
Concurrent Logic Restructuring and Placement for Timing Closure∗∗∗∗

Jinan Lou, Wei Chen, Massoud Pedram
Department of Electrical Engineering – Systems

University of Southern California, Los Angeles, CA 90089

∗
This work was funded in part by NSF grant No. MIP-9628999, and by SRC contract No. 98-DJ-606.

ABSTRACT: In this paper, an algorithm for simultaneous logic
restructuring and placement is presented. This algorithm first
constructs a set of super-cells along the critical paths and then
generates the set of non-inferior re-mapping solutions for each super-
cell. The best mapping and placement solutions for all super-cells are
obtained by solving a generalized geometric programming (GGP)
problem. The process of identifying and optimizing the critical paths
is iterated until timing closure is achieved. Experimental results on a
set of MCNC benchmarks demonstrate the effectiveness of our
algorithm.

I. Introduction
The ability to achieve timing closure in a complex circuit design is

one of the most important features that designers are looking for in
today’s EDA tools. Timing corrections at postlayout level are often
used to help achieve this goal. However, as feature sizes decrease to
very deep submicron (VDSM) and clock frequencies increase to over
500MHz, simple techniques like in-place gate sizing and buffering are
not able to produce satisfactory results. More powerful algorithms
that consider additional optimization dimensions should be employed
to deal with the VDSM-specific problems such as the increasing
dominance of wire delays.

I.1. Background
Gate sizing has been discussed extensively in literature [3][7][8].

The work in [7] uses a discrete sizing model which is often too
expensive to use even after the circuit is partitioned into smaller parts.
The authors in [3][8] use continuous sizing methods, and formulate
the sizing problem as a mathematical programming problem. In these
works, the authors only adjust the gate sizes to match the output loads
of the gates. Other optimization techniques such as gate placement
and adjustment of the wire loads of the gates are not considered. Most
recently, the authors of [5] proposed a method that performs
simultaneous gate resizing and placement.

The algorithm presented in this paper extends previous works by
exploring a larger portion of the optimization space. It simultaneously
performs logic restructuring with repositioning of the gates in the k
most-critical paths to improve the postlayout timing. Moreover, these
optimizations are performed in a constraint-driven manner such that
while improving the performance, the perturbation to the original
design is minimized.

I.2. Delay Model and Timing Analysis
The delay model is given as:

dij=τi+r×(cnet+cload)+rnet×cload (1)
where dij is the delay from pin i to pin j as shown in Figure 1, τi is the
intrinsic delay of pin i, r is driver resistance, rnet and cnet are the
resistance and capacitance for the net, and cload is the summation of
the input capacitances of the fanouts.

τi r
rnet

cnet

cload

dii

j

Figure 1. Delay Model.

Arrival times are calculated from the primary inputs to the primary
outputs in the topological order. Required times are calculated in the
reversed order. The arrival time of pin j of a gate is given as: aj=
MAX {(ai+dij | i∈ input(j)}, and the required time of pin i is given as:
reqi=MIN{(reqj-dij) | j∈ output(i)}. The slack can then be computed as
si=ai-reqi.

I.3. Wire Load Estimation
Wire load of a gate is estimated by the bounding box of its fanouts.

The capacitance cnet and resistance rnet is given by:

max min max min

max min max min

[() ()]

[() ()]

net hor ver

net hor ver

c C xnet xnet C ynet ynet

r R xnet xnet R ynet ynet

ρ
ρ

= ⋅ − + −
= ⋅ − + −

(2)

where xnetmax and xnetmin are the maximum and minimum x
coordinates of the fanouts, ynetmax and ynetmin are the
maximum and minimum y coordinates. Chor, Cver, Rhor and Rver

are the unit capacitance and unit resistance for the horizontal and
vertical interconnects, respectively. ρ is a parameter to adjust the
estimation error of the bounding box interconnect model [6]. For
n≤10, the values of ρ are produced in Table 1. We use the following
equation for n>10:

2/)1(lim +=∞>− nn ρ (3)

n 2 3 4 5 6 7 8 9 10
ρ 1 1 3/2 3/2 5/3 7/4 11/6 2 2

Table 1: Worst case equi-perimeter net lengths.

I.4. Generalized Geometric Programming
Definition 1: Geometric Programming (GP) is a class of nonlinear
optimization problems having objective functions and constraint
functions expressed as posynomials [2].

A GP problem is given as follows:
minimize p0 (x)
s.t. pk (x) ≤ 0, k = 1, 2, … m
where p0, p1, ……, pm are posynomial functions.

Definition 2: Generalized Geometric Programming (GGP) is a class
of nonlinear optimization problems having objective functions and
constraint functions expressed as polynomials [2].

A GGP problem is given as follows:
minimize g0 (x)
s.t. gk (x) ≤ 0, k = 1, 2, … m
where g0, g1, ……, gm are polynomial functions.

Note that GP is a convex programming problem whereas GGP is a
non-convex programming problem [2]. By using the variable
substitution lg(x)=w, GP can be transformed into a linear
programming problem [13]. The non-convex GGP can be transformed
into a sequence of convex GP problems using the geometric-
arithmetic inequality, and each GP can be solved individually [1].
This method is quite effective.

This paper is organized as follows: the details of our algorithm for
solving a single critical path problem are given in section II;
extensions to k critical paths are discussed in section III; experimental
results are presented in section IV; conclusion and future work are
discussed in section V; and references are listed in section VI.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

II. The Proposed Algorithm
Problem Formulation: Given a mapped and placed network, a
technology library, and assuming that all input signals arrival at time
0 and all outputs should be ready at time tcycle, the goal is to minimize
tcycle by restructuring and re-positioning gates in the circuit.

In this section, we present our algorithm to solve the above
problem one critical path at a time. The extensions to k critical paths
are discussed in section III.

Our proposed algorithm is outlined in Figure 2. After timing
analysis, we cluster the circuit by constructing a set of super-cells
along the critical path. A set of re-mapping solutions is then generated
for each super-cell. Each set consists of all non-inferior re-mapping
solutions for the super-cell. During solution generation, we use a
placement algorithm concurrently with the re-mapping procedure to
estimate the wire delays and wire loads. The placement algorithm
generates a rough placement which will be refined in the subsequent
steps. In this step, no re-mapping solution is selected for any super-
cell. In the next step, the best mapping and placement solutions for all
super-cells are obtained concurrently by solving an appropriately
defined GGP problem. After that, the layout will be updated to reflect
the required changes. Throughout these optimization steps, constraints
such as timing requirements and repositioning constraints are
computed and enforced to ensure timing closure of this iterative
optimization algorithm. This algorithm iterates until the design goal is
met or there is no more room for further improvement.

Timing Analysis

Super-cell Construction

Super-cell Solution Generation

Simultaneous Solution Selection
and Re-placement

Goal Met?

Constraints

Constraints

Figure 2. Algorithm Overview.

II.1. Timing Analysis and Slack Distribution
The first step of our algorithm is to perform timing analysis using

the model presented in section I.2 to identify the critical paths in the
circuit. An example consisting of 9 logic gates is given in Figure 3.
The most critical path from input I5 to output O4 is marked with
thicker lines.

1
I1

72

5

96

4

8

I2
I3
I4
I5
I6

O1

O2

O3

O4

O5

3

SC1
SC3

SC2

Figure 3. Super-cell Generation.
Based on the timing analysis results, delay slacks are distributed to

each gate. We use the zero-slack-algorithm of [12]. The main idea is
to assign more slacks to the gates that are slack sensitive. Please refer
to [12] for details of this algorithm.

II.2. Super-cell Construction
In this section, we introduce our clustering algorithm. This

algorithm clusters the circuit by constructing a set of super-cells along
the critical path. These super-cells are the targets for further
optimizations.
Definition 3: A critical gate is a gate on the critical path.
Definition 4: A super-cell (SC in short) is a set of logically connected
gates with at least one critical gate.
Definition 5: A gate Gi is a level-L fanin of Gj if there is a directed
shortest path from Gi to Gj containing at most L edges.

1. For each critical gate CGi on the critical path
2. SCi = { CGi }, where CGi is called the root of SCi

3. For each super-cell SCi in the order of increasing slacks
4. For each level-L fanin Gj of CGi

5. If Gj is not included in any super-cell yet
6. SCi += { Gj }
7. For each single output CGi that fanouts to CGj

8. Merge SCi into SCj

Lines 1 to 2 initialize the SCs by assigning the critical gate as the root
to each one of them. This also prevents a critical gate from being
included in other super-cells. Lines 3 to 6 extend a super-cell to
include the level-L fanins for the root, unless that fanin is already
included in another super-cell. Because we sort the super-cells by
increasing slacks, if there is a competition for a fanin between super-
cells, the most critical super-cell will get that fanin. We want more
gates to be included in a more critical super-cell because then the
potential for optimizing that super-cell increases. Lines 7 to 8 merge
the single-output super-cell to the fanout super-cell. By merging the
single-output super-cells, we are able to increase the size of the super-
cells without increasing the complexity of our algorithm. In Figure 3,
since critical gate 4 has only one output, the super-cell whose root is
gate 4 is merged with the super-cell whose root is gate 6, generating a
larger SC1 that contains two critical gates.

Note that this clustering algorithm may produce different solutions
depending on the order in which super-cells of the same criticality are
enumerated in line 3 of the algorithm.
Lemma 1: The root of a super-cell is the only gate that (a) is a critical
gate, and (b) has fanouts outside the super-cell.
Proof: From the algorithm, we know that only the merge operation
may add other critical gates to a super-cell. However, the merge will
happen if and only if that critical gate has only one fanout which must
be inside the super-cell. Therefore, after the merge, that critical gate
no longer fanouts to any other gates outside the super-cell.!
Corollary 1: Among all the output ports of a super-cell, there is one
and only one output port that is on a critical path.
Lemma 2: There is a path from each input port of a super-cell to the
critical output port.
Proof: The root of the super-cell is driving the critical output port.
From the algorithm, we know that each gate in the super-cell is in the
transitive fanin cone of the root. Therefore, there must be a path from
each gate in the super-cell to the root and the critical output port.!

II.3. Solution Set Generation for Super-Cells
There exist many re-mapping solutions for a super-cell. Using our

delay model, some of them are considered to be inferior and dropped
from further consideration, thus greatly reducing the complexity of
our algorithm.

II.3.1. Delay modeling

Lemma 3: For a given DAG circuit, when considering only one
critical path, at most one input port of any super-cell lies on the
critical path.
Proof: Assume that there is more than one input port that is on the
same critical path. This means that the critical path has to leave the
super-cell from the critical output and return to the super-cell at least
once. From Lemma 2, we know there is a path from each critical input
port to the root. This creates a forward loop in the circuit and violates
the assumption that we have a DAG.!

Based on Corollary 1 and Lemma 3, we can regard each super-cell
as a black box that has only one critical input port and one critical
output port as shown in Figure 4. The design parameters that are
relevant to delay calculation are the input capacitance Cin for the input
port, the driver strength Rout for the output port, and the internal delay
τ of the super-cell. τ is used directly in the delay calculation; Cin

affects the extrinsic delay of the previous stage; and Rout is used to
calculate the extrinsic delay of the current super-cell.

I.2 & II.1

II.2

II.3

II.4

Super-CellCin Routττττ

Figure 4. Delay Parameters.
Note that even though we do not include area as a parameter, we

indeed consider area/delay tradeoff for the non-critical gates during
the construction of the solution set. Details are given in section II.3.2.

For a given mapped solution of a super-cell, R and C can be easily
determined from the technology library. R is the driver strength of the
root gate, and C is the input capacitance of the critical input port. We
define ττττ as the total delay from the critical input to the critical output
excluding the extrinsic delay of the root. τ includes both the gate
delays and the internal wire delays. The inter-super-cell wire delays
are added when the super-cells are being placed. In the example
shown in Figure 3, τ for SC1 is the summation of the delay of gate 4,
the wire delay between gate 4 and 6, and the intrinsic delay of gate 6.

II.3.2. Dynamic programming

A set of re-mapping solutions will be generated for each super-cell.
Each solution contains three values: R, C and τ. We will keep only the
non-inferior solutions in the solution set. The inferiority of solutions
is defined as follows:
Definition 6: A solution P1(R1,C1,τ1) is said to be inferior to another
solution P2(R2,C2,τ2) if and only if R1≥R2, C1≥C2, and τ1≥τ2 are all
true.
Theorem 1: Assuming there are two solutions P1 and P2 for a super-
cell SC, if P1 is inferior to P2, then choosing P2 instead of P1 for SC
cannot increase the delay of the whole critical path.
Proof: The delay of the critical path dp is aSC+τ +R×cload +dSC→PO,
where aSC the arrival time of the critical input port of SC, cload is the
output load of the critical output port, and dSC→PO is the delay from
the critical output port of SC to the primary output of the critical path.
The values of cload and dSC→PO are constants for SC regardless of the
solution being selected. asc1≥≥≥≥asc2 because C1≥C2. Combining with the
facts that R1≥≥≥≥R2 and τ1≥≥≥≥τ2, we conclude that dp1≥≥≥≥dp2.!

We use a dynamic programming based algorithm to find all non-
inferior solutions for every super-cell. We perform simultaneous
technology mapping and mincut-based placement similar to that used
in [10]. The objective of the linear placement is to minimize the cut
density of the placement. We focus on routing congestion inside the
super-cells because we believe that most of the interconnections
among the gates inside a super-cell are local and thus short. Wire
congestion is more important than wire delay for short connections.

During the dynamic programming, we do not need to compute
(R,C,τ) values at each internal node. Because R is only related to the
critical output, only matches containing the critical output need to
compute it. Similarly, because C is only related to the critical input,
only matches whose transitive fanin cone contains the critical input
need to store it. Moreover, in order to consider area/delay tradeoff for
non-critical nodes, the gate area A is added to any match that contains
only non-critical nodes. Therefore, we have three different curves
during the dynamic programming: a 3-D <R,C,τ > curve, 2-D <C,τ >
curves, and 2-D <A,τ > curves. The root node will have a 3-D
<R,C,τ > curve; any critical node will have a 2-D <C,ττττ > curve; and
other nodes will have the 2-D <A,τ > curves. For the technology
decomposed super-cell shown in Figure 5, root node 3 has a 3-D
curve; critical nodes 1 and 2 have 2-D <C,τ > curves; and non-critical
nodes 4 and 5 have 2-D <A,τ > curves. The inferiority of the solutions
on the 2-D curves is defined similar to Definition 6. We can easily
prove that inferior points can be safely discarded using arguments
similar to Theorem 1.

1 2 3
4

5

Figure 5. Curves used in Solution Generation.

The pseudo code of solution generation is given as follows:
1. Generate a delay constraint for each non-critical output
2. Technology decompose the super-cell
3. For each node n in the reversed depth-first-search order
4. For every match m rooted at n
5. Mincut place subtrees rooted at the input of m
6. If m contains the root node
7. Generate 3-D <R,C,τ > curve
8. Else if m contains any other critical node
9. Generate 2-D <C,τ > curve
10. Else Generate 2-D <A,τ > curve
11. Prune the curve for n
12. Generate repositioning constraint ∆s for each solution
As a first step we generate a delay constraint for each non-critical

output port P. These constraints help control the perturbations to other
parts of the circuit. It is given as: aP≤α× reqp, where α is a constant
(greater or equal to one) that controls the degree of delay increase we
can tolerate.

Lines 4 to 10 perform simultaneous technology re-mapping and
mincut placement. Here we compute the relevant curves for each
node. R, C, A values are found from the match, and τ is calculated
based on both the match and the placement solution. We explain how
to calculate τ using the example shown in Figure 6. In Figure 6, we
are generating the solutions for SC1 in Figure 3. Assume that at some
step of the dynamic programming approach, gate 3’s 2-D <A,τ > curve
is already computed, and so is gate 4’s 2-D <C,τ > curve. We now
generate the 3-D <R,C,τ > curve for root gate 6 from these curves.
Assuming a match m is found, and the match’s inputs are gates 3 and
4. The mincut placement has determined that gate 4 should be placed
between gates 3 and 6. Note that the linear placement only determines
a linear ordering of the gates; hence the absolute coordinates are not
known. The estimated wire length is based on this linear order. In this
example, the estimated wire length between gates 4 and 6 l46 is
computed as β×d46, where d46 is the distance between gates 4 and 6 in
the linear placement, and β is constant that is greater than one. τ is
computed as τgate4+drivegate4×loadgate4 +w46, where loadgate4 the
summation of the wire load estimation plus the input capacitance of
match m for gate 4, and w46 is the estimated wire delay between gates
4 and 6 computed from l46. The solution of gate 3 with the smallest
area that satisfies τgate3+drivegate3×load+w36≤τ is chosen thereafter.

643
A D

ττττ
C

ττττ

C

ττττm

Figure 6. Curve Generation.
Line 11 prunes the curve and line 12 generates the repositioning

constraints for each re-mapping solution for the super-cell. The
pseudo code is given as follows:

1. For each re-mapping solution s of the super-cell
2. For non-critical port Pi on the super-cell
3. Let asi be the arrival time of Pi using s
4. ∆si=displacement(MIN(req(fanout of Pi)-asi)
5. ∆s = MIN(∆si)

where displacement is a function to transform the slack into the
allowable wire displacement. This constraint is illustrated in Figure 7.
When repositioning SC, the wire delay between a non-critical port P
and its fanout may be changed. If the wire delay gets too large, the
path between P and its fanout may become the new critical path,
which is undesirable. Therefore, this constraint restricts the movement
of gate 6 in the subsequent optimization phases so that a new critical
path is not created.

SC P
displacement

SC
P new critical path

Figure 7. Repositioning Constraints.

Theorem 2: Subject to the errors introduced by the wire estimation
process, the 3-D curve for a super-cell includes all non-inferior re-
mapping solutions.
Proof: The only solutions that we do not keep are the inferior
solutions. From Theorem 1, we know that we can safely discard these
inferior solutions. Therefore, our final solution curve includes all non-
inferior re-mapping solutions.!

II.3.3. Complexity analysis

The following analysis assumes that the number of gates in the
technology library is a constant, and n denotes the number of nodes in
the decomposed super-cell.
Lemma 4: The maximum number of points in the <A,τ > curve is
O(n).
Proof: Normalize the area of the gates in the technology library to be
all integers. Assume that the largest gate area in the library is M, so
the maximum possible gate area for the super-cell is O(nM). Because
M is a constant, we have maximum O(n) distinctive gate area values.
Because two solutions will never have the same gate area (one will be
eliminated as an inferior solution), the maximum number of solutions
in the <A,τ > curve is O(n).!
Lemma 5: The maximum number of points in the <C,τ > curve is
O(1).
Proof: Because the number of gates in the library is a constant, the
maximum number of distinct C is also a constant. Use the same
argument as in the proof of Lemma 4, we know the maximum number
of solutions in <C,τ > curve is a constant.!
Lemma 6: The maximum number of points in the <R,C,τ > is O(1).
Proof: Using the same argument as in the proof of Lemma 5, we
know that the maximum number of distinct R is a constant. This
implies that the maximum number of solutions in <R,C,τ > curve is a
constant.!
Theorem 3: The runtime complexity of the solution generation step
for a super-cell is O(n2lgn).
Proof: The runtime to generate a <A,τ > curve is given in [4] as
O(nlgn). Similarly, the runtime to generate a <C,τ > curve and a
<R,C,τ > curve are both O(lgn), which is dominated by the generation
of the <A,τ > curve. Moreover, the curve generation process will be
repeated for each node, so the total runtime is O(n2lgn).!

II.4. Concurrent Solution Selection and Placement
Simply choosing the best solution for each super-cell may actually

lead to poorer circuit timing because of the complex dependencies
between the super-cells. We select the best mapping and placement
solutions for all super-cells at the same time. A naive approach is to
define a binary variable for each solution, and use a mixed integer
linear programming (MILP) to solve the problem. However, it is
impractical to solve the resulting MILP for any reasonably sized
circuits due to its high complexity. Here we use a generalized
geometric programming (GGP) formulation to address this problem.

II.4.1. Interpolation function

One of the requirements of the GGP is that all variables in the
problem formulation be continuous. While it is natural to have
continuous variables to model the placement, our solution set for each
super-cell is indeed discrete. Therefore, the first step we need to do is
to make the solution set continuous.

Intuitively, the intrinsic delay τ for any critical path is related to the
size of the gates along the path, that is, τ =f1(Z1,Z2,…,Zn), where Zi is
the sizing variable for the ith gate on the critical path as shown in
Figure 8. However, because Z2 to Zn-1 are internal to the super-cell, we
can simplify the function as τ =f2(Z1,Zn), where Z1 is the gate that
receives an input to the super-cell, and Zn is the gate that drives the
output signal of the super-cell. Moreover, because C and R are
directly related to Z1 and Zn respectively, we can express the function
as τ =f3(C,R).

Z1

ττττ

Z2 Z3

Figure 8. Super-cell modeling.
Even though the exact form of f cannot be found, the portion of f

that is within the data range of the solution set can be obtained with
sufficient accuracy using Lagrange interpolation [11]. We can write
the interpolated function as:

τ = F(C,R) (4)
The wire load cnet and wire resistance rnet are computed based on

the placement information using the approach described in section I.3.
cload is computed as:

cload = ΣCj, ∀ fanout j (5)
For a super-cell, the delay equation (1) becomes:

dij=τi+R×(cnet+cload)+rnet×cload (6)
Lemma 7: Function F is a polynomial function.

II.4.2. Repositioning constraints

For any given super-cell, the repositioning constraint ∆s exists as an
additional data for every solution of this super-cell. Every solution
will have its own repositioning constraint ∆s, which is in general
different from one solution to next. Therefore, a separate function
should be constructed for the repositioning constraint for a super-cell
using a similar approach as that of constructing function f. While our
algorithm is capable of accepting the repositioning constraint in any
polynomial function form, we feel it is too costly and unnecessary to
do so. The reason is that the wire delay used in deriving the
constraints is calculated based on estimation, which is already inexact.
Therefore we have chosen to use a single repositioning constraint
∆=MIN(∆s) for each super-cell. Note that each super-cell has its own
repositioning constraint ∆, and the value differs from one super-cell to
next.

II.4.3. Generalized geometric programming

The generalized geometric programming of the simultaneous
solution selection and repositioning problem can be stated as follows:

minimize tcycle

s.t. aj ≥ ai + dij ∀ SCs
aj ≤ tcycle ∀ primary outputs
aj ≥ 0 ∀ primary inputs
| xi-xi’ | ≤ ∆x ∀ SCs
| yi-yi’ | ≤ ∆y ∀ SCs

There are four variables for each super-cell, x, y, R and C.
Therefore, we have a total of 4×N variables, where N is the number of
super-cells in the circuit.
Theorem 4: The above problem is a GGP problem.
Proof: Follows from Definition 2 and Lemma 7.!

The GGP solver gives the best values of x, y, R and C for each
super-cell. τ can be calculated using (4). It is likely that we are not
able to find the exact (R, C, τ) combinations in the original (discrete)
solution set. We will then pick the solution with minimal overall
percentage error as the solution for that super-cell.

II.4.4. Layout update

After the re-mapping and repositioning solution has been chosen
for each super-cell, we need to update the layout to remove overlap
and/or congestion. As we have discussed in section II.3, the gates
inside the super-cells have only the rough placement available.
Therefore, we need to place these local gates. We put them back to
the available slots using a linear assignment approach [9]. The
available slots are those positions that were occupied by the gates in
the original implementation of the super-cells, and those that are
defined as free by the designers. The cost of assigning a gate Gi inside
a super cell SCj to an empty slot Ek is given by:

Cost = Dis(SCj, Ek)+ γ×AreaMatch(Gi, Ek) (7)

where Dis denotes the distance between the super-cell and the slot;
AreaMatch computes the area mismatch between the gate and the
slot; and γ is a constant less than one. Due to the space limitation, we
will not present the details here.

III. Extensions to Multiple Critical Paths
In this section, we extend our algorithm to process up to k critical

paths at the same time, where k is a user-specified parameter. The
larger k is, the better the final result, but the slower the runtime.
Theorem 5: If the critical paths do not intersect with each other, our
algorithm can process the critical paths independently.
Proof: Figure 9 shows a non-critical gate G which is shared by k’
different critical paths. The critical paths themselves do not intersect.
During the re-mapping of G’s fanins, we generate the constraints such
that G’s arrival time will not exceed its required time. Moreover, if G
included in a super-cell SC as shown in the figure, when we construct
the solution set for SC, we also generate the constraints that the arrival
times of G’s fanouts do not exceed their required times. Therefore, the
solution selection for super-cells on different critical paths can be
performed at the same time.!

k'

non-critical gate G

super-cell SC

P1

Pk'

Figure 9. Non-intersecting Critical Paths.
We however have to extend our algorithm when there are k’ critical

paths intersecting at a gate. When we are building the solution set, we
need to record the C and τ for each critical path. Because we still
have one gate driving the critical output, we need only one R.
Therefore, the final curve generated at the root of any super-cell will
have 2k’+1 dimensions, including k’ C’s, k’ τ’s, and one R values, as
shown in Figure 10. In the worst case, k’ will be as large as k, which
is the number of critical paths that we are considering at the same
time. However, it is rare to see that all critical paths use the same gate.
Actually, the number of paths sharing the same gate is rather small in
our benchmarks, thus greatly reducing the complexity of our
algorithm.

C1
R

Ck'

ττττ1

ττττk'

critical gate

super-cell

Figure 10. Intersecting Critical Paths.
Moreover, because there are 2k’+1 values, we need an interpolation

function with 2k’ parameters. Considering the fact that we have only
one R, we can rewrite the interpolation function as:

R=F(τ1,τ2,…,τk’,C1,C2,…Ck’) (8)
We keep the same generalized geometric programming formulation

except to use the above equation for computing delay through super-
cells. Moreover, the number of variables is increased to 2 2i

i

k
∀

+∑ ,

where ki is the number of critical paths for the ith super-cell.

IV. Experimental Results
We have implemented our algorithm PRTC (Placement and Re-

mapping for Timing Closure) in C++. The input circuits to PRTC are
technology independently optimized, mapped, placed and globally
routed using timing-driven algorithms. We then apply PRTC to
improve their timings. We use an industrial strength 0.35µ ASIC
library to generate the results. The runtimes of C1355 and C3540 are
55 seconds and 125 seconds, respectively. These runtimes are
obtained by running PRTC on a Sun Ultra-Sparc workstation with
256MB memory. The experimental results for all of the recommended
benchmarks in IWLS95 are presented in Table 2. The first column
gives the name of the benchmarks. The second and third columns give
the number of gates and nets in the original circuits. The fourth and

fifth columns are the total area and total delay for the original circuit,
and the last two columns give the ratio of total area and total delay
after running PRTC. On average, we are able to improve the
postlayout timing by 29%, while keeping the area increase to 5%.

Table 2. Experimental Results.

V. Conclusions
In this paper, we presented a new algorithm that simultaneously

performs logic restructuring and placement on a circuit. This
algorithm constructs super-cells along the k most-critical paths and
then generates all non-inferior re-mapping solutions for the critical
part of the circuit. Finally, it selects the best mapping solution for all
super-cells while repositioning them concurrently. Our future work is
to include more optimization steps such as fanout optimization
techniques into this algorithm.

VI. Reference
[1] M. Avriel, R. Dembo, U. Passy, "Solution of Generalized Geometric

Programming", in International Journals for Numerical Methods in
Engineering, vol.9, 1975

[2] C. Beightler, D. T. Philips, "Applied Geometric Programming", 1976
[3] M. Berkelaar, "Area-Power-Delay Trade-off in Logic Synthesis", Ph.D

Thesis, Eindhoven University of Technology, 1992
[4] K. Chaudhary, M. Pedram, “Computing the Area versus Delay Trade-off

Curves in Technology Mapping”, in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 14, No. 12,
pp.1480-1489, 1995.

[5] W. Chen, C-T. Hsieh, M. Pedram, “Gate Sizing with Controlled
Displacement”, in Proceedings of International Symposium on Physical
Design, pp.127-132, 1999.

[6] F.R.K.Chung, F.K. Hwang, "The Largest Minimal Rectilinear Steiner
Trees for a Set of N Points Enclosed in a Rectangle with Given
Perimeter", Network, 9:19-36, 1979

[7] O. Coudert, R. Haddad, "New Algorithms for Gate Sizing: a
Comparative Study", in Proceedings of 33rd Design Automation
Conference, pp.734-739, Jun 1996

[8] J.P. Fishburn, A.E. Dunlop, "TILOS: a Posynomial Programming
Approach to Transistor Sizing", in Proceedings of International
Conference on Computer Aided Design, pp.326-328, 1985

[9] T. Lengauer, “Combinatorial Algorithms for Integrated Circuit Layout”,
John Wiley & Sons Ltd., 1990

[10] J. Lou, A. H. Salek, and M. Pedram, “An Exact Solution to Simultaneous
Technology Mapping and Linear Placement Problem”, in Proceedings of
International Conference on Computer Aided Design, pp.671-675, 1997.

[11] J. Morris, “Computational Methods in Elementary Numerical Analysis”,
John Wiley & Sons Ltd., 1983

[12] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa, “Generation of
Performance Constraints for Layout”, in IEEE Transaction of Computer-
Aided Design, pp.860-874, CAD-8(8), 1989

[13] K.O. Kortanek, X. Xu, Y. Ye, "An infeasible interior-point algorithm for
solving primal and dual geometric programs", Mathematical
Programming 76, pp.155-181, 1996

Gates Nets Area Delay Area Delay
C1355 324 367 2637105 7.15 1.06 0.88
C1908 528 563 4852287 12.04 1.04 0.72
C2670 464 699 4755861 13.15 1.14 0.62
C3540 840 892 9026112 21.98 1.05 0.71
C432 239 277 2142138 8.71 1.05 0.89
C6288 2377 2411 19086244 43.35 0.98 0.68
C7552 1304 1513 12817955 13.08 0.99 0.65
b9 83 126 586430 2.87 1.07 0.76
dalu 474 551 5262660 17.42 1.03 0.53
des 1741 1999 24550920 20.08 1.09 0.71
k2 700 747 8558596 17.17 0.96 0.70
rot 494 631 4635405 8.97 1.14 0.92
t481 351 369 3536687 12.05 1.11 0.46

1.05 0.71

Original PRTC

