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Abstract

Background: Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with
high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection,
the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be
elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture
of the transcriptional responses can be obtained by investigating both organisms in the same biological sample.

Results: Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by
high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known
or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine
genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight
into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns
(lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP,

MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B,
IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host
genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved
in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By
applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate
surroundings of the invading pathogen.

Conclusions: Microbial pathogenesis is the product of interactions between host and pathogen. Our results
demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression
analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection
and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent
transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection.
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Background
Insight into host-pathogen interaction dynamics is not

only essential for the understanding of infection patho-

genesis, but also for development of therapeutic inter-

ventions for controlling infectious diseases. Focusing on

the site of infection when studying the interplay between

host and pathogen allows the identification of factors in-

volved in the intricate host-pathogen interactions during

early stages of the infection. An unbiased picture of the

interdependent transcriptional responses would be ob-

tained by investigating both organisms in the same bio-

logical sample. To date, only a few studies employing a

simultaneous characterization of concurrent host and

pathogen gene expression during mammalian infection

have been published [1-4]. Traditionally, research has fo-

cused on either bacteriology or immunology. Technical

issues like species adapted methods and the scarcity of

pathogen RNA compared to host RNA, all contribute to

this conventionally one-sided focus in gene expression

studies of infection processes [5]. The emergence of

high-throughput qPCR systems, e.g. the BioMark from

Fluidigm, offers a platform that is ideal for the focused,

hypothesis-driven study of gene expression of even small

quantities of RNA [6,7]. The high capacity of such plat-

forms enables the researcher to cover diverse areas – as

well as organisms – of interest in the same experimental

setup.

Porcine pleuropneumonia, caused by the Gram-negative

bacterium Actinobacillus pleuropneumoniae, is a conta-

gious respiratory disease often leading to a very rapidly

evolving pleuropneumonia. This infection is associated

with significantly impaired animal welfare, high morbidity

and mortality, resulting in economic losses in the pig pro-

duction [8,9]. The pig has recently been shown to be a

promising animal model for human pneumonia [10-12].

The study of this porcine infection might therefore also

provide valuable information with human relevance.

The pathogenesis of pleuropneumonia in pigs is still

not fully understood. However, innate pattern recogni-

tion receptors (PRRs) [13], inflammatory cytokines

[14,15], and proteins involved in depletion of iron avail-

able to the bacteria [16] are recognized as important

host factors associated with outcome of the infection.

The rapidly evolving pleuropneumonia may in severe

cases lead to death within 24–36 hours, likely due to the

combined effect of tissue damage caused by the bacteria,

and a strong proinflammatory immune response [15,17].

Studies have shown that A. pleuropneumoniae infec-

tion leads to a rapidly and widely disseminated immune

response. In the porcine lung, this was demonstrated by

the significant regulation of immune related genes in

visibly unaffected tissue, as well as in necrotic areas [15].

Also hepatic, splenic, tonsillar, and tracheobronchial

lymphatic gene expression was regulated in response to

infection, and serum acute phase protein (APP) levels

were significantly altered [14,18-20].

The colonization and ability to adapt to local condi-

tions in the host of A. pleuropneumoniae is mediated by

multiple known and putative infection-associated factors

[8,21-24]. Many of the presently known virulence factors

of this pathogen have been identified by in vivo methods

such as signature tagged mutagenesis, in vivo expression

technology and microarray analysis of bacteria from

naturally or experimentally infected pigs [23,25-28].

Among bacterial factors presently considered to be of

importance for A. pleuropneumoniae virulence are adhe-

sins, iron-acquisition proteins, capsular polysaccharides,

and lipopolysaccharides as well as RTX toxins, which are

major virulence factors in the genus of Pasteurellaceae

[8,21,29]. In vivo and in vitro studies have demonstrated

genes involved in cell envelope biogenesis and mainten-

ance to be highly affected during infection [28,30].

So far, studies of gene expression during porcine

pleuropneumonia have addressed the pathogen or host

separately [13-15,17,23,28,31-33]. Here, we analyzed the

relationship between gene expression of A. pleuropneu-

moniae and the porcine host simultaneously in the same

lung tissue samples. Porcine and bacterial RNA was

extracted, reverse transcribed, and pre-amplified simul-

taneously. Temporal changes of protein and mRNA

coding for host immune factors and mRNA coding for

pathogen virulence factors were analyzed during the

acute phase of the disease. We used the highly sensitive

method of quantitative reverse transcription real-time

PCR (RT-qPCR) on a high-throughput chip-based plat-

form allowing the simultaneous analysis of 48 genes

and 48 samples – 2304 parallel reactions. Bacterial and

porcine mRNA was analyzed on the same chip, and a

subset of bacterial and host genes were found to correlate

and to be regulated in accordance with infection status.

This is the first study revealing the concurrent transcrip-

tional response of bacteria and host at the site of infection

during porcine pleuropneumonia.

Methods
Animals and infection studies

The experimental infection study is described in detail

in reference [23]. All animal procedures were approved

by the Danish Animal Experiments Inspectorate under

the Ministry of Justice (permit number: 2006/561-1106)

and animal experiments were conducted in strict accord-

ance with their guidelines. Briefly, inoculations were car-

ried out using A. pleuropneumoniae serotypes 2 (4226) and

6 (7712640) grown overnight on PPLO agar plates (Difco)

at 37°C and resuspended in 0.9% NaCl. Resuspended bac-

teria were mixed 1:1 with brain heart infusion broth (Difco)

supplied with 5% NAD and used for inoculations. 8-10-

weeks-old Danish specific pathogen free piglets were
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inoculated intranasally with 2 ml bacterial suspension

containing 1-2 × 108 CFU. No serotype-specific effects on

histopathological findings or on either porcine or bacterial

gene expression were observed in subsequent analyses

(Additional file 1: Table S1). Therefore, animals were com-

bined to obtain larger sample sizes in each group and to

improve statistical power. A direct effect of the broth into

the lungs of control animals was not investigated, however

in cases of intranasal inoculation with a volume of 2 ml

most of the suspension is dispersed in and absorbed from

the upper respiratory system and does not reach the lungs

as a bolus. Furthermore, control animals were housed

and fed similarly to infected animals and handled by

the same animal caretakers. Samples from uninfected

control animals (n = 6 for protein, n = 7 for RNA), and

animals sacrificed 6 hours (h) post inoculation (p.i.) (n = 6),

12 h p.i. (n = 5), 24 h p.i. (n = 8), and 48 h p.i. (n = 5) were

included. Lung tissue samples of approx. 0.5 cm × 0.5 cm ×

0.5 cm cubes from pulmonary lesions were manually

dissected and preserved in RNAlater (Ambion) and

stored at −20°C. Samples for laser capture microdissec-

tion (LCM) were snap frozen in liquid nitrogen

(approx. 1 cm × 1 cm × 0.5 cm) and stored at −80°C.

For histology, lung tissues were fixed in 10% neutral

buffered formalin and slides were processed by routine

methods and stained with haematoxylin and eosin (HE).

Laser capture microdissection (LCM)

Pleuropneumonic lung tissue from animals sacrificed 6 h

and 24 h p.i. was sectioned (8 μm) using a Leica

CM1850 cryostat (Leica Microsystems) at −24°C and

mounted on 0.17 mm PEN MembraneSlides (Carl Zeiss

MicroImaging). Preparation of MembraneSlides com-

prised rinsing once in 0.5% NaOH and twice in RNase

free water, drying at 46°C for 30 minutes, and treating in

a UV Crosslinker (AH diagnostics) for 30 minutes. Once

mounted on the MembraneSlides, tissue sections were

stored at −80°C. Bacteria were stained using immuno-

fluorescence. Rabbit anti-A. pleuropneumoniae serotype

5b strain L20 IgG (produced in-house, National Veterin-

ary Institute) was biotinylated using ChromaLink Biotin

Labeling Kit (Solulink). Biotinylated antibodies were

used in combination with streptavidin-conjugated fluores-

cent dye (Cy3) in Arcturus HistoGene LCM Immuno-

fluorescence Staining Kit (Life Technologies). Biotinylated

antibodies were applied in a concentration of 100 μg/ml,

and streptavidin-conjugated Cy3 was applied in a 1:100

dilution.

Control stainings of A. pleuropneumoniae serotypes 2

(4226) and 6 (7712640) were performed to ensure that IgG

raised against serotype 5b strain L20 also recognized these

serotypes. Immunofluorescence staining was followed im-

mediately by LCM, carried out using a PALM MicroBeam

system (P.A.L.M. Microlaser Technologies AG), comprised

of an Axiovert 200 M microscope (Carl Zeiss) with a

100-W Hg lamp, a 40×/1.30 oil Fluar objective (Carl

Zeiss), filter set XF53 (Omega Optical), and PALM

RoboSoftware v. 4 SP2 (P.A.L.M. Microlaser Technologies

AG). Fluorescently labeled bacterial colonies and sur-

rounding tissue were microdissected and catapulted

into the lid of a 0.2 ml tube containing 25 μl extraction

buffer from the Arcturus PicoPure RNA Isolation Kit

(Life Technologies). LCM was performed in triplicate

for each animal.

RNA isolation

Experimental practice and reporting has been performed

according to the minimum information for publication

of quantitative real-time PCR experiments (MIQE)

guidelines [34]. Manually collected samples of approx.

300 mg were homogenized using a gentleMACS Disso-

ciator (Miltenyi Biotec) in M tubes (Miltenyi Biotec)

containing Qiazol (Qiagen). RNA was extracted using

RNeasy Lipid Tissue Midi Kit (Qiagen), according to

manufacturer’s specifications. RNA integrity numbers

(RIN) were determined using an Agilent 2100 Bioanalyzer,

Agilent RNA 6000 Nano Chips, and Agilent RNA 6000

Nano reagents (Agilent Technologies, USA). RIN ranged

from 4.7 to 8.2, mean RIN was 6.5, which was accepted

for RT-qPCR in accordance with previous review of the

effect of RNA integrity on RT-qPCR performance [35].

RNA purity and concentration were determined using a

NanoDrop ND-1000 UV spectrophotometer (Thermo

Scientific). RNA concentrations ranged from 107 to

1612 ng/μl, mean RNA concentration was 554 ng/μl.

A260/280 and A260/230 ratios were above 2 for all

samples. RNA extracts were stored at −80°C.

Extraction of RNA from microdissected tissue was per-

formed immediately after LCM, using Arcturus PicoPure

RNA Isolation Kit (Life Technologies) according to the

manufacturer’s specifications. RNA was eluted in 20 μl

elution buffer (supplied in kit). RNA concentrations were

determined using a NanoDrop ND-1000 UV spectropho-

tometer, and ranged from ~1 to ~14 ng/μl. RIN of LCM

samples was not measured due to the small amount of

total RNA; all material was saved for use in the reverse

transcription. RNA extracts were stored at −80°C.

Reverse transcription, pre-amplification and exonuclease

treatment

QuantiTect Reverse Transcription Kit (Qiagen) was used

for cDNA synthesis, employing a mix of oligo-dT and

random primers. Two technical replicates of cDNA syn-

thesis were made from each RNA sample, both manually

dissected and LCM. Reverse transcription of RNA from

manually dissected material was performed using 500 ng

of RNA for each reaction. The amount of RNA applied

in reverse transcription of LCM samples varied due to
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very low and varying RNA concentrations obtained in

the LCM RNA extraction procedure. Non-reverse tran-

scriptase controls were likewise prepared for both manu-

ally dissected and LCM samples, and included in the

following pre-amplification and qPCR. cDNA samples

were pre-amplified using 5 μl TaqMan PreAmp Master

Mix (Life Technologies), 2.5 μl 200 mM mix of the por-

cine and bacterial qPCR primers and 2.5 μl diluted

cDNA (1:8 in low EDTA TE-buffer). Pre-amplification

was initiated by 10 min hot start at 95°C, followed by 14

(manually dissected) or 17 cycles (LCM) of denaturing

for 15 s at 95°C and annealing/extending for 4 min at

60°C. Pre-amplified cDNA was treated with Exonuclease

I (E. coli) (New England Biolabs) for 30 min at 37°C

followed by 15 min at 80°C.

Assay design

Primers were designed in the Primer3 software (http://

bioinfo.ut.ee/primer3-0.4.0/) for both bacteria (17) and

host (31) genes using similar criteria for Tm and amplicon

length as described in reference [14]. Sequences of porcine

and bacterial primers as well as PCR efficiencies (based on

three separate 5-fold dilution series of pooled cDNA sam-

ples, run on a separate qPCR chip), Tm, and amplicon

lengths can be found in Additional file 2: Table S2.

All investigated genes are summarized in Table 1. Bacter-

ial assays fall into two overall categories: 1) genes involved

in cell wall membrane biogenesis, potentially interacting

with the innate immune response of the host: kdsB (3-

deoxy-manno-octulosonate cytidylyltransferase), wzxE

(Lipopolysaccharide biosynthesis protein), ompA (Outer

membrane protein P5), mltC (Murein transglycosylase

C), palA (Outer membrane protein), tolA (cell envelope

integrity inner membrane protein), wecC (UDP-N-acetyl-

D-mannosamine dehydrogenase) and ompP4 (Lipoprotein

E). 2) known or potential virulence factors expected to

be expressed in vivo during infection: two genes, afuB

(ferric transport system permease protein) and hgbA

(hemoglobin-binding protein), encoding proteins involved

in iron uptake, a function considered to be important for

bacterial survival in the host [8,36]. apxIIA (RTX-II toxin

determinant A) was selected due to the fact that exotoxin

production is a major virulence factor of A. pleuropneu-

moniae [37]; only one toxin gene was included due to the

limited amount of space on the chip. Two potential viru-

lence factors involved in adherence and competence were

included: comEA (fibronectin adhesion protein) and csgG

(putative lipoprotein) [38,39]. csgG has previously been

observed to be up-regulated in vivo in pig lung during the

acute phase of disease and during biofilm formation

[28,40], and its homologue proved to be immunogenic in

pathogenic Haemophilus parasuis [41]. mgsA was in-

cluded as methylglyoxal appears to play a key role in the

physiology of intracellular pathogens [42] and mgsA seems

to be important for Haemophilus influenzae survival in a

murine host [43]. The chaperone gene dnaK, encoding

HSP70, was included as it has previously been reported

as immunoreactive in convalescent sera from pigs natur-

ally infected with A. pleuropneumoniae [44]. Table 1 states

the functional grouping of all investigated porcine genes

and thereby also the rationale behind including these

genes in the study. Porcine assays were focused around

uncovering the pathogen recognition in the host lung, the

inflammatory response and immune modulation to con-

trol the infection, and nutrient sequestration (iron) from

the invading pathogen.

High-throughput qPCR

High-throughput qPCR was applied using Dynamic

Array IFC 48.48 chips (Fluidigm) for the BioMark HD

System (Fluidigm), TaqMan Gene Expression Master

Mix (Life Technologies), EvaGreen 20X (VWR Bie &

Berntsen), and gene specific primers as previously de-

scribed [12]. qPCR was initiated by 2 min at 50°C and

10 min at 95°C, followed by 35 cycles of denaturing for

15 s at 95°C and annealing/elongation for 1 min at 60°C.

Melting curves were generated after each run to confirm

the presence of a single PCR product (from 60°C to 95°C,

increasing 1°C/3 s). Non-template controls and three

interplate calibrators were included on each chip.

Protein extraction and ELISA

Lung tissue was extracted by homogenization with 1 ml

0.1 M Tris/HCl pH 7.2, 0.1 M NaCl, plus protease inhibi-

tor cocktail Complete Ultra from Roche (1 tablet per

10 ml buffer) per 100 mg tissue, using 0.2 to 0.5 g of tis-

sue. Homogenization was performed at room temperature

with a gentleMACS Dissociator from Miltenyi Biotec

using M-tubes (Miltenyi Biotec) and the RNA_02.01 M

Tube protocol in which the tissue is blended for 81 sec-

onds. This was followed by incubation on rocking table

overnight at 4°C. Finally, samples were centrifuged for

20 minutes at 5,500 x G and the supernatant was retrieved

and used for analysis of cytokines by ELISA.

IL-6, IL-1β, and IL-8 concentrations were determined

by sandwich ELISAs from R&D Systems (Duoset DY686,

Duoset DY681 and Duoset DY535, respectively) using a

calibrated porcine IL-6/IL-1β/IL-8 standard, respectively,

supplied by the manufacturer. Porcine IFN-γ was quan-

tified by sandwich ELISA as described in reference [45],

using a mouse monoclonal anti-pig IFN-γ antibody

(clone P2F6, Pierce Biotechnology) for catching and a

biotinylated mouse monoclonal anti-pig IFN-γ anti-

body (clone P2C11, BD Biosciences Pharmingen) and

peroxidase-conjugated streptavidin (Invitrogen) for

detection. Samples were run in duplicates in a dilution

of 1:2.
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Table 1 Relative expression levels of porcine and bacterial genes

Gene Gene product Control3 6 h p.i.3 12 h p.i.3 24 h p.i.3 48 h p.i.3 P value4

Porcine1 – Genes involved in pattern recognition

TLR4 Toll-like receptor 4 1.0 ± 0.1 12.6 ± 1.6 8.3 ± 2.6 4.1 ± 1.2 3.7 ± 0.6 9.00E-08

CD14 Cluster of differentiation 14 1.0 ± 0.2 8.7 ± 0.8 7.6 ± 2.1 4.5 ± 1.1 4.1 ± 0.4 8.00E-08

MD2 Myeloid differentiation protein-2 1.0 ± 0.1 3.4 ± 0.4 3.2 ± 0.4 2.0 ± 0.3 2.0 ± 0.4 1.06E-05

LBP Lipopolysaccharide-binding protein 1.0 ± 0.4 8.8 ± 1.9 8.6 ± 4.4 8.6 ± 2.0 24.7 ± 4.5 3.38E-05

MYD88 Myeloid differentiation primary response 88 1.0 ± 0.1 5.2 ± 0.7 4.6 ± 1.5 1.8 ± 0.3 2.5 ± 0.6 7.25E-06

IRF3 Interferon regulatory factor 3 1.0 ± 0.1 1.4 ± 0.2 1.7 ± 0.4 1.0 ± 0.1 1.0 ± 0.1 0.021

SFTPA Surfactant protein A 1.0 ± 0.1 0.6 ± 0.1 0.7 ± 0.2 0.7 ± 0.2 0.3 ± 0.2 0.014

SFTPD Surfactant protein D 1.0 ± 0.1 0.6 ± 0.1 1.0 ± 0.4 0.6 ± 0.1 0.5 ± 0.3 NS

Porcine1 – Genes involved in involved in iron metabolism

CD163 CD163 molecule 1.0 ± 0.1 0.8 ± 0.1 3.0 ± 1.1 2.1 ± 0.2 3.0 ± 0.7 0.022

HP Haptoglobin 1.0 ± 0.2 2.2 ± 0.1 2.1 ± 0.2 1.2 ± 0.2 1.2 ± 0.5 0.004

TF Transferrin 1.0 ± 0.1 0.4 ± 0.1 0.5 ± 0.2 0.3 ± 0.1 0.1 ± 0.0 1.31E-04

LTF Lactotransferrin 1.0 ± 0.6 10.2 ± 5.9 30.4 ± 22.0 10.5 ± 6.0 7.1 ± 3.5 NS

Porcine1 – Cytokines involved in innate immune modulation and inflammation

IL1B Interleukin-1 β 1.0 ± 0.2 414 ± 50 253 ± 93 175 ± 41 209 ± 27 7.20E-07

IL1RN Interleukin-1 receptor antagonist 1.0 ± 0.2 80.1 ± 12.9 53.4 ± 21.2 40.7 ± 9.7 37.8 ± 3.6 7.50E-07

IL6 Interleukin-6 1.0 ± 0.1 1024 ± 67 256 ± 99 80.2 ± 29.1 48.9 ± 22.3 6.00E-08

IL8 Interleukin-8 1.0 ± 0.2 261 ± 19 181 ± 69 91.0 ± 26.1 104 ± 19 1.28E-06

IL17A Interleukin-17A 1.0 ± 0.3 325 ± 54 116 ± 55 46.1 ± 13.4 21.5 ± 4.1 1.49E-05

IL18 Interleukin-18 1.0 ± 0.1 3.7 ± 0.4 7.1 ± 2.8 6.5 ± 2.1 6.0 ± 0.8 1.51E-04

IFNG Interferon-gamma 1.0 ± 0.2 3.1 ± 0.4 1.1 ± 0.3 1.0 ± 0.2 0.3 ± 0.1 1.19E-05

TNF Tumor necrosis factor 1.0 ± 0.1 4.8 ± 0.6 2.5 ± 0.5 2.0 ± 0.7 1.8 ± 0.3 3.20E-04

CSF2 GM-CSF 1.0 ± 0.1 4.4 ± 0.6 2.6 ± 0.9 1.4 ± 0.3 0.6 ± 0.3 4.69E-05

Porcine1 – Genes involved in the complement system and other functions

C3 Complement component 3 1.0 ± 0.1 1.4 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 0.7 ± 0.2 0.015

CFB Complement factor B 1.0 ± 0.1 5.6 ± 0.4 3.4 ± 0.9 2.7 ± 0.4 2.9 ± 1.1 1.28E-05

CFD Complement factor D 1.0 ± 0.1 1.4 ± 0.2 1.1 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 NS

MASP2 Mannan-binding lectin serine peptidase 2 1.0 ± 0.1 0.4 ± 0.0 0.5 ± 0.2 0.3 ± 0.1 0.2 ± 0.0 1.14E-04

SAA Serum amyloid A 1.0 ± 0.2 15.3 ± 2.3 20.4 ± 11.0 68.9 ± 19.6 110.2 ± 19.6 7.57E-06

TNFAIP3 Tumor necrosis factor, alpha-induced protein 3 1.0 ± 0.1 17.5 ± 1.7 7.7 ± 2.6 4.1 ± 1.0 3.7 ± 0.4 8.00E-07

GZMB Granzyme B 1.0 ± 0.5 3.7 ± 1.6 1.0 ± 0.5 1.3 ± 0.3 0.4 ± 0.1 0.0069

Bacterial2 – Genes involved in cell wall membrane biogenesis

kdsB 3-deoxy-manno-octulosonate cytidylyltransferase NA 2.6 ± 0.5 1.7 ± 0.2 1.2 ± 0.1 1.0 ± 0.1 7.97E-04

wzxE Lipopolysaccharide biosynthesis protein NA 1.7 ± 0.1 1.4 ± 0.1 1.2 ± 0.1 1.0 ± 0.1 1.50E-03

ompA Outer membrane protein P5 NA 1.0 ± 0.1 2.5 ± 0.3 3.6 ± 0.5 3.6 ± 0.7 3.11E-05

mltC Murein transglycosylase C NA 1.9 ± 0.2 1.7 ± 0.1 1.3 ± 0.1 1.0 ± 0.1 8.20E-05

palA Outer membrane protein NA 1.7 ± 0.1 1.4 ± 0.2 1.0 ± 0.1 1.1 ± 0.1 9.01E-04

tolA Cell envelope integrity inner membrane protein NA 1.0 ± 0.1 1.5 ± 0.1 1.5 ± 0.2 1.6 ± 0.1 9.99E-03

wecC UDP-N-acetyl-D-mannosamine dehydrogenase NA 2.2 ± 0.1 1.8 ± 0.2 1.5 ± 0.1 1.0 ± 0.2 2.72E-04

ompP45 Lipoprotein E NA 4.2 ± 0.6 2.8 ± 0.7 1.4 ± 0.3 1.0 ± 0.2 4.07E-04

Bacterial2 – Genes involved in iron uptake

afuB Ferric transport system permease protein fbpB NA 3.9 ± 0.4 2.6 ± 0.3 1.6 ± 0.2 1.0 ± 0.1 2.33E-06

hgbA Hemoglobin-binding protein NA 1.3 ± 0.1 1.0 ± 0.1 1.0 ± 0.2 1.0 ± 0.2 NS
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Lung tissue extract cytokine concentrations were

standardized in the following way: the absorbance at

280 nm was determined for each sample and used to

normalize each sample value individually by multiplying

with the correction factor: [A280 (mean, all samples)]/

[A280 (sample)]. The detection limit for all ELISAs was

determined as the lowest concentration in the standard

row multiplied by the dilution factor employed for the

samples.

Data processing and statistics

qPCR data was inspected using Fluidigm Real-Time PCR

Analysis software (v. 3.0.2), and pre-processed and ana-

lyzed using GenEx software (v. 5.3.7) (MultiD). Data was

corrected for PCR efficiencies for each primer assay. As

three Dynamic Array IFC 48.48 chips were necessary to

accommodate all samples, data was normalized with

three interplate calibrator samples included on all chips.

The resulting data was then normalized using reference

gene expression. A panel of eight porcine reference

genes had previously been tested on the same A. pleur-

opneumoniae infected lung material as applied in this

study (data not shown), and using the algorithms geNorm

[46] and NormFinder [47], the genes beta-actin (ACTB)

and peptidylprolyl isomerase A (PPIA) were found to

be the most stably expressed. Porcine qPCR data was

normalized with PPIA. csrA (carbon storage regulator)

and manB (phosphomannomutase) were used for

normalization of bacterial qPCR data, as these had pre-

viously been validated as suitable bacterial reference

genes for the tissue applied in the present study [23].

cDNA replicates were averaged after reference gene

normalization. For each qPCR assay (gene) all Cq values

were converted to relative quantities by calculating

2(highest_assay_Cq – actual_sample_Cq), thus giving the sample

with the highest Cq (lowest gene expression) a value of

1 and all other samples values >1. The mean values for

each group was computed, and in order to easily

visualize gene expression fold changes between time

points, scaling of data was performed. Porcine gene ex-

pression at all time points p.i. was displayed relative to

expression in controls (mean expression in control ani-

mals set to 1). For each bacterial gene, the time point

with the lowest expression was set to 1, and all other

time points displayed relative to this. Data were log2
transformed to approach a normal distribution prior to

ANOVA or t-test, and genes were considered to be

differentially expressed if P < 0.05, and if the expression

changed ≥2-fold over the course of infection. Pearson’s

correlation coefficient was used to determine the tem-

poral correlation of 1) expression of porcine and bac-

terial genes, 2) of porcine gene expression measured in

manually dissected samples and LCM samples, and 3)

of mRNA and protein levels of cytokines. Correlations

were considered significant at level of P < 0.05 (TDIST

function in Excel). Log2 transformed bacterial expres-

sion data were further analyzed by principal component

analysis (PCA), included in the GenEx software, in

order to describe the overall structure of the dataset

and to identify homogeneous subgroups of samples.

Results
Histopathology

At 6 h p.i. the lung tissue was affected by acute inflam-

mation, characterized by hyperemia, bleeding, oedema,

influx of neutrophils, numerous bacteria, fine threads of

fibrin, and degeneration or necrosis of the alveolar septal

cells (Figure 1B and C). Among the infiltrating neutro-

phils there were necrotic and activated neutrophils (i.e.

“oat-shaped cells”). Lesions at 12, 24 and 48 h p.i. resem-

bled those described at 6 h p.i. but with some variations.

At 12 h p.i. the cellular infiltration had expanded and

still consisted mainly of neutrophils, but with increasing

numbers of mononuclear cells (Figure 1D). The fibrin

had aggregated into cloths and necrotizing vasculitis was

observed. At 24 h p.i. the number of inflammatory cells

had increased, most lobules were severely affected by co-

agulative necrosis, and fibrinoid necrotizing vasculitis

Table 1 Relative expression levels of porcine and bacterial genes (Continued)

Bacterial2 – Gene involved in exotoxin production

apxIIA RTX-II toxin determinant A NA 7.0 ± 0.7 3.0 ± 0.7 2.3 ± 0.4 1.0 ± 0.3 5.16E-06

Bacterial2 – Genes involved in adhesion and competence

comEA Fibronectin adhesion protein NA 5.8 ± 0.8 2.8 ± 0.5 1.5 ± 0.4 1.0 ± 0.2 5.33E-05

csgG Putative lipoprotein NA 1.2 ± 0.1 1.2 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 NS

Bacterial2 – Genes other functions

dnaK Chaperone protein Dna NA 2.9 ± 0.4 2.6 ± 1.3 2.0 ± 0.8 1.0 ± 0.5 NS

mgsA Methylglyoxal synthase NA 1.8 ± 0.2 1.3 ± 0.2 1.0 ± 0.1 1.4 ± 0.2 0.027
1Sample sizes: Control: n = 7; 6 h p.i.: n = 6; 12 h p.i.: n = 5; 24 h p.i.: n = 8; 48 h p.i.: n = 5.
2Number of data points: 6 h p.i.: n = 6; 12 h p.i.: n = 4; 24 h p.i.: n = 7; 48 h p.i.: n = 5.
3Expression is given ± SEM.
4P values are included for genes that were differentially expressed during the course of the study (ANOVA, P < 0.05). NS = not significant.
5Gene also involved in iron uptake (heme acquisition).
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was seen (Figure 1E). After 48 h p.i. the lesions had

developed further and the large areas of coagulative

necrosis were enclosed by dense fringes of cells includ-

ing many oat-shaped cells (Figure 1F). Histopathological

examination of lung tissue from the control animals re-

vealed mild thickening of the alveolar septa (Figure 1A).

The observation of thickened alveolar septa in the con-

trol pigs is a common finding in conventional pigs and

is considered to be a pulmonary response to environ-

mental factors associated with swine production [48].

Two animals differed from the general descriptions out-

lined above (one pig at 12 h p.i. and one pig at 24 h p.i.),

by having mainly moderate non-suppurative interstitial

pneumonia and only moderate focal acute lesions. In

addition, in these two specific animals it was not pos-

sible to detect bacterial gene expression using RT-qPCR,

and IL-1β and IL-8 protein concentrations were below

the limit of detection. Collectively, these observations

suggest that bacterial infection was comparatively less

efficiently established in these two animals.

Concurrent gene expression patterns in lung tissue: Host

pattern recognition receptor genes and pathogen-associated

molecular pattern genes

Expression of the porcine genes toll-like receptor 4

(TLR4), cluster of differentiation 14 (CD14), and myeloid

Figure 1 HE-stained lung sections. (A) Lung section from a control pig with mild thickening of the alveolar septa. Scale bar 200 μm; (B-F) Lung
sections from pigs inoculated with A. pleuropneumoniae. (B) 6 h p.i.: An interlobular septa [i] with bleeding, oedema and infiltration of neutrophils,
separates a non-affected lobule and a lobule with hyperemia, bleeding, oedema, infiltration of neutrophils, bacteria and fibrin. Scale bar 200 μm;
(C) 6 h p.i.: Necrosis and degeneration of alveolar septal cells (arrows), and presence of oat-shaped cells [o]. Scale bar 30 μm; (D) 12 h p.i.: Increased
cellular infiltration along an interlobular septa [i] and coagulative necrosis of the alveolar septa (arrows). Scale bar 200 μm; (E) 24 h p.i.: Fibrinoid necrosis
of a blood vessel. Scale bar 40 μm; (F) 48 h p.i.: Lobule affected by coagulative necrosis [n] enclosed by dense fringes of neutrophils and mononuclear
cells [c]. Scale bar 200 μm.

Brogaard et al. BMC Genomics  (2015) 16:417 Page 7 of 15



differentiation protein-2 (MD2), all involved in recognition

of Gram-negative lipopolysaccharide (LPS), increased and

peaked at 6 h p.i. (Figure 2a). Likewise, LPS-binding pro-

tein (LBP) and myeloid differentiation primary response 88

(MYD88), also involved in TLR4 signaling, were signifi-

cantly up-regulated after infection (Table 1). Interferon

regulatory factor (IRF3) was significantly up-regulated in a

temporal pattern highly similar to the other TLR4 signaling

related genes, but never more than 1.7-fold (Table 1). In

the pathogen, several genes involved in synthesis of the

outer bacterial membrane components were differentially

expressed during infection (Figure 2a; Table 1). A signifi-

cant correlation was seen between expression patterns of

bacterial genes involved in LPS synthesis (kdsB and wzxE)

and host genes involved in the recognition of and response

to LPS (TLR4, CD14, MD2, and MYD88, Table 2). More-

over, genes related to TLR4-mediated signal transduction

were also significantly correlated to several bacterial genes

involved in peptidoglycan synthesis (palA, wecC, and mltC,

Table 2). TLR4, CD14, MD2, kdsB, and wzxE (Figure 2a,

Table 1), as well as mltC, wecC, and palA (Table 1) were

all highly expressed at 6 h p.i. After that, their expres-

sion decreased and was found to be lowest at 24 h

and 48 h p.i. In contrast, ompA (Figure 2a) and tolA

(Table 1) gradually increased from 6 h to 48 h p.i. and

thus correlated negatively with host gene expression of

TLR4 and associated components. LBP stands out from

the remaining TLR4-related genes as its expression in-

creased slowly during infection, with a maximal response

at 48 h p.i. (Table 1).

Concurrent gene expression patterns in lung tissue: Host

and bacterial genes involved in iron sequestration and

acquisition

Expression in infected pig lungs of genes encoding hapto-

globin (HP), lactotransferrin (LTF), and transferrin (TF),

all involved in binding and transport of iron, were signifi-

cantly changed at several time points p.i. (Figure 2b,

Table 1). LTF was highly up-regulated during infection,

peaking at 12 h p.i. HP was less up-regulated, with a 2-fold

increase of expression levels at 6 and 12 h p.i., and TF was

down-regulated at 6 h p.i. and continued to decrease until

48 h p.i. The gene encoding CD163, a receptor for

hemoglobin-haptoglobin complexes, was also significantly

up-regulated in response to infection (Table 1). Expression

of bacterial genes involved in iron acquisition from the

host environment was significantly induced during infec-

tion (Figure 2b, Table 1). The highest measured expression

of ompP4 and afuB occurred at 6 h p.i., followed by a de-

creased expression of both genes until 48 h p.i. No differ-

ential expression of hemoglobin-binding protein (hgbA)

was detected (Table 1). Significant positive correlations

were seen between expression of the porcine genes HP

and TF and bacterial genes afuB and ompP4 from 6 to

48 h p.i. (Table 2).

Porcine inflammatory response; bacterial adhesion and

cytotoxin

As expected, moderate (2–10 fold) to strong (>10 fold)

up-regulation of proinflammatory cytokines was seen early

in the response to infection (Table 1). The strongest

Figure 2 Temporal development of porcine and bacterial gene expression profiles. Porcine data (dotted gray) is shown as mean expression
relative to control animals; bacterial data (black) is shown as mean expression relative to the time group with the lowest expression. Sample sizes
are given in Table 1. SEM is depicted by error bars. *P < 0.05, **P < 0.01, ***P < 0.001 (t-test or Mann–Whitney if normal distribution could not be
demonstrated) relative to control (porcine) and lowest expression (bacterial). A) expression of porcine genes involved in recognition of LPS, and
bacterial genes involved in LPS synthesis (kdsB and wzxE) and ompA. B) expression of porcine genes involved iron binding and transportation and
bacterial genes involved iron acquisition. Note y-axis in log-scale.
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responding cytokine was IL6, displaying >1,000-fold in-

crease in expression at 6 h p.i. relative to uninfected con-

trols. Also IL1B, IL8, and IL17A were highly up-regulated

(>100 fold) at 6 h p.i. More moderate regulation was seen

for IL18, TNF, IFNG, granulocyte-macrophage colony

stimulation factor (CSF2), and the inflammatory marker

TNFAIP3. These displayed maximum up-regulation less

than 10-fold within the first 48 h of infection. The anti-

inflammatory cytokine IL1RN was also differentially

expressed in response to infection, following the same ex-

pression pattern as IL1B and IL8. As seen in Table 2, the

expression of cytokines involved in Th17 differentiation

(IL6, IL1B, IL17), was highly correlated with expression of

bacterial genes involved in synthesis of the outer mem-

brane (OM) as well as apxIIA and comEA. Correlation

was for the most part significant and positive except for

correlation with ompA and tolA, which was negative. The

only cytokine to deviate from this pattern was IL18, which

did not correlate with the expression of any analyzed bac-

terial genes. The expression of serum amyloid A (SAA)

was also found to respond to infection (Table 1). SAA was

most highly expressed at 48 h p.i., i.e. later than the peak

expression of the proinflammatory cytokines.

apxIIA, a pore-forming exotoxin and major virulence

determinant for A. pleuropneumoniae, and comEA, a

fibronectin adhesion protein were the two most strongly

regulated bacterial genes in the present study (Table 1).

The highest observed expression for both genes occurred

at 6 h p.i. and then expression of apxIIA and comEA

continued to decrease until 48 h p.i.

Principal component analysis

PCA of all bacterial gene expression data discriminated

between samples belonging to different time groups.

Bacterial expression profiles from 6 h p.i. resulted in

more well-defined groups with less variation compared

to later time points (Additional file 3: Figure S1).

Laser capture microdissection

Expression of porcine genes involved in LPS recognition

and inflammation were also analyzed in microdissected

lung samples at time points 6 h and 24 h p.i. (Figure 3).

This was performed to compare the host expression pro-

files obtained from the more heterogeneous manually

dissected lung tissue, to the expression from host tissue

surrounding the colonies of A. pleuropneumoniae. Por-

cine genes that displayed high expression in the high-

throughput gene expression analysis of manually dis-

sected lung material were selected for analysis in LCM

samples. Expression of TLR4, IL1B, IL6, IL8, and SAA in

manually dissected material and LCM material was

highly correlated (Pearson’s r > 0.72, P < 0.05); CD14 and

TNF expression was also positively correlated in the two

sample types, although not significantly. Even though

more variation was seen in the microdissected samples,

we could confirm that expression determined in manually

dissected lung tissue concurred with expression patterns

obtained from porcine cells directly neighboring the

infecting A. pleuropneumoniae colonies (Figure 3).

Cytokine detection by ELISA

Cytokines were successfully detected in the same tissue

as subjected to gene expression analysis. Lung tissue

protein concentrations of IL-1β, IL-6, IL-8, and IFN-γ

were determined in uninfected controls as well as in-

fected animals at 6, 12, 24, and 48 h p.i. (Table 3). At 6 h

p.i. protein levels of all four inflammatory cytokines were

significantly increased compared with the control group.

IL-1β and IL-8 were significantly elevated at 6 h p.i. and

remained so until 48 h p.i. IL-6 was found to be signifi-

cantly increased at 6 h and 24 h p.i. and borderline

Table 2 Correlation between bacterial and porcine gene expression by Pearson product-moment correlation coefficient

TLR4-related signalling Iron binding Inflammatory cytokines

TLR4 CD14 MD2 LBP MyD88 HP TF CD163 IL1B IL6 IL8 IL17A IL18 TNF IFNG

Capsular and outer membrane kdsB 0.64 0.44 0.42 -0.21 0.49 0.58 0.70 0.50 0.68 -0.05 0.56 0.71

wecC 0.65 0.58 0.49 -0.45 0.52 0.57 0.76 0.60 0.70 0.10 0.65 0.69

ompA -0.62 -0.51 -0.48 0.31 -0.54 -0.55 -0.76 -0.62 -0.65 0.05 -0.66 -0.66

wzxE 0.80 0.69 0.60 -0.17 0.61 0.74 0.78 0.63 0.75 0.11 0.65 0.65

mltC 0.62 0.51 0.47 -0.28 0.45 0.52 0.73 0.49 0.63 -0.07 0.53 0.65

palA 0.63 0.57 0.57 -0.08 0.59 0.69 0.75 0.68 0.76 -0.19 0.46 0.55

tolA -0.52 -0.51 -0.39 0.23 -0.31 -0.41 -0.64 -0.41 -0.47 0.04 -0.67 -0.58

Iron acquisition afuB 0.53 0.62 -0.41

ompP4 0.66 0.66 -0.08

hgbA 0.39 0.16 -0.05

apxIIA 0.57 0.83 0.60 0.80 -0.34 0.56 0.80

comEA 0.57 0.86 0.60 0.65 -0.09 0.81 0.71

n = 22, P < 0.05. Bold numbers: significant positive correlation; italicized numbers: significant negative correlation.
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significant (P = 0.05) at 48 h p.i. IFN-γ was significantly

increased at 6 h p.i. in a small number of samples IL-1β

and IL-8 protein concentrations were below the limit of

detection. This was especially the case for uninfected

control lungs, but also in two infected animals (one from

12 h p.i and one from 24 h p.i.). These coincided with

animals in which bacterial gene expression could not be

determined either, and both animals only had mild and

non-suppurative interstitial pneumonia based on histo-

pathological examinations.

Discussion
Time course gene expression analysis provides valuable

insight into the dynamics of the interdependent regulation

of gene expression in host and pathogen during infection.

However, the biological validity of the interactions inferred

from transcriptional analysis depends on the comparability

of gene expression results from the organisms involved.

Reliable transcriptional profiles of both organisms are im-

portant in order to interpret the interdependent networks

of gene expression. It is therefore ideal to simultaneously

analyze the concurrent gene expression of both host and

pathogen in the same biological sample. This should

include using the same methods of RNA extraction,

reverse transcription of RNA into cDNA, and qPCR,

thereby excluding technical variation due the applica-

tion of organism-specific methods.

In this study, the concurrent expression of selected

host and pathogen genes was analyzed simultaneously in

lung tissue sampled during the first 48 hours of A. pleur-

opneumoniae infection in pigs. The histopathological

findings correlate with lesions reported in pigs experi-

mentally infected with A. pleuropneumoniae in other

studies [49,50]. The variations in severity and dissemin-

ation of lung lesions among pigs, especially at later time

points, reflect the progressive nature of A. pleuropneu-

moniae infections with continuous development of new

lesions. PCA of all bacterial gene expression data identi-

fied well defined groups of animals according to time of

sampling. Less variation was seen among animals at 6 h

p.i. compared to later time points, reflecting the disease

progression which was also demonstrated in the histo-

pathological findings.

TLR4 is an important part of the host defense against

Gram-negative bacteria. It recognizes bacterial LPS with

the help of co-receptor CD14 and the auxiliary proteins

LBP and MD2 [51]. Except for LBP, expression of these

TLR4-related genes were found to correlate positively

and significantly with expression of bacterial genes in-

volved in cell wall biogenesis and synthesis of LPS.

Figure 3 Relative gene expression at 6 h and 24 h p.i. in microdissected samples. RNA was obtained from porcine cells in the infection loci (LCM)
and manually dissected lung material (MAN). Note y-axis in log-scale. Error bars depict SEM. * indicate high correlation between LCM and MAN
samples (Pearson’s r > 0.72, P < 0.05).

Table 3 Protein concentration ± SEM in lung tissue samples of controls and infected pigs

Protein (pg/ml) Control 6 h p.i. P value2 12 h p.i. P value2 24 h p.i. P value2 48 h p.i. P value2 LOD (pg/ml)

IL-1β 54 ± NA1 500 ± 64 <1.00E-08 304 ± 196 <1.00E-08 1037 ± 363 <1.00E-08 1322 ± 120 <1.00E-08 62.5

IL-6 113 ± 10 9419 ± 2015 4.06E-03 4423 ± 2165 0.07 1951 ± 501 2.88E-03 1975 ± 443 0.05 62.5

IL-8 82 ± 36 3544 ± 720 <1.00E-08 2386 ± 816 <1.00E-08 2181 ± 442 <1.00E-08 4416 ± 1114 <1.00E-08 62.5

IFNγ 15 ± 3 70 ± 12 4.06E-03 27 ± 14 0.45 19 ± 7 0.50 55 ± 21 0.16 6.2
1Only a single control sample was above limit of detection (LOD).
2P values (control vs. time group) are calculated using Mann–Whitney U test.
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These included LPS biosynthesis protein kdsB [52] and

O-antigen translocase wzxE [53], as well as outer mem-

brane lipoprotein/O-antigen processing protein palA

[54], enterobacterial common antigen (ECA) biosyn-

thesis protein wecC, and murein transglycosylase C mltC

involved in synthesis of peptidoglycan and lipoprotein.

The porcine innate immune system in the lung responds

to the presence of A. pleuropneumoniae by a rapid and

transient increase in expression of TLR4 and co-factors.

These genes related to the first line of defense peak

within the first 6 h of infection and remain significantly

up-regulated throughout the initial 48 h of infection.

Even though TLR4 is an essential factor in the innate

immune response to Gram-negative bacterial infections,

expression of this PRR in response to A. pleuropneumoniae

infection has not previously been extensively characterized.

Here, we report the first characterisation of pulmonary

expression of TLR4 and co-receptors in response to A.

pleuropneumoniae infection.

As indicated by high correlations of expression, the

majority of bacterial pathogen associated molecular pat-

terns (PAMPs) and cell wall biogenesis related genes in-

vestigated in this study are regulated in parallel with

porcine PRR genes within the first 48 h of bacterial lung

infection. Even though TLR4 and its ligand LPS have

been widely studied [51,55,56], the present simultaneous

transcriptional analysis of host and pathogen provide

novel insight into the time course of PAMP synthesis

and PRR-dependent inflammatory response to A. pleur-

opneumoniae at the site of infection. These important

players could be fundamental in novel immune modula-

tion approaches to improve host response to vaccination

or antibiotic therapy.

In vivo and in vitro experiments have identified bacter-

ial cell envelope biogenesis and maintenance category of

genes as highly affected during infection [28,30,32]. Here

we demonstrate the importance of these processes in the

early stage of infection, as bacterial cell wall associated

genes such as kdsB, wecC, and wzxE were all found to

be most highly expressed within the initial 6 h. This con-

clusion is supported by cDNA microarray results from a

large-scale study using the same biological material [23].

Lipoprotein encoded by ompA has been attributed with

functions such as adherence to respiratory mucosal sur-

faces and maintenance of cell structural integrity in

Gram-negative bacteria [57] and has previously been

found important for the virulence of A. pleuropneumo-

niae [26]. In the present study, ompA expression was

negatively correlated with the extensive expression of

proinflammatory cytokines, and might be of less import-

ance in induction of the substantial but transient inflam-

matory response to A. pleuropneumoniae. However,

ompA was found to correlate positively and significantly

with SAA expression. Human SAA has been reported to

function as an opsonin for several Gram-negative bacteria,

by binding to ompA [58]. As reported here, porcine SAA

and bacterial ompA exhibit expression patterns that

would allow a similar opsonisation mechanism in porcine

pleuropneumonia.

A proinflammatory cytokine response, with high gene

expression and tissue protein levels of IL-1, IL-6, and IL-

8, was also observed locally in the porcine lung. Expres-

sion of these three genes was also previously found to be

up-regulated in the liver compared to levels in control

animals [14]. Thus, PRR-mediated pulmonary recogni-

tion of pathogen leads to a rapidly disseminated cytokine

and APP response in the liver. Here, we also observed a

local APP response at the site of infection, namely differ-

ential expression of SAA, HP, and TF. Pulmonary regula-

tion was generally at lower (SAA and TF) or similar

(HP) levels compared to the hepatic response reported

in [14]. Pulmonary SAA expression appeared to be de-

layed compared to hepatic expression; we observed SAA

expression levels in the lung at 24–48 h p.i. that were

comparable to hepatic levels at 14–18 h p.i. reported

in [14]. The importance of pulmonary induced HP is

evident from its role in binding and sequestering

hemoglobin as an iron source for invading bacteria

under hemolytic conditions. The hemolytic activity of

Apx-toxins, e.g. apxIIA, makes this highly relevant dur-

ing A. pleuropneumoniae infection. Down-regulation of

TF in order to prevent transport of iron from external

sources to the site of infection might be another host

strategy to lower the level of iron available to the invading

bacteria. Accordingly, both pulmonary and hepatic [14]

TF expression is decreased during infection.

The ability to cope with iron-restricted conditions in

the host environment during infection is an important

virulence factor for bacteria [59], and A. pleuropneumo-

niae has developed several strategies to overcome this

challenge [8,21]. Hemoglobin binding protein hgbA has

been reported to be solely responsible for uptake of

hemoglobin in A. pleuropneumoniae [60], yet no differ-

ential expression of this gene was observed during infec-

tion in the present study. This is in agreement with

microarray analyses reported in [23], where neither dif-

ferential nor high expression of well-characterized iron-

acquisition genes such as hgbA and tbpBA was observed

from 6 h to 48 h p.i. in the same lung material as applied

here. In contrast, we found expression of the genes afuB

and ompP4 to be differentially expressed from 6 h to

48 h p.i. with the highest observed levels occurring at

6 h p.i. afuB encodes a ferric uptake protein, and ompP4

encodes a lipoprotein reported to be involved in acquisi-

tion of heme in H. influenzae [61]. The concurrent ana-

lysis and significant correlations between expression of

the porcine HP and TF and bacterial afuB and ompP4

peaking short time after bacterial colonization, reveals
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urgency for both organisms in the attempt of controlling

the available iron at the site of infection. The lack of hgbA

regulation and the decreasing expression of the iron

acquisition genes afuB and ompP4 over the course of in-

fection may be evidence of iron acquisition becoming less

challenging for the bacteria as the infection progresses.

This could be due to the continuous development of

hemorrhagic lesions, leading to hemoglobin becoming a

more easily available source of iron.

The ability of A. pleuropneumoniae to adhere to host

cells and secrete Apx-toxins right at the cell surface con-

tribute to the establishment of hemorrhagic lesions and

to the induction of a local immune response in the lung

[21]. Two of the proteins that facilitate these functions

are encoded by the genes comEA and apxIIA [38,62].

These were the two most highly regulated bacterial

genes in the present study. As necrosis of bronchial and

bronchiolar epithelium was established and progressed,

we observed a gradual decrease of apxIIA and comEA

expression towards the lowest observed expression at

48 h p.i. This result is in contrast to previous microarray

results, where ApxIIA was neither significantly differen-

tially expressed nor constantly highly expressed [23]. In

the same study mltC, palA, ompA and tolA were all

constitutively highly expressed during the first 48 h post

experimental challenge, whereas these four genes were

found to be regulated during infection with A. pleurop-

neumoniae in the present study. This discrepancy may

be due to the higher sensitivity of the RT-qPCR method

compared to the microarray method used. The genes

csgG and dnaK, which may also trigger a host immune

response, were constitutively expressed in both studies.

Bacterial genes involved in exotoxin production were re-

cently studied after in vitro infection of alveolar macro-

phages by A. pleuropneumoniae [63]. Although several

Apx-toxins were found to be up-regulated during the

course of infection, apxIIA was significantly down-

regulated, which is in disagreement with results obtained

in the present study. This discrepancy is likely a result of

the former in vitro setup compared to the present in situ

analysis at the site of infection.

IL-18 is a known inducer of IFN-γ during bacterial in-

fection [64], and results presented here demonstrate that

these two cytokines are concurrently up-regulated within

the first 6 h of A. pleuropneumoniae infection. After this

time point, IL18 expression continues to increase and

remains elevated throughout the first 48 h p.i. However,

IFNG expression decreases to levels close to those

observed in uninfected control animals by 12 h p.i. The

very transient up-regulation of IFNG is supported by

ELISA determinations of IFN-γ protein concentrations.

IFN-γ promotes NK-cell activity and Th-1 cell differenti-

ation which might be of less importance during bacterial

pleuropneumonia in pigs.

Protein and mRNA levels of IL-8 were found to be

highly and significantly elevated in the lung tissue of all

infected animals, being present during the whole time

interval studied here. IL-8 is the major chemoattractant

for neutrophils during pulmonary infections and has

previously been reported to be up-regulated in lung

tissue 14–18 h after infection with A. pleuropneumoniae

[15]. Here we found both protein and mRNA levels of

IL-8 to correlate with increased infiltration of neutro-

phils and mononuclear inflammatory cells. Expression of

mRNA coding for IL8 in microdissected tissue sur-

rounding colonies of A. pleuropneumoniae was highly

consistent with these findings. IL-17A is a well-known

proinflammatory cytokine, and like IL-8, it is a mediator

of neutrophil recruitment. IL-17 has previously been

proposed to play a protective role during Gram-negative

pulmonary infections in mice [65,66]. IL-17A is impli-

cated in the induction of several of the cytokines found

to be up regulated in the present study. Here we present

the first report of IL17 expression in response to A.

pleuropneumoniae. Differential pulmonary expression of

IL1B, IL6, IL8, TNF, and SAA in response to A. pleurop-

neumoniae has previously been reported [15,17,31,67].

However, this is the first study to confirm this response

in the immediate surroundings of the bacterial colonies

using laser capture microdissection.

This work has implications for future studies of inter-

dependent host-pathogen gene expression. Our results

demonstrate that both organisms can easily be analyzed

simultaneously under the exact same experimental con-

ditions. Our customizable, chip-based high-throughput

qPCR platform was found to be ideal for the present

hypothesis-driven transcriptional analysis of host-pathogen

interactions. Alternatively, if it is possible to extract suf-

ficient amounts of high quality RNA from all organisms

involved, sequencing methods could be applied if a

deliberate and informed selection of genes for analysis

cannot be made, or if global transcriptional screening is

more suitable to answer the research question [5].

Conclusions
By innovative application of high-throughput RT-qPCR

we demonstrate the feasibility and applicability of dual-

organism transcriptional analysis, and provide new in-

sights into the dynamic interactions of pig and bacteria

during pleuropneumonia. Temporal resolution of histo-

pathological changes and differences in mRNA and pro-

tein levels of key components within the innate immune

system as well as bacterial virulence and survival mecha-

nisms were demonstrated during the first 48 hours of A.

pleuropneumoniae infection. By applying laser capture mi-

crodissection, porcine gene expression could be confirmed

in the immediate surroundings of the invading pathogen.

Transcriptional up-regulation of selected cytokines was
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found to be reflected in the regulation of the tissue protein

levels of these cytokines, correlating with infection status

and histopathological findings.

Availability of supporting data

High-throughput qPCR data are available in Additional

file 1: Table S1; the table includes raw Cq values, ex-

perimentally obtained PCR efficiencies, sample group-

ing information, and challenge serotype information for

all samples and assays that were used to yield the data

presented in the present study.

Additional file 2: Table S2 contains qPCR primer se-

quences, information regarding qPCR primer Tm, ampli-

con length, and experimentally obtained PCR efficiencies.

Additional file 3: Figure S1 contains a PCA of all

bacterial gene expression data.
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Additional file 3: Figure S1. Principle component analysis of bacterial
gene expression profiles.
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