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CONCURRENT MULTISCALE COMPUTING OF DEFORMATION

MICROSTRUCTURE BY RELAXATION AND LOCAL

ENRICHMENT WITH APPLICATION TO SINGLE-CRYSTAL

PLASTICITY∗
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Abstract. This paper is concerned with the effective modeling of deformation microstructures
within a concurrent multiscale computing framework. We present a rigorous formulation of con-
current multiscale computing based on relaxation; we establish the connection between concurrent
multiscale computing and enhanced-strain elements; and we illustrate the approach in an important
area of application, namely, single-crystal plasticity, for which the explicit relaxation of the problem
is derived analytically. This example demonstrates the vast effect of microstructure formation on
the macroscopic behavior of the sample, e.g., on the force/travel curve of a rigid indentor. Thus,
whereas the unrelaxed model results in an overly stiff response, the relaxed model exhibits a proper
limit load, as expected. Our numerical examples additionally illustrate that ad hoc element enhance-
ments, e.g., based on polynomial, trigonometric, or similar representations, are unlikely to result in
any significant relaxation in general.
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1. Introduction. The problem addressed in this paper concerns the effective
modeling of deformation microstructures within a concurrent multiscale computing

framework. In many applications of interest, materials develop fine microstructure
on multiple length and time scales in response to loading [5, 53, 58, 49]. Examples of
such microstructures include martensite; subgrain dislocation structures; dislocation
walls and networks; ferroelectric domains; shear bands; spall planes; and others. In
addition, materials such as polycrystalline metals may exhibit processing microstruc-
ture from the outset, prior to the onset of deformation. The macroscopic behavior of
such materials is too complex to be amenable to modeling based on simple represen-
tational schemes, such as afforded by continuum thermodynamics, symmetry groups,
linearization, polynomial approximations, empirical fitting and calibration, and other
similar schemes. Indeed, empirical models are a major source of error and uncertainty
in engineering applications, and the empirical paradigm does not offer a systematic
means of reducing such error and uncertainty.

Multiscale modeling aims to eliminate empiricism and uncertainty from mate-
rial models by systematically identifying the rate-controlling mechanisms at all scales
and the fundamental laws that govern those mechanisms, and by bridging the relevant
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space and time length scales through a mathematically rigorous determination of laws
of effective or macroscopic behavior. The ultimate aim is to formulate parameter- (or
“knob”-) free macroscopic models of material behavior based solely on fundamental
laws of physics and rigorous approximation theory. However, the practical imple-
mentation of this program remains an outstanding challenge of our time in materials
science, computational science, and mathematics.

From a mathematical point of view, the formation of deformation microstructure
is a manifestation of the phenomenon of lack of attainment [24, 49]. Thus, the min-
imum principles that govern incremental behavior involve functionals that are often
nonconvex and lack lower semicontinuity, with the result that their infimum is not
attained by any classical solution. The infimum can nevertheless be approached ar-
bitrarily close by sequences of fields that exhibit increasingly fine microstructure, or
minimizing sequences. These sequences give mathematical expression to the concept
of microstructure. Therefore, the central computational problem concerns the cal-
culation of solutions that exhibit very fine oscillations on the scale of the domain of
analysis.

We emphasize that, for the problems under consideration here, the fine oscillations
in the solution are the result of material instabilities in an otherwise homogeneous
material. Fine oscillations can also be due to oscillatory coefficients in otherwise
linear partial differential equations or, more generally, to an oscillatory explicit spatial
dependence of the energy density. Problems of this nature are studied within the field
of homogeneization and are very different in nature from the problems considered in
the present work (see, e.g., [19] for a modern treatment of the subject).

For problems such as nonlinear elasticity or plasticity whose energies are invariant
under rescaling of the domain, thus resulting in a strict separation of the microscopic
and macroscopic length scales, the standard mathematical device for the solution of
multiscale problems is relaxation [34, 35, 24, 25, 49, 9]. The process of relaxation
produces a new effective or “relaxed” problem that is well-posed in the sense of ex-
istence of solutions and that implicitly accounts for the formation of microstructure.
Indeed, the relaxed problem is fashioned by identifying optimal microstructures, i.e.,
minimizing sequences of fields whose energies converge to the infimum of the energy.
Conversely, optimal microstructures can be reconstructed, with no loss of information,
from the solutions of the relaxed problem, which, however, are themselves free of fine
oscillations.

The finite element method provides an ideal framework for the implementation
of the method of relaxation: the oscillation-free solutions of the relaxed problem are
approximated by finite element interpolation; and microstructure is accounted for
at the subgrid level. Such schemes conform to the concurrent multiscale computing
paradigm in that both the macroscopic solution and the attendant microstructures
are computed simultaneously as part of the same calculation. The earliest realizations
of this general strategy were concerned with the effective simulation of shear bands
resulting from unstable plastic deformation. To this end, Ortiz et al. (see [52, 43, 45,
50, 44]) embedded a discontinuous mode of deformation carrying a strain discontinuity
into finite elements, which they treated as incompatible elements. The detection of the
point of local instability and the orientation of the resulting strain discontinuities were
determined by a local Hadamard stability analysis. Numerous variations of this basic
scheme were proposed subsequently, and the resulting elements have been generally
referred to as enhanced-strain elements.

From the standpoint of relaxation, the local strain fields in enhanced-strain ele-
ments represent simple microstructures. The precise structure of the strain enhance-
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ment is immaterial as regards the effective behavior of the element; only the so-called
Young measure generated by the strain enhancement matters. This Young measure
keeps track of the volume fractions occupied by the different strains introduced by the
local enhancement. This observation was made by Leroy, Ortiz, and Needleman [45],
who showed that the original element of Ortiz, Leroy, and Needleman [52] and the
embedded-band element of Belytschko, Fish, and Engelmann [7] are indeed identi-
cal. In addition, the local Hadamard stability analysis underlying enhanced-strain
elements is often based on a linearization of the constitutive relations, leading to the
so-called Hill equivalent solid, and the resulting local enhancements fail to fully exploit
the strongly nonlinear multiwell structure of the energy landscape.

More general concurrent multiscale computing schemes based on modern calculus
of variations tools have been proposed recently [13, 53, 54, 28, 8, 26, 21, 4, 12, 46, 55].
These schemes allow a fully nonlinear analysis of the energy to be performed at the
subgrid scale and generate microstructures “on-the-fly” by a variety of algorithms such
as sequential lamination [40, 41, 42] and recursive faulting [55]. While this approach
conforms strictly to the multiscale modeling paradigm, i.e., it involves no empirical
modeling of the macroscopic or effective behavior, the generation of subgrid micro-
structure requires the solution of a complex nonconvex optimization problem and is
often computationally costly. Considerable gains in performance are achieved when
the relaxation of the constitutive relations is known analytically. Thus, when the
relaxation of the problem is known explicitly, the construction of subgrid microstruc-
tures is bypassed entirely. However, the behavior of the elements is optimal, i.e., as
compliant as possible, and optimal microstructures can be reconstructed a posteriori
with no loss of information. Unfortunately, explicit relaxations are known only for
a handful of material models, though the list of such models continues to grow at a
steady rate.

In this paper we present a rigorous formulation of the concurrent multiscale com-
puting paradigm just described; we establish the connection between concurrent mul-
tiscale computing and enhanced-strain elements; and we illustrate the approach in an
important area of application, namely, single-crystal plasticity, for which the explicit
relaxation of the problem is derived analytically. Our relaxation theorem extends an
earlier result of Conti and Ortiz [22] to the hardening case. The paper is organized
as follows. Fundamental results of the direct method in the calculus of variations
concerning existence of minimizers and relaxation are briefly reviewed in section 2.
Section 3 is concerned with the convergence of conforming discrete approximations to
the relaxed functional in the nonlinear range. Section 4 discusses relaxation in a model
of crystal plasticity. Section 5 is devoted to establishing the connection of enrichment
techniques and partial relaxation. Section 6 provides an example of application of the
relaxation approach to multiscale computations in single-crystal plasticity. Finally,
closing remarks and an outlook are collected in section 7.

2. Infimization and relaxation. For completeness and to set the stage for
subsequent developments, we begin by reviewing relevant results of the calculus of
variations with particular focus on relaxation of functionals defined on Sobolev spaces
(see, for instance, [25, 24, 49] for extensive presentations).

Throughout this work we are concerned with systems whose behavior can be
described by means of a minimum principle of the form

inf
u∈X

J(u),(2.1)

where X is a metric space (a topological space would suffice for most results, see [25],
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but we shall not require such generality) and J : X → R ≡ R ∪ {±∞} is a functional
defined over X. In applications, X will be a subset of a Sobolev space W 1,p(Ω; Rn).
The direct method of the calculus of variations permits us to establish existence
of minimizers of J over X by establishing that any minimizing sequence, i.e., any
sequence ui ∈ X such that J(ui) → infX J , has a subsequence that converges to a
minimum. The key properties of the functional that result in existence are coercivity
and lower semicontinuity. We recall that a functional J is coercive in X if for any
t ∈ R the closure of the set {J ≤ t} ≡ {v ∈ X, J(v) ≤ t} is compact in X. In
addition, J is said to be lower semicontinuous if for every u ∈ X and every sequence
ui → u it follows that J(u) ≤ lim infi→∞ J(ui). Coercivity immediately implies that
any sequence ui for which J(ui) is bounded has a subsequence converging to some
u ∈ X. The final step is then to show that the limit minimizes J . In order to do so
it suffices to prove that J(u) ≤ lim infi→∞ J(ui) = inf J , which is implied by lower
semicontinuity of J .

In the present work we are concerned with functionals, such as those describing
materials which spontaneously generate microstructure, lacking lower semicontinuity
and in their relaxation. A key notion in the theory of relaxation is that of lower

semicontinuous envelope. The lower semicontinuous envelope sc−J : X → R of J is
defined as the supremum of all lower semicontinuous functionals majorized by J , i.e.,
sc−J(u) = sup

{

G(u) such that G : X → R lower semicontinuous, G(v) ≤ J(v) for all

v ∈ X
}

. It is easy to see that sc−J is lower semicontinuous and

sc−J(u) = inf
{

lim inf
i→∞

J(ui) : ui ∈ X , ui → u
}

.(2.2)

For any coercive functional J the following hold [25, p. 30]:
1. sc−J is coercive and lower semicontinuous.
2. sc−J admits at least a minimum point.
3. minu∈X sc−J(u) = infu∈X J(u).
4. If u is the limit of a minimizing sequence for J , then u is a minimum point

for sc−J .
5. If u is a minimum point for sc−J , then u is the limit of a minimizing sequence

of J .
These properties establish a close and rigorous connection between minimum prob-
lems and their relaxations. Thus, whereas the original problem may suffer from non-
attainment, the relaxed problem always has solutions. In addition, solving the relaxed
problem is equivalent to solving the original problem in as much as the macroscopic
or structural behaviors (e.g., energies, force-displacement relations) computed from
both problems are identical; and the solutions (minimizers) of the relaxed problem
are in one-to-one correspondence to solutions (minimizing sequences) of the original
problem.

Throughout this work we restrict our attention to functionals J of the integral
form

J(u) =

∫

Ω

W (Du(x)) dx ∀u ∈ X,(2.3)

where Ω ⊂ R
n is a Lipschitz domain, Du denotes the weak derivative of u, and

X = {v ∈ W 1,p(Ω; Rm), v = 0 on ΓD}, 1 < p < +∞.(2.4)

Here ΓD ⊂ ∂Ω is the part of the boundary of Ω on which Dirichlet or displace-
ment boundary conditions are imposed. Even with strong growth conditions on W ,



CONCURRENT MULTISCALE COMPUTING 139

these functionals are not coercive with respect to the norm topology. However, the
functionals can be coercive with respect to the weak topology. We recall that for
1 < p < ∞ a sequence (fi)i∈N in Lp(Ω; Rm) converges weakly to f ∈ Lp(Ω; Rm),
fi ⇀ f , if limi→∞

∫

Ω
fi · g =

∫

Ω
f · g, for every g ∈ Lp′

(Ω; Rm), where p′ = p/(p− 1).
Analogously, a sequence (ui)i∈N converges to u weakly in W 1,p(Ω; Rm) if ui converges
weakly to u in Lp(Ω; Rm), and Dui converges weakly to Du in Lp(Ω; Rm×n).

The main property of weak convergence of interest here is that bounded sequences
have weakly converging subsequences. More precisely, since the spaces W 1,p for 1 <
p < ∞ are separable and reflexive, any bounded subset is compact with respect
to the weak topology [57]. Furthermore, we recall that bounded subsets of W 1,p are
metrizable in the weak topology [57, Theorem 3.16] and, hence, for present purposes it
suffices to consider metric spaces. In this setting, the coercivity of J simply expresses
the property that its sublevel sets are bounded in W 1,p.

The coercivity of the functional J can be determined from the growth of W .
Precisely, if for some 1 < p < ∞ we have

1

C
|F |p − C ≤ W (F ) ∀F ∈ R

m×n ,(2.5)

then it follows that

1

C

∫

Ω

|Du|p ≤ J(u) + C|Ω| .

Hence Du is bounded in Lp(Ω; Rm×n) whenever J is bounded. If additionally the set
ΓD has positive n−1-dimensional measure, then by the Poincaré–Wirtinger inequality
u is also bounded in Lp(Ω; Rm). Hence u is bounded in W 1,p, which establishes the
coercivity of J in the weak W 1,p topology.

Equation (2.5) shows that coercivity depends only on the behavior of W at infinity.
Weak lower semicontinuity instead depends on the behavior of W on the entire space
of matrices. In one spatial dimension weak lower semicontinuity is equivalent to
convexity of the energy density W . In general, weak lower semicontinuity of the
energy J given by (2.3) is closely related to the notion of quasiconvexity introduced
by Morrey [47, 48]. We recall that W : R

m×n → R is quasiconvex if for every open
bounded domain ω ⊂ R

n,

∫

ω

W (F + Dv) ≥

∫

ω

W (F ) ∀v ∈ W 1,∞
0 (ω; Rm) .(2.6)

The relation between quasiconvexity and lower semicontinuity is as follows (cf., e.g.,
[49, Theorem 4.4]).

Theorem 2.1. Let W : R
m×n → R be continuous, and assume that there exists

a constant C > 0 and 1 < p < ∞ such that

0 ≤ W (F ) ≤ C(1 + |F |p) ∀F ∈ R
m×n.(2.7)

In addition, let Ω ⊂ R
n be a bounded Lipschitz domain. Then J defined by (2.3) is

weakly lower semicontinuous on W 1,p(Ω; Rm) if and only if W is quasiconvex.

If W is not quasiconvex, and correspondingly J not lower semicontinuous, the
quasiconvex envelope of W determines the lower semicontinuous envelope of J . Pre-
cisely, the following holds [24, Theorem 2.1, p. 228], [49, Theorem 4.5].
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Theorem 2.2. Let J : X → R be the functional defined in (2.3), (2.4). Let

W : R
m×n → R be continuous and such that

1

C
|F |p − C ≤ W (F ) ≤ C + C|F |p ∀F ∈ R

m×n,(2.8)

for some 1 < p < +∞ and C > 0. Then the lower semicontinuous envelope of J in

weak topology of W 1,p(Ω; Rm) is given by

sc−J(u) =

∫

Ω

QW (Du) ,(2.9)

where QW : R
m×n → R denotes the quasiconvex envelope of W , which can be com-

puted as

QW (F ) = inf
v∈W

1,∞
0 (ω;Rm)

1

|ω|

∫

ω

W (F + Dv) ∀F ∈ R
m×n.(2.10)

Expression (2.10) is independent of the choice of the open bounded domain ω ⊂ R
n,

provided that its boundary has zero Lebesgue measure.

In scalar or one-dimensional problems (i.e., if m = 1 or n = 1) the quasiconvex
envelope coincides with the convex envelope, which is easily computable. In general,
the computation of quasiconvex envelopes is exceedingly difficult, and explicit relax-
ations are known only for a handful of material models. Representative examples
include the following.

Example 2.1 (Pipkin’s formula). Consider functions W of the form

W (F ) = W (F⊤F ) ∀F ∈ R
m×n,

with W convex and m ≥ n. An explicit formula for QW was obtained by Pipkin [56]
in the case m > n and extended by Le Dret and Raoult [29] to the case m = n. The
result is

QW (F ) = inf
S∈S

+
n

W (F⊤F + S) ∀F ∈ R
m×n,(2.11)

where S
+
n is the set of symmetric semidefinite positive matrices in R

n×n. Le Dret and
Raoult have also shown that formula (2.11) does not hold for m < n.

Example 2.2 (liquid-crystal elastomers). Liquid-crystal elastomers display a
number of interesting mechanical and optical properties due to the coupling be-
tween the liquid-crystal ordering phase transition and rubber elasticity. Presence of
the phase transition leads to nonquasiconvexity of the energy and to microstructure
formation. The explicit computation of the quasiconvex envelope of the energy by
DeSimone and Dolzmann [26] in the isotropic model permitted efficient macroscopic
finite element simulations [21]. For a more refined anisotropic model, including an
anisotropy term, the relaxation could be obtained only in two dimensions [20]; numer-
ical simulations were then performed for a membrane geometry. The microstructure
could be locally reconstructed by inverting the quasiconvexification procedure. Com-
parison with experiment showed very good agreement with both macroscopic and
microscopic properties computed through the relaxed functional, in particular for
the anisotropic model. The quasiconvex envelope of the anisotropic model in three
dimensions remains unknown at present.
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Example 2.3 (sequential faulting in confined brittle samples). When fractures
arise in confined brittle materials, distributed damage instead of localized isolated
cracks can be expected (cf. the experiments of Chen and Ravichandran [16, 17, 14, 15]).
Such a distribution of damage can be understood as the occurrence of microstructure,
and the energy to be minimized indeed lacks lower semicontinuity. In order to provide
numerical partial relaxation, Pandolfi, Conti, and Ortiz [55] propose to introduce
distributions of cracks, or recursive-faulting, which share several characteristics with—
but also differs in significant respects from—sequential lamination. In the particular
case of purely cohesive frictionless fracture, the sequential faulting construction can
be shown to deliver the relaxation of the energy [55]. The relaxed energy exhibits
a marked tension-compression asymmetry. Thus, whereas in hydrostatic tension the
fault microstructure is capable of fully relaxing the energy, under hydrostatic tension—
or “confinement”—the microstructure can only relax shear and the material behaves
as a compressible fluid in hydrostatic equilibrium.

Crystal plasticity is also amenable to analytical relaxation. This relaxation is
discussed in detail in section 4.

3. Convergence of approximations. In this section we consider successive ap-
proximations of infima over increasingly finer conforming finite element spaces (Xi)i≥0

⊂ X. Under natural assumptions we show that subsequences of successive minima
over Xi, i ≥ 0, converge to minima of the relaxed energy sc−J as i → ∞. While
the arguments that we use are based on standard theory of Γ-convergence (cf., e.g.,
[34, 35, 25, 9]), they are not widely known in the finite element literature and will,
therefore, stand a brief exposition.

3.1. Elements of Γ-convergence. Let (Ji)i∈N be a sequence of functionals
from X to R. We recall that Ji Γ-converges to J : X → R if the following two
properties hold:

1. For every u ∈ X, and every sequence ui → u,

J(u) ≤ lim inf
i→∞

Ji(ui).

2. For every u ∈ X, there is a sequence ui → u such that

J(u) = lim
i→∞

Ji(ui) .

The Γ-limit J is automatically lower semicontinuous. Furthermore, a constant se-
quence Ji = J always has a Γ-limit, namely, the lower semicontinuous envelope sc−J
of J .

Extension of the direct method to a family of functionals requires a uniform
coercivity assumption. We recall a sequence (Ji)i∈N is equicoercive in X if for any
t ∈ R there exists a compact set Kt ⊂ X independent of i such that for all i ∈ N,
{u ∈ X, Ji(u) ≤ t} ⊆ Kt.

Consider now an equicoercive sequence Ji Γ-converging to a functional J . Then
J is coercive. Since in addition Γ-limits are lower semicontinuous, it immediately
follows that the Γ-limit of any equicoercive sequence has a minimizer. Furthermore,
their minimizers are accumulation points of minimizing sequences of the family Ji.
Precisely, if Ji(ui) = inf Ji, then the sequence ui has a subsequence that converges to
a minimizer of J . The converse cannot be true, since Ji need not have a minimizer.
It is, however, true if approximate minimizers are considered. Assume for definiteness
that Ji ≥ 0 and J is not identically +∞. Then the set of minimizers of J coincides
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with the set of accumulation points of the set of minimizing sequences of the family Ji,
i.e., {u : J(u) = inf J} = accumulation points of {ui : limi→∞ [Ji(ui) − inf Ji] = 0}.

3.2. Approximation and convergence analysis in the conforming case.

Let (Xi)i∈N ⊂ X be a sequence of finite-dimensional approximation spaces.
Definition 3.1. A sequence of sets (Xi)i∈N ⊂ X is dense in X if for any

u ∈ X, there exists a sequence (ui)i∈N converging to u in X such that ui ∈ Xi for

every i ∈ N.

Under certain restrictions on the approximation of the domain, conforming finite
element spaces, such as those generated by piecewise affine interpolation, on increas-
ingly finer meshes define dense sequences in the sense of (3.1) (cf. [18]).

In what follows, we denote by (X,T ) and (X,S) the space X endowed with the
strong (T ) and with the weak topology (S), respectively. Whereas first-countability
assumption would suffice in most cases, for the applications under consideration here
we may assume all topologies to be metrizable without loss of generality. We recall
that the topology T is finer than S; i.e., any converging sequence for T converges
for S.

Proposition 3.2. The set X is assumed to be endowed with two metrizable

topologies S and T , with T finer than S. Let J : X → R be coercive in (X,S) and

continuous in (X,T ). Let (Xi)i∈N ⊂ X be a dense sequence of sets in (X,T ) and

(Ji)i∈N : X → R be the sequence defined by

Ji(u) =

{

J(u) if u ∈ Xi,

+∞ otherwise,
(3.1)

for every i ∈ N and every u ∈ X. Then the sequence (Ji)i∈N Γ-converges to sc−J in

(X,S) and is equicoercive in (X,S). Here sc−J is the lower semicontinuous envelope

of J in (X,S).
Proof. Let u ∈ X, and ui → u, with respect to S. Since Ji ≥ J on X for every

j ∈ N, we have

sc−J(u) ≤ lim inf
i→∞

J(ui) ≤ lim inf
i→∞

Ji(ui) .(3.2)

This proves the first inequality in the definition of Γ-convergence. Let now u ∈ X.
By (2.2) there is a sequence uk → u in S such that

lim
k→∞

J(uk) = sc−J(u) .

By the density of the sequence Xi, for any k there is a sequence uk
i ∈ Xi, with uk

i → uk

with respect to T . Since J is continuous in the same topology, and Ji = J on Xi,

lim
i→∞

Ji(u
k
i ) = lim

i→∞
J(uk

i ) = J(uk) .

The proof of Γ-convergence is then completed by passing to a diagonal subse-
quence.

Since, by construction, Ji ≥ J , the equicoercivity of the sequence is immediate
from the coercivity of J . As noted earlier, this implies that the minimizers of J are
accumulation points of minimizing sequences of the family Ji; i.e., if Ji(ui) = inf Ji,
then the sequence ui has a subsequence that converges weakly to a minimizer
of J .
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Assume, for instance, that J is of the form (2.3) with W : R
m×n → R continuous

and such that

c|F |p − C ≤ W (F ) ≤ C(1 + |F |p) ∀F ∈ R
m×n ,(3.3)

for some c, C > 0, p ∈ (1,∞). As noted earlier, if Ω is a bounded Lipschitz domain,
and ΓD ⊂ ∂Ω has positive n− 1-dimensional measure, then J is coercive in the weak
topology of W 1,p. Furthermore, by Lebesgue’s dominated convergence theorem J is
continuous in the strong topology of W 1,p. Therefore, Proposition 3.2 applies for any
dense sequence Xi ∈ W 1,p, e.g., for sequences of spaces generated by conforming finite
element interpolation.

4. Application to crystal plasticity. Ductile single crystals develop a vari-
ety of fine microstructures when subjected to monotonic or cyclic deformations (see,
e.g., [53] for a review). Within a deformation theory of plasticity framework, those
deformation microstructures may be understood as the result of the lack of lower semi-
continuity conferred on the energy functional by strong latent hardening [53]. Thus,
single crystals supply a convenient and nontrivial example of application—as well as
an exacting test—of multiscale analysis. Conti and Ortiz have obtained an explicit
relaxation of single-crystal plasticity in the limiting case of ideally plastic crystals
with infinite latent hardening. In this section, we strengthen Conti and Ortiz’s result
by extending it to materials exhibiting finite latent hardening and self-hardening.

4.1. Deformation theory of crystal plasticity. Let Ω ⊂ R
3 represent the

reference configuration of a ductile single crystal, and denote by u the displacement
field. Under the hypothesis of small deformations, we adopt the following additive
decomposition of the gradient β = Du into an elastic and a plastic contribution:
β = Du = βe+βp. We note that β needs to be a gradient field, i.e., ∇×β = 0; this does
not necessarily hold for the individual components βe and βp. Plastic deformation
in single crystals is crystallographic in nature and, for monotonic deformation, the
plastic contribution βp can be expressed as

βp(γ) =

N
∑

i=1

γi si ⊗mi.

The single crystal has N slip systems characterized by the slip directions (si)1≤i≤N

and the normal vectors (mi)1≤i≤N , the plastic state of the crystal being described
by the set of plastic variables (γi)1≤i≤N . Plastic deformations are assumed to be
isochoric (si ·mi = 0 for all 1 ≤ i ≤ N). For example, in fcc crystals one has N = 12
and the set of slip systems S = {si ⊗mi; 1 ≤ i ≤ N} is given by

Sfcc =
{

(0, 1, 1) ⊗ (±1, 1,−1), (0, 1,−1) ⊗ (±1, 1, 1), and cyclic permutations
}

;

for bcc crystals one instead has N = 24 and

Sbcc =
{

(±1, 1, 1) ⊗ (0, 1,−1), (±1, 1,−1) ⊗ (0, 1, 1),

(1,−1,∓1) ⊗ (2, 1,±1), (1, 1,∓1) ⊗ (2,−1,±1), and cyclic permutations
}

.

The deformation-theory energy density corresponding to a displacement gradient β
and plastic slip strains γ ∈ R

N can be written as

A(β, γ) =
1

2
(βsym − [βp(γ)]sym)C (βsym − [βp(γ)]sym) + W p(γ) ,
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where C is the tensor of elastic moduli of the crystal and the effective stored-energy
function W p : R

N → [0,∞] contains hardening and dissipation terms. The plastic
slip-strain field γ : Ω → R

N enters the energy locally and, therefore, can be minimized
locally. The resulting energy density is

W (β) = min
γ∈RN

A(β, γ) .(4.1)

This deformation-theory energy density defines a minimization problem of the form
(2.1) with the functional J(u) defined by (2.3) and (4.1). The properties of the re-
sulting problem depend sensitively on the assumed form of the stored-energy function
W p(γ).

4.2. Relaxation of hardening crystal plasticity. The analysis of Conti and
Ortiz [22] is concerned with the particular case of ideally plastic crystals with infinite
latent hardening, corresponding to the choice of stored-energy density

W p
∞(γ) =

{

τi |γi| if γj = 0∀ j �= i,

+∞ otherwise,
(4.2)

where τi > 0 are the critical resolved shear stresses of the different slip systems. This
stored-energy density effectively rules out multislip deformation at a material point.
Its convex envelope is

[W p
∞]∗∗(γ) = W p

0 (γ) ≡
∑

i

τi |γi|,

which describes multislip ideal plasticity, i.e., crystals that are entirely devoid of latent
hardening. Conti and Ortiz [22] showed that under certain kinematic assumptions on
the set of slip systems the energy W p

0 also coincides with the quasiconvex envelope
of W p

∞, thus providing an explicit relaxation of ideally plastic crystals with infinite
latent hardening.

We proceed to show that a similar result holds for crystals with arbitrary hard-
ening characteristics. We remark that, as in classical works on geometrically linear
plasticity [59, 2, 60], the natural space in which coercivity is achieved is X ≡ {u ∈
BD(Ω; R3); div u ∈ L2(Ω)}. We recall that BD is the space of functions of bounded
deformation, i.e., the set of L1 functions such that the symmetric part of the distri-
butional gradient is a bounded measure [59, 2, 60, 1]:

BD(Ω)

≡

{

u ∈ L1(Ω; R3) s.t. sup

{∣

∣

∣

∣

∫

Ω

u⊗∇φ + ∇φ⊗ u

∣

∣

∣

∣

: φ ∈ C1
0 (Ω; R3)

}

< ∞

}

.

We recall that, much as in the case of BV functions, the symmetrized distributional
gradient of any function u ∈ BD can be decomposed as follows:

Eu ≡
Du + (Du)T

2
= Eu dx + Esu .

Here Du is the (matrix-valued) distributional gradient of u; Eu the absolutely con-
tinuous part of Eu with respect to the Lebesgue measure; and Es the rest. In turn,
Es can be decomposed into a part which is absolutely continuous with respect to the
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2-dimensional Hausdorff measure H2 (one dimension less than the space, in general),
and which represent jumps in u, and a remainder, called Cantor part. In addition,
the relevant topology is the weak topology of U , i.e., weak convergence of u in BD
and weak convergence of div u in L2. Analogously to the case of Sobolev spaces, on
bounded sets this is equivalent to the strong L1 topology, which is metrizable. Hence
we shall use the latter.

Theorem 4.1. Let Ω ⊂ R
3 be a bounded Lipschitz set and let the set of slip

systems {si ⊗ mi; 1 ≤ i ≤ N} be Sbcc or Sfcc. Assume that stored-energy density

W p : R
N → [0,∞] satisfies the inequalities

W p
0 (γ) ≤ W p(γ) ≤ W p

∞(γ) ∀γ ∈ R
N ,(4.3)

and let W be as in (4.1). Then the relaxation of the functional J : X → [0,∞] defined

by

J(u) =

⎧

⎨

⎩

∫

Ω

W (Du) if u ∈ W 1,2(Ω; R3),

+∞ otherwise,

with respect to the strong L1 topology is

J (u) =

⎧

⎨

⎩

∫

Ω

W ∗∗(Eu) dx +

∫

Ω

W∞

(

Esu

|Esu|

)

d|Esu| if u ∈ X,

+∞ otherwise.
(4.4)

Here W ∗∗ denotes the convex envelope of W and is obtained from W by replacing the

plastic energy W p by its convex hull [W p]∗∗ = W p
0 . In addition, the corresponding

regression function follows as W∞(F ) = limt→∞ W ∗∗(t β)/t.
Proof. Let J∞ denote the functional obtained in the case W p = W p

∞. In [22,
Theorem 3.3] it was shown that sc−J∞ = J , with respect to the strong L1 topology.
This implies, in particular, that J is lower semicontinuous. We claim that J (u) ≤
J(u) for all u. Since the right-hand side is ∞ for u �∈ W 1,2, it suffices to consider
the case u ∈ W 1,2. But then J (u) equals the integral of W ∗∗(∇u), and since by
assumption W ∗∗ = W p

0 ≤ W p, the claim follows. From the definition of the lower
semicontinuous envelope it follows that

J ≤ sc−J .(4.5)

We now prove the converse inequality. By [22, Theorem 3.3] for any u ∈ X there is
a sequence ui ∈ W 1,2(Ω; R3) such that ui → u in L1, and J∞(ui) → J (u). Since
J ≤ J∞, we have

lim sup
i→∞

J(ui) ≤ lim sup
i→∞

J∞(ui) = J (u) .

In turn, sc−J is lower semicontinuous and below J , and hence

sc−J(u) ≤ lim inf
i→∞

sc−J(ui) ≤ lim sup
i→∞

sc−J(ui) ≤ lim sup
i→∞

J(ui) .

Comparing these two relations it is clear that

sc−J ≤ J ,

which, together with (4.5), implies the thesis.
Remark 1. The same proof used in [22] establishes that the relaxation remains

unchanged under the addition of certain additional kinematical constraints, including
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(i) the slip boundary condition (u− u0) · ν = 0 prescribed over Γ ⊂ ∂Ω, where ν
denotes the normal unit vector on Γ;

(ii) the linearized incompressibility constraint div u = 0.

Proposition 4.2. If, in addition to (4.3), the stored-energy density W p satisfies

the inequality

W p(γ) ≤ M |γ| ∀γ ∈ R
N ,(4.6)

for some M ∈ R, then Theorem 4.1 holds for any set of slip systems spanning the set

of traceless symmetric matrices.

The key point of the proof is the following extension of Lemma 3.5 of [22].

Lemma 4.3. Let S = {si ⊗ mi; 1 ≤ i ≤ N} be a set of slip systems such that

their symmetric parts span the set of traceless symmetric matrices. Then there is a

constant c > 0 such that

W (β) ≤ c(|β + βT | + |Trβ|2)

for all β ∈ R
3×3.

Remark 2. In comparing with Lemma 3.5 of [22], the degenerate laminate ν = δβ
should be considered.

Proof. Consider the linear map T : R
N → R

3×3 defined by

Tγ =

N
∑

i=1

γi
si ⊗mi + si ⊗mi

2
.

By assumption, TR
N = R

3×3
sym,0, where R

n×n
sym,0 = {F ∈ R

n×n : FT = F , TrF = 0} is

the set of symmetric, traceless matrices. Therefore T has a linear inverse S : R
3×3
sym,0 →

R
N (not necessarily uniquely defined). Consider now a generic β ∈ R

3×3, and define

βD
sym =

β + βT

2
−

1

3
(Trβ)Id ∈ R

3×3
sym,0 .

We set γ = SβD
sym. Then

β = ω +

N
∑

i=1

γisi ⊗mi +
1

3
(Trβ)Id ,

with ω antisymmetric, and |γ| ≤ C|βD
sym| ≤ C|β + βT |, with a constant depending on

S but not on β. Therefore, recalling (4.6),

W (β) ≤ c|Trβ|2 + |β + βT |C max
i

τi ,

with a constant depending on the elastic moduli C and on S. The thesis follows.

5. Algorithmic relaxation. In the absence of an explicit knowledge of the re-
laxed energy, a fall back strategy is to approximate the relaxation by the consideration
of special microstructures. These microstructures can be evaluated a priori, and the
relaxed energy tabulated for subsequent use; or they can be generated “on the fly,”
simultaneously with the full scale simulation.
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5.1. Sequential lamination. Given the variational structure of the problems
under consideration, upper bounds are particularly useful: if W is replaced by any
function W̃ such that QW ≤ W̃ ≤ W , then sc−J is not changed. However, if W̃ is a
good approximation to QW , the numerical behavior of the functional might be largely
improved. Practically all available approximations to QW from above are obtained
through the following result, which is (under slightly more stringent assumptions) due
to Morrey [47, 48]. The present version is proven in [31]; see also [49, Lemma 4.3].

Lemma 5.1. If W : R
m×n → R is quasiconvex, it is rank-1 convex. This means

that for all A,B ∈ R
m×n with rank(B −A) = 1, and every λ ∈ [0, 1], one has

W (λA + (1 − λ)B) ≤ λW (A) + (1 − λ)W (B).

The converse assertion is false, as proved by the counterexample of Šverák [61].
To characterize the rank-1 convex envelope, we follow the approach of Kohn and
Strang [39, 40, 41, 42].

Lemma 5.2. Let W : R
m×n → R. The rank-1 convex envelope RW of W , i.e.,

the greatest rank-1 convex function below W , is characterized for every F ∈ R
m×n by

RW (F ) = limk→∞ RkW (F ) with

R0W (F ) = W (F ),

Rk+1W (F ) = inf

{

λRkW (F1) + (1 − λ)RkW (F2) : λF1 + (1 − λ)F2 = F,

λ ∈ [0, 1], and rank(F1 − F2) ≤ 1

}

∀k ∈ N
∗.

Additionally, for every F ∈ R
m×n and all k, we have QW (F ) ≤ RW (F ) ≤

RWk(F ) ≤ W (F ).
This iterative characterization is particularly useful if the rank-1 envelope is

reached after a finite number K of steps, so that RW (F ) = RKW (F ). This is, how-
ever, in general not true; see the discussion accompanying [24, Theorem 1.1, p. 201].
From a numerical point of view, in [27, 28] an algorithm for the global determination
of rank-1 convex envelopes has been developed and uniform convergence estimates
have been proven.

Due to the computable character of RKW (F ), it is tempting to replace the
quasiconvex envelope QW (F ), unaccessible in general, by the sequential lamination
RKW (F ), where K is fixed to a small value (typically K = 1). Then the energy
which will be minimized over finite-dimensional spaces is

∫

Ω

RKW (Du).(5.1)

Of course, the sequentially laminated energy (5.1) is not guaranteed to have a mini-
mum over X, but the approach has proven useful in elastoplasticity [53, 54, 4, 22, 12].

5.2. Local enrichment and partial relaxation. In this section, we illustrate
the relation between local enrichment and relaxation in computational hyperelasticity
within the finite element framework. Let us consider J of the form (2.3) defined on
the space X given by (2.4). We denote by Th a mesh of the polygonal domain Ω, and
by Xh the associated discrete space of displacements defined as

Xh ≡ {v ∈ X, v|T ∈ [Rq(T )]n ∀T ∈ Th},(5.2)
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where Rq(T ) is the space of polynomials of total (resp., partial) order less than q on
the simplex (resp., parallelepiped) T . For each element T ∈ Th, we choose a finite-
dimensional space Eh(T ) ⊂ W 1,∞

0 (T ; Rm) of local enrichments. The space Eh of
enrichments over Ω can then be defined as

Eh ≡ {v ∈ W 1,∞(Ω; Rm), v|T ∈ Eh(T ) ∀T ∈ Th}.(5.3)

The enriched space of approximation now being Xh ⊕ Eh, the discretized minimum
problem becomes

inf
vh=vh+v′

h∈Xh⊕Eh

∫

Ω

W (Dvh + Dv′h)

= inf
vh∈Xh

(

∑

T∈Th

inf
v′
h∈Eh(T )

(
∫

T

W (Dvh + Dv′h)

)

)

= inf
vh∈Xh

∑

T∈Th

ETW (Dvh),

where we have introduced the partially relaxed element energy

ETW (F ) = inf
v∈Eh(T )

∫

T

W (F + Dv) ∀F ∈ Lp(T ; Rm×n).(5.4)

Suppose, in particular, that q = 1 and, correspondingly, F is piecewise constant,
which corresponds to piecewise linear finite element interpolation over simplices. In
view of the expression (2.10) for the quasiconvex envelope of W we have

∫

T

QW (F ) = inf
v∈W

1,∞
0 (T ;Rm)

∫

T

W (F + Dv) ∀F ∈ R
m×n .(5.5)

Since Eh(T ) ⊂ W 1,∞
0 (T ; Rm) we reach the following conclusion.

Proposition 5.3. Let T be a simplex, F a constant deformation over T , Eh(T ) ⊂
W 1,∞

0 (T ; Rm) a finite-dimensional space of local enrichments, and ETW (F ) the cor-

responding partially relaxed local energy, (5.4). Then the following ordering holds:

∫

T

QW (F ) ≤ ETW (F ) ≤

∫

T

W (F ) .(5.6)

This proposition implies immediately that if Xh is generated by piecewise linear
interpolation, then

inf
vh∈Xh

∑

T∈Th

∫

T

QW (Dvh) ≤ inf
vh∈Xh

∑

T∈Th

ETW (Dvh) ≤ inf
vh∈Xh

∑

T∈Th

∫

T

W (Dvh) .(5.7)

Under these conditions, the local enrichment of finite element formulations by bub-
bles as in the variational multiscale method [37, 38] can be interpreted as a partial
relaxation of the formulation in the case of minimization problems. Such an approach
extends the early ideas of bubble function introduced in [23] and subgrid incompatible
modes of [52, 43, 45, 50, 44].

Remark 3. The preceding conclusion is not at odds with the notable improve-
ments provided by local enrichments in problems where lack of lower semicontinuity
is not an issue, for instance advection-diffusion problems [32, 10, 33, 11]—which can
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also be rewritten as the minimization of a residual in H−1 (see [51])—or recovering
the inf-sup condition for kinematically constrained systems (e.g., incompressibility [3],
mortar methods [6, 36]).

Remark 4. We show by means of two counterexamples that the first inequality in
Proposition 5.3 does not hold for higher-order elements, not even for convex energy
densities. The first example concerns the case n = m = 1, with W (F ) = F 2, so that
QW (F ) = W (F ). We take quadratic elements, i.e., q = 2, T = (−1, 1), and consider
for definiteness the function v̄h(x) = x2. Then

∫ 1

−1

QW (2x)dx = 2

∫ 1

0

(2x)2dx =
8

3
> 0 .

However, if ṽj = 1 − x2 ∈ Eh, then

ETW (F ) ≤

∫ 1

−1

W (v̄′h + ṽ′j) =

∫ 1

−1

W (0) = 0 .

For our second example we take n = 2, m = 1, and W (F ) = (F1 +F2)
2 + ε|F |2. This

is convex and coercive for any ε > 0, the precise value of which will be chosen at the
end. In this case we have QW = W . Assume T = (0, 1)2, use componentwise affine
functions, and let the boundary values be u(0, 0) = u(0, 1) = u(1, 0) = 0, u(1, 1) = 1.
Then the finite element function in T is u(x) = x1x2, and the corresponding energy
is

∫

T

W (Du) =

∫

T

QW (Du) =

∫

T

(x1 + x2)
2 + ε(x2

1 + x2
2) =

7

6
+

2

3
ε .

Assume now that the function v(x) = min(x1, x2) − x1x2 ∈ W 1,∞
0 (T ) is contained in

the enrichment set. Then the enriched problem can achieve the energy
∫

T

W (Du + Dv) =

∫

T

W (Dmin(x1, x2)) =

∫

T

1 + ε = 1 + ε .

If ε < 1/2, this energy is lower than the one computed above from the quasiconvex
envelope.

6. Numerical examples. In this section we present an application of the con-
current multiscale computing methodology described in the foregoing to single-crystal
plasticity. Specifically, for computational purposes we take advantage of the knowl-
edge of the exact relaxed energy sc−J = J given by Theorem 4.1. The discretization
should be chosen in order to match the functional form, and the coercivity, of sc−J .
As is evident from the expression given in Theorem 4.1, the functional sc−J is finite
not only on continuous deformations, but also on those with jump discontinuities, and
with a distributed singular part in the gradient. Precisely, the singular part Esu of
the strain is the sum of a jump term Eju = [u]⊗n δS distributed over a 2-dimensional
manifold S inside Ω and a Cantor part Ecu (see [1]), which is difficult to represent.
Here, instead, we work with continuous discretizations. Since smooth functions are
dense in BD, this choice of interpolation suffices to achieve the relaxation of the
functional.

The particular problem under consideration concerns the indentation of a (100)
surface of a bcc crystal; see Figure 1. For simplicity, the elastic moduli of the crystal
are assumed to be isotropic with Young’s modulus E = 2000 MPa and Poisson’s
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(a) (b)

Fig. 1. Two models of a bcc single crystal deforming under a rigid indentor. (a) hexahedral
mesh with 32000 nodes, 27436 elements; (b) tetrahedral mesh with 5424 nodes, 30779 elements. The
vertical displacements are constrained on the base of the crystal, which is otherwise unconstrained.

ratio ν = 0.29. The crystal is assumed to slip on the {211}[111] and {110}[111]
families of systems, and the critical resolved shear stress is taken to be τ0 = 1.0 MPa
for all systems. Two discretizations of the domain are considered: hexahedral mesh
consisting of 32000 nodes and 27436 elements (Figure 1(a)), and a tetrahedral mesh
consisting of 5424 nodes and 30779 elements (Figure 1(b)). The vertical displacements
are constrained on the base of the crystal, which is otherwise unconstrained.

The computed indentor force/travel curves for the hexahedral and tetrahedral
meshes are shown in Figures 2(a) and 2(b), respectively. The figures show the curves
computed: in the elastic regime; with the unrelaxed, strong latent hardening, single-
crystal plasticity model; with a conventional bubble enhancement [23]; and in the
fully relaxed model. As may be seen from the figures, the behavior of the unre-
laxed response is much stiffer than the relaxed response, which attains a limit load.
The bubble enhancement affords an ostensibly imperceptible gain in compliance with
respect to the unrelaxed model.

Finally, we proceed to demonstrate how the optimal microstructures can be re-
constructed a posteriori from the solution of the relaxed model. To this end, we begin
by recalling the following lemma (for precise definitions of laminates as deformation
microstructures we refer the reader to [24, 49]; cf. also section 5.1).

Lemma 6.1 (Lemma 3.6 of [22]). Under the assumptions of Theorem 4.1, for

any F ∈ R
3×3 and any ε > 0, there exists a laminate ν of finite order such that

〈ν, Id〉 :=

∫

R3×3

β dν(β) = F,

〈ν,W 〉 :=

∫

R3×3

W (β) dν(β) ≤ W ∗∗(F ) + ε,

where ν is understood as a probability measure on the set R
3×3 of matrices.

Considering that for any F ∈ R
3×3 the rank-1 envelope is defined by RW (F ) =

inf{〈ν,W 〉; 〈ν, Id〉 = F}, Lemma 6.1 ensures that rank-1 and convex envelopes
coincide, i.e., R(F ) = W ∗∗(F ). Consequently, due to the inequality RW ≤ QW ≤
W ∗∗, it follows that the quasiconvex envelope is also equal to the other two,



CONCURRENT MULTISCALE COMPUTING 151

displacement

fo
rc

e

0 0.1 0.2 0.3 0.4 0.5
0

100

50

elastic            
single slip        
bubble-enriched    
relaxed formulation

(a)

displacement

fo
rc

e

0 0.1 0.2 0.3 0.4 0.5
0

100

50

elastic            
single slip        
bubble-enriched    
relaxed formulation

(b)

Fig. 2. Simulation of bcc single crystal deforming under a rigid indentor. Indentor force/travel
displacement curves computed from (a) hexahedral mesh; (b) tetrahedral mesh. The elastic, single-
slip (unrelaxed), relaxed, and bubble-enhanced responses are shown in the figures for comparison.

QW = RW = W ∗∗. The proof of Lemma 6.1 given in [22] is based on the explicit
construction of the laminate ν. The precise algorithm for reconstructing optimal
microstructures from the solutions of the relaxed problem is as follows:

(i) Let F = F e+F p be the macroscopic strain. Choose a possible decomposition

F p =
∑I

i=1 γi si ⊗ mi. One natural choice criterion to enforce is to make I
as small as possible; but in general this does not suffice to make the choice
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unique.
(ii) If 0 ≤ I ≤ 1, the laminate ν = δF is satisfactory (even with ε = 0).
(iii) If I ≥ 2, a recursive construction can be performed. Precisely, assume that a

criterion is given to decompose sums of I−1 slips into laminates, and consider
F as above.

(iii.a) Let F1 = F e +
∑I−1

i=1 γi si ⊗ mi and F2 = F1 + 1
ε
γI sI ⊗ mI , so that

(1 − ε) δF1 + ε δF2 is a laminate with average F .

(iii.b) Let F3 = F e+
∑I−1

i=2 γi si⊗mi+
1
ε
γI sI ⊗mI and F4 = F3 + 1

ε
γ1 s1⊗m1,

so that (1 − ε) δF3 + ε δF4 is a laminate with average F2.
(iii.c) Compose the two mentioned steps, and obtain the laminate

ν = (1 − ε) δF1 + ε(1 − ε) δF3 + ε2 δF4
(6.1)

with average F .
(iii.d) F1 and F3 involve I − 1 systems, and hence δF1 and δF3 can be replaced

by appropriate laminates by the inductive assumption.
The laminate described by (6.1) can be represented by the following tree:

ε1 −

ε1 −

F

F

FF

F
1

2

3 4

ε

ε

In this diagram each node is the average of its two daughter nodes’ weight probabilities
specified on the bonds, and each pair of daughter nodes is rank-1 compatible.

Remark 5. It should be carefully noted that the preceding algorithm, while
delivering a laminate with the optimal energy (up to an arbitrarily small error ε), it
does not always return the simplest possible laminate. In particular, the algorithm
never gives a first-order laminate, even when the average plastic strain is the average
of a simple laminate supported on two different slip systems (cf. the discussion in
section 3.6 of [22], in particular Lemma 3.10).

It can be shown [22, Lemma 3.5] that there exists a laminate ν4 such that

〈ν4, Id〉 = F4, 〈ν,W 〉 ≤ c(|F sym
4 | + |TrF4|

2).

Since this part of the laminate involves (as ε → 0) a negligible volume fraction,
and a negligible part of the energy, we do not include it in the visualizations of the
microstructures. Additionally, in practice, the slip systems are relabeled such that
γi increases with 1 ≤ i ≤ I. Doing so, our algorithm starts by representing the
contribution of the highest components of the plastic variable.

As an illustration of the construction just described, Figures 3 and 4 show the
microstructures reconstructed from the solution of the relaxed problem on the hexa-
hedral and tetrahedral meshes, respectively. Each arrow connects a Gauss point to
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rank 2/2, |γ|∞ = 0.0025 rank 4/14, |γ|∞ = 0.43

rank 4/12, |γ|∞ = 0.02 rank 4/6, |γ|∞ = 0.026 rank 4/16, |γ|∞ = 0.21

Fig. 3. Reconstruction at selected Gauss points of optimal microstructures from the solution
of the relaxed problem on the hexahedral mesh. All microstructures take the form of sequential
laminates. The diagrams represent the interfaces and volume fractions corresponding to all levels
of lamination. Each of the resulting regions, or “variants,” at the lowest level of lamination is
uniformly deformed in single slip. The order of the laminate as well as the maximum slip-strain
magnitude are indicated. The reconstruction is performed for ε = 0.5.

a visualization of the microstructure computed at that Gauss point. All microstruc-
tures take the form of sequential laminates. The software used for the visualization of
the laminates is due to Fago [30]. The visualization represents the interfaces and vol-
ume fractions corresponding to all levels of lamination. Each of the resulting regions,
or “variants,” at the lowest level of lamination is uniformly deformed in single slip.
The complexity of the optimal microstructures is striking. This complexity makes
it unlikely that ad hoc strain enhancements, based on polynomial, trigonometric, or
similar representations, may come close to being optimal. Indeed, an enhancement
must necessarily account for the physical mechanisms of deformation in order to be
effective.

7. Concluding remarks. Concurrent multiscale computing provides a powerful
means of accounting for the development of deformation microstructures in situations
in which there is a strict separation of scales. In these cases, the macroscopic be-
havior is accurately described by the relaxed problem, which in turn can be solved
numerically by standard methods such as finite elements, and the deformation micro-
structures take place at the subgrid level. The particular example presented in this
paper, concerned with single crystals possessing strong latent hardening, demonstrates
the vast effect of microstructure formation on the macroscopic behavior of the sample,
e.g., on the force/travel curve of a rigid indentor. Thus, whereas the unrelaxed model
results in an overly stiff response, the relaxed model exhibits a proper limit load, as
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rank 0/0, |γ|∞ = 0.0018 rank 4/14, |γ|∞ = 0.43

rank 4/4, |γ|∞ = 0.0042 rank 4/11, |γ|∞ = 0.05 rank 4/11, |γ|∞ = 0.28

Fig. 4. Reconstruction at selected Gauss points of optimal microstructures from the solution of
the relaxed problem on the tetrahedral mesh. Each arrow connects a Gauss point to a visualization
of the microstructure computed at that Gauss point. All microstructures take the form of sequential
laminates. The diagrams represent the interfaces and volume fractions corresponding to all levels
of lamination. Each of the resulting regions, or “variants,” at the lowest level of lamination is
uniformly deformed in single slip. The order of the laminate as well as the maximum slip-strain
magnitude are indicated. The reconstruction is performed for ε = 0.2.

expected. The numerical examples reported in this paper also illustrate that ad hoc
element enhancements are unlikely to result in any significant relaxation. The ap-
plication to single crystals also demonstrates an evident but nevertheless compelling
fact: the explicit knowledge of the relaxation of a problem results in an enormous
reduction of computational cost, and a correspondingly vast improvement in perfor-
mance, with respect to methods that construct subgrid microstructures numerically
“on the fly” (see, e.g., [4]). This strongly suggests that explicit relaxation results
such as those collected in section 4 will inevitably play a decisive role in rendering
multiscale computing feasible.

We close by pointing out some of the limitations of the framework presented in
this paper. Strict separation of scales is an idealization which is never completely
realized in nature. In actual materials, the process of microstructural refinement
described by a minimizing sequence is checked by physical phenomena unaccounted
for in the original model. For instance, in single crystals the interfaces between the
variants of a laminate are dislocation walls that carry a well-defined energy per unit
area [53]. Consideration of this additional energy has the effect of introducing an
intrinsic length scale commensurate with the Burgers vector and is responsible for
scaling laws such as the Hall–Petch effect [54, 22]. The dislocation wall energy has
the additional effect of radically changing the geometry of the optimal microstructures,
which tend to exhibit self-similar refinement towards the boundary [22]. Under these
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conditions, the relaxed energy of, e.g., a grain is no longer local, i.e., described by an
effective energy density depending solely on the deformation gradient. To the best of
our knowledge, the formulation of multiscale numerical methods capable of dealing
with nonlocal effective energies remains at present an open question.
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