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Abstract

The interplay between copy number variation (CNV) and differential gene expression may be able to shed light on
molecular process underlying breast cancer and lead to the discovery of cancer-related genes. In the current study,
genes concurrently identified in array comparative genomic hybridization (CGH) and gene expression microarrays
were used to derive gene signatures for Han Chinese breast cancers.

We performed 23 array CGHs and 81 gene expression microarrays in breast cancer samples from Taiwanese
women. Genes with coherent patterns of both CNV and differential gene expression were identified from the 21
samples assayed using both platforms. We used these genes to derive signatures associated with clinical ER and
HER2 status and disease-free survival.

Distributions of signature genes were strongly associated with chromosomal location: chromosome 16 for ER and
17 for HER2. A breast cancer risk predictive model was built based on the first supervised principal component from
16 genes (RCAN3, MCOLN2, DENND2D, RWDD3, ZMYM6, CAPZA1, GPR18, WARS2, TRIM45, SCRN1, CSNK1E,
HBXIP, CSDE1, MRPL20, IKZF1, and COL20A1), and distinct survival patterns were observed between the high-
and low-risk groups from the combined dataset of 408 microarrays. The risk score was significantly higher in breast
cancer patients with recurrence, metastasis, or mortality than in relapse-free individuals (0.241 versus 0, P<0.001).
The concurrent gene risk predictive model remained discriminative across distinct clinical ER and HER2 statuses in
subgroup analysis. Prognostic comparisons with published gene expression signatures showed a better discerning
ability of concurrent genes, many of which were rarely identifiable if expression data were pre-selected by phenotype
correlations or variability of individual genes.

We conclude that parallel analysis of CGH and microarray data, in conjunction with known gene expression
patterns, can be used to identify biomarkers with prognostic values in breast cancer.
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Introduction

Breast cancer is a heterogeneous disease in terms of
molecular taxonomy. Microarray experiments in the past
decade have revealed distinct molecular subtypes based on
gene expression patterns, most of which are associated with
clinical phenotypes or predictions of treatment response or
survival [1-10]. In contrast to gene expression signatures, the
clinical significance of genomic aberrations in breast tumors,
such as amplifications and deletions, remains undefined. It is

widely acknowledged that cancer can result from progressive
accumulation of genetic aberrations; amplified regions may
contain dominant oncogenes whereas deleted regions may
contain tumor suppressor genes. The breakpoints of recurrent
aberrations may indicate novel targets of potentially therapeutic
value [11].

Chromosomal comparative genomic hybridization (CGH) is a
technique designed to assess genomic aberrations in tumor
and cultured cells; however, the complexity of genomic
variations as well as resolution limitations have impeded
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widespread application of this technique to breast cancer. Only
recently has microarray-based CGH (array CGH), with either a
BAC clone or oligonucleotide for hybridization, allowed the
direct evaluation of the chromosomal instability of solid tumors
[12-14].

It has been suggested that whole-genome array CGH can
provide insight into the fundamental processes of chromosomal
instability leading to breast cancer. For instance, van Beers et
al. [15] performed a comprehensive review of breast cancer
array CGH studies. They ascertained the reliability and
sensitivity of this automated, high-resolution tool and gave
examples in gene discovery and class discovery such as
BRCA1 and BRCA2 breast tumors. For breast cancer
cytogenetics with conventional CGH and the correlation with
histological features, refer to Reis-Filho et al [16]. They
described the strong link between CGH and underlying genetic
changes and how it explains, in part, the molecular aspects
that contributed to clinical pathological features in breast
cancer patients.

Because genomic imbalance can have an impact on gene
expression by complex transcriptional regulation, the interplay
between copy number variation (CNV) and gene expression
might shed light on underlying molecular processes in breast
cancer and lead to the discovery of cancer-related genes.
Genes displaying coherent patterns at the chromosomal and
transcriptional levels are more likely to serve as biomarkers for
treatment response and prognosis [17-20]. We hypothesized
that breast cancer tumorigenesis could originate from
chromosome instability manifesting as CNV, which could
persist through mRNA transcription and present as concordant
gene expression signatures.

In the current study, we performed genome-wide
characterization of Han Chinese breast cancers by integrating
2 microarray technologies: array CGH to detect genomic CNV
and gene expression arrays, to elucidate transcriptional
alterations in an effort to reveal critical genes involved in breast
oncogenesis and identify potential targets with prognostic
value. Concurrent gene signatures for important pathological
factors, as well as disease-free survival of breast cancer, were
constructed, and prognostic comparisons with published
biomarkers from gene expression only data were performed.

Materials and Methods

Ethics statement
The materials presented in the study have been reviewed

and approved by IRB of Cathay General Hospital (approval
number: CT-100035). Written informed consent was obtained
from all the participants after well explanation by one of the five
investigators (CCH, SHT, HHL, JYJ and CSH).

Study design
A flow chart of the study design is shown in Figure 1.

Breast cancer samples
We collected breast cancer samples prospectively during

surgery. The cancerous and matched normal breast tissues

were snap frozen and stored in liquid nitrogen below -80 °C,
with RNAlater reagent (Qiagen, Germantown, MD) to stabilize
RNA in the tissue. Matched samples were obtained
consecutively from 83 breast cancer patients from January
2007 to December 2010. The frozen samples were dissected
into slices of 1-2 mm thickness, and more than 90% cancerous
content was a prerequisite for microarray experiments. The
enrollment criteria included patients <70 years old with invasive
breast cancers who had not received neo-adjuvant therapy,
were in clinical stages I to III (i.e., no systemic spread, and had
no concurrent secondary malignancy). Enrolled patients were
managed according to standard guidelines with regular follow-
up.

For relevant pathological features, estrogen receptor (ER)
positivity was defined as the presence of at least 10% of nuclei
with positive results by immunohistochemical (IHC) analysis,
and breast samples displaying low ER positivity (<10% of
nuclei with positive stains) were not assayed in the current
study. For human epidermal growth factor receptor 2 (HER2)
status, the ASCO and CAP guidelines [21] were followed: IHC
3+ and IHC 2+ with fluorescence in situ (FISH) hybridization
amplification were considered to indicate HER2
overexpression. The modified Bloom-Richardson (Nottingham)
system was used for grading breast cancers [22].

Comparative genomic hybridization
DNA was extracted from cancerous and matching normal

breast tissues from the same subject (n=21) by using a
QIAamp DNA mini kit (Qiagen, Valencia, CA). A minimum of 4
µg total DNA was required for verifying the purity and
concentration of genomic DNA, which was done using a
Bioanalyzer 2100® (Agilent, Santa Clara, CA). DNA quality
control was indicated by OD260/280 > 1.8, according to the
manufacturer’s instructions. The Agilent Human Genome
105A® microarray was adopted for array CGH experiments; it
includes 99,000 probes that span the human genome with an
average spatial resolution of approximate 15 kb.

Genomic DNA from cancers and matching normal controls
was labeled and hybridized to microarray slides for each study
subject using the dye-swap technique. After hybridization, the
slides were scanned with a GenePix® Scanner 4000B
(Molecular Devices, Sunnyvale, CA), and the fluorescent dye
ratios, which represented DNA copy number ratios, were
obtained for data analysis. Gene information and genomic
locations were based on Human Genome build 18 for Agilent
CGH arrays.

Copy number variation detection
The analysis of CGH began with segmentation of normalized

data, followed by identification of common (recurrent) gains
and losses across multiple array CGH experiments. The
Circular Binary Segmentation (CBS) implemented in CGHTools
of BRB ArrayTools was used to identify regions in each
chromosome such that the copy numbers in each region were
equal [23,24]. CBS can be considered as finding change points
in a sequence of random numbers. For each chromosome, the
data were recursively split until no further change points could
be found. Determining whether a particular point corresponded
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Figure 1.  Flow chart of study design (GSEA: Gene set enrichment analysis).  
doi: 10.1371/journal.pone.0076421.g001

Concurrent Gene Signatures

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e76421



to a change point was tested through permutations. A hybrid
approach (Faster CBS) with the mergeLevels algorithm was
used to speed up the process, and further details can be
obtained from official CGHTools manuals [25,26]. Based on the
segmented log ratios, the copy number at a particular genomic
location was determined using the median absolute deviation
(MAD) of the log ratios of each array. High level CNV
(amplification and homozygous deletion) was declared in
regions with segmentation mean log ratios >5 times the MAD
and <0.2 times the MAD of the corresponding array. The
multiplicative factor (threshold) for low level CNV (both gain
and loss) was set to 1.1.

Regions with frequent CNV in a group of samples were
identified using the Genomic Identification of Significant
Targets in Cancer (GISTIC) tool in BRB-CGHTools [27]. The
null distribution of the G scores was generated based on a
10,000 times re-sampling, and GISTIC identified frequent and
significant CNV regions in all 23 array CGH samples. The
significance of CNV at a particular genomic location was
determined based on a test statistic obtained from the
segmentation log ratios of all samples.

Expression arrays
Total RNA was extracted from frozen specimens using

TRIzol® reagent (Invitrogen, Carlsbad, CA). Purification of
RNA was performed using RNeasy® mini kits (Qiagen,
Valencia, CA) according to the manufacturer’s instructions.
RNA integration was determined by performing gel
electrophoresis; 2 bands of 18S and 28S represented
satisfactory RNA quality. Affymetrix GeneChip® Human
Genome U133 plus 2.0 (Affymetrix, Santa Clara, CA) was used
for the microarray experiment. Hybridization and scanning was
performed according to the standard Affymetrix protocol. In
brief, there were more than 54,000 probe sets, 47,400
transcripts and approximately 38,500 genes on this single color
oligonucleotide array. Image scanning was performed using a
GeneChip® Scanner 3000 (Affymetrix, Santa Clara, CA), and
scanned images were processed using GeneChip® Operating
Software and Affymetrix’s Microarray Suite software to
generate detection P values. The Robust Multichip Average
(RMA) algorithm was applied for perfect match probe signals
within the study [28]. For multiple probe sets corresponding to
the same gene, probe sets were reduced to one per gene
symbol by using the most variable probe set measured by
inter-quadrant range across all the assayed arrays. Deposition
of microarray data at the NCBI Gene Expression Omnibus had
made both array CGH and gene expression experiments
publicly available with the accession number GSE48391.

Concurrent gains and losses
Concurrent gains and losses were detected from common

probes across array CGH and gene expression experiments.
We integrated gene expression and array CGH data to identify
genes whose transcriptional levels were affected by CNV.
Concurrent gains and losses were declared if and only if
significant changes in the same direction were observed for
both gene expression and array CGH platforms (assessed by
Spearman correlation coefficients with cut-off P-value <0.05).

Specifically, a gene-centric table was created to deduce a
value corresponding to each gene for each array in the array-
covered genomic regions. This value was assigned based on
the segmentation mean log ratios, and was used to calculate
the correlation between copy number and gene expression
during integrated analysis.

Combined dataset
Two publicly available breast cancer microarray depositories,

one from Lu et al. and another from Kao et al., were merged
with our microarrays to form the combined dataset [29,30].
Both datasets used the same Affymetrix U133 plus 2.0
microarrays as used in our experiments, and all assayed
subjects were Han Chinese ethnically. RMA was used for
normalization within each dataset [28]. Details of microarray
experiments and the demography of the study populations
have been described elsewhere and only a brief summary is
given here. The Lu et al. dataset comprised 125 Chinese
breast cancers, and original Affymetrix CEL files were
downloaded from NCBI Gene Expression Omnibus with the
accession number GSE5460; clinical ER and HER2 status was
provided, while IHC 2+ was considered HER2 negative, and
low ER positivity (1-9% of nuclei with positive stains) was
regarded as ER positive in their series. For the Kao et al.
dataset, 327 Taiwanese breast cancers were assayed, and
corresponding disease-free survival and overall survival data
were available (GSE 20685). To make microarray experiments
from different studies comparable, we first normalized
(centered) each array using the median array within each
group (i.e., the median array in each group was used as the
reference) before further analysis was performed. When the
combined dataset was constructed, the processed expression
profiles of breast cancers from our series and the independent
studies were pooled together, and quantile normalization was
performed to remove the batch effect.

Concurrent signatures for ER and HER2
Concurrent genes were identified as previously described,

and those that were differentially expressed in conjunction with
distinct ER and HER2 status were identified using univariate
two-sample t-tests at a 0.001 significance level. A global
multivariate permutation test with a stringent α level of 10-3 was
performed to control for false positives. Differentially expressed
concurrent genes were further used to predict clinical
phenotype by multiple methods including compound covariate
predictor, diagonal linear discriminative analysis, 3 nearest
neighbors, nearest centroid, and support vector machine (with
default penalty of LIBSVM, see references 24,31). Clinical
phenotype was treated as the gold standard when predictive
accuracy was evaluated through “leave one out” cross-
validation. When class prediction across microarray studies
was performed in the combined dataset, one additional random
effect was added to account for the bias introduced by each
additional source of experiments. More details about
classification algorithms were detailed in Methods S1.
Concurrent signatures for ER and HER2 were developed
independently in both our microarrays and those from Lu et al.,
each time with one dataset for training and the other for
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independent validation. Finally signatures composed of
consensus genes (the intersection of signature genes across
studies) were tested for predictive accuracy in the combined
dataset.

Breast cancer risk (survival) predictive model
Supervised principal component regression was used to

build a breast cancer risk predictive model [32]. Initially, genes
with predictive value were identified by a univariate Cox
proportional hazards model, and significant genes within a
stringent α level of 0.001 were further used to synthesize the
first principal component. This first principal component
(supergenes) was used in the predictive model construction. In
our study, disease-free survival (with tumor recurrence or
metastasis as the first failure event) was measured, and only
the first principal component was adopted for ease of
interpretation. A (continuous) prognostic index score was
calculated for each subject according to regression coefficients
for the first principal component, intercept, and (any) covariate
from the Cox model. The high- and low-risk groups were
defined by the 50th percentile prognostic index. We also
compared the prognostic value of concurrent genes to that of
intrinsic gene signatures provided by the Stanford/UNC team.
Molecular subtyping of the combined dataset and subgroup
analysis stratified by clinical ER and HER2 status was
performed [33]. Besides, we also constructed risk predictive
models based on reported genes from published breast cancer
gene expression signatures, including Amsterdam, Rotterdam,
and Oncotype DXTM signatures, using the same supervised
principle component approach; more details are available in the
Methods S1 [8,9,34,35]. The impact of high-/low-risk threshold
definition was evaluated through sensitivity analysis.

Gene set enrichment analysis for concurrent genes
Gene set enrichment analysis (GSEA, reference [36]) is a

functional analysis of microarray data at the level of gene sets.
GSEA tested whether an a priori defined set of genes showed
statistically significant and concordant difference between two
biological states (in current study, the dichotomous status of
clinical ER, HER2, and cancer relapse). We performed GSEA
and concurrent gene signatures were regarded as gene sets
for two purposes. First, if a concurrent gene signature was
significantly enriched between the two corresponding
phenotypes, the discerning ability of this signature would be
evidenced (indicating by a normalized enrichment score with a
significant deviation from zero under a controlled false
discovery rate) and GSEA provided an additional validation for
this signature. Second, all genes on the microarray were sorted
by some clinical feature (ER, HER2, and relapsing status) and
a ranked list was created under GSEA, which allowed the
precise localization of each signature gene along the full length
of this ranked list. In many circumstances, genes were
selected/filtered by their phenotype correlations; if a signature
gene was not found at the top (up regulated) or bottom (down
regulated) of the ranked list, the possibility would be high that
such a candidate gene could not be easily identified by relevant
filtrating/selection criteria. Some gene expression studies used
the variability of each array element for gene filtering; a GSEA

pre-ranked list weighted by coefficient of variance could
determine whether a candidate gene was located at the
beginning (high variability) end of the list and was readily
enrolled for down-stream analysis. More details about
compositions of concurrent gene sets were in Methods S1.

Results

Analysis of array CGH
A total of 83 incidental breast cancer samples were recruited

in a consecutive manner between January 2007 and December
2010. Of these, 23 underwent array CGH, 81 underwent
expression microarrays, and 21 were assayed with both
platforms. Relevant clinical features are listed in Table 1.

The CBS algorithm changed normalized array CGH data into
discrete segments of equal chromosomal copy number [23-26].
The number of unique markers was 98,755 with a significance
level for the test to accept change points set to 0.01 with 1,000
permutations. One hundred and three CNVs were claimed
including 12 amplifications, 51 gains, 32 losses and 8
homozygous deletions (Table 2). Figure 2 shows the frequency
plot of CNV among 23 samples stratified by genomic location;
the most common CNV was gains/amplifications of
chromosome 8, followed by gains in chromosome 16, 17, and
20. Recurrent amplifications were 3q26.1 (n=3), and 17q11-q21
(n=2) while recurrent gains included 8p11 (n=5), 8p12 (n=5),
8q11-q24 (n=4), 8q24 (n=5), 17q25 (n=3), 20p12 (n=3), and
20q13 (n=3). Less frequent gains (n=2) were 1p21.2, 3q26.1,
8p23.3, 11p12, 11q11, 16p12-p13, and 20q11-q13. Complex
recurrent deletions were reported for various lengths around
8p11-p23 (n=9) as well as 22q11-q13 (n=5); less common
deletions (n=2) were 15q13 and 20q13. There was no recurrent
homozygous deletion.

Table 1. Clinical features of 81 Taiwanese breast cancers.

  
Array
CGH only

Both array CGH
and gene
expression

Gene
expression only

Number of
cases

 2 21 60

ER Positive 1 10 43
 Negative 1 11 17
HER2 Overexpression 0 10 24
 Normal 2 11 36
Nuclear grade I 0 1 4
 II 1 8 32
 III 1 12 24
Lympho-
vascular
invasion

Positive 0 13 39

 Negative 2 8 21
Nodal status Positive 0 13 35
 Negative 2 8 25

doi: 10.1371/journal.pone.0076421.t001
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We used the GISTIC method to identify frequent CNV among
23 patients with array CGH [24,27]. The analysis tool identified
frequent and significant CNV regions with a 0.05 false discover
rate. The most frequent gain region with significant G-scores
was at 8q24.21 to 8q24.23 with 34 genes, followed by 17q12 to
17q21.1 with 24 genes. For a complete list of genes with
significant GISTIC scores, please refer to Table S1.

Correlations between CNV and gene expression
profiles

Both array CGH and gene expression data were available for
21 subjects, and these paired samples formed the basis of the
integrated analysis of CNV and gene expression. Spearman
correlation coefficients were calculated for 4,081 genes with
CNV, and 629 of them were found to also have differential
gene expression on the microarray. These genes formed the

Table 2. Details of CNVs (copy number variations) among 23 Taiwanese breast cancers.

 Amplification Gain   Loss  Homozygous deletion
Number of CNVs 12 51   32  8
Number of involved subjects 8 13   8  5
Number of involved genes 95 2221   2863  76
Cytogenetic locations* 1q21.2 1p21.2 8p23.2 17q23 1p11.1-p36.33 12q23-q24.11 2q37.3
 3q26.1 1p21.2-p22 8p23.3 17q24-q25 2q33 15q11-q26.3 3q26.1
 3q26.1 1p32-p35 8p23.3 17q25.1 2q37.3 15q13.3 8p11.1-p12
 3q26.1 2p22.3 8q11-q24 17q25.3 3q22-q24 16p12.3 8p23.1
 4q13 3p24-p26 8q11-q24 20p11-p12 5q35.3 17q11-q22 10q26.3
 8q24 3q26-q27 8q11-q24 20p11-p13 8p11.1-p21 20q13 11p11-p12.3
 9q22.3 3q26.1 8q11-q24 20p12-p13 8p11.21-p12 20q13.31 22q11.23
 11q24-q25 4q13.2 8q24 20q11-q13 8p11.22-p11.23 22q11.1 22q13.31
 17q11-q21 4p14 11p12 20q11-q13 8p11-p12 22q11-q13.31 17q11-q21
 17q11-q21 4q31.3 11p12-p13 20q13 8p11-p23 22q11.1-13.33 17q11-q21
 19q13.2 7p11-p21 11p15.1 22q12.1-q12.3 8p11-p23.3 22q11-q13.33 19q13.2
 20q11.21-q11.23 7p13 11q11  8p12 22q13.1 20q11.21-q11.23
  8p11-p12 11q11  8p21.3-p22   
  8p11.2 11q13-q14  8p22-p23.3   
  8p11.21 13q14.2-q14.3  10q11.21   
  8p11.2-p12 13q31.2-q34  10p12   
  8p11.2-p12 16p11-p13  11p15   
  8p12 16p12-p13  12q13-q14.1   
  8p12 17p11.2  12q13-q14.1   
  8p22 17q21.31  12q13-q21   

(* cytogenetic locations in boldface: segments with recurrent CNVs)
doi: 10.1371/journal.pone.0076421.t002

Figure 2.  Frequency plot of copy number variation in a sample of 23 Taiwanese breast cancers.  
doi: 10.1371/journal.pone.0076421.g002

Concurrent Gene Signatures

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e76421



starting material for downstream analysis (Table S2 and Figure
S1).

ER signature
Gene expression signatures for the ER were identified

independently from our 81 Taiwanese breast cancers and the
125 Chinese breast cancers from the Lu et al. dataset
(GSE5460), with clinical IHC results used as the gold standard.
Genes differentially expressed between ER-positive and -
negative tumors were selected by two-sample t-tests with
random variance (α-level: 0.001), and the derived ER
classifiers were tested with multiple methods (Table S4A; more
details in Methods S1).

The consensus of ER signatures from the 206 combined
breast cancer samples resulted in a list of 36 genes, including
NME3, ADCY9, WDR90, IKBKB, SRP14, WWP1, GPR160,
ERI2, CDIPT, TCEA3, FLJ10661, S100PBP, GLIS2,
FLYWCH2, METRN, TRNAU1AP, RSC1A1, TRIM45, HAGH,
FDXR, C16orf52, ZNF720, STK40, SLCO4A1, ELOVL1,
ADRM1, PDZK1IP1, CHCHD10, SMCR7L, WDR77, RTN4R,
THOC5, HPDL, HENMT1, UQCRH, and MRPL37. The
predictive accuracy was 89-93% across the various validation
methods (Table 3). The most frequent genomic locations of ER
signature genes were chromosome 16 (NME3, ADCY9,
WDR90, ERI2, METRN, GLIS2, FLYWCH2, HAGH, and
C16orf52) and chromosome 8 (IKBKB and WWP1). The use of
the consensus ER signature genes resulted in a classifier with
parsimony and generalizability for that fewer genes were
enrolled, model over-fitting was improved, as well as the
reduced predictive discrepancy among multiple classification
methods.

HER2 signature
Genes differentially expressed between HER2-

overexpressing tumors and those with normal HER2 status
were identified from two Han Chinese breast cancer data sets
using two-sample t-tests and with α-level of 10-3. The
consensus gene set making up the HER2 signature was
C17orf37, STARD3, ERBB2, PSMD3, PGAP3, GRB7, MED24,
ORMDL3, and CDK12. The predictive accuracy of the
consensus HER2 signature was 82-85% during cross-
validation (Table 3 and Table S4B). All 9 genes of the HER2
signature reside on chromosome 17. As observed for ER

Table 3. Predictive accuracy of the ER and HER2 signature
in 206 Han Chinese breast cancers.

Classification algorithm ER+/ER- HER2+/HER2-
 127/79 64/142
Compound covariate predictor 93%* 85%*
Diagonal linear discriminative analysis 92% 85%*
3-nearest neighbors 91% 82%
Nearest centroid 92% 84%
Supportive vector machines 89% 84%

(* best predictive results)
doi: 10.1371/journal.pone.0076421.t003

signature, using HER2 consensus genes improved overall
predictive accuracy; the performances across multiple methods
were enhanced with fewer genes adopted for the classifier.

Survival prediction model
The median follow-up time of the 81 breast cancer patients

with expression data was 3.7 years (range: 0.1 to 5.8 years)
with 13 events of recurrence, metastasis, or breast cancer-
specific mortality (16%) and 11 deaths (all-cause mortality). For
327 breast cancers from Kao et al. (GSE20685), the median
follow-up was 7.7 years with 94 events of recurrence,
metastasis, or breast cancer-specific mortality (29%), and 83
deaths (all-cause mortality).

The combined dataset of 408 microarrays of Han Chinese
breast cancers was constructed by merging our experiments
with arrays from Kao et al. The median follow-up time was 6.5
years with 107 events of recurrence/metastasis/breast cancer-
specific mortality (26%). One random effect was added to
account for the batch effect and sample size discrepancy from
two patients’ sources. A 16 gene signature, including RCAN3,
MCOLN2, DENND2D, RWDD3, ZMYM6, CAPZA1, GPR18,
WARS2, TRIM45, SCRN1, CSNK1E, HBXIP, CSDE1,
MRPL20, IKZF1, and COL20A1, was selected by the univariate
Cox proportional hazards model and was used to form the first
supervised principal component for risk group prediction
(Figure 3, log-rank test: P = 0.001 stratified by high- and low-
risk group defined by the 50th percentile). For the 301 disease-
free patients, the mean prognostic index score was 0.000 and
133 cases (44%) were predicted to be high-risk. For the 107
patients with recurrence, metastasis or mortality, the mean
prognostic index score was 0.241 and 71 patients (66%) were
categorized as high-risk (P = 0.001, χ2-test). The difference in
risk score between subjects with and without recurrence/
metastasis/mortality in their follow-up was significant (P <0.001,
two-sample t-test with unequal variance). The formula for the
prognostic index score calculation is:

Prognostic index score=

RCAN3*(-0.027) +MCOLN2*(-0.13) +DENND2D*(-0.047) +
RWDD3*(-0.019) +ZMYM6*(-0.022) +CAPZA1*(-0.029)

+TRIM45*(0.049) +
GPR18*(-0.156) +WARS2*(0.011) +SCRN1*(0.013)

+CSNK1E*(0.011) +
HBXIP*(-0.007) +MRPL20*(-0.004) +CSDE1*(-0.017)

+COL20A1*(0.001) +
IKZF1*(-0.179) +batch*(0.079) +3.9

For samples from Kao et al., a coefficient of 0.079 was
added to control for the batch effect. The threshold for
classification as high- or low-risk was 0.122 (determined from
the 50th percentile of all the 408 arrays). Figures S2-S4 show
the clustering results of signature genes for ER, HER2, and the
risk predictive model, respectively.

Prognostic comparisons between concurrent genes
and Stanford/UNC intrinsic genes

The prognostic value of the breast cancer risk predictive
model based on concurrent genes was compared with the
intrinsic taxonomy proposed by the Stanford/UNC group [2-4].

Concurrent Gene Signatures
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The combined data for 408 Han Chinese breast cancers were
categorized into one of the five molecular subtypes based on
306 intrinsic genes proposed by Hu et al [5]. The method of
molecular subtyping has been described previously [33], and
the distributions of intrinsic subtypes and corresponding clinical
phenotypes are shown in detail in Table S3A-S3C. It should be
noted that IHC results of 327 breast cancers from Kao et al.
were not available, and we modified the method from Karn et
al. [37] and fitted two finite mixture models to derive clinical ER
and HER2 status directly from the corresponding probesets;
more details are given in the Methods S1.

Figure 4A shows the disease-free survival associated with
the 340 Han Chinese breast cancers, stratified by 4 molecular
subtypes after discarding 68 normal breast-like or unclassified
cases from the combined dataset of 408 microarrays. The
luminal A subtype had the highest probability of disease-free
survival, while the prognoses of luminal B, basal-like, and the
HER2-enriched subtype were hard to separate. Figure 4B
shows the same plot stratified by concurrent genes identified in
our study. The prognostic value of the 16 concurrent genes
was evident herein.

Subgroup analyses were further performed for ER-positive (n
= 214) and ER-negative breast cancers (n = 126) separately.

The luminal A outperformed the luminal B subtype in ER-
positive breast cancers, while for ER-negative patients, the
prognostic discrepancy between HER2-enriched and basal-like
breast cancers were indistinguishable (Figures 5A and 6A). In
both cases, the probability of survival predicted by the
concurrent genes was clearly distinguishable for the high- and
low-risk groups in both ER-positive and -negative tumors
(Figures 5B and 6B). Similarly, the better prognosis of the low-
risk group as defined by concurrent genes was ascertained
regardless of clinical HER2 status, which was not the case for
intrinsic genes in subgroup analyses of HER2 overexpressing
breast cancers (n = 95) and breast cancers with normal HER2
status (n = 245) (Figure S5A-S5B and S6A-S6B, respectively).

Prognostic comparisons between concurrent genes
and genes reported in Amsterdam/Rotterdam/Oncotype
DXTM signatures

To further validate the prognostic values of concurrent
genes, predictive models composed of genes identified by
other gene expression signatures, including Amsterdam,
Rotterdam, and Oncotype DXTM, were compared with
concurrent genes’ model on the same cohort of 408 Taiwanese

Figure 3.  Disease-free survival in 408 Han Chinese breast cancer patients stratified by the 16-concurrent gene signature
(Log-rank test: P <0.001).  X-axis: survival time in years.
doi: 10.1371/journal.pone.0076421.g003
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breast cancers. Details of retrieving signature genes can be
found in Methods S1.

These signature genes served as candidate variables and
were further selected by the univariate Cox proportional
hazards model and selected genes were used to synthesize
the first supervised principle component for breast cancer risk
prediction. However, the significance level of the univariate Cox
regression was relaxed to 0.01, as opposed to the more
stringent 0.001α level for the concurrent genes, in an effort to
provide more predictive variables for supervised principle
component model. Table 4 showed that for the Amsterdam
signature genes, the low-risk group reported even more cancer
relapses than the high-risk group (χ2-test: P=0.009), which was
contradictory and was further evidenced by the troublesome
area under the curve (AUC) value of 0.492 during the receiver

operating characteristics (ROC) analysis (Figure S7A-S7D).
The relapsing rate between the high- and low-risk groups was
not significant for both the Rotterdam and Oncotype DXTM

signature genes, while the risk prediction by concurrent genes
provided the best discriminative power (relapsing rate: 34.8
versus 17.7%, χ2-test: P < 0.001) and the highest AUC value
(0628).

To further guard comparative results and evaluate the impact
of the high-/low-risk threshold on predictive accuracy, we re-run
each survival predictive models with the threshold set to the
30th percentile of prognostic index score, approximating the
true relapsing rate of 26% of the 408 Taiwanese breast cancer
cohort. Table 5 showed the results of this sensitivity analysis;
risk predictive model of purposed concurrent genes delivered
the best discriminative power while borderline significance was

Figure 4.  Disease-free survival in 340 Han Chinese breast cancer patients.  (A) Stratified by intrinsic subtypes (proportional
hazards assumption violated) and (B) stratified by the 16-concurrent gene signature (Log-rank test: P <0.001). SSP: single sample
prediction, Basal: basal-like, Her2: HER2-enriched, LumA: luminal A, LumB: luminal B subtype breast cancer. X-axis: survival time
in years.
doi: 10.1371/journal.pone.0076421.g004

Figure 5.  Disease-free survival in 214 ER-positive Han Chinese breast cancer patients.  (A) Stratified by intrinsic subtypes
(proportional hazards assumption violated) and (B) stratified by the 16-concurrent gene signature (Log-rank test: P = 0.023). SSP:
single sample prediction, Her2: HER2-enriched, LumA: luminal A, LumB: luminal B subtype breast cancer. X-axis: survival time in
years.
doi: 10.1371/journal.pone.0076421.g005
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observed for the model driven by the Oncotype DXTM signature
genes.

GSEA for concurrent gene signatures
Signatures of ER, HER2 and breast cancer survival

prediction model were further evaluated by GSEA with these
concurrent gene sets. Each signature was split into two parts,
which contained either the up regulated or down regulated
signature genes (except for HER2 signature, for which only up
regulated part was available; more details in Methods S1). The
ER and HER2 signatures were tested in our 81 Taiwanese
breast cancers and 125 Chinese breast cancers from Lu et al.
data set (GSE5460) with the clinical ER and HER2 status used
as phenotype labels. The gene set for breast cancer survival
predictive signature was tested in our cohort and 327
Taiwanese breast cancers from Kao et al (GSE20685). Table 6
showed that three-fourths of both the ER and survival
predictive gene sets were significantly enriched across
microarray studies, indicating an alternative validation of
purposed signatures in addition to the antecedent leave-one-
out cross validation. However, HER2 signature gene set was
compromised with high false discovery rates, which might be
attributed to relatively fewer genes within this gene set.

Figures S8A-S8J showed GSEA plots of three signature
gene sets (split into up and down regulated genes for each
signature, except the HER2 signature for which all genes were
up regulated) across microarray studies, including enrichment
scores, gene tags (locations where members of the pre-defined
gene set were found), and the correlation coefficient with the
phenotype, along the ranked list by phenotype correlations.

Intuitively, most gene tags would be expected at the
extremities of both the positive correlation (coefficient of 1) and
negative correlation (coefficient of -1) end of the ranked list
metric, depending on whether the up or down regulated part of
the signature genes were used. This was the case for ER and
HER2 signatures but not for survival predictive (relapsing
status) signature, for which some gene tags had cross the zero

point and resided in the region with the opposite correlation
sign. These genes, including COL20A1, SCRN1, and MRPL20,
represented a subset of concurrent genes which were difficult
to detect under conventional supervised, or phenotype
correlation-based, gene selection/filtration criteria.

We went a step further to evaluate the distributions of
concurrent signature genes when expression data were sorted
by their variability instead of the phenotype correlation. A pre-
ranked gene list containing the coefficient of variance (CV) of
all array elements was used for GSEA (in pre-rank mode).
Since gene variability was continuous rather than discrete,
there was no need to separate each gene set into the up/down
regulated parts. Figure S9A-S9F showed the positions of gene
set members on the rank ordered list by CV: the distributions of
concurrent signature genes were not necessarily skewed

Table 4. Prognostic comparisons between concurrent
genes and other signature genes using supervised principle
component risk predictive model with high-/low-risk
threshold set to the 50th percentile of prognostic index
score.

Signature Risk predictionRelapsing rate 
p-value(χ2-
test) AUC*

Amsterdam High-risk 20.67% (43/208) 0.009 0.492
 Low-risk 32% (64/200)   
Rotterdam High-risk 27.83% (59/212) 0.4434 0.543
 Low-risk 24.49% (48/196)   
Oncotype DXTM High-risk 27% (54/200) 0.7273 0.556
 Low-risk 25.48% (53/208)   
Concurrent
genes

High-risk 34.80% (71/204) <0.0001 0.628

 Low-risk 17.65% (36/204)   

(* AUC: area under the curve)
doi: 10.1371/journal.pone.0076421.t004

Figure 6.  Disease-free survival in 126 ER-negative Han Chinese breast cancer patients.  (A) Stratified by intrinsic subtypes
(proportional hazards assumption violated) and (B) stratified by the 16-concurrent gene signature (Log-rank test: P <0.001). SSP:
single sample prediction, Her2: HER2-enriched, LumA: luminal A, LumB: luminal B subtype breast cancer. X-axis: survival time in
years.
doi: 10.1371/journal.pone.0076421.g006
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toward the beginning of the ranked list metric (with higher CV).
A gene selection/filtration strategy by variability of genes might
lose the chance to identify these clinical relevant concurrent
genes.

Discussion

Presently, adjuvant therapy for breast cancer after surgery is
based on some well-established prognostic factors, such as
IHC results for ER and HER2. These parameters, however, are
not sufficiently predictive of all individuals. In order to confront
the heterogeneity not accounted for by conventional clinical
and pathological factors, screening for potential biomarkers is
one of the most urgent tasks of molecular biology and genomic
medicine. In the current study we found that breast cancer was
heterogeneous in both gene expression and CNV. Breast
cancer CNV was detected by array CGH and potential targets
of cancer therapy were identified by GISTIC. Furthermore,
genes with coherent CNV and differential gene expression
were revealed, and we used these concurrent genes as filtering
criteria to derive gene signatures associated with clinical ER
and HER2 phenotype. Distributions of these ER- and HER2-
associated genes showed strong chromosome dependency,
indicating the necessity of identifying concurrent genes. Finally,
a breast cancer risk prediction model was built based on a 16-
gene signature, and distinct survival patterns were observed for
the high- and low-risk groups. The prognostic value of
proposed concurrent genes was conserved across distinct
clinical ER and HER2 statuses, which were ascertained in
subgroup analyses.

Chromosomal aberrations are prognostic themselves and
may cause alternations in gene expression. For instance,
Zudaire et al. used metaphase chromosome CGH to evaluate
genomic aberrations associated with breast cancer and found
that 16q loss was associated with a better prognosis while 1q,
11q, 17q, and 20q gains were associated with poorer
prognoses [38]. Nessling et al. used array CGH from 31 breast

Table 5. Prognostic comparisons between concurrent
genes and other signature genes using supervised principle
component risk predictive model with high-/low-risk
threshold set to the 30th percentile of prognostic index
score.

Signature Risk predictionRelapsing rate 
p-value(χ2-
test) AUC*

Amsterdam High-risk 26.82% (81/302) 0.6443 0.492
 Low-risk 24.53% (26/106)   
Rotterdam High-risk 25.71% (72/280) 0.7284 0.543
 Low-risk 27.34% (35/128)   
Oncotype DXTM High-risk 28.62% (83/290) 0.0847 0.556
 Low-risk 20.34% (24/118)   
Concurrent
genes

High-risk 31.23% (89/285) 0.0005 0.628

 Low-risk 14.63% (18/123)   

(* AUC: area under the curve)
doi: 10.1371/journal.pone.0076421.t005

cancers with lymph node metastasis and identified 37 gains
and 13 losses from 112 candidate genes [39]. Previous studies
dealing directly with the correlation between CNV and gene
expression in breast cancer include Bergamaschi et al., in
which array CGH results were analyzed for 89 locally advanced
breast cancers and correlated with gene expression profiles
used for molecular subtyping as defined by Stanford/UNC
intrinsic signatures [4,20]. The main drawback of the
aforementioned studies was that gene expression data were
not from the same subjects assayed for CNV [18,40,41].

The merit of the current study is that both array CGH and
gene expression were performed on the same breast cancer
patients, and hence concurrent gains and losses could be
identified in an unbiased manner. It should also be noted that
for dual-color array CGH, we used matched cancerous and
normal breast tissue for hybridization to eliminate inter-
individual variability [42]. Our use of matched normal breast
tissue, rather than pooled genomic DNA, as the common
reference greatly enhanced the reliability of CNVs detected at

Table 6. Gene set enrichment analysis (GSEA) with
concurrent gene sets of ER, HER2, and survival predictive
model.

Phenotype Dataset Enriched gene set& NES*
Nom p-
value*

FDR q-
value*

ER positive Current study
Up-regulated in
ER+

2.03 0 0

 GSE5460
Up-regulated in
ER+

1.23 0 0

ER negative Current study
Down-regulated in
ER+

-1.84 0 1

 GSE5460
Down-regulated in
ER+

-1.41 0 0.159

HER2
overexpression

Current study
Up-regulated in
HER2+

1.17 0 0.216

 GSE5460
Up-regulated in
HER2+

1.2 0 0.486

HER2 normal Current study N/A  N/A N/A
 GSE5460 N/A  N/A N/A

Relapsing
patients

Current study
Up-regulated in
survival predictive
(relapsing status)

0.62 1 1

 GSE20685
Up-regulated in
survival predictive
(relapsing status)

1.72 0 0

Disease-free
patients

Current study
Down-regulated in
survival predictive
(relapsing status)

-1.55 0 0.038

 GSE20685
Down-regulated in
survival predictive
(relapsing status)

-1.39 0 0.098

(& Gene sets in boldface: enriched gene sets with significant nominal p-values and
FDR q-value < 0.25. For details of each get set, refer to Methods S1. *NES:
normalized enrichment score, Nom p-value: nominal p-value, FDR q-value: false
discovery rate q-value, and N/A: not applicable)
doi: 10.1371/journal.pone.0076421.t006
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the expense of false negativity, i.e. loss of information. As
“physiological” or non-diseased CNV may account for up to
12% of human genomic DNA, our matching strategy resulted in
lower frequency of CNV detected than other studies [43]. This
was evident from the much lower and flattened peaks shown in
Figure 2.

With the advent of high-throughput microarray technology,
more than hundreds of thousands of genes can be measured
in a single hybridization, and gene selection/filtration is a must;
the most sophisticated bioinformatics tools have been applied
to cope with the numerous complicated and correlated gene
expression data [44]. There is no gold standard regarding the
process of gene selection or filtration; nevertheless, there is no
doubt that a priori selection will cause bias in the discovery of
biomarkers. One of the strengths of our study design is the
circumvention of traditional a priori gene selection through the
identification of concurrent genes, thus reducing bias and
increasing accuracy. The gene-focused content of the array
CGH facilitated the comparison of CGH and gene expression
data so that we could correlate genomic CNV with gene
expression alterations (with the aid of the CGH gene-centric
table). Through the parallel utilization with array CGH and gene
expression analysis, these technologies provide a platform for
facilitating our understanding of genetic complexity inherited in
endemic breast cancer and enhancing the search for novel
biomarkers.

The rationale and significance of using concurrent genes as
the pre-selection criteria was justified for the following reasons.
The identification of concurrent genes provided an alternative
approach for gene discovery. In contrast to more commonly
used gene selection/filtration criteria, we could find several
biomarkers which were not readily identified from gene
expression only data, and their prognostic values were
validated in the combined dataset with independent samples.
Traditionally genes were selected/filtered based on phenotype
correlation, or their variability. In current study the purposed
signatures (gene sets) were significantly enriched when
microarray data were sorted by the corresponding phenotype,
providing additional validations of the concurrent genes.
Besides, the concurrent signature genes were uncovered from
the ranked list metric, and if some of them were not at the top/
bottom of the rank list (sorted by phenotype correlation) or at
the high variability end (pre-ranked analysis, weighted by
coefficient of variance), these candidate genes might be
neglected easily when only gene expression data was available
without a knowledge of the interplay between genomic and
gene expression profiles.

Indeed, not all biomarkers will show concurrent hierarchy
between genomic and transcriptional aberrations. This may
result from non-linear transcription such as alternative splicing,
post-transcriptional modifications, or just the time lag between
successive steps of the central dogma. However, the merit of
current study was to identify those concurrent markers not
recognizable by conventional gene expression only approach.
When comparing genes from published breast cancer
signatures with the concurrent genes, 3 (AURKA, ERBB2, and
GRB7) from the Oncotype DXTM signature, 5 from the
Rotterdam signature (ACACB, ACOT11, CD44, TNFSF13, and

UCKL1) and 20 (AK2, AURKA, BAG4, CSE1L, ERBB2, ETFA,
FUBP1, GALE, GATM, GPSM2, GRB7, IDH2, ISG15, LRP8,
NDUFB5, POLB, PTPRF, RCAN3, SLC9A3R , and STK24)
from the Hu306 intrinsic signature were among the 629
concurrent genes in current study, highlighting the necessity of
concurrent gene filtration in biomarker discovery and
prognostic prediction.

Initially, we used a univariate test and 10-3 significance level
to identify genes differentially expressed between distinct
clinical phenotypes. For the ER signature, the most
differentially expressed gene, ADCY9, was reported in the
calcium and gonadotropin releasing hormone signaling
pathways. Genes reported in Perou’s breast cancer intrinsic
genes list, including WWP1, TECA3, and ADRM1, were also
differentially expressed between ER-positive and -negative
breast cancers [2-4]. The second most differentially expressed
gene, NME3, is associated with purine and pyrimidine
metabolism as well as tumor metastasis [45]. HAGH relates to
pyruvate metabolism and immunology. IKBKB is involved in
NF-κB, TNFR2, MAPK, and insulin signaling pathways, as well
as in apoptosis [46,47]. For the HER2 signature, five genes
including STARD3, ERBB2, GRB7, and MED24 were reported
in Perou’s intrinsic genes [2-4]. STARD3 and GRB7 were also
recognized as differentially expressed genes in the ER-positive
and -negative breast cancers in our 81 samples, indicating
some interactions between the ER and HER2 pathways [48].
The benefit of using of consensus genes for ER and HER2
signatures was supported from Table S4A and S4B; each
classification method performed quite well in original training
samples, but compromised results were observed from
independent validation data. Model over-fitting was speculated
and we adopted the consensus genes to synthesize the final
signatures with parsimony and generalizability with fewer
genes and higher overall predictive accuracy. Discrepancy
among multiple classification methods was reduced as well.

Our study identified subsets of the concurrent genes
associated with breast cancer recurrence, metastases, or
mortality in survival analyses. A 16-gene signature (RCAN3,
MCOLN2, DENND2D, RWDD3, ZMYM6, CAPZA1, GPR18,
WARS2, TRIM45, SCRN1, CSNK1E, HBXIP, CSDE1,
MRPL20, IKZF1, and COL20A1) was established for disease-
free survival. Insight into the roles of these genes in breast
cancer can be gleaned from their known roles in other cancers
and in normal cellular physiology. DENND2D was shown to be
down-regulated in non-small cell lung cancer and might act as
a tumor-suppressor gene [49], and suppressed expression was
observed for patients with relapses in our study. TRIM45
suppresses cell proliferation as a repressor of the NF-κB signal
pathway [50], and down-regulation was also observed in the
relapsing Han Chinese patients in this study. SCRN1 was
reported in Perou’s breast cancer intrinsic genes list and was
speculated to be a prognostic marker in colorectal cancer
[2-4,51]. CSNK1E encodes a beta-catenin destruction complex
and is involved in aberrations of the Wnt/beta-catenin signaling
pathway, which lead to beta-catenin oncoprotein accumulation
in the nucleus [52,53]; elevated expression in breast cancer
patients with relapses was observed in the current study
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(Figure S4). HBXIP is known to promote the migration and
proliferation of breast cancer cells [54,55].

The combined 408 Han Chinese breast cancers were also
subtyped by intrinsic genes developed by the Stanford/UNC
group for prognostic comparisons. By definition, intrinsic genes
are those that show the highest variation across different
subjects and show the least variation within each individual (i.e.
pre-/post-chemotherapy changes). Our previous work has
ascertained the clinical applicability of intrinsic taxonomy for
breast cancers in patients of Han Chinese origin, and we used
the 306 intrinsic genes suggested by Hu et al. and mean-
centering of genes to account for systematic bias across
microarray studies, as well as centroid-based single sample
prediction for molecular subtyping [5,33]. After removing cases
designated as normal breast-like and unclassified categories,
340 samples were suitable for comparison. As shown in
Figures 4B, 5B, and 6B as well as in Figures S5B and S6B, our
risk prediction model based on 16 concurrent genes was
capable of separating the high- and low-risk groups according
to actual disease-free survival for up to 12 years, whether the
whole study cohort or subgroups of distinct clinical ER and
HER2 status were analyzed. In contrast, the prognostic value
of intrinsic subtypes was less clear for ER-negative tumors due
to the poor separation of basal-like and HER2-enriched
subtypes (Figure 6A). For HER2 overexpressing breast
cancers, the basal-like subtype was associated with the worst
outcome, whereas the prognoses of HER2-enriched subtype
and luminal B subtype were intertwined, and molecular profiling
provided little prognostic value (Figure S5A).

We also compared the prognostic values of concurrent
genes with genes reported from the Amsterdam, Rotterdam,
and Oncotype DXTM signatures, all were well-known signatures
and were validated intensively in the past decade. However,
molecular subtyping by these signatures was far beyond the
scope of current study, and as an alternative, we constructed
supervised principle component regression from these
signature genes, as we did for concurrent genes, to have a
comparable prognostic benchmarking. Risk prediction by
concurrent genes provided the best discriminative power with
the highest AUC value, and remained valid through sensitivity
analysis. It should be noticed that MammaPrint® (Agendia,
Irvine, CA), the commercial version of the Amsterdam 70-gene
signature, was indicated for early stage breast cancers (stage I
and II), less than 61 years old, and without regional lymph node
metastasis. The Rotterdam 76-gene signature, not yet
commercially available, was intended for lymph node negative
breast cancers. The risk assessment by Oncotype DXTM

(Genomic Health, Redwood City, CA) might benefit stage I/II,
ER positive/nodal negative breast cancers planned for adjuvant
hormone/chemo-therapy. All three tests had their intended
breast cancer subpopulations, which in part explained their
compromised performance in current study. Other biases arose
from predictions by supervised principle component rather than
original published algorithms, as well as ethnic discrepancy in
study populations.

Our study had several limitations. First, the definition of ER
positivity and HER2 overexpression was somewhat different
between our series and the 125 Chinese breast cancers

(GSE5460, Lu et al. dataset), which hampered the
comparability between these two independent studies. Second,
the follow-up time was much shorter for our 81 breast cancer
patients than those of Kao et al., and more than four-fifths of
our patients were still disease-free, while nearly 30% of their
patients had metastasis or mortality. This discrepancy could
also result from demography, cancer characteristics, or
treatment divergence, but unequal follow-up time inevitably
compromised the comparability between these two cohorts.
Third, clinical ER and HER2 status was not available for the
327 breast cancers from Kao et al., and their ER and HER2
phenotypes could only be deduced from the corresponding
probe sets.

Breast cancer phenotypes may correlate with gene
expression, protein levels, or non-coding transcription. In this
study, the focus was on copy number changes that resulted in
changes in gene expression, and several novel biomarkers
were discovered. Other mechanisms of transcriptional
regulation were not addressed. For instance, ERBB2 was
among the 629 concurrent genes, indicating a dose-effect on
the HER2 signaling pathway through transcription, whereas
ESR1 did not display such coherent regularity, and a more
complex modulation of post-transcriptional modifications might
be postulated for the ER pathway.

Conclusion

In the current study, we developed an analytical approach to
search for genes with concurrent patterns between gene
expression and CNV, and signatures for ER, HER2, and
disease-free survival were constructed using these concurrent
genes. Using genomic as well as transcriptional data from
parallel analyses of array CGH and gene expression
microarray from the same individual, we increase the
confidence level of our gene identification by reducing false
discoveries in finding breast cancer biomarkers. Chromosomal
aberrations appeared to play a major role in regulating
transcription. We anticipate that the results of this study will
facilitate the development of screening methods for breast
cancer biomarker discovery as more prospective samples
become available.

Supporting Information

Figure S1.  Frequencies of copy number variation and
positively correlated genes across the genome.
(TIF)

Figure S2.  Clustering of the 36 ER signature genes with
average-linkage and 1-correlation metric. X-axis: yellow
indicating ER-positive and blue indicating ER-negative
samples. Y-axis: signature genes. Heat map color scale:
orange indicating up-regulated and blue indicating down-
regulated genes.
(TIF)
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Figure S3.  Clustering of the 9 HER2 signature genes with
average-linkage and 1-correlation metric. X-axis: yellow
indicating HER2 overexpressing and blue indicating normal
HER2 samples. Y-axis: signature genes. Heat map color scale:
orange indicating up-regulated and blue indicating down-
regulated genes.
(TIF)

Figure S4.  Clustering of the 16 risk prediction model
genes with average-linkage and 1-correlation metric. X-
axis: yellow indicating cases with relapses and blue indicating
cases remaining diseases-free. Y-axis: signature genes. Heat
map color scale: orange indicating up-regulated and blue
indicating down-regulated genes.
(TIF)

Figure S5.  Disease-free survival in 95 HER2
overexpressing Han Chinese breast cancers: (A) stratified
by intrinsic subtypes (Log-rank test: P = 0.08), and (B)
stratified by the 16-concurrent gene signature (Log-rank
test: P < 0.001). SSP: single sample prediction, Her2: HER2-
enriched, LumA: luminal A, LumB: luminal B subtype breast
cancer. X-axis: survival time in years.
(TIF)

Figure S6.  Disease-free survival in 245 Han Chinese
breast cancers with normal HER2 status: (A) stratified by
intrinsic subtypes (proportional hazards assumption
violated), and (B) stratified by the 16-concurrent gene
signature (Log-rank test: P = 0.02). SSP: single sample
prediction, Her2: HER2-enriched, LumA: luminal A, LumB:
luminal B subtype breast cancer. X-axis: survival time in years.
(TIF)

Figure S7.  Receiver operating characteristics (ROC)
analysis for supervised principle component risk
predictive models. Predictive models were based of (A)
Amsterdam signature genes, (B) Rotterdam signature genes,
(C) Oncotype DXTM signature genes, and (D) concurrent genes
(AUC: area under the curve).
(TIF)

Figure S8.  Plots of gene set enrichment analysis (GSEA).
Enrichment in ER positive phenotype by the gene set of up-
regulated in ER signature genes in 81 Taiwanese breast
cancers (A) and Lu et al. data (B). Enrichment in ER negative
phenotype by gene set of down-regulated in ER signature
genes in 81 Taiwanese breast cancers (C) and Lu et al. data
(D). Enrichment in HER2 overexpressing phenotype by the
gene set of up-regulated in HER2 signature genes in 81
Taiwanese breast cancers (E) and Lu et al. data (F).
Enrichment in relapsing cancers by the gene set of up-
regulated in survival predictive (relapsing status) signature
genes in 81 Taiwanese breast cancers (G) and Kao et al. data
(H). Enrichment in disease-free cancers by the gene set of
down-regulated in survival predictive (relapsing status)

signature genes in 81 Taiwanese breast cancers (I) and Kao et
al. data (J).
(TIF)

Figure S9.  Plots of pre-ranked analysis weighted by
individual genes’ coefficient of variance. Enrichment by the
ER signature gene set in 81 Taiwanese breast cancers (A) and
Lu et al. data (B). Enrichment by the HER2 signature gene set
in 81 Taiwanese breast cancers (C) and Lu et al. data (D).
Enrichment by the survival predictive (relapsing status)
signature in 81 Taiwanese breast cancers (E) and Kao et al.
data (F).
(TIF)

Methods S1.  A. Molecular subtyping by intrinsic genes.
B. Determining clinical ER and HER2 status from gene
expression data.
C. Inference of concurrent signature genes across microarray
studies.
D. Algorithms in microarray class prediction.
E. Breast cancer risk predictive model based on genes from
Amsterdam, Rotterdam, and Oncotype DXTM signatures.
F. Concurrent gene sets for GSEA.
(DOCX)

Table S1.  GISTIC analysis in a sample of 23 Taiwanese
breast cancers: (A) gain, and (B) loss regions.
(DOCX)

Table S2.  Complete list of the 629 concurrent genes.
(DOCX)

Table S3.  Molecular subtyping of the 408 Taiwanese
breast cancers with the Stanford/UNC intrinsic genes: (A)
molecular subtyping of the 81 Taiwanese breast cancers
from the current study, (B) molecular subtyping of the 327
Taiwanese breast cancers from Kao et al., and (C)
molecular subtyping of the combined dataset of 408
Taiwanese breast cancers.
(DOCX)

Table S4.  Predictive of ER and HER2 signatures in training
and independent data: (A) predictive accuracy of ER
signature, and (B) predictive accuracy of HER2 signature.
(DOCX)
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