRA:

IOC:

IWA:

TABLE I
ERROR DETECTION MECHANISMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[52]

Invalid Program Flow

Incorrect Opccde Address

Improper sequence of instructions

Fetching instruction from
non-instruction address

Unused Memory Memory access to existent but

unused memory

Read access (for data) to
instruction area, or
non-existent memory

Invalid Read Address

Invalid Opcode Illegal instruction

Invalid Write Address Attempt to write into
non-aiterable memory

RELATIVE EXPOSURE OCCURENCE
loo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 4Tkj OR GREATER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8
U& 801 () LATENCY IN p SEC EXPOSURE
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 3RD EXPOSURE -

E 2ND EXPOSURE

t%sm IST EXPOSURE
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x 60

%

3
y 20

w
I-

3 40
-I
3

v)

U
IA

IPF IOA UNM IRA IOC IWA NEM
UPSET EXPOSURE MECHANISM

Fig. 2. Comparison of different mechanisms [52].

NEM: Non-Existent Memory Access to a location with
each individual mechanism. The highest point of the bar for
each mechanism gives the total coverage, with ,different
shaded portions indicating the time of detection relative to the

no memory

an example of design where a specialized processor is used for
both I/O processing and error detection. Also, many systems
are using special console processors for off-line diagnostics
[5], 1341. The popularity of these techniques further supports
the idea of using a watchdog coprocessor for concurrent error
detection.

The paper is organized as follows: 1) Section 11 describes
the experimental results about the error coverage of different
system-level error detection techniques, 2) two kinds of
control flow checking techniques are discussed in Section 111,
which also deals with detecting errors in hardwired and
microprogrammed control units, 3) Section IV describes
memory access checking, and 4) Section V discusses the use of
a watchdog processor for performing reasonableness checks
on the output of a main processor by executing assertions.

other mechanisms. The first area indicates the percentage of
time that the particular mechanism was the first to expose the
fault, the second area indicates the percentage it was second,
and so forth. The average latency from fault to detection is
listed on the top of each bar. Fig. 3 shows the performance of
each mechanism depending on where the fault was injected. It
is clear from Figs. 2 and 3 that invalid program flow (IPF) was
the best in detecting faults, both in terms of coverage (63

percent) and latency (8 ps). Moreover, most of the mecha-
nisms did a good job of detection if the fault was on the address
lines, but performed poorly if the injected fault was on the data
line.

Similar results were obtained in an independent experimen-
tal study [33]. In this particular case, a software model of the
processor (Texas Instrument SBR 9900) was used. This
provided the opportunity to insert faults inside the processor
and not just on the external pins. 11. EXPERIMENTAL EVALUATION OF DIFFERENT ERROR

DETECTION MECHANISMS

A major decision in the design of a watchdog processor is
the choice of a system characteristic to monitor. The chosen
characteristic must satisfy the following requirements: 1) it
should not make the watchdog complex, 2) it should provide
good error coverage, 3) it should not require major changes to
be made in the design of the checked processor, and 4) it
should not result in high overhead to the monitored system.
Many different mechanisms that can be used to detect errors at
the system level were studied experimentally in [33] and [52].

In [52] the seven mechanisms shown in Table I were studied
by means of simulation. Faults (temporary and permanent)
were injected on the external piils of the 2-80 microprocessor
and the subsequent system response was recorded. For each
mechanism, the relevant features of the response were
extracted and compared to the response of the system with do

faults. Any difference in the faulty and fault-free run was
viewed as a successful detection of the fault by that particular
mechanism. A total of 539 faults were injected. Of these 73

percent were detected by at least one of the mechanisms within
250 ps (250 ps being the maximum time for which the state of
the system was observed). Fig. 2 describes the performance of

III. CONTROL FLOW CHECKING

It is obvious from the results presented in Section I1 that
control flow and memory access checking can be used very
effectively for detecting errors at the system level. Control
flow checking is discussed in this section and memory access
checking is described in Section IV.

Any program can be represented graphically, with nodes
representing some program unit and arcs representing the flow '
of control. A node can be a single statement, a block of
statements with no jumps allowed from or into the block
(branch-free interval), a loop-free interval, or a single
procedure. All schemes of control flow checking are based on
associating a signature or token with a node (called node
signature). The watchdog is provided with the signatures and
the relationship among signatures. This becomes the watch-
dog program. During execution of a program, the watchdog
monitors the control flow of the program, computes the node
signature concurrently (or accepts the signature explicitly
transmitted by the main processor), and compares it to the
signature provided earlier. Any discrepancy in the two
signatures is taken as an indication of error. Many schemes for

IEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31, NO. 2, FEBRUARY 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

8 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80-

2 -
e

% - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 60-
I-

3
-I 40-
U.

m W

IOP

DATA LINES

E ADDRESS LINES ~~~

CONTROL LINES
ALL LINES

C IWA NEM

UPSET EXPOSURE MECHANISM

Fig. 3. Error coverage depending on fault type 1521.

checking control flow have been proposed [141, [27], [361,
[44], [59], [67]. These schemes differ in their definition of a
node and the node signature and in their derivation and
representation of the watchdog program. In some schemes, the
node is a high-level language construct [36] and in others it is a
branch-free interval consisting of Assembly language instruc-
tions [MI. The signatures associated with the nodes can be
either assigned arbitrarily (for example, using prime numbers)
or they can be derived from the instructions in the node.
Checking techniques in which the signatures are associated
arbitrarily with the nodes will be called assigned-signature
control flow checking and the techniques in which the
signatures are derived from the nodes will be called derived-
signature control flow checking. In both cases, the watchdog
program is homomorphic to the control flow structure of the
main program. However, the method of computing the node
signature has an important bearing on the error detection
capability of different schemes.

On the basis of their error detection capability, the schemes
for checking control flow can be divided into three classes: 1)
the schemes that check that the nodes are executed in an
allowed sequence, 2) the schemes that verify the sequencing of
the contents of a node, and 3) the schemes that do both. The
schemes that use assigned-signature checking fall into the first
category and the schemes that use derived-signature checking
fall into the last two categories. As an example, consider the
program and its graph shown in Fig. 4(a). Fig. 4(b) shows the
watchdog program that only checks that the nodes are
executed in an allowed sequence. (The allowed sequences are
[Vl V2 Y4] and [Vl V3 V41.) The node signatures are
assigned arbitrarily in this case and explicitly transmitted to
the watchdog. Most errors in the execution of the node itself,
for example, change of an add instruction into a subtract
instruction, are not detected. One advantage of such a scheme
is that the watchdog program can be generated directly from a
program written in a high-level language. Another advantage
is that the two processors can operate asynchronously without
making the watchdog complex. [36] is an example of such a
technique.

Fig. 4(c) shows the watchdog program that only checks the
sequencing of the contents of a node (with the node signature

computed from the contents of the node). The watchdog has to
be informed which node is being executed by the main
processor. An example of such a scheme is [14]. Fig. 4(d)
shows an example of a watchdog program whose execution by
the watchdog results not only in checking the node transitions
but it also detects errors in sequencing of the contents of the
node itself. Signatures in both these cases [Fig. 4(c) and (d)]
are not transmitted explicitly by the main processor but are
computed concurrently by the watchdog. [15], [44], and [59]
are examples of the technique shown in Fig. 4(d).

It should be pointed out that these schemes for control flow
checking only verify that the nodes are executed in an allowed
sequence and not necessarily the correct sequence (a sequence
may be allowed but incorrect). Table I1 illustrates the main
properties of different control flow checking schemes. These
schemes are discussed later in Sections 111-A, 111-B, and 111-C.

A. Assigned-Signature Control Flow Checking

Examples of such techniques are [27], [36], and [67]. In
[36] a technique called structural integrity checking (SIC),
which is based on recognizing high-level control flow struc-
tures in computer programs, labeling these structures with
signatures or labels, and checking the integrity of these
structures at run time using a watchdog processor, is pre-
sented. The concept of SIC is based on the theory of formal
languages and automata. It uses syntax-driven methods for
encoding program structures and automatically generating two
programs, one for the main processor and the other for the
watchdog processor, from the original program. The schemes
described in [27] and [67] also assign labels to program
constructs. However, the method used for arriving at the
labels in SIC results in much simpler implementation as
compared to these two techniques.

A typical software configuration is shown in Fig. 5, using
the language Pascal as an example. The SIC preprocessor
reads in the Pascal source program and analyzes the program
for four constructs: concatenation, selection, repetition, and
abstraction (procedures). Table 111 shows examples of some of
these constructs. Labels (signatures) are attached to these
constructs and a program known as a Labeled Structured
Program is generated for the main processor. The second
output of the preprocessor is the Structural Reference Program
for the watchdog. The structure of this program mimics the
structure of the source program. In place of computations in
the source program, the structural reference program contains
statements to receive and check labels from the main proces-
sor. As the structural reference program does not contain code
to execute the actions of the program being checked, the
computational requirements for the watchdog are less than
those for the main processor. As the main processor executes
the labeled structured program, it transmits each label it
encounters. The watchdog receives these labels and compares
them to the labels generated within the watchdog by the
structural reference program. In case of a mismatch, an error
is signaled to the system component that manages error
detection and recovery. The operations of SIC can be
abstractly modeled as the activities of two automata. One
automaton is the execution of the labeled structured program

MAHMOOD AND McCLUSKEY: ERROR DETECTION USING WATCHDOG PROCESSORS 163 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SCHEME

SIC

BASIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP S I

GEN P S I

BAH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8085 CHECKEI

CERBERUSIO

RYP

SIC
PSA
BAH
RMP
ASYNC
SYNC
n
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

EXECUTE NODE(V1);

(* COND SET DURING V1*)

IP COND = TRUE THEN

EXECUTE NODE(V2)

ELSE

EXECUTE NODE(V3);

EXECUTE NODE(V4);

ACCEPT SIG(VI), CASE NODE OF ACCEPT SIG(V1). CHECK SIG(V1).

EITHER VI CHECK SIG(VI), EITHER

ACCEPT SIG(V2) V2 CHECK SIG(V2). ACCEPT SIG(V2). CHECK SIG(V2)

OR V3 CHECK SIG(V3). OR

ACCEPT SIG(V3). V4 CHECK SIG(V4). ACCEPT SIG(V3). CHECK SIG(V3).

ACCEPT SIG(V4). END, ACCEPT SIG(V4). CHECK SIG(V4).

(b) (c) (a
Fig. 4. Different schemes for control flow checking. (a) Main program.

Watchdog programs for (b) checking node transitions, (c) checking the
node, and (d) checking both.

PROPERTIES 01

SIBNATURE

LANG CONSTRUCT.

BRANCH.FREE I DERIVED
INTERVAL

BRANCH-FREE DERIVED
INTERVAL I

I

DER I V E D I MACRO-
INSTRUCTION

BRANCH-FREE I DERIVED
INTERVAL

TABLE I1
DIFFERENT CONTROL FLOW CHECKING SCHEMES

VARIABLE ASYNC

ONE NODE

NODES

SEOUENCEOF I YES I YES I SYNC
NODES

ONENODE I YES ~~ 1 NO I SYNC

SEOUENCEOF I YES I YES I SYNC
NODES

SEOUENCEOF I YES I YES I ASYNC
NODES

OVERHEAD OVERHEAD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI
H I H

4-
L I H

-+-
STRUCTURAL INTEGRITY CHECKING
PATH SIGNATURE ANALYSIS
BRANCH ADDRESS HASHING
ROVING MONITORING PROCESSOR
ASYNCHRONOUS
SYNCHRONOUS
HIGH
LOW .

PASCAL

COMPILER for LABELED

PROGRAM MAIN PROCESSOR
STRUCTURED

SIC PASCAL

PREPROCESSOR SOURCE

I

PASCAL

COMPILER for

WATCHDOG

STRUCTURAL
REFERENCE

Fig. 5. Typical software configuration (SIC).

164 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SOURCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

lEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

MAIN WATCHDOG

begin

send (x);
a;

send (Y);
b;

begin

a;

b;

end;

begin

i f token zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< > x then error;

< check a >
if token < > y then error;

<check b >

if a then

b

else

C:

SELECTION

i f a then

begin

send zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(- x) ;
b

end

begin

C.

end,

else

send (-Y).

if token = - x then

<check b >

else

<check c s

Token : Same a s Label or Signature.

< Check Declaration >: Apply SIC recursively to abstractions In

declarations.

in the main processor and the second automaton is the
execution of the structural reference program in the watchdog
processor. The strings of labels produced by the execution of a
labeled structured program can be described by a context-free
grammar. The structural reference program is so constructed
that the watchdog acting as a push-down automaton accepts
exactly those strings described by the context-free grammar
and rejects any other strings. As an example consider a part of

a program shown in Table IV(a). From this program two
programs shown in Table IV(b) and (c) are generated. The
first one is executed by the main processor and the second one
is executed by the watchdog processor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Derived-Signature Control Flow Checking

An example of derived-signature control flow checking is
path signature analysis (PSA) [U] (only programs that do not
modify themselves are considered). First, the basic scheme
(called Basic PSA) will be discussed and then the modified
scheme (called Generalized PSA) will be described.

In the Basic PSA Scheme, a deterministic signature is
derived for each node of the graph (where each node is a
branch-free interval) ; the signature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnode represents some
characteristic of that node. For example, the result of mod-2
addition, a checksum, or linear feedback shift register (LFSR)

signature of the instruction words in a node can be defined as
the signature of that node. The signature is inserted at the
beginning of each node. Two tag bits are used to differentiate
signatures from the rest of instructions in the node. The
watchdog monitors the data bus and captures the signatures as
they appear, using tag bits to differentiate them from the rest

TABLE I V

STRUCTURAL INTEGRITY C H E C K I N G . (a) S O U R C E P R O G R A M . (b) M A I N

PROCESSOR PROGRAM. (c) W A T C H D O G PROGRAM.

read(input, number) ;
repeat

if number < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 then begin
negsum := negsum + number;
number := number - 1 ;

end ;
sum := sum + number;
read(input, number);

u n t i l (number I 0) or (e o l n (i n p u t)) ;

send(50) ;
read(input, number) ;
send(187);
begin

repeat
send(-82);
(* -82 means loop executed *)
if nmber < 0 then begin

send (-12);
negsum := negsum + number;
send(28);
nmber := number -1;

end else send(-13):
send(155);
sum :S sum + number;
send(48) ;
read(input, number) ;

u n t i l (number = 0) o r (e o l n (i n p u t)) ;
send (-83); (a terminate loop *)

end :

(b)
~~

if token <> 50 then error;

if token <> 187 then error;
begin (. check repeat loop *)

i f token <> -82 then error;
repeat
(* loop terminated when

token not equal to -82 *)
i f token = -12 then begin
(* -12 means ' i f ' executed a)

if taken <> 28 then error:

end :
i f token <> 155 then error;

i f token <> 48 then error;

u n t i l token <> -82;

end :

(C)

of instructions. The main processor executes a NOP instruc-
tion whenever a signature is fetched. For the rest of the
instructions in the node, the watchdog computes the signature
concurrently. At the end of the node, the watchdog compares
the computed signature to the actual signature. Fig. 6 shows a
typical structure of a node. Fig. 7(a) shows a sample program
for the 68000 microprocessor with its corresponding graph.
Fig. 7(b) shows the same program with signatures added. The
signatures were computed using the Exclusive-oR operation.
The scheme described in [59] is very similar to the above
mentioned technique. The main difference is that in [59] the
signatures are added to the nodes such that the signature
computed on-line at the end of node is all-one. This simplifies
the checking circuitry because instead of a comparator, a
simple gate is enough to generate an error signal.

1) Improvements: The insertion of explicit signatures in the
instruction stream increases the memory overhead and reduces
the performance. The schemes to be described next compute
signature in such a way that each signature checks a greater
number of instructions (compared to the Basic PSA), thereby
reducing the total number of explicit signatures that need to be
stored.

The first such scheme Generalized PSA, is described in
[U]. In this scheme, the signatures are computed for
sequences of nodes, that is, paths rather than single nodes. The
program graph is broken into path sets and one signature is
derived for each path set. Each path set contains one or more
paths, with each path in the path set starting from the same
node. As there is only one signature for each path set, each
path in the path set must result in the same signature. In order
to make this possible, sometimes pseudosignatures, called

MAHMOOD AND McCLUSKEY: ERROR DETECTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUSING WATCHDOG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRO(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 I SIGNATURE I

00lOoo 207C00006002 Ll: M0VEA.L IIDATA1,AO
001006 4201 CLR.B D I
00 1008 10M6000 M0VE.B DATA2,DO

E% F" BH1.S L2
CMP.B U9,W

001012 V2 4880 EXT.W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW
001OI4 12300000 M0VE.B 0 (AO,DO),DI

Fig. 6.

v3

Structure of a typical nodi D (PSA).

I I -
001018 v3 llCl6OOl L2: M0VE.B DL.DATA3
OOlOlC 4E75 RTS

(a)

00lOoo 01 IC46 Ll: (NOP)
001002 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 207CoooO6002 M0VEA.L IIDATAI,AO
oom8 00 orni CLR.B D I
OOlOOA 00 10386OOO M0VE.B DATA2,DO
00100E 00 KMwxH)9 CMP.6 119,DO
001012 I I 6208 BH1.S L2

001014 01 5ABO (NOP)
001016 00 4880 EXT.W DO
001018 00 1230 M0VE.B 0 (AO,DO),OI
OOlOlA I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoooO

00lOlC 01 3FB5 L2: (NOP)
OOlOlE 00 llC16001 M0VE.B DI.DATA3
001022 11 4E75 RTS

(b)

Fig. 7. Basic path signature analysis. (a) A program for the 68000
processor. (b) The same program with signatures added.

r

Fig. 8. A program graph to illustrate Generalized PSA.

justifying signatures, are added to the paths in the path set
(assuming that the inverse of the signature exists), so that no
matter what path is executed in the path set, the same signature
results.

As an example, consider the program graph shown in Fig.
8. It has one path set that consists of four different paths. In

ZESSORS 165

order to make all these paths equisignature, the signatures of
the nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu3 and u6 are justified by assigning two justifying
signatures to these nodes. (It is assumed that the Exclusive-OR
operation is being used for computing signatures.)

h'(u3) = h(u3) o h(u2) (justifying signature at node u3)

h'(u6)=h(u6) e h(u5) (justifying signature at node u6).

After this modification, the signatures of the paths would be

P1: H 1 =h(u1) o h(u2) e h(u4) 0 h(u5) e h(u7)

P2: H2=h(u l) 8 h(u3) h'(u3)

h (~ 4) o h(u5) o h(u7)=H1

P3: H3=h(ul) e h(u2) Q h (~ 4)

8 h(u6) h'(u6) h(u7)=H1

P4: H4=h(u l) Q h(u3) h'(u3)

Q h(u4) Q h(u6) h'(u6) Q h(u7)=H1

where h(ui) is the signature of a single node.
The common signature of these paths (Hl) is stored at the

node U 1. The total number of signatures for this example is
three which is less than that in the Basic Scheme (seven). Fig.
9 shows the same program as in Fig. 7(a) with signatures
added based on the Generalized method. The total number of
signatures in this case is two, which is less than that in the
basic method.

The second scheme, Branch Address Hashing (BAH)
described in [55] improves the Basic PSA by combining some
of the signatures with branch target addresses, thereby
reducing the overhead for storing signatures by 50 percent.
There are some notable differences between this scheme and
the Basic PSA. The program graph is partitioned differently
and the signatures are inserted at the end of nodes rather than
at the beginning of nodes. Instead of embedding one signature
immediately preceding every branch instruction, the branch
address of the branch instruction is modified at assembly time
such that during execution, the changed branch address
combined with the concurrently computed signature gives the
correct branch address. An explicit signature still needs to be
embedded preceding every branch-in point (labeled instruc-
tion). In the case of an error, the concurrently computed
signature and, hence, the computed branch address will be'
incorrect, resulting in the execution of a branch to an
erroneous destination. The error will be detected when the
next embedded signature is encountered. This is shown in Fig.
10. For the programs written in the Assembly language of the
MC 68000 microprocessor, the signatures are embedded by
using a pseudo-branch instruction (psbr). A psbr instruction is
an unconditional branch to the location PC -t 2. A 16-bit
embedded signature as shown in Fig. 11, is stored immedi-
ately following the psbr instruction. The psbr instruction
signals the monitoring hardware of the embedded signature.
Use is made of the one-word prefetch of the MC 68000
microprocessor during the decode of psbr instruction. As the
psbr instruction is being decoded, the embedded signature is

166 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

001000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 23F3 LI: (NOP) ;Path signature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
001002 00 107C00006002 M0VEA.L IIDATA1,AO

001008 00 4201 CLR.B DI
OOIOOA 00 10386000 M0VE.B DATA2,DO
OOIOOE 00 OC000009 CMP.B I19,DO
001012 00 6208 BH1.S L2

001014 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 5ABO (NOP) :JustlfvinK
signature-

001016 00 4880 EXT.W DO
001018 00 1230 M0VE.B 0 (AO,DO),DI
OOIOIA 00 0000

OOlOlC 00 llC16001 L2: M0VE.B Dl,DATA3
001020 I 1 4E76 RTS ;Terminal node

F ig . 9. The same program as in F ig . 7(a) with signatures added using the

generalized method.

CONCURRENTLY COMPUTED
SIGNATURE

0000
3D08
F7A5

a: 8863

BOC5

51 B5
b: 0000

7D22 .L10000:

SOURCE CODE

jsbr input

movl d0,tie

cmpl % I . dO

in .L10000

cmpl #384,d0

jle .Le1
psbr .L10000
movl #13. sp@.

a: Concurrently computed signature is combined with the

address given in the source code to compute the actual

address.

b: Pseudo-Branch for inserting an explicit signature.

F ig . 10. Branch address hashing [SI.

EMBEDDED SIGNATURE

I <NEXT INS’IRUC?1ON z I
Fig . 1 1 . A n embedded signature (BAH).

prefetched, detected, and compared to the running (concur-
rently computed) signature. In actual implementation, the
inverse of the signature is stored so that the running signature
is all-zeros, thereby making the comparison easier.

In order to understand how branch address hashing works,
consider Fig. 10. Starting from the first instruction, the
signature is computed concurrently as each instruction is
fetched. At point marked zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“a” in the figure, in the Basic PSA,
concurrently computed signature would have been compared
to the signature inserted explicitly in the beginning of the
node. However, in this case, comparison is only made when a
pseudobranch instruction is encountered, which is before a
branch-in point (labeled instruction). In case the jump is not
taken at point “a,” the signature is continued to be computed
as instructions are fetched. If the jump is taken, then the jump
address is computed by combining the signature computed up
to that point with the address given in the jump instruction.
This scheme has been actually implemented and experiments
are being conducted to determine the error coverage.

2) Independent Watchdog Processors: All the techniques

for derived-signature control flow checking presented so far
require that the signatures be inserted in the instruction stream.
This increases the execution time of a program. However, by
storing signatures in the local memory of a watchdog, this
overhead can be removed. Two such schemes will be
discussed. The first is a synchronous scheme for checking
uniprocessor systems [46] and the second is an asynchronous
scheme for monitoring multiprocessor systems [151, [65].

The watchdog processor which uses the first scheme is
called Cerberus-16. The information about the program graph
and path signatures is moved into (the environment of) the
watchdog processor. The program executed by the watchdog
has the same control flow structure as the program being
executed in the main processor; that is, the graphs of both
programs are identical. A node in the graph (G) of the
program (P) being executed on the main processor represents
a branch-free interval, whereas the node in the program zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P’)
being executed in the watchdog consists of a single instruction
that contains some information (such as signature or the size of
node) about the corresponding node in graph G.

The architecture and organization of Cerberus-16 differs
from most existing processors in two respects: 1) most
instructions of this processor are control transfer instructions
and 2) there is no ALU in this processor. The instructions for
Cerberus-16 can be divided into two categories. The instruc-
tions in the first category are used for representing control
flow in the program graphs. The general format of such
instructions is

where Z , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL , and D represent the node size, the next node
address (label), and the node signature, respectively. L and D
fields are optional. The instructions in the second category are
used for initialization and communication with the main
processor. They have the following format.

OP or OP D.

Any program graph can be represented by a set of watchdog
instructions. Depending on the type of a node, a suitable
instruction is used to represent that node. As that node is
executed by the main processor, the instruction corresponding
to that node is executed by the watchdog. After zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz instructions
have been executed by the main processor, the watchdog then
expects a signal from the branch detecting circuitry to indicate
whether a branch was taken by the main processor or not. If it
detects a branch, then the watchdog also executes a branch
using the L field to calculate the target address of the next
instruction. The next watchdog instruction corresponds to the
node which should be executed by the main processor after the
branch. In case no branch is detected, the watchdog executes
the next instruction in sequence. As each instruction is
executed by the watchdog, the value in the D field (signature)
is fed to the data compression unit whose output is saved in a
register. As an example of how this architecture can be used
for control flow checking, consider a program, with graph as
shown in Fig. 12(a), being executed on the main processor.
The corresponding program executed by the watchdog is

MAHMOOD AND McCLUSKEY: ERROR DETECTION USING WATCHDOG PROCESSORS 167

$1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv5

LO: l ds ig 0

L1: b rc z l , L3 ,d l

Lz: b r a zZ.L4,dZ

L3: cont z3.d3

L 4 brc z4,L6,d4

L5: b rc z5,L5,d5

L6: brc.v z6,L l ,d6

L7: r s t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(b)

SIGNATURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAID BUS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .

Fig. 12. Control flow checking with Cerberus-16. (a) The graph of the

program executed by the main processor. (b) The corresponding program
executed by Cerberus-16.

shown in Fig. 12(b). There are exactly six instructions
corresponding to the six nodes of the main program. The Zi
and di (i = 1 6) parameters in each instruction represent
the size and the signature of the corresponding node in the
main program, respectively. The instruction LDSIG initializes
the signature register (S) to zero. At any given time, the
register S contains the accumulated signature of the executed
path. For example, if the main processor executes the node
sequence (ul, u2, u4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 5 , u5, u5 , u6) and the compression
function selected is XOR, then the watchdog executes the
instructions at addresses (Ll , L2, L4, L5, L5, L5, L6) and
the accumulated signature after the execution of this path
would be

h = d l @ d 2 d 4 d 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 d 5 @ d 5 @ d6.

The instruction corresponding to the node v6 is BRC.V
(branch conditional and verify) instruction. This instruction
signals the end of the path. The signature computed by the
watchdog at this point is compared to the actual signature of
the path.

The same watchdog can be used for collecting statistical
data about a system by changing the data [D] field of the
watchdog instruction. An example of such data is the
frequency of different instructions. It is interesting to note that
the earliest design of a processor for monitoring another
processor was for the purpose of collecting performance data
[161. However, the watchdog is much simpler compared to the
earlier design.

The above mentioned design of Cerberus-16 requires the
watchdog to be tightly synchronized with the main processor.
An asynchronous version of the above scheme is discussed in
[151. It is based on storing the control flow information of the
program being executed on the monitored processor as the
signature graph in the local memory of the monitoring
processor. The graph is stored in the form of a linked list data
structure. As each node is executed in the main processor, its
signature is transmitted to the monitoring processor through a
signature queue. The monitoring processor uses the signature
graph to check that the next signature it receives belongs to a
set of nodes which can be reached from the current node. This
scheme can also be used for monitoring more than one
processor if a different signature queue is used for each
processor and signature graphs of all the programs being

I RMP I -
Fig. 13. Roving monitoring system [65].

executed on different processors are stored in the local
memory of the monitoring processor.

[65] discusses the actual implementation of the processor
(called Roving Monitoring Processor or RMP) described in
[15]. Fig. 13 shows the general configuration of Roving
Monitoring System. There is one hardware signature genera-
tor (HSG) for each application processor (AP). Each HSG
generates a stream of signatures for its corresponding AP and
stores it in the signature queue (SQ). The RMP samples the
SQ’s according to some policy and checks that the signature
stream generated by the AP corresponds with its signature
graph, already stored in the local memory of RMP. Only eight
instruction types, shown in Table V, are sufficient to represent
the program graph. Signature words containing signature and
processor ID arrive at the RMP from SQ via the common
signature bus. The processor ID field is used by the RMP to
access the appropriate program counter from the program
counter register file. The prototype for RMP has been
designed and implemented. It uses 90 MSI/SSI packages
(excluding memory) and can monitor 16 processors. A series
of fault insertion experiments, designed to determine the error
coverage and error latency are being conducted.

3) Overhead: The memory overhead for storing signatures
can be as high as 20 percent if the Basic PSA scheme described
in Section 111-B is used. However, if the improvements
discussed in Section III-B-1 (Generalized PSA and branch.
address hashing) are used, then the overhead can be reduced to
10 percent. The hardware required to implement the watchdog
itself can be as little as 20 percent of the complexity of the MC
68000 microprocessor [40].

4) Error Coverage: Derived-signature control flow check-
ing techniques discussed in Section HI-B can detect both
memory and control flow errors. Examples of control flow
errors are incorrect sequence of instructions, branch to wrong
address, branch from a wrong address, etc. These control flow
errors can be the result of failures in the instruction register,
the program counter, the address register, decoding circuitry,
memory addressing circuitry, etc. It was shown in [40] that
control flow errors can be modeled as memory errors for the

168 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31, NO. 2, FEBRUARY 1988

TABLE V
INSTRUCTIONS FOR RMP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[65] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CMPS S,SRP Compare signature with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, branch
relative zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto SRP if match

CMPSE SSRP Compare signature with S, branch
relative to SRP if match. Error if no match.

CMPIE S Compare signature with S, go to
the next instluction if match. Error if no match

HASH Short relative branch, based on
lower signature bits.

PUSH LPTR Push current address to stack, jump
long to location LPTR

POP Pop current address from stack

POPSE Compare signature and pop the next
address from stack. Error if no match.

LJMP LPTR Unconditional jump to location LPTR - ‘w’ Bits -
1 Word 4

t
1 Column

Fig. 14. A single node

T
’n’ Words

purpose of calculating error coverage. The problem is thus
transformed to that of calculating coverage for errors in a
block of data. The error coverage when parallel linear
feedback shift register (PLFSR or MISR) is used to compute
the signature is discussed in [40]. The results described in [40]
are based on the properties of linear feedback shift registers
[8], [20], [21] and on the observation that the number of
instructions in a node is small 1241, [56]. Suppose that the
node has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“n” words, each “w” bits wide (that is, each
memory word is “w” bits wide), as shown in Fig. 14. Using a
PLFSR to compute the signature of the node, it was shown in
[40] that all single word errors are detected and most single
column errors are detected. If n = 10 and w = 16, then the
percentage of errors not detected due to aliasing (when the
signature is same even in the presence of error), assuming all
errors are independent and equally likely, is 0.0015 percent.
Although the above results are for Basic PSA, they apply
equally well to the other schemes (Generalized PSA, BAH).

These results are true not only for memory errors but also for
control flow errors. This is because control flow errors can be
modeled as memory errors as described earlier.

In order to study the error coverage in more detail suppose
that “w,” the width of a node, is 32 bits. Further assume that

the memory consists of 32 chips each with 1 bit/chip. If at
most one memory module fails at one time, then at most one
column (of the node) can be in error. If the size of a node, “n”
(number of memory words in a node), is less than the width of
the node, then all the errors will be detected [40]. If the size is
greater than “w,” then the ratio of undetected errors to the
total possible errors is (2,-, - 1)/(2” - 1). For large “n,”
this can be approximated by 2- ,. Since at most one column
can be in error, fault masking cannot occur. As an example,
assume that the distribution of node sizes is as shown in Table
VI. This distribution is based on the number of instructions
executed between successful branches and is described in [24].
For each node size, the percentage of errors detected is shown
in column “e” in Table VI. It can be seen that more than 99.9
percent of the errors are detected. If there is more than 1 bit/
chip, then single chip failure can result in multiple column
error. However, even then the error coverage is greater than
90 percent as shown in [40].

Most of the memory errors will appear as column errors.
Stuck faults on the data lines can also be modeled as column
errors. Control flow errors can be represented as word errors.
Such errors can be divided into two classes: one in which a
node is mapped into an erroneous node of the same size and
the other in which the size of erroneous node is different. If the
checlung scheme used by Cerberus-16 (Section 111-B-2) is
used, then any change in the node size is immediately
detected. This is because the node size of each node is stored
with the signature of that node. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASo only the errors which
change a node into a different node of the same size can go
undetected. For detection purposes, such errors can be
modeled as some or all bits in a data block have been changed.
As described earlier, for a node size of 10 words each 16 bits
wide, the percentage of errors not detected due to aliasing is
only 0.0015 percent. As an example of an error that changes
the node size, consider a node of size “n.” Suppose that as a
result of a control flow error, words 0 to b - 1 of the node are
not executed and the execution starts from the bth word. Then
the signature computed after executing the words b to n - 1 in
the node will be the same as if all the words in the node (0 to n
- 1) were executed with the words 0 to b - 1 replaced by all
zero words. This means that jumping in the middle of node and
starting the execution from the bth word is equivalent to the
first b words being in error. This is shown in Fig. 15. If only
the first word is missed, then this error (equivalent to a single
word error) is guaranteed to be detected (assuming that the
missed word was not all zero itself) [40]. Many other errors,
like illegal opcode, illegal memory readlwrite, addition of a
branch to a node, omission of a branch from a node, etc., can
also be modeled as word errors. Hence, the results derived for
memory errors also hold in the case of control flow errors.

The results described above are based on the assumption
that all errors are equally likely. Although this assumption has
been challenged for off-line (explicit) testing, there is as yet no
reason to doubt its validity for concurrent testing. However,
the best way to confirm the above results is by means of
experimental studies. Such studies are being conducted at
Carnegie-Mellon University [53] in which the schemes de-
scribed in [55] and [65] are being evaluated experimentally.

MAHMOOD AND McCLUSKEY: ERROR DETECTION USING WATCHDOG PROCESSORS 169

TABLE VI
ERROR COVERAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR 32-BIT WIDE MEMORY WITH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 BITKIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Node S i z e

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

2-3

4- 7

8-15

16-3 1

>3 1

OVERALL

Detec ted

.OB64 I 100
I

.2381 1 :!i ~~~

.3522

.I499

.1539 99.9

:OVERAGE T f *e

f * e

1.921x

8.64511

23.8 1 X

35.22X

14.991

15.3 BX

99.93

n = node size

f= f requency

e = X e r r o r de tec ted

Erroneous Nodes Cor rec t Node

t t
Same S ignature

EFFECT: FIRST b-WORDS I N ERROR

Fig. 15. An example of a control flow error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Checking the Control Section of a Processor

Some of the techniques used for control flow checking can
also be used for checking the control section of a processor. A
design for checking the sequence of control signals corres-
ponding to each opcode, for hardwired control units, is
discussed in [141. It is based on assigning a unique signature to
each opcode (some opcodes like branches require more than
one signature). The signature is computed by compacting the
sequence of control signals using a PLFSR. These signatures
are stored in a ROM. When a particular opcode is executed by
the processor, a signature is computed concurrently by using a
PLFSR. The same opcode is used to fetch the stored signature
from the ROM. A checker for the 8085 microprocessor was
implemented using SSI/MSI chips. Seven control signals
(visible at the pins) were monitored: ALE, SO, S1, IO/M, RD,
WR, and INTA. The implementation required approximately
535 gates which is about 11 percent of the complexity of 8085.

The techniques used for checking the control flow of
programs written in Assembly language, and discussed in
Section UI-B, can also be used for checking microprogrammed
control units. However, this can result in high memory
overhead and performance degradation. This is because the
node size can be very srnqll, especially if horizontal microin-
structions are used. Ta overcome this difficulty, the schemes
have been modified fqr checking microprogrammed control
units. All +e modifications are aimed at extending the
microinstructions and inserting the signatures in parallel to
microinstructions, thereby improving the performance. More
details can be found in [40], [45], [59], and [26]. The schemes
described in [40], [45], and [59] use deeved signature
checking, whereas [26] is based on assigned signature check-
ing.

I) Comparison to the ESS-3A Processor: The ESS-3A
(Electronic Switching Systems) is a microprogrammed proces-
sor [l l] , [61] and is designed to control the No. 3 ESS [25], a
small electronic switching system, which can handle from 500
to 5000 telephone lines. ESS3A was chosen for comparison
for two reasons. First it has a very high availability require-
ment (down time of a few minutes per year), and second, it
does not use duplication at the system level for error detection.
Instead, it relies on the error detection circuitry built into the
processor to detect faults. The techniques used in the control
section for fault detection are as follows: 1) each of the two 8-
bit fields of a microinstruction is encoded in the 4-out-8 code,
2) two parity bits are used to check the sequencing of
microinstructions, and 3) the instruction decoder is checked
with a self-checking checker. The overhead of checking
circuitry in the control section is about 30 percent. This does
not include the memory overhead due to the 4-out-8 encoding
and the two extra parity bits. The microprogram ROM
contains 1024 words (extendable to 4096), each 32 bits wide.
The memory overhead is about 14.28 percent. The redun-
dancy in the control section provides protection against the
following errors: 1) all unidirectional errors in the micropro-
gram ROM, 2) some sequencing and addressing errors, and 3)
decoding errors.

It was shown in [40], using the same results as described in
Section III-B-4, that the watchdog processor provides better
error coverage for comparable overhead cost. More than 90
percent of the memory errors are detected as was shown
previously. All single word errors in the node are detected and
very high error coverage is obtained for column errors
(because of the small node size). This technique also provides
much better protection against sequencing and addressing
errors. If the signature is formed at the output of the decoder,
instead of at the output of the microprogram ROM, then the
decoding errors can also be detected.

The memory overhead can be as low as 7 percent (as
compared to 14 percent in ESS3A). The nonmemory over-
head for the watchdog is comparable to the hardware dedicated
to checking in ESS3A.

IV. MEMORY ACCESS CHECKING

The watchdog can also detect errors in the main processor
by monitoring the memory access behavior [43]. In fact, the
watchdog discussed in Section III-B-2 (Cerberus-16) can be
modified easily to check the memory access along with th&
control flow [46], thereby improving the error coverage. The
design of a watchdog for memory access checking as
described in [43] is based on the capability-based addressing
[17] scheme in which each accessing object has to provide a
capability (a protection key) for accessing another object.
Each capability uniquely specifies an object. In the scheme
described in [43], and shown in Fig. 16, explicit access to the
physical memory segments is checked by an external watch-
dog processor. Basically, the set of all active objects (code or
data) at any given time is represented by a directed graph
(object graph). The object graph is stored in the watchdog
processor in a table called segment access table (SAT). The
SAT has one row for each code object; the entries in each row

MAHMOOD AND McCLUSKEY: ERROR DETECTION USING WATCHDOG PROCESSORS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Special Purpose Watchdog

The time overhead for transferring data to the watchdog can
be reduced and the watchdog design simplified by designing
the watchdog to suit a particular application. There are many
applications in which the flow of data (the sequence in which
the data appear on the data bus) is known and invariant. For
such applications, the data need not be transferred explicitly to
the watchdog [37]. Instead, the code for assertions is stored in
the local memory of the watchdog and the instructions which
assign values to the variables needed by the watchdog are
tagged. The watchdog monitors the data bus and captures the
tagged data. It uses the data flow information to recognize the
data. Examples of problems that can be solved using this
technique are solution of system of equations using Gaussian
elimination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[191, discrete Fourier transform, eigenvalues, etc.

Special purpose watchdog processors can also be used for
some real-time systems. Telephone switching systems [11 and
digital flight control systems [7] are examples of two such
systems. The software used in these two systems has some
special characteristics which can be used to transfer data to the
watchdog with very little time overhead. The programs used in
these systems are cyclic in nature and they use a large number
of global variables. Executable assertions which use these
variables can be stored in the local memory of the watchdog
and the data transferred by simultaneously writing to both the
main memory and the local memory of the watchdog (making
use of global variables). Since the programs are cyclic in
nature, the watchdog processor uses the classic dual buffer
scheme to execute assertions. One buffer is used to capture the
data and the second is used to execute assertions on the data
captured during the previous cycle.

B. General Purpose Watchdog

The design of a general purpose watchdog to execute
assertions concurrently still remains an area of active research.
The major problem is in transferring the data from the main
processor to the watchdog without complicating the design.
There are two models of parallel execution: shared memory
(multiprocessor) and message passing (distributed comput-
ing). The use of shared memory can result in complex
software because of timing and synchronization problems. The
other option is to explicitly send data to the watchdog in the
form of messages as suggested in [51]. The hardware
organization (based on message passing) is as shown in Fig.
17. The main processor writes to the shared buffer and the
watchdog reads from it. Both the processors also have their
local memories besides the shared buffer. The software
structure is as follows.

1) The underlying hardware is transparent to the program-
mer who writes assertions as they would be written for the
program to be executed on a uniprocessor. The code inserted,
for checking purposes only, can be separated from the rest of
the program by using a special syntax. Table VU shows an
example of such a syntax. Another example is that of ANNA
(Annotated ADA) [29] which is an extension of language
ADA.

2) Once the code inserted for checking is identified, the
preprocessor replaces all the code for one assertion with a

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASHARED
BUFFER

Fig. 17. Hardware organization for assertion checking.

single write statement

write-buffer(assertion-number, space-needed, data)

where assertion-number is the assertion identifier, space-
needed is memory space needed by the data, and data are the
values of all the variables which are used in executing the
assertion. The code for the assertions is transferred to the
environment of the watchdog. All variables are renamed and
referenced with respect to the start of the data packet for that
particular assertion. The transformed programs for the main
processor and the watchdog are shown in Table VIII.

3) During execution, the main processor writes to the shared
buffer and the watchdog reads from the shared buffer.

The data must be transferred from the main processor to the
watchdog as fast as possible to reduce the time overhead to the
main processor. The transfer time includes time to write data
to the shared buffer, time spent in handshaking protocol, and
time spent waiting to get access to the buffer because of
memory conflicts. The time to write data can be reduced by
using small and fast buffers and handshaking time can be
reduced by implementing most of the functions in hardware.
The time wasted due to memory conflicts can be minimized by
using clever buffering techniques. The use of dual buffers,
queues, or dual-ported memories are examples of some of
these techniques.

The watchdog can be specially designed to execute asser-
tions very fast. One way to implement the watchdog would be
to use RISC-type architecture. The code for assertions is
stored in the local memory of the watchdog. The code is
organized as shown in Fig. 18. The table-driven execution of
assertions is needed because the sequence in which the
assertions will be executed is data dependent (assertions can be
in a multiple branching statement or in a loop). Each data pack
sent by the main processor has an assertion number in it. The
assertion number is used for table lookup to find the pointer to
the executable code for that particular assertion (as done in
microprogramming). All the data are referenced from the start
of packet. As most of the time the watchdog will be doing
comparisons, special hardware support is provided for this
purpose.

The same watchdog can also be used to check for control
flow errors explicitly, as described in [41]. This is done by
representing the sequence in which assertions can be executed
as a control flow graph, and then checking concurrently that in
fact the assertions are executed in the order as specified by the
control flow graph.

VI. SUMMARY AND CONCLUSIONS

A watchdog processor is a small and simple coprocessor
used to perform concurrent system-level error detection by
monitoring the behavior of a system. It detects errors in a main
processor by comparing the relevant information, collected

172 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31, NO. 2, FEBRUARY 1988

T A B L E VI11

THE TRANSFORMED PROGRAMS FOR ASSERTION CHECKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Maln Processor Program Watchdog Program

begin begin
read-nee (assertion-number);
case assertion-number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof

write-buffer (1, space-needed, data); 1: get (data); execute ASSERTION-1,
2: get (data): execute ASSERTION-2;

write-buffer (n, space-needed, data); n: get (data); execute ASSERTION-n;
end;

end; end;

Fig. 18.

concurrently, to
mation provided

ADDRESS of ASSERIION n

ASSERnON 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~~

Memory organization for assertion checking.

the information provided earlier. The infor-
to the watchdog to detect errors can be about

the memory access behavior, the control flow, the control
signals, or the reasonableness of the results.

Two experimental studies were described that show that
control flow and memory access checking can be used very
effectively to detect errors. In schemes in which the watchdog
monitors control flow, it detects errors by checking that the
main processor traverses the control flow graph correctly.
This is done by associating a signature (token or label) with
each node (where a node represents some program unit). The
same signatures are provided to the watchdog. During the
execution of a program, the watchdog monitors the control
flow, computes the node signatures concurrently (or accepts
them from the main processor), and compares them to the
signatures provided earlier. Two schemes were discussed;
assigned-signature control flow checking in which the signa-
tures are associated with the nodes arbitrarily and derived-
signature control flow checking in which the signatures are
derived from the nodes. It was shown that assigned-signature
control flow checking only verifies that the nodes are executed
in the allowed sequence, whereas derived-signature control
flow checking can be used either to check the sequencing of
the contents of the node or to do both, that is, verify the
sequencing of the contents of a node and also check transitions
among nodes. Structural integrity checking (SIC) is an
example of the former technique and Basic Path Signature
Analysis (PSA) is an example of the latter technique. The main
advantages of assigned-signature checking are 1) depth and
resolution of checking can be controlled by the programmer,
and 2) asynchronous checking is easier. The disadvantage is
that the signatures have to be explicitly transferred to the

watchdog, which is not the case with derived-signature
checking. Moreover, derived-signature checking provides
much higher coverage of memory errors. Many schemes that
reduce the time and memory overhead in Basic PSA, were
discussed. One such scheme is branch address hashing in
which some of the signatures can be combined with the branch
addresses. Further improvement can be obtained by moving
the signatures to the local memory of a watchdog. Both
synchronous (Cerberus-16) and asynchronous (RMP) versions
were discussed. It was shown that more than 90 percent of the
memory and control flow errors can be detected with such
schemes with hardware overhead (not including memory) of
10-20 percent and memory overhead of 10 percent. The
techniques used for checking control flow can also be used for
monitoring control units. Schemes for checking both
hardwired and microprogrammed control units were de-
scribed. The use of a watchdog processor for concurrent
control flow checking was compared to the techniques used in
the ESS-3A processor. It was shown that a watchdog provides
better error coverage, especially for control flow errors, at
comparable overhead cost.

A scheme for detecting errors by monitoring the memory
access behavior was also discussed. The scheme is based on
capability-based addressing. The watchdog which monitors
the control flow can be extended easily to check the memory
access, thereby providing higher error coverage.

Control flow and memory access checking do not detect
semantic or data manipulation errors. Such errors can be
detected by having a watchdog execute assertions concurrently
about the program being executed on the main processor. The
main problem is to be able to transfer data from the main
processor to the watchdog without excessive time overhead.
Design of special purpose watchdogs that make use of either
the data flow information or the cyclic nature of some
programs to transfer data were described. Also, a design of a
general purpose watchdog based on message passing was
discussed. It was shown how the same watchdog can be used
both for control flow and data checking.

From the details presented in this paper, it is reasonable to
conclude that watchdog processors provide a viable alternative
to the current concurrent error detection schemes. They
(watchdog processors) can be used independently or in
addition to the existing circuit-level error detection techniques.
Error detection by means of watchdogs does not rely on
traditional fault models nor does it use massive replication. A

great advantage of the watchdog processor is that it provides
an independent circuitry for error detection, at a reasonable
overhead cost. Moreover, the use of watchdog processors is
more in the spirit of distributed computing, where dedicated
processors are used to perform specialized tasks. There are
many ways of increasing the reliability of the watchdog itself.
The use of built-in self test is one way. The other is the
duplication of the watchdog.

ACKNOWLEDGMENT

The authors would like to thank all the members of Center
for Reliable Computing (especially H. Amer and L. T. Wang)
for many useful suggestions and comments.

MAHMOOD AND McCLUSKEY: ERROR DETECTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUSING WATCHDOG PROCESSORS 173

REFERENCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R. J. Andrews, J. J. Driscoll, J. A. Herndon, P. C. Richards, and L. R.
Roberts, “Service features and call processing,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABell Syst. Tech. J.,

D. M. Andrews, “Software fault tolerance through executable asser-
tions,’’ in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConf. Rec. 12th Asilomar Conf. Circuits, Syst., Com-
put., Pacific Grove, CA, Nov. 6-8, 1978, pp. 641-645. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-, “Using excutable assertions for testing and fault tolerance,” in
Dig. 9th Annu. Znt. Symp. Fault Tolerant Comput., FTCS-9,
Madison, WI, June 20-22, 1979, pp. 102-105.
D. M. Andrews and J. P. Benson, “An automated program testing
methodology and its implementation,” in Proc. 5th Znt. Conf.
Software Eng., San Diego, CA, Mar. 9-12, 1981, pp. 254-261.
A. Avizienis, “Fault tolerance by means of external monitoring of
computer systems,” in Proc. AFZPS Conf., vol. 50, Chicago, IL,
May 4-7, 1981, pp. 27-40.
A. Avizienis and J. P. J. Kelly, “Fault tolerance by design diversity:
Concepts and experiments,” Computer, vol. 17, pp. 67-80, Aug.
1984.
G. E. Bendixen, “The digital flight control and active control systems
on the L-1011,” in Proc., ZEEE/AZAA, 5th Digital Avion. Syst.
Conf., Seattle, WA, Oct. 31-Nov. 3, 1983, pp. 11.2.1-11.2.11.
N. Benowitz, “An advanced fault isolation system for digital logic,”
ZEEE Trans. Comput., vol. C-24, pp. 489-497, May 1975.
L. Chen and A. Avizienis, “N-Version programming: A fault-
tolerance approach to reliability of software operation,” in Dig. Papers
Eighth Annu. Znt. Conf. Fault-Tolerant Comput., FTCS-8, Tou-
louse, France, June 21-23, 1978, pp. 3-9.
J. R. Connet, E. J. Pasternak, and B. D. Wagner, “Software defenses
in real time control systems,” in Dig. Znt. Symp. Fault Tolerant
Comput.. FTCS-2, Newton, MA, June 19-21, 1972, pp. 94-99.
R. W. Cook, W. H. Sisson, T. F. Storey, and W. N. Toy, “Design of
self-checking microprogram control,” ZEEE Trans. Comput., vol. C-
22, pp. 255-262, Mar. 1973.
F. Cristian, “Exception handling and software fault tolerance,” ZEEE
Trans. Comput., vol. C-31, pp. 531-540, June 1982.
Y. Crouzet and J. Chavade, “A 6800 coprocessor for error detection in
microcomputers: The PAD,” Proc. ZEEE, vol. 74, pp. 723-731, May
1986.
S . F. Daniels, “A concurrent test technique for standard microproces-
sors,’’ in Dig. Papers Compcon Spring 83, San Francisco, CA, Feb.
28-Mar. 3, 1983, pp. 389-394.
J. B. Eifert and J. P. Shen, “Processor monitoring using asynchronous
signatured instruction streams,” in Dig., 14th Znt. Conf. Fault-
Tolerant Comput., FTCS-14, Kissimmee, FL, June 20-22, 1984, pp.

G. Estrin, “Snuper Computer-A computer in instrumentation automa-
tion,” in Proc. AFZPS Spring Joint Comput. Conf., vol. 30,
Atlantic City, NJ, April 18-20, 1967, pp. 645-656.
R. S . Fabry, “Capability-based addressing,” Commun. ACM, vol.
17, pp. 403-412, July 1974.
R. W. Floyd, “Assigning meaning to programs,” in Proc. Symp.
Appl. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1967, pp.

G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer
Methods for Mathematical Computations. Englewood Cliffs, NJ:
Prentice-Hall, 1977, ch. 3.
S. Z. Hassan, D. J. Lu, and E. J. McCluskey, “Parallel signature
analyzers-Detection capability and extensions,” in Dig. Papers
Compcon Spring 83, San Francisco, CA, Feb. 28-Mar. 3, 1983, pp.
440-445.
S. Z. Hassan and E. J. McCluskey, “Enhancing the effectiveness of
parallel signature analyzers,” in Dig., ZEEE ZCCAD-84, Santa Clara,

C. A. R. Hoare, “An axiomatic basis of computer programming,’’
Commun. ACM., vol. 12, pp. 576-580, Oct. 1969.
A. L. Hopkins, T. B. Smith, and J. H. Lala, “FTMP-A highly
reliable fault-tolerant multiprocessor for aircraft,” Proc. IEEE, vol.

J. C. Huck, “Comparative analysis of computer architectures,” Tech.
Rep. 83-243, Comput. Syst. Lab., Stanford University, Stanford, CA
94305, May 1983.
E. A. Irland and U. K. Stagg, “New developments in suburban and
rural ESS (No. 2 and No. 3 ESS),” Rec., Znt. Switching Symp.,
Munich, West Germany, Sept. 9-13, 1974, pp. 512/1-512/7.
V. S. Iyengar and L. L. Kinney, “Concurrent fault detection in

vol. 48, pp. 2713-2764, Oct. 1969.

394-399.

19-32.

CA, NOV. 12-15, 1984, pp. 102-101.

66, pp. 1221-1239, Oct. 1978.

microprogrammed control units,” ZEEE Trans. Comput., vol. C-34,
pp. 810-821, Sept. 1985.
J. R. Kane and S . S. Yau, “Concurrent software fault detection,”
ZEEE Trans. Software Eng., vol. SE-I, pp. 87-99, Mar. 1975.
K. H. Kim and C. V. Ramamoorthy, “Failure-tolerant parallel
programming and its supporting system architecture,” in AFZPS
Conf. Proc. (National Comput. Conf.), vol. 45, New York, NY,
June 7-10, 1976, pp. 413-423.
B. Krieg-Bruckner and D. C. Luckham, “ANNA: Towards a language
for annotating Ada programs,” ACMSZGPLANNotices, vol. 15, pp.

P. A. Lee, N. Ghani, and K. Heron, “A recovery cache for PDP-I 1 ,”
in Dig. Papers 9th Annu. Znt. Symp. Fault Tolerant Comput.,
FTCS-9, Madison, WI, June 20-22, 1979, pp. 3-7.
Y. H. Lee and K. G. Shin, “Design and evaluation of a fault-tolerant
multiprocessor using hardware recovery blocks,” ZEEE Truns. Com-
put., vol. C-33, pp. 113-124, Feb. 1984.
N. G. Leveson and P. R. Harvey, “Analyzing software safety,” IEEE
Trans. Software Eng., vol. SE-9, pp. 569-579, Sept. 1983.
K. W. Li, “Detection of transient faults in microprocessors by means
of external hardware,” M.Sc. Thesis, Dep. Elec. Eng., Virginia
Polytechnic Institute and State Univ., Blacksburg, VA, Mar. 1984.
T. S. Liu, “The role of a maintenance processor for a general-purpose
computer system,” ZEEE Trans. Comput., vol. C-33, pp. 507-517,
June 1984.
D. J. Lu, “Watchdog processors and VLSI,” in Proc. Nut. Electron.
Conf., vol. 34, Chicago, IL, Oct. 27-28, 1980, pp. 240-245.
-, “Watchdog processor and structural integrity checking,” ZEEE
Trans. Comput., vol. C-31, pp. 681-685, July 1982.
A. Mahmood, D. J. Lu, and E. J. McCluskey, “Concurrent fault
detection using a watchdog processor and assertions,” in Proc. 1983
Znt. Test Conf., Philadelphia, PA, Oct. 18-20, 1983, pp. 622-628.
A. Mahmood, D. M. Andrews, and E. J. McCluskey, “Writing
executable assertions to test flight software,” in Conf. Rec. 18th
Annu. Asilomar Conf. Circuits, Syst., Comput., Pacific Grove,

-, “Executable assertions and flight software,” in Proc. AZAA/
ZEEE 6th Digital Avion. Syst. Conf., Baltimore, MD, Dec. 3-6,

A. Mahmood and E. J. McCluskey, “Watchdog processors: Error
coverage and overhead,” in Dig. 15th Annu. Int. Symp. Fault-
Tolerant Comput., FTCS-15, Ann Arbor, MI, June 19-21, 1985, pp.

A. Mahmood, A. Ersoz, and E. J. McCluskey, “Concurrent system
level error detection using a watchdog processor,” in Proc. 1985 Znt.
Test Conf., Philadelphia, PA, Nov. 19-21, 1985, pp. 145-152.
A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors-A survey,” CRC Tech. Rep. 85-7, CSL TR. 85-
266, Center Reliable Comput., Computer Systems Lab., Stanford
Univ., Stanford, CA 94305, June 1985.
M. Namjoo and E. J. McCluskey, “Watchdog processors and
capability checking,” in Dig. Papers 12th Annu. Znt. Symp. Fault
Tolerant Comput., FTCS-12, Santa Monica, CA, June 22-24, 1982,

M. Namjoo, “Techniques for concurrent testing of VLSI processor
operation,” in Dig. 1982 Znt. Test Conf., Philadelphia, PA, Nov. 15-
18, 1982, pp. 461-468.
M. Namjoo, “Design of concurrently testable microprogrammed
control units,” in Proc. 15th Annu. Workshop Microprogramming,
MZCRO-15, Palo Alto, CA, Oct. 1982, pp. 173-180.
M. Namjoo, “CERBERUS-16: An architecture for a general purpose
watchdog processor,” in Dig. Papers 13th Annu. Znt. Symp. Fault
Tolerant Comput. FTCS-13, Milano, Italy, June 28-30, 1983, pp.

J. S. Novak and L. S. Tuomenoksa, “Memory mutilation in stored
program controlled telephone systems,” in Conf. Rec. 1970 Int.
Conf. Commun., vol. 2, 1970, pp. 43-32 to 43-45.
S. M. Ornstein, W. R. Crowther, M. F. Kraley, R. D. Bressler, A.
Michel, and F. E. Heart, “Pluribus-A reliable multiprocessor,” in
Proc. AFZPS Conf., vol. 44, Anaheim, CA, May 19-22, 1975, pp.

B. Randell, “System structure for software fault tolerance,” ZEEE
Trans. Software Eng., vol. SE-1, pp. 220-232, June 1975.
S. H. Saib, “Executable assertions-An aid to reliable software,” in
Conf. Rec. 11th Asilomar Conf. Circuits, Syst., Comput., Pacific
Grove, CA, Nov. 7-9, 1977, pp. 277-281.
S. H. Saib, “Distributed architectures for reliability,” in Proc. AZAA

128-138, NOV. 1980.

CA, NOV. 5-7, 1984, pp. 262-266.

1984, pp. 346-351.

2 14-2 19.

pp. 245-248.

.

2 16-2 19.

55 1-559.

174 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Conput. Aerosp. Conf., Los Angeles, CA, Oct. 22-24, 1979, pp.
458-462.
M. E. Schmid, R. L. Trapp, A. E. Davidoff, and G. M. Masson,
“Upset exposure by means of abstract verification,” in Dig. Papers
12th Annu. Int. Symp. Fault Tolerant Comput. FTCS-12, Santa
Monica, CA, June 22-24, 1982, PP. 237-244.
M. A. Schuette, J. P. Shen, D. P. Siewiorek, and Y. X. Zhu,
“Experimental evaluation of two concurrent error detection schemes,”
in Dig. 16th Annu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. Syrnp. Fault-Tolerant Comput., FTCS-16,
Vienna, Austria, July zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-4, 1986, pp. 138-143.
R. M. Sedmak and H. L. Liebergot, “Fault-tolerance of a general
purpose computer implemented by very large scale integrating,” IEEE
Trans. Cornput., vol. C-29, pp. 492-500, June 1980.
J. P. Shen and M. A. Schuette, “On-line self-monitoring using
signatured instruction streams,” in Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI983 Int. Test Conf.,
Philadelphia, PA, Oct. 18-20, 1983, pp. 275-282.
L. J. Shustek, “Analysis and performance of computer instruction
sets,” SLAC Rep. 205, STAN-CS-78-658, Stanford Univ., Stanford,
CA 94305, May 1978.
D. P. Siewiorek, V. Kini, H. Mashburn, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. R. McConnel, and M. M.
Tsao, “A case study of Cmmp, Cm*, and C.vmp: Part I-Experiences
with fault tolerance in multiprocessor systems,” Proc. IEEE, vol. 66,

D. P. Siewiorek and R. S. Swarz, The Theory and Practice of
Reliable System Design.
T. Sridhar and S. M. Thatte, “Concurrent checking of program flow in
VLSI processors,” in Dig. I982 In/. Test Conf., Philadelphia, PA,

R. E. Staehler, “Organization and objectives,” Bell Syst. Tech. J . ,
vol. 56, pp. 119-134, Feb. 1977.
T. F. Storey, “Design of a microprogram control for a processor in an
electronic switching systems,” Bell Syst. Tech. J . , vol. 55, pp. 183-
232, Feb. 1976.
L. G. Stucki and G. L. Foshee, “New assertion concepts for self metric
software validation,” in Proc. Int. Conf. Reliable Software, Los
Angeles, CA, Apr. 21-23, 1975, pp. 59-71.
D. J. Taylor and J . P. Black, “Principles of data structure error
correction,” IEEE Trans. Comput., vol. C-31, pp. 602-608, July
1982.
S. M. Thatte and J . A. Abraham, “Test generation for microproces-
sors,” IEEE Trans. Cornput., vol. C-29, pp. 429-441, June 1980.
S. P. Tomas and J. P. Shen, “A roving monitoring processor for
detection of control flow errors in multiple processor systems,” in
Proc. IEEE Int. Conf. Comput. Design: VLSI Comput., Port
Chester, NY, Oct. 7-10, 1985, pp. 531-539.
J. H. Wensley, L. Lamport, J . Goldberg, M. W. Green, K. N. Levitt,
P. M. Melliar-Smith, R. E. Shostak, and C. B. Weinstock, “SIFT;
Design and analysis of a fault-tolerant computer for aircraft control,”
Proc. IEEE, vol. 66, pp. 1240-1255, Oct. 1978.
S. S. Yau and Fu-Chung Chen, “An approach to concurrent control
flow checking,” IEEE Trans. Software Eng., vol. SE-6, pp. 126-

137, Mar. 1980.
L. J. Yount, “Architectural solutions to safety problems of digital

pp. 1178-1 199, Oct. 1978.

Bedford, MA: Digital, 1982, ch. 3.

NOV. 15-18, 1982, pp. 191-199.

flight-critical systems for commercial transports,” in Proc. AIAA/
IEEE 6th Digital Avion. Syst. Conf., Baltimore, MD, Dec. 3-6,
1984, pp. 28-35.

Aamer Mahmood (S’78-M’87) received the
B.S.E.E. degree (with Honors) from University of
Engineering and Technology, Lahore, Pakistan in
1979 and the M.S.E.E. and Ph.D. degrees in
electrical engineering from Stanford University,
Stanford, CA, in 1986.

Currently he is working as Member Technical
Staff in CPU Development at ROLM MIL-SPEC
Computers. His interests include concurrent check-
ing, fault tolerance, design for testability, computer
architecture, and parallel computing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. J. McCluskey (S’51-M’55-SM’59-F’65) re-
ceived the A.B. degree (summa cum laude) in
mathematics and physics from Bowdoin College,
Brunswick, ME, in 1953, and the B.S., M.S., and
Sc.D. degrees in electrical engineering from Massa-
chusetts Institute of Technology, Cambridge in
1953, 1953, and 1956, respectively.

He worked on electronic switching systems at the
Bell Telephone Laboratories from 1955 to 1959. In
1959, he moved to Princeton University, Princeton,
NJ, where he was Professor of Electrical Engineer-

ing and Director of the University Computer Center. In 1966 heyoined
Stanford University, where he is Processor of Electrical Engineering and
Computer Science, as well as Director of the Center for Reliable Computing.
He has published several hooks and book chapters. His most recent book is
Logic Design Principles with Emphasis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Testable Semicustom Circuits,
(Englewood Cliffs, NJ: Prentice-Hall, 1986), book chapters include Design
for Testability in Fault-tolerant Computing, edited by D. K. Pradhan, and
chapters on Logic Design in the Van Nostrand Reinhold Encyclopedia of
Computer Science and Engineering and in Reference Data for Engineers,
edited by E. C. Jordan. He is President of Stanford Logical Systems Institute
which provides consulting services on fault-tolerant computing, testing, and
design for testability.

Dr. McCluskey served as the first President of the IEEE Computer Society
and as a member of the AFIPS Executive Committee. He is a member of the
Organizing Committees of the IEEE DFT and BIST Workshops and the
Program Committees of ICCAD’87 and FTCS-17. He is Associate Editor of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, a Technical
Advisor for VLSI Systems Design, and on the Editorial Board of the TSI
Journal. He was a founding member of the Editorial Board of IEEE Design
and Test Magazine. In 1984, he received the IEEE Centennial Medal and
IEEE Computer Society Technical Achievement Award in Testing.

