
Concurrent GC
Leveraging Transactional

Memory
Phil McGachey

Ali-Reza Adl-Tabatabai
Richard L. Hudson

Vijay Menon
Bratin Saha

Tatiana Shpeisman

Introduction

• Moore’s Law leading to multi-cored chips

• Harder to exploit than raw CPU power

• Concurrent programming becomes common

• Need simplified programming models

Multi-Cored GC

• Stopping the world is unfeasible

• Overhead of pausing operation

• Non-parallel code in collector

• Growing heap sizes

• Clear call for concurrent garbage collection

Concurrency Control

• More threads lead to more interactions

• Locks are already difficult to reason about

• Push for transactional memory

• Transactional Integrity

• Strong atomicity - TM system responsible

• Weak atomicity - Programmer responsible

Synergy

• Shared mechanisms

• GC must observe modifications to objects

• TM must detect conflicts

• Barriers are required for both systems

• We leverage the overlap

• Treat “to-space” objects as speculative

Our Goals

• Leverage strong atomicity infrastructure for GC

• Target desktop applications

• Games, multimedia, VOIP

• Not hard realtime

• Focus on pause time

• Aim to keep 90% of pauses under 1ms

Implementing Atomicity

• STM with strong atomicity

• No “non-transactional” memory accesses

• Version number for conflict resolution

• Writes increment on commit

• Objects in transactions are write-locked

• Lock can be anonymous

The GC Algorithm
• Don’t stop the world

• Threads paused one at a time

• Minimize work during each pause

• Copy a portion of the heap per GC cycle

• Designed to support parallelism

• 1 GC thread per 10 application threads

• Not necessary for current desktops

Mark Phase
• Pause threads one at a time

• Scan stack area

• Runtime stacks

• TM data structures

• Concurrently mark the heap

• Iterate until all reachable objects are marked

• Barrier prevents writes of unmarked pointers

Copy Phase

• Collect small region of heap

• Don’t pause the application

• Copy objects transactionally

• Read barrier follows forwarding pointers

• Write barrier updates pointers

Flip Phase

• Update pointers to forwarded objects

• Pause each thread individually

• Scan stack area

• Update forwarded pointers

• Concurrently flip the heap

• Same barriers as the copy phase

Pauses
• Phase changes

• Mark phase

• Pause each thread to scan stack

• Pause to guarantee no unmarked objects

• Flip phase

• Pause to find unflipped pointers on stacks

• Pause to guarantee no unflipped objects

Concurrent Copying
GC Thread Application Thread

Concurrent Copying
GC Thread Application Thread

Begin Copy

Concurrent Copying
GC Thread Application Thread

Begin Copy
Copy Field A

Concurrent Copying
GC Thread Application Thread

Begin Copy
Copy Field A
Copy Field B

Concurrent Copying
GC Thread Application Thread

Begin Copy
Copy Field A
Copy Field B
Copy Field C Write to Field A

Concurrent Copying
GC Thread Application Thread

Begin Copy
Copy Field A
Copy Field B
Copy Field C Write to Field A
Write Forwarding Ptr

Concurrent Copying
GC Thread Application Thread

Begin Copy
Copy Field A
Copy Field B
Copy Field C Write to Field A
Write Forwarding Ptr

Read from Field A

Atomic Copying

• Copy operation must be atomic

• Wrap each object copy in a transaction

• Strong atomicity avoids lost update

• Prohibitively expensive

• Build on the STM infrastructure

• Favor application thread in conflicts

Transactional Copying
GC Thread Application Thread

Store version #

Transactional Copying
GC Thread Application Thread

Store version #
Copy Field A

Transactional Copying
GC Thread Application Thread

Store version #
Copy Field A
Copy Field B

Transactional Copying
GC Thread Application Thread

Copy Field A
Copy Field B
Copy Field C Write to Field A

Store version #

Transactional Copying
GC Thread Application Thread

Store version #
Copy Field A
Copy Field B
Copy Field C Write to Field A
Compare version #

Transactional Copying
GC Thread Application Thread

Store version #
Copy Field A
Copy Field B
Copy Field C Write to Field A
Compare version #

Read from Field A

Barrier Synergy

• Strong atomicity barriers:

• Logs reads and writes

• Follows forwarding pointers

• Concurrent GC barriers

• Prevents writes of unmarked pointers

• Follow forwarding pointers

Experiments

• SPEC JVM98

• SPECjbb2000

• Atomicjbb

• AtomicTSP, AtomicOO7

Javac

SPECjbb

AtomicTSP

AtomicJBB

All workloads

Outliers
Benchmark < 1ms 1..10 ms 10...100 ms > 100 ms

201_compress 100.0% 0.00% 0.00% 0.00%

202_jess 100.0% 0.00% 0.00% 0.00%

209_db 100.0% 0.00% 0.00% 0.00%

213_javac 99.43% 0.57% 0.00% 0.00%

222_mpegaudio 100.0% 0.00% 0.00% 0.00%

227_mtrt 100.0% 0.00% 0.00% 0.00%

_228_jack 100.0% 0.00% 0.00% 0.00%

SPECjbb 99.72% 0.14% 0.14% 0.00%

AtomicOO7 100.0% 0.00% 0.00% 0.00%

AtomicTSP 100.0% 0.00% 0.00% 0.00%

Atomicjbb 85.00% 12.50% 2.14% 0.36%

Total 98.92% 0.85% 0.21% 0.02%

Target ≥ 90% ≤ 9% ≤ 0.9% ≤ 0.1%

Pauses per GC
Benchmark Mark Phase Flip Phase Total

201_compress 2.0 2.0 4.0

202_jess 2.6 2.0 4.6

209_db 2.0 2.0 4.0

213_javac 2.7 2.0 4.7

222_mpegaudio 2.0 2.0 4.0

227_mtrt 3.7 2.9 6.6

_228_jack 2.1 2.0 4.1

SPECjbb 5.7 2.7 8.4

AtomicOO7 3.6 2.0 5.6

AtomicTSP 2.0 2.0 4.0

Atomicjbb 4.0 2.0 6.0

Average 2.9 2.1 5.1

Time In Each Stage
Benchmark Mark Phase Copy Phase Flip Phase Total

201_compress 0.19% 0.08% 0.26% 0.53%

202_jess 0.91% 0.37% 1.18% 2.45%

209_db 0.43% 0.14% 0.44% 1.00%

213_javac 0.82% 0.17% 0.82% 1.81%

222_mpegaudio 0.22% 0.08% 0.27% 0.57%

227_mtrt 1.81% 0.61% 2.02% 4.44%

_228_jack 0.77% 0.36% 0.58% 1.71%

SPECjbb 1.27% 0.27% 1.02% 2.56%

AtomicOO7 0.04% 0.01% 0.03% 0.08%

AtomicTSP 0.51% 0.00% 0.00% 0.51%

Atomicjbb 1.37% 0.52% 2.39% 4.28%

Average 0.76% 0.24% 0.82% 1.81%

