Concurrent Logic Restructuring and Placement for Timing Closure”

Jinan Lou, Wei Chen, Massoud Pedram
Department of Electrical Engineering — Systems
University of Southern California, Los Angeles, CA 90089

ABSTRACT: In this paper, an agorithm for simultaneous logic
restructuring and placement is presented. This agorithm first
constructs a set of super-cells aong the critica paths and then
generates the set of non-inferior re-mapping solutions for each super-
cell. The best mapping and placement solutions for al super-cells are
obtained by solving a generalized geometric programming (GGP)
problem. The process of identifying and optimizing the critical paths
is iterated until timing closure is achieved. Experimental results on a
set of MCNC benchmarks demonstrate the effectiveness of our
algorithm.

. Introduction

The ability to achieve timing closure in a complex circuit design is
one of the most important features that designers are looking for in
today’'s EDA tools. Timing corrections at postlayout level are often
used to help achieve this goal. However, as feature sizes decrease to
very deep submicron (VDSM) and clock frequencies increase to over
500MHz, simple techniques like in-place gate sizing and buffering are
not able to produce satisfactory results. More powerful algorithms
that consider additional optimization dimensions should be employed
to deal with the VDSM-specific problems such as the increasing
dominance of wire delays.

.1. Background

Gate sizing has been discussed extensively in literature [3][7][8].
The work in [7] uses a discrete sizing model which is often too
expensive to use even after the circuit is partitioned into smaller parts.
The authors in [3][8] use continuous sizing methods, and formulate
the sizing problem as a mathematical programming problem. In these
works, the authors only adjust the gate sizes to match the output |oads
of the gates. Other optimization techniques such as gate placement
and adjustment of the wire loads of the gates are not considered. Most
recently, the authors of [5] proposed a method that performs
simultaneous gate resizing and placement.

The algorithm presented in this paper extends previous works by
exploring a larger portion of the optimization space. It simultaneously
performs logic restructuring with repositioning of the gates in the k
most-critical paths to improve the postlayout timing. Moreover, these
optimizations are performed in a constraint-driven manner such that
while improving the performance, the perturbation to the original
design is minimized.

1.2. Delay Modd and Timing Analysis
The delay model is given as:
dij=+r X(Cnet+Cioad) *1 netCioad (1)
where d;; is the delay from pini to pin j as shown in Figure 1, 7 isthe
intrinsic delay of pin i, r is driver resistance, r,g and c,y are the
resistance and capacitance for the net, and ¢y is the summation of
theinput capacitances of the fanouts.

i\ﬁ;d\ﬁ q i %rrnet Cond
% 1T Crel I

Figure 1. Delay Model.

Arrival times are calculated from the primary inputs to the primary
outputs in the topological order. Required times are calculated in the
reversed order. The arrival time of pin j of a gate is given as. a=
MAX {(a+d; | i Znput(j)}, and the required time of pini is given as:
reqi=MIN{ (reg;-d;) | j Coutput(i)}. The slack can then be computed as
S=g;-reg;.

1.3. WirelLoad Estimation

Wire load of a gate is estimated by the bounding box of its fanouts.
The capacitance ¢, and resistance r is given by:

Ce = PG, (xnet, —xnet ;) +C (Y€t —yet;)] (2)

re = P IR, (et —XNet;) +R, (Yt —ynet,,)]
where xnet., and xnet.;, are the maximum and minimum X
coordinates of the fanouts, ynet..,, and ynet,, are the
maximum and minimum y coordinates. Ciy, Cyers Rior and Ry
are the unit capacitance and unit resistance for the horizonta and
vertical interconnects, respectively. p is a parameter to adjust the
estimation error of the bounding box interconnect model [6]. For
n<10, the values of p are produced in Table 1. We use the following
equation for n>10:

lim -5 0 = (VN +1)/2 (3)

n 2 3 4 5 6 7 8 9 10
1 1 3/2 3/2 513 | 714 | 116 | 2 2
Table 1: Worst case equi-perimeter net lengths.

I.4. Generalized Geometric Programming

Definition 1. Geometric Programming (GP) is a class of nonlinear
optimization problems having objective functions and constraint
functions expressed as posynomials [2].

A GP problemisgiven asfollows:

minimize Po (X)
st. p(xX)<0,k=1,2,...m
where po, Py, .- , Pm are posynomial functions.

Definition 2: Generalized Geometric Programming (GGP) is a class
of nonlinear optimization problems having objective functions and
constraint functions expressed as polynomials[2].

A GGP problem is given as follows:

minimize 0o (X)
st. o(X)<0,k=1,2,...m
wherego, 9y, - --- , Om are polynomial functions.

Note that GP is a convex programming problem whereas GGP is a
non-convex programming problem [2]. By using the variable
substitution Ig(x)=w, GP can be transformed into a linear
programming problem [13]. The non-convex GGP can be transformed
into a sequence of convex GP problems using the geometric-
arithmetic inequality, and each GP can be solved individualy [1].
This method is quite effective.

This paper is organized as follows: the details of our algorithm for
solving a single critical path problem are given in section II;
extensions to k critical paths are discussed in section I11; experimental
results are presented in section 1V; conclusion and future work are
discussed in section V; and references are listed in section V1.

" This work was funded in part by NSF grant No. M1P-9628999, and by SRC contract No. 98-DJ-606.

0-7803-5832-X /99/$10.00 ©1999 |IEEE.

[I. TheProposed Algorithm

Problem Formulation: Given a mapped and placed network, a
technology library, and assuming that al input signals arrival at time
0 and all outputs should be ready at time te,qe, the goal is to minimize
tyee Dy restructuring and re-positioning gates in the circuit.

In this section, we present our algorithm to solve the above
problem one critical path at atime. The extensions to k critical paths
arediscussed in section I11.

Our proposed agorithm is outlined in Figure 2. After timing
analysis, we cluster the circuit by constructing a set of super-cells
along the critical path. A set of re-mapping solutions is then generated
for each super-cell. Each set consists of al non-inferior re-mapping
solutions for the super-cell. During solution generation, we use a
placement algorithm concurrently with the re-mapping procedure to
estimate the wire delays and wire loads. The placement agorithm
generates a rough placement which will be refined in the subsequent
steps. In this step, no re-mapping solution is selected for any super-
cell. In the next step, the best mapping and placement solutions for al
super-cells are obtained concurrently by solving an appropriately
defined GGP problem. After that, the layout will be updated to reflect
the required changes. Throughout these optimization steps, constraints
such as timing requirements and repositioning constraints are
computed and enforced to ensure timing closure of this iterative
optimization algorithm. This algorithm iterates until the design goal is
met or there is no more room for further improvement.

12& 1.1 —p] Timing Analysis |
Il Super-cell Construction
12—l B Constraints
13 —pi Super-cell Solution Generation .
]] _ Constraints
Simultaneous Solution Selection
.4 —p and Re-placement

Figure 2. Algorithm Overview.
[1.1. Timing Analysisand Slack Distribution

The first step of our algorithm is to perform timing analysis using
the model presented in section 1.2 to identify the critical paths in the
circuit. An example consisting of 9 logic gates is given in Figure 3.
The most critical path from input |5 to output O, is marked with
thicker lines.

1

Figure 3. Super-cell Generation.

Based on the timing analysis results, delay slacks are distributed to

each gate. We use the zero-dack-algorithm of [12]. The main ideais

to assign more slacks to the gates that are slack sensitive. Please refer
to [12] for details of thisagorithm.

I1.2. Super-cell Construction

In this section, we introduce our clustering algorithm. This
algorithm clusters the circuit by constructing a set of super-cells along
the critical path. These super-cells are the targets for further
optimizations.

Definition 3: A critical gateis a gate on the critical path.

Definition 4: A super-cell (SC in short) isaset of logically connected
gates with at least one critical gate.

Definition 5: A gate G; is a level-L fanin of G; if there is a directed
shortest path from G; to G; containing at most L edges.

For each critical gate CG; on the critical path

C, = { CG; }, where CG; is called the root of SC;
For each super-cell SC; in the order of increasing slacks

For each level-L fanin G; of CG;

If Gjisnot included in any super-cell yet
i +={G}

For each single output CG; that fanouts to CG;

Merge SC; into SC;

N~ WDNE

Lines 1 to 2 initidlize the SCs by assigning the critical gate asthe root
to each one of them. This also prevents a critica gate from being
included in other super-cells. Lines 3 to 6 extend a super-cell to
include the level-L fanins for the root, unless that fanin is aready
included in another super-cell. Because we sort the super-cells by
increasing slacks, if there is a competition for a fanin between super-
cells, the most critical super-cell will get that fanin. We want more
gates to be included in a more critical super-cell because then the
potentia for optimizing that super-cell increases. Lines 7 to 8 merge
the single-output super-cell to the fanout super-cell. By merging the
single-output super-cells, we are able to increase the size of the super-
cells without increasing the complexity of our agorithm. In Figure 3,
since critical gate 4 has only one output, the super-cell whose root is
gate 4 is merged with the super-cell whose root is gate 6, generating a
larger SC, that contains two critical gates.

Note that this clustering algorithm may produce different solutions
depending on the order in which super-cells of the same criticality are
enumerated in line 3 of the algorithm.

Lemma 1: Theroot of asuper-cell isthe only gate that (a) isacritical
gate, and (b) has fanouts outside the super-cell.

Proof: From the algorithm, we know that only the merge operation
may add other critical gates to a super-cell. However, the merge will
happen if and only if that critical gate has only one fanout which must
be inside the super-cell. Therefore, after the merge, that critical gate
no longer fanouts to any other gates outside the super-cell. m
Corollary 1: Among all the output ports of a super-cell, there is one
and only one output port that is on acritical path.

Lemma 2: There is a path from each input port of a super-cell to the
critical output port.

Proof: The root of the super-cell is driving the critical output port.
From the algorithm, we know that each gate in the super-cell isin the
transitive fanin cone of the root. Therefore, there must be a path from
each gate in the super-cell to the root and the critical output port. |

11.3. Solution Set Generation for Super-Cells

There exist many re-mapping solutions for a super-cell. Using our
delay model, some of them are considered to be inferior and dropped
from further consideration, thus grestly reducing the complexity of
our algorithm.

11.3.1. Delay modeling

Lemma 3: For a given DAG circuit, when considering only one
critica path, a most one input port of any super-cell lies on the
critical path.
Proof: Assume that there is more than one input port that is on the
same critical path. This means that the critical path has to leave the
super-cell from the critical output and return to the super-cell at least
once. From Lemma 2, we know there is a path from each critical input
port to the root. This creates aforward loop in the circuit and violates
the assumption that we have aDAG. m

Based on Corollary 1 and Lemma 3, we can regard each super-cell
as a black box that has only one critical input port and one critica
output port as shown in Figure 4. The design parameters that are
relevant to delay calculation are the input capacitance C;, for the input
port, the driver strength R, for the output port, and the internal delay
7 of the super-cell. 7 is used directly in the delay calculation; Ci,
affects the extrinsic delay of the previous stage; and Ry is used to
calculate the extrinsic delay of the current super-cell.

Figure 4. Delay Parameters.

Note that even though we do not include area as a parameter, we
indeed consider area/delay tradeoff for the non-critical gates during
the construction of the solution set. Details are given in section 11.3.2.

For a given mapped solution of a super-cell, R and C can be easily
determined from the technology library. R is the driver strength of the
root gate, and C is the input capacitance of the critical input port. We
define 1 as the total delay from the critical input to the critical output
excluding the extrinsic delay of the root. 7 includes both the gate
delays and the internal wire delays. The inter-super-cell wire delays
are added when the super-cells are being placed. In the example
shown in Figure 3, 7for SC, is the summation of the delay of gate 4,
the wire delay between gate 4 and 6, and the intrinsic delay of gate 6.

[1.3.2. Dynamic programming

A set of remapping solutions will be generated for each super-cell.
Each solution contains three values: R, C and 7. We will keep only the
non-inferior solutions in the solution set. The inferiority of solutions
is defined as follows:

Definition 6: A solution Py(R;,Cy,77) is said to be inferior to another
solution Py(R,,C,, 1) if and only if Ri=R,, C;=>C,, and 127, are dl
true.

Theorem 1: Assuming there are two solutions P, and P, for a super-
cell SC, if P, isinferior to P,, then choosing P, instead of P, for SC
cannot increase the delay of the whole critical path.

Proof: The delay of the critical path d, is ag-+7+RXCigag+dsc . po,
where ag: the arrival time of the critical input port of SC, Cpaq iS the
output load of the critical output port, and dg- po is the delay from
the critical output port of SC to the primary output of the critical path.
The values of ¢oaq and dg- o are constants for SC regardless of the
solution being selected. ag12as, because C;=C,. Combining with the
factsthat R;2R, and r;2 1, we conclude that dp;2d,,. ®

We use a dynamic programming based algorithm to find all non-
inferior solutions for every super-cell. We perform simultaneous
technology mapping and mincut-based placement similar to that used
in [10]. The objective of the linear placement is to minimize the cut
density of the placement. We focus on routing congestion inside the
super-cells because we believe that most of the interconnections
among the gates inside a super-cell are local and thus short. Wire
congestion is more important than wire delay for short connections.

During the dynamic programming, we do not need to compute
(R,C,7) values at each interna node. Because R is only related to the
critical output, only matches containing the critical output need to
compute it. Similarly, because C is only related to the critical input,
only matches whose transitive fanin cone contains the critical input
need to store it. Moreover, in order to consider area/delay tradeoff for
non-critical nodes, the gate area A is added to any match that contains
only non-critical nodes. Therefore, we have three different curves
during the dynamic programming: a 3-D <R,C,7> curve, 2-D <C,7>
curves, and 2-D <A,r> curves. The root node will have a 3-D
<R,C,7> curve; any critical node will have a 2-D <C,r> curve; and
other nodes will have the 2-D <A, 7> curves. For the technology
decomposed super-cell shown in Figure 5, root node 3 has a 3-D
curve; critical nodes 1 and 2 have 2-D <C, r> curves; and non-critical
nodes 4 and 5 have 2-D <A, 7> curves. Theinferiority of the solutions
on the 2-D curves is defined similar to Definition 6. We can easily
prove that inferior points can be safely discarded using arguments
similar to Theorem 1.

Figure 5. Curves used in Solution Generation.

The pseudo code of solution generation is given as follows:
Generate a delay constraint for each non-critical output
Technology decompose the super-cell
For each node n in the reversed depth-first-search order
For every match mrooted at n
Mincut place subtrees rooted at the input of m
If m contains the root node
Generate 3-D <R,C, > curve

Elseif m contains any other critical node
. Generate 2-D <C,r> curve
10. Else Generate 2-D <A, 7> curve
11. Prune the curve for n
12. Generate repositioning constraint 4 for each solution
As afirst step we generate a delay constraint for each non-critical
output port P. These constraints help control the perturbations to other
parts of the circuit. It is given as: ap<axreq, where a is a constant
(greater or equal to one) that controls the degree of delay increase we
can tolerate.

Lines 4 to 10 perform simultaneous technology re-mapping and
mincut placement. Here we compute the relevant curves for each
node. R, C, A values are found from the match, and 7 is calculated
based on both the match and the placement solution. We explain how
to calculate 1 using the example shown in Figure 6. In Figure 6, we
are generating the solutions for SC, in Figure 3. Assume that at some
step of the dynamic programming approach, gate 3's 2-D <A, > curve
is aready computed, and so is gate 4's 2-D <C, 7> curve. We now
generate the 3-D <R,C,7> curve for root gate 6 from these curves.
Assuming a match mis found, and the match’s inputs are gates 3 and
4. The mincut placement has determined that gate 4 should be placed
between gates 3 and 6. Note that the linear placement only determines
alinear ordering of the gates; hence the absolute coordinates are not
known. The estimated wire length is based on this linear order. In this
example, the estimated wire length between gates 4 and 6 46 is
computed as [xdss, Where dgg is the distance between gates 4 and 6 in
the linear placement, and £ is constant that is greater than one. 7is
computed 8 Tyaeat AriVEyareaXl080gmes +Was, Where loadgyes the
summation of the wire load estimation plus the input capacitance of
match m for gate 4, and w,g is the estimated wire delay between gates
4 and 6 computed from l4. The solution of gate 3 with the smallest
areathat satisfies 7Tyest driveyaesXl0ad+wse<Tis chosen thereafter.

©CoONOTA~WNE

Figure 6. Curve Generation.
Line 11 prunes the curve and line 12 generates the repositioning
congtraints for each re-mapping solution for the super-cell. The
pseudo code is given as follows:

1. For each re-mapping solution s of the super-cell

2. For non-critical port P; on the super-cell

3. Let ag bethearrival time of P, using s

4, Ag=displacement(MIN(req(fanout of P,)-ag)
5. A= MIN(4)

where displacement is a function to transform the dack into the
alowable wire displacement. This constraint isillustrated in Figure 7.
When repositioning SC, the wire delay between a non-critical port P
and its fanout may be changed. If the wire delay gets too large, the
path between P and its fanout may become the new critica path,
which is undesirable. Therefore, this constraint restricts the movement
of gate 6 in the subsequent optimization phases so that a new critical
path is not created.

Figure 7. Repositioning Constraints.

Theorem 2: Subject to the errors introduced by the wire estimation
process, the 3-D curve for a super-cell includes al non-inferior re-
mapping solutions.

Proof: The only solutions that we do not keep are the inferior
solutions. From Theorem 1, we know that we can safely discard these
inferior solutions. Therefore, our final solution curve includes dl non-
inferior re-mapping solutions. m

11.3.3. Complexity analysis

The following analysis assumes that the number of gates in the
technology library is a constant, and n denotes the number of nodesin
the decomposed super-cell.

Lemma 4: The maximum number of points in the <A,7> curve is
o(n).

Proof: Normalize the area of the gates in the technology library to be
al integers. Assume that the largest gate area in the library is M, so
the maximum possible gate area for the super-cell is O(nM). Because
M is a constant, we have maximum O(n) distinctive gate area values.
Because two solutions will never have the same gate area (one will be
eliminated as an inferior solution), the maximum number of solutions
inthe <A, 7> curveisO(n). m

Lemma 5: The maximum number of points in the <C,7> curve is
o(1).

Proof: Because the number of gates in the library is a constant, the
maximum number of distinct C is also a constant. Use the same
argument as in the proof of Lemma 4, we know the maximum number
of solutionsin <C, > curve is a constant.

Lemma 6: The maximum number of pointsin the <R,C,7>is O(1).
Proof: Using the same argument as in the proof of Lemma 5, we
know that the maximum number of distinct R is a constant. This
implies that the maximum number of solutions in <R,C,7> curveisa
constant. m

Theorem 3: The runtime complexity of the solution generation step
for asuper-cell is O(ngn).

Proof: The runtime to generate a <A, 7> curve is given in [4] as
O(nlgn). Similarly, the runtime to generate a <C,7> curve and a
<R,C, 7> curve are both O(Ign), which is dominated by the generation
of the <A, 7> curve. Moreover, the curve generation process will be
repeated for each node, so the total runtimeis O(n?gn). m

I1.4. Concurrent Solution Selection and Placement

Simply choosing the best solution for each super-cell may actually
lead to poorer circuit timing because of the complex dependencies
between the super-cells. We select the best mapping and placement
solutions for all super-cells at the same time. A naive approach is to
define a binary variable for each solution, and use a mixed integer
linear programming (MILP) to solve the problem. However, it is
impractical to solve the resulting MILP for any reasonably sized
circuits due to its high complexity. Here we use a generalized
geometric programming (GGP) formulation to address this problem.

I1.4.1. Interpolation function

One of the requirements of the GGP is that all variables in the
problem formulation be continuous. While it is natural to have
continuous variables to model the placement, our solution set for each
super-cell isindeed discrete. Therefore, the first step weneed to do is
to make the solution set continuous.

Intuitively, the intrinsic delay 7for any critical path isrelated to the
size of the gates along the path, that is, 7=f(Z;,2,,...,Z,), where Z; is
the sizing variable for the i gate on the critical path as shown in
Figure 8. However, because Z, to Z,,; areinternal to the super-cell, we
can simplify the function as 7=f,(Z;,Z,), where Z; is the gate that
receives an input to the super-cell, and Z, is the gate that drives the
output signal of the super-cell. Moreover, because C and R are
directly related to Z; and Z, respectively, we can express the function
as r=f;(C,R).

Figure 8. Super-cell modeling.

Even though the exact form of f cannot be found, the portion of f
that is within the data range of the solution set can be obtained with
sufficient accuracy using Lagrange interpolation [11]. We can write
the interpolated function as:

T =FCR (4)

The wire load ¢, and wire resistance r,y are computed based on
the placement information using the approach described in section I.3.
Cioad IS COMputed as:

Cioad = 2C;, Ofanout j (5)
For a super-cell, the delay equation (1) becomes:
dii: Li+RX(Coer+Cioad) 1 net X Cioad (6)

Lemma 7: Function F isapolynomial function.
11.4.2. Repositioning constraints

For any given super-cell, the repositioning constraint 4 exists as an
additional data for every solution of this super-cell. Every solution
will have its own repositioning constraint 4s, which is in genera
different from one solution to next. Therefore, a separate function
should be constructed for the repositioning constraint for a super-cell
using a similar approach as that of constructing function f. While our
algorithm is capable of accepting the repositioning constraint in any
polynomial function form, we feel it is too costly and unnecessary to
do so. The reason is that the wire delay used in deriving the
constraints is calculated based on estimation, which is already inexact.
Therefore we have chosen to use a single repositioning constraint
A=MIN(4,) for each super-cell. Note that each super-cell has its own
repositioning constraint 4, and the value differs from one super-cell to
next.

11.4.3. Generalized geometric programming

The generalized geometric programming of the simultaneous
solution selection and repositioning problem can be stated as follows:

minimize Toycle

st. gza+d; [OSCs
8 < toyge O primary outputs
820 O primary inputs
|%-%" |4, 0OSCs
ly-yi' |4, 0OSCs

There are four variables for each super-cell, x, y, R and C.
Therefore, we have atotal of 4xN variables, where N is the number of
super-cellsin the circuit.

Theorem 4: The above problem is a GGP problem.
Proof: Follows from Definition 2 and Lemma 7. m

The GGP solver gives the best values of x, y, R and C for each
super-cell. 7 can be calculated using (4). It is likely that we are not
able to find the exact (R, C,) combinations in the origina (discrete)
solution set. We will then pick the solution with minimal overall
percentage error as the solution for that super-cell.

11.4.4. Layout update

After the re-mapping and repositioning solution has been chosen
for each super-cell, we need to update the layout to remove overlap
and/or congestion. As we have discussed in section 1.3, the gates
inside the super-cells have only the rough placement available.
Therefore, we need to place these local gates. We put them back to
the available slots using a linear assignment approach [9]. The
available slots are those positions that were occupied by the gates in
the origina implementation of the super-cells, and those that are
defined as free by the designers. The cost of assigning agate G; inside
asuper cell SCj to an empty slot E¢is given by:

Cost = Dis(SCj, E)+ yxAreaMatch(G;, E)) (7)

where Dis denotes the distance between the super-cell and the slot;
AreaMatch computes the area mismatch between the gate and the
dot; and yis aconstant less than one. Due to the space limitation, we
will not present the details here.

[I1. Extensionsto Multiple Critical Paths

In this section, we extend our algorithm to process up to k critical
paths at the same time, where k is a user-specified parameter. The
larger kis, the better the final result, but the slower the runtime.
Theorem 5: If the critical paths do not intersect with each other, our
algorithm can process the critical paths independently.

Proof: Figure 9 shows a non-critical gate G which is shared by K
different critical paths. The critical paths themselves do not intersect.
During the reemapping of G's fanins, we generate the constraints such
that G’'s arrival time will not exceed its required time. Moreover, if G
included in a super-cell SC as shown in the figure, when we construct
the solution set for SC, we a so generate the constraints that the arrival
times of G’ s fanouts do not exceed their required times. Therefore, the
solution selection for super-cells on different critical paths can be
performed at the same time. m

non-critical gate G

super-cell SC
Figure 9. Non-inter secting Critical Paths.

We however have to extend our algorithm when there are K’ critical
paths intersecting at a gate. When we are building the solution set, we
need to record the C and 7 for each critical path. Because we till
have one gate driving the critical output, we need only one R
Therefore, the final curve generated at the root of any super-cell will
have 2k’ +1 dimensions, including k' C's, k' 7's, and one R values, as
shown in Figure 10. In the worst case, k' will be as large as k, which
is the number of critical paths that we are considering at the same
time. However, it israreto seethat all critical paths use the same gate.
Actually, the number of paths sharing the same gate is rather small in
our benchmarks, thus greatly reducing the complexity of our
algorithm.

critical gate

R
Ck' Tk- super-cell
Figure 10. I ntersecting Critical Paths.

Moreover, because there are 2k’ +1 values, we need an interpolation
function with 2k’ parameters. Considering the fact that we have only
one R, we can rewrite the interpolation function as:

R:F(Tl,Tz,...,Tk',Cl,Cz,...Ck’) (8)

We keep the same generalized geometric programming formulation
except to use the above equation for computing delay through super-
cells. Moreover, the number of variables is increased to > 2k +2:

Oi

T.
C, 1

wherek; isthe number of critical paths for the i™ super-cell.
V. Experimental Results

We have implemented our algorithm PRTC (Placement and Re-
mapping for Timing Closure) in C++. The input circuits to PRTC are
technology independently optimized, mapped, placed and globally
routed using timing-driven algorithms. We then apply PRTC to
improve their timings. We use an industrial strength 0.35u1 ASIC
library to generate the results. The runtimes of C1355 and C3540 are
55 seconds and 125 seconds, respectively. These runtimes are
obtained by running PRTC on a Sun Ultra-Sparc workstation with
256MB memory. The experimental results for al of the recommended
benchmarks in IWLS95 are presented in Table 2. The first column
gives the name of the benchmarks. The second and third columns give
the number of gates and nets in the original circuits. The fourth and

fifth columns are the total area and total delay for the original circuit,
and the last two columns give the ratio of total area and total delay
after running PRTC. On average, we are able to improve the
postlayout timing by 29%, while keeping the area increase to 5%.

Original PRTC

Gates | Nets Area Delay | Area | Delay
C1355 324] 367| 2637105| 7.15 1.06(0.88
C1908 528| 563| 4852287| 12.04| 1.04(0.72
C2670 464 699 4755861| 13.15| 1.14| 0.62
C3540 840 892 9026112 21.98| 1.05| 0.71
C432 239 277 2142138| 8.71| 1.05| 0.89
C6288 2377 2411| 19086244| 43.35| 0.98] 0.68
C7552 | 1304| 1513] 12817955| 13.08| 0.99| 0.65
b9 83 126 5864301 2.87(1.07 0.76
dalu 474| 551 5262660 17.42(1.03] 0.53
des 1741] 1999| 24550920| 20.08| 1.09(0.71

k2 700 747] 8558596| 17.17| 0.96] 0.70
rot 494 631| 4635405 8.97| 1.14] 0.92
1481 351 369| 3536687| 12.05| 1.11] 0.46

1.05(0.71
Table 2. Experimental Results.

V. Conclusions

In this paper, we presented a new agorithm that simultaneously
performs logic restructuring and placement on a circuit. This
algorithm constructs super-cells along the k most-critical paths and
then generates all non-inferior re-mapping solutions for the critical
part of the circuit. Finaly, it selects the best mapping solution for al
super-cells while repositioning them concurrently. Our future work is
to include more optimization steps such as fanout optimization
techniques into this algorithm.

V1. Reference

[1] M. Avrid, R. Dembo, U. Passy, "Solution of Generalized Geometric
Programming”, in International Journals for Numerical Methods in
Engineering, vol.9, 1975

[2] C.Beightler, D. T. Philips, "Applied Geometric Programming”, 1976

[3] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis', Ph.D
Thesis, Eindhoven University of Technology, 1992

[4] K. Chaudhary, M. Pedram, “Computing the Area versus Delay Trade-off
Curves in Technology Mapping”, in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 14, No. 12,
pp.1480-1489, 1995.

[5] W. Chen, C-T. Hsieh, M. Pedram, “Gate Sizing with Controlled
Displacement”, in Proceedings of International Symposium on Physical
Design, pp.127-132, 1999.

[6] F.RK.Chung, F.K. Hwang, "The Largest Minimal Rectilinear Steiner
Trees for a Set of N Points Enclosed in a Rectangle with Given
Perimeter”, Network, 9:19-36, 1979

[7] O. Coudet, R. Haddad, "New Algorithms for Gate Sizing: a
Comparative Study", in Proceedings of 33“ Design Automation
Conference, pp.734-739, Jun 1996

[8] JP. Fishburn, A.E. Dunlop, "TILOS: a Posynomia Programming
Approach to Transistor Sizing", in Proceedings of International
Conference on Computer Aided Design, pp.326-328, 1985

[9] T. Lengauer, “Combinatorial Algorithms for Integrated Circuit Layout”,
John Wiley & Sons Ltd., 1990

[20] J. Lou, A. H. Salek, and M. Pedram, “An Exact Solution to Simultaneous
Technology Mapping and Linear Placement Problem”, in Proceedings of
International Conference on Computer Aided Design, pp.671-675, 1997.

[12] J. Morris, “Computational Methods in Elementary Numerical Analysis’,
John Wiley & Sons Ltd., 1983

[12] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa, “Generation of
Performance Constraints for Layout”, in |EEE Transaction of Computer-
Aided Design, pp.860-874, CAD-8(8), 1989

[13] K.O. Kortanek, X. Xu, Y. Ye, "An infeasible interior-point algorithm for
solving prima and dual geometric programs’, Mathematical
Programming 76, pp.155-181, 1996

