
Concurrent Number Cruncher

An Efficient Sparse Linear Solver on the GPU

L. Buatois1 , G. Caumon2 and B. Lévy3

1 Gocad Research Group, INRIA, Nancy Université, France,

buatois@gocad.org,
2 ENSG/CRPG, Nancy Université, France, caumon@gocad.org,

3 ALICE - INRIA Lorraine, Nancy, France, levy@loria.fr

Abstract. A wide class of geometry processing and PDE resolution methods

needs to solve a linear system, where the non-zero pattern of the matrix is dic-

tated by the connectivity matrix of the mesh. The advent of GPUs with their

ever-growing amount of parallel horsepower makes them a tempting resource for

such numerical computations. This can be helped by new APIs (CTM from ATI

and CUDA from NVIDIA) which give a direct access to the multithreaded com-

putational resources and associated memory bandwidth of GPUs; CUDA even

provides a BLAS implementation but only for dense matrices (CuBLAS).

However, existing GPU linear solvers are restricted to specific types of matri-

ces, or use non-optimal compressed row storage strategies. By combining recent

GPU programming techniques with supercomputing strategies (namely block

compressed row storage and register blocking), we implement a sparse general-

purpose linear solver which outperforms leading-edge CPU counterparts (MKL /

ACML).

1 Introduction

1.1 Motivations

Fig. 1. Our CNC applied to mesh smoothing. Left: initial mesh; Center: smoothed mesh; Right:

geometry processing with irregular meshes yield matrices with arbitrary non-zero patterns. There-

fore, classic GPGPU techniques cannot be used. Our CNC implements a general solver on the

GPU that can process these irregular matrices

In the last few years, graphics processors have evolved from rendering simple 2D

objects to rendering real-time realistic 3D environments. Their raw power and memory

bandwidth have grown so quickly that they significantly overwhelm CPU specifications.

For instance, a 2GHz CPU has a theoretical peak performance of 8 GFlops (4 floating

point operations per cycle using SSE), whereas modern GPUs have an observed peak

performance of 350 GFlops [1].

Moreover, graphics card manufacturers have recently introduced new APIs ded-

icated to general purpose computations on graphics processor units (GPGPU [2]):

2 L. Buatois et al.

CUDA from NVIDIA [3] and CTM from ATI [4]. These APIs provide low-level or

direct access to GPUs, exposing them as large arrays of parallel processors.

Numerical solvers play a central role in many optimization problems that can be

strongly accelerated by using GPUs. The key point is parallelizing these algorithms in a

way that fits the highly parallel architecture of modern GPUs. As shown in Figure 1, our

GPU-based Concurrent Number Cruncher (CNC) accelerates optimization algorithms

and Partial Differential Equations (PDE)s solvers. Our CNC can solve large irregular

problems, based on a very general sparse storage format of matrices, and is designed to

exploit the computational capabilities of GPUs to their full extent.

As an example, we demonstrate our solver on two different geometry processing

algorithms, namely LSCM [5] (mesh parameterization) and DSI [6] (mesh smoothing).

As a front-end to our solver, we use the general OpenNL API [7].

In this work, we focus on iterative methods since they are easier to parallelize and

have a smaller memory footprint than direct solvers, they can be applied to very large

sparse matrices, and only a few iterations are needed in interactive contexts. Hence, our

CNC efficiently implements on the GPU using the CTM API a Jacobi-preconditioned

conjugate gradient solver [8] with a Block Compressed Row Storage (BCRS) of sparse

matrices (section 1.2 and 2.1). The BCRS format is much more efficient than the simple

Compressed Row Storage format (CRS) by enabling register blocking strategies, which

reduce the required memory bandwidth [9].

Moreover, we compare our GPU-CTM implementation of vector operations with

the CPU ones from the Intel Math Kernel Library (MKL) [10] and the AMD Core Math

Library (ACML) [11], which are highly multithreaded and SSE3 optimized. For sparse

matrix operations, we compare our GPU implementation with our SSE2 optimized CPU

one since neither the MKL nor the ACML handle the BCRS format. Note that the

CUDA BLAS library (CuBLAS) does not provide sparse matrix storage structures.

1.2 The Preconditioned Conjugate Gradient Algorithm

The preconditioned Conjugate Gradient algorithm is a well known method to itera-

tively solve a symmetric definite positive linear system [8] (extensions exist for non-

symmetric systems, see [12]). As it is iterative, it can be used to solve very large sparse

linear systems where direct solvers cannot be used due to their memory consumption.

Given the inputs A, b, a starting value x, a preconditioner M, a maximum number of

iterations imax and an error tolerance ε < 1, the linear system expressed as Ax = b can

be solved using the preconditioned conjugate gradient algorithm described as follows:

i← 0; r← b−Ax; d←M−1r;

δnew← rT d; δ0← δnew;

while i < imax and δnew > ε2δ0 do

q← Ad; α← δnew

dT q
;

x← x+αd; r← r−αq;

s←M−1r; δold ← δnew;

δnew← rT s; β← δnew

δold
;

d← r+βd; i← i+1;

end

GPU Concurrent Number Cruncher 3

In this paper, we present an efficient implementation of this algorithm using the

Jacobi-preconditioner (M = diag(A)) for large sparse linear systems using hardware

acceleration through the CTM-API [4].

1.3 Previous Works on GPU Solvers

Depending on the discretization of the problem, solving PDEs involves band, dense or

general sparse matrices. Naturally, the different types of matrices lead to specific solver

implementations. Most of these methods rely on low-level BLAS APIs.

Band matrices

The first type of solver developed on GPUs were band solvers [13]. This is due to the

natural and efficient mapping of band matrices into 2D textures. Most of the work done

in this field was for solving the pressure-Poisson equation for incompressible fluid flow

simulation applied to textures.

Dense matrices

Direct solvers for dense matrices were also implemented on GPUs for a Cholesky de-

composition [14], and for both Gauss-Jordan elimination and LU decomposition [15].

General sparse matrices

PDEs discretized on irregular meshes leads to solve irregular problems, hence call for

a general representation for sparse matrices. Two authors showed the feasibility of im-

plementing the Compressed Row Storage format (CRS). Bolz et al. [16] use textures

to store non-zero coefficients of a matrix and its associated two-level lookup table. The

lookup table is used to address the data and to sort the rows of the matrix according

to the number of non-zero coefficients in each row. Then, an iteration is performed on

the GPU simultaneously over all rows of the same size to complete, for example, a

matrix-vector product operation. Another approach was proposed by Krüger and West-

erman [13], based on vertex buffers (one vertex is used for each non-zero element).

Our CNC method also implements general sparse matrices on the GPU, but uses a

more compact representation of sparse matrices, and replaces the CRS format with

BCRS (Block Compressed Row Storage) [9] to optimize cache usage and enable regis-

ter blocking and vector computations.

New APIs, New Possibilities

Previous works on GPGPU used APIs such as DirectX [17] or OpenGL 2.0 [18] to ac-

cess GPUs and use high-level shading languages such as Brook [19], Sh [20] or Cg [21]

to implement operations. Using such graphics-centric programming model devoted to

real-time graphics limits the flexibility, the performance, and the possibilities of modern

GPUs in terms of GPGPU.

Both ATI [4] and NVIDIA [3] recently announced or released new APIs, respec-

tively CTM and CUDA, designed for GPGPU. They provide policy-free, low-level

hardware access, and direct access to the high-bandwidth latency-masking graphics

memory. These new drivers hide useless graphical functionalities to reduce overheads

and simplify GPU programming. In addition to our improved data structures, we use

the CTM API to improve performance.

4 L. Buatois et al.

1.4 Contributions

The Concurrent Number Cruncher is a high-performance preconditioned conjugate gra-

dient solver on the GPU using the new ATI-CTM API dedicated to GPGPU which re-

duces overheads and provides fine controls for optimizations. The CNC is based on a

general optimized implementation of sparse matrices using BCRS blocking strategies,

and optimized BLAS operations through massive parallelization and vectorization of

the processing. To our knowledge, this is the first linear solver on the GPU that can be

efficiently applied to unstructured optimization problems.

2 The Concurrent Number Cruncher (CNC)

The CNC is based on two components: an OpenGL-like API to iteratively construct a

linear system (OpenNL [7]) and a highly efficient implementation of BLAS functions.

The following sections present some usual structures in supercomputing used in the

CNC, how we optimized them for modern GPUs and important implementation fea-

tures, which proved critical for efficiency.

2.1 Usual Data Structures in Supercomputing

Compressed Row Storage (CRS)

Compressed row storage [9] is an efficient method to represent general sparse matrices

(Figure 2). It makes no assumptions about the matrix sparsity and stores only non-zero

elements in a 1D-array, row by row. It uses an indirect addressing based on two lookup-

tables to retrieve the data: (1) a row pointer table used to determine the storage bounds

of each row of the matrix in the array of non-zero coefficients, and (2) a column index

table used to determine in which column the coefficient lies.

The Sparse Matrix-Vector Product Routine (SpMV)

The implementation of a conjugate gradient involves a sparse matrix-vector product

(SpMV) that takes most of the solving time [12]. This product y← Ax is expressed as:

for i = 1 to n, y[i] = ∑
j

ai, jx j

Since this equation traverses all rows of the matrix sequentially, it can be implemented

efficiently by exploiting, for example, the CRS format (code for a matrix of size n×n):

for i = 0 to n−1 do

y[i]← 0

for j = row_pointer[i] to row_pointer[i+1]−1 do

y[i]← y[i]+ values[j]× x[column_index[j]]
end

end

The number of operations involved during a sparse product is two times the number

of non-zero elements of A [12]. Compared to a dense product that takes 2n2 operations,

the CRS format significantly reduces processing time.

GPU Concurrent Number Cruncher 5

2.2 Optimizing for the GPU
The massively parallel Single Instruction/Multiple Data (SIMD) architecture of modern

GPUs calls for specific optimization and implementation of algorithms. GPUs offer two

main levels of parallelism through multiple pipelines and vector processing, and several

possibilities of optimizations presented in this subsection.

Multiple Pipelines

Multiple pipelines can be used to process data with parallelizable algorithms. In our

implementation, each element of y is computed by a separate thread when computing

the y← Ax sparse operation (SpMV). This way, each thread iterates through a row of

elements of the sparse matrix A to compute the product.

To maximize performance and hide memory-latencies, the number of threads used

must be higher than the number of pipelines. For example, on an NVIDIA G80 that has

128 pipelines, y size should be an order of magnitude higher than 128 elements.

Similarly, operations on vectors, as the SAXPY computing the equation y←α×x+y,

are parallelized by computing a unique element of the result y per thread.

To parallelize the vector dot product operation, the CNC implements an iterative

sum-reduction of the data as in [13]: at each iteration, each thread reads and processes

4 scalars and writes one resulting scalar. The original n-dimensional vector is hence

reduced by 4 at each iteration until only one scalar remains, after log4(n) iterations.

Vector Processing

Some GPU architectures (e.g. ATI X1k series) process the data inside 4-element vector-

processors. For such architectures, it is essential to vectorize the data inside 4-element

vectors to maximize efficiency. Since our implementation targets a vector GPU archi-

tecture (ATI X1k series), all operations are vectorized. On a scalar architecture like the

NVIDIA G80, data do not need to be vectorized. However, for random memory ac-

cesses, it is better to read one float4 than four float1 since the G80 architecture is able

to read 128bits in one cycle and one instruction. Note that on a CPU it is possible to use

SSE instructions to vectorize data processing.

Register Blocking: Block Compressed Row Storage (BCRS)

Unlike previous approaches which investigate, at best, only CRS format [13, 16], our

CNC uses an efficient GPU implementation of the BCRS format. Note that, even on the

CPU, BCRS is faster than CRS [9]. The BCRS groups non-zero coefficients in blocks of

size BN×BM to use the maximum memory fetch bandwidth of GPUs, take advantage

of registers to avoid redundant fetches, and reduce the number of indirections thanks to

the reduced size of the lookup tables.

When computing a product of a block spanned over more than one row, it is possible

to read only once the associated values from x of the block, store these values in regis-

ters, and reuse them for each row of the block, saving several texture-fetches. Figure 2

illustrates the influence of the block size on the number of fetches. For 4-component

vector architectures, fetching and writing scalars 4 by 4 maximizes both read and write

bandwidth. It is therefore useful to process all four elements of y at the same time, and

use blocks of size 4x4. Once the double indirection to locate a block using the lookup-

tables is solved, 4 fetches are required to read a 4x4 block, 1 to read the corresponding

6 L. Buatois et al.

Fig. 2. Compressed Row Storage (CRS) and Block Compressed Row Storage (BCRS) examples

for the same matrix. The number of stored elements counts all stored elements, useful or not. The

number of fetches required to achieve a sparse matrix-vector product (SpMV) is provided for a 4-

vector architecture, less fetches being better for memory bandwidth. The filling ratio indicates the

average rate of non-zero data in each block, higher filling ratio being better for the computations

4-scalars of x, and 1 write to output the 4-scalars of the product result into y. Values of

x are stored in registers, and reused for each row of the block, which results in fewer

fetches than in a classical CRS implementation.

The reduced sizes of the lookup tables reduce memory requirements and, more im-

portantly, the number of indirections to be solved during a matrix operation (each indi-

rection results in dependent memory fetches, which introduces memory latencies).

Although a large block size is optimal for register and bandwidth usage, it is adapted

only to compact matrices to avoid sparse blocks (Figure 2). The CNC implements 4x4

blocks, and also 2x2 blocks to handle cases where the 4x4 blocks present a very low fill-

ing ratio. In the SpMV operation for a vector architecture, this 2x2 block size is optimal

regarding memory read of the coefficients of the block, but not to read the correspond-

ing x values and to write the resulting y values since only two scalars are read from x

and written in y.

2.3 Technicalities
The CTM (Close-To-Metal) device is a dedicated driver for ATI X1k graphics cards [4].

It provides low-level access to both graphics memory and graphics parallel processors.

The memory is exposed through pointers at the base addresses of the PCI-Express-

memory (accessible from both the CPU and GPU), and of the GPU-memory (only

accessible from the GPU). The CTM does not provide any allocation mechanism, and

lets the application fully manage memory. The CTM provides functions to compile and

GPU Concurrent Number Cruncher 7

Fig. 3. Vector and BCRS sparse matrix storage representations on the GPU

load user assembly codes on the multiprocessors and functions to bind memory pointers

indifferently to inputs or outputs of the multiprocessors.

Our CNC implements a high-level layer for the CTM hiding memory management

by providing dynamic memory allocation for both GPU and PCI-Express RAM.

As shown in Figure 3, the CNC rolls vectors into 2D memory space to benefit from

the 2D memory-cache of GPUs, and hence can store very large vectors in one chunk (on

an ATI-X1k, the maximum size of a 2D array of 4-component vectors is 40962). The

BCRS matrix format uses three tables to store the column indices, the row pointers and

the non-zero elements of the sparse matrix. The row pointer and column index tables are

rolled as simple vectors, and the non-zero values of the matrix are rolled up depending

on the block size of the BCRS format. Particularly, the CNC uses strip mining strategies

to efficiently implement various BCRS formats. For the 2x2 block size, data are rolled

block by block on one 2D-array. For the 4x4 block size, data are distributed into 4 sub-

arrays fulfilled alternatively with 2x2 sub-blocks of the original 4x4 block as in [22].

Retrieving the 16 values of a block can be achieved by four memory fetches from the

four sub-arrays at exactly the same 2D index, maximizing the memory fetch capabilities

of modern GPUs and limiting address translation computations.

The CNC provides a high-level C++ interface to create and manipulate vectors and

matrices on the GPU. Vector or matrix data is automatically uploaded to the GPU mem-

ory at their instantiation for later use in BLAS operations. The CNC also pre-compiles

and pre-allocates all assembly codes to optimize their execution. To execute a BLAS

operation, the CNC binds the inputs and outputs of data on the GPU and calls the cor-

responding piece of assembly code.

The assembly code performing a BLAS operation is made of very “Close-To-Metal"

vector instructions as multiply-and-add or 2D memory fetch. It is finely tweaked using

semaphore instructions to asynchronously retrieve data, helping in a better paralleliza-

tion/masking of the latencies. The assembly code implementing a sparse matrix-vector

product counts about a hundred lines of instructions, and uses about thirty registers. The

number of used registers closely impacts performance, so we minimized their use.

The SpMV routine executes a loop for each row of blocks of a sparse matrix that can

be partially-unrolled to process blocks by pair. This allows to asynchronously pre-load

8 L. Buatois et al.

data and better mask the latencies of the graphics memory, especially for consecutive

dependent memory lookups. We increase the SpMV performance of about 30% by pro-

cessing blocks two by two for both 2x2 and 4x4 block sizes.

As the GPU memory is managed by pointers, outputs of an assembly code can be

bound to inputs of the next one, avoiding large overheads or useless data copy. In the

conjugate gradient algorithm, the CPU program only calls the execution of assembly

codes on the GPU in order, and binds/switches the inputs and outputs pointers. At the

end of each iteration, the CPU retrieves only one scalar value (δ) to decide to exit the

loop if necessary. Finally, the result vector is copied back to the PCI-Express memory

accessible to both the GPU and the CPU. Hence, the whole main loop of the conjugate

gradient is fully performed on the GPU.

3 Performance

The preconditioned conjugate gradient algorithm for sparse matrices requires BLAS

primitives for which this section provides comparisons in GFlops and percentage of

efficiency for CPU and GPU implementations in the CNC. See Table 1 to get the list of

implementations used for each operation on each hardware device.

For the SAXPY and SDOT benchmarks on the CPU, we used the Intel Math Kernel

Library (MKL) [10] and the AMD Core Math Library (ACML) [11] which are highly

multithreaded and optimized using SSE3 instructions. The CPU performance was, on

average, close between the MKL and the ACML, hence we choose to only present

the results from the former. The SpMV benchmark on the CPU is based on our multi-

threaded SSE2 optimized implementation, since both the MKL and the ACML do not

support the BCRS format.

Device

Operation CPU GPU

SAXPY MKL CNC

SDOT MKL CNC

SpMV CNC CNC

Pre-CG MKL+CNC CNC

SGEMM (for reference) MKL CTM-SDK

Table 1. Implementations used according to the operation and computing device: CNC is our,

MKL is the Intel one, and CTM-SDK the ATI one

To be absolutely fair, GPU results take into account all overheads introduced by

the graphics cards (cf. section 3.4). All benchmarks were performed on a dual-core

AMD Athlon 64 X2 4800+, with 2GB of RAM and an AMD-ATI X1900XTX with

512MB of graphics memory.

Benchmarks were performed at least 500 times to average the results, use synthetic

vectors for the SAXPY and SDOT cases, synthetic matrices for the SGEMM case (given

for reference), and real matrices built from the set of meshes described in Table 2 for

other cases. Figure 4 shows parameterization and smoothing examples of respectively

the Girl Face 3 and Phlegmatic Dragon models, both computed using our CNC on the

GPU.

GPU Concurrent Number Cruncher 9

Fig. 4. Parameterization of the Girl Face 3 and smoothing of the Phlegmatic Dragon using our

CNC solver on the GPU

Parameterization Smoothing

Mesh #var #non-zero #var #non-zero

Girl Face 1 1.5K 50.8K 2.3K 52.9K

Girl Face 2 6.5K 246.7K 9.8K 290.5K

Girl Face 3 25.9K 1.0M 38.8K 1.6M

Girl Face 4 103.1K 4.2M 154.7K 6.3M

Phlegmatic Dragon 671.4K 19.5M 1.0M 19.6M

Table 2. Meshes used for testing matrix operations. This table provides: the number of unknown

variables computed in case of a parameterization or a smoothing of a mesh, denoted by #var,

and the number of non-zero elements in the associated sparse-matrix denoted by #non-zero (data

courtesy of Eurographics for the Phlegmatic Dragon)

3.1 BLAS Vector Benchmarks
Figure 5 presents benchmarks of SAXPY (y← α× x + y) and SDOT/sum-reduction

operations on both CPU and GPU respectively using the MKL and our CNC. While

the performance curve of the CPU stays steady, the GPU performance increases with

the vector size. Increasing the size of vectors, hence the number of threads, helps the

GPU in masking the latencies when accessing the graphics memory. For the SDOT,

performances increase not as fast as for the SAXPY due to its iterative computation

that introduces more overheads and potentially more latencies which need to be hidden.

At best, our GPU implementation is 12.2 times faster than the CPU implementation of

the MKL for the SAXPY and 7.4 times faster for the SDOT.

3.2 SpMV Benchmarks
Testing operations on sparse-matrices is not straightforward since the number and lay-

out of non-zero coefficients strongly govern performance. To test sparse matrix-vector

product (SpMV) operations and preconditioned conjugate gradient, we choose five

models and two tasks (parameterization and smoothing) which best reflect typical situ-

ations in geometry processing (Figure 4 and Table 2).

Figure 6 shows the speed of the SpMV for various implementations and applica-

tions. Four things can be noticed: (1) CPU performance stays relatively stable for both

problems while the GPU performance increases according to the increasing size of the

matrices, (2) thanks to register blocking and vectorization, BCRS 4x4 is faster than 2x2

(which is also faster than CRS) for CPUs and GPUs, (3) GPU is about 3.1 times faster

than CPU with SSE2 for significant mesh sizes, and (4) multithreaded-SSE2 implemen-

tation enabling vector processing on the CPU is about 2.5 times faster than standard

10 L. Buatois et al.

Fig. 5. SAXPY (y← α×x+y) and SDOT (sum-reduction of a vector) performances comparison

in function of the processed vector size between the CPU MKL implementation and our GPU

implementation

implementation. For very small matrices, the CNC just compares to CPU implementa-

tions, but, in that case, a direct solver would be more appropriate.

3.3 Preconditioned Conjugate Gradient Benchmarks
Performance of the main loop of a Jacobi-preconditioned conjugate gradient is provided

in Figure 6. Since most of the solving time, about 80%, is spent within the SpMV

whatever hardware device is used, the SpMV governs the solver performance, and the

comments for the SpMV are also applicable here. GPU solver runs 3.2 times faster than

the CPU-SSE2, and CPU-SSE2 solver runs 1.8 times faster than the non-SSE2. As for

the SpMV routine, the CNC is inefficient for very small matrices where direct solvers

are anyway better.

3.4 Overheads and Efficiency
Overheads introduced when copying, binding, retrieving data or executing shader pro-

grams on the GPU were the strong bottlenecks of all previous works. New GPGPU

APIs like CTM or CUDA can increase performance if well used (cf. section 2.3). Dur-

ing our tests, the total time spent for the processing on the GPU was always higher

than 93%, meaning that less than 7% percents were for the overheads, showing a great

improvement as compared to previous works.

CPU and GPU architectures are bound by their maximum computational perfor-

mance and maximum memory bandwidth. Their efficiency mainly depends on the im-

plemented operations (Figure 7). For example, low computation operations like the

SAXPY or the SDOT are limited by the memory bandwidth, and not by the theoret-

ical computational peak power. The SAXPY achieves high bandwidth efficiency on

GPUs, near 91%, but very low computational efficiency, near 3.1%. Conversely, for

reference, a dense matrix-matrix product (SGEMM) on the GPU can achieve a good

computational efficiency, near 18.75%, and a very good memory bandwidth efficiency,

near 91% (used SGEMM implementation comes from the ATI CTM-SDK). In the case

of SpMV operations, both computational and memory bandwidth efficiency are low on

GPUs and CPUs (although SSE2 greatly helps). This is due to the BCRS format that

GPU Concurrent Number Cruncher 11

Fig. 6. Performance comparison of the SpMV (sparse matrix-vector product) and the Jacobi-

Preconditioned Conjugate Gradient Main Loop between CPU standard, CPU multithreaded-SSE2

optimized, and GPU implementations in case of computing a mesh parameterization or smooth-

ing for CRS (no blocking), BCRS 2x2 and BCRS 4x4

implies strong cache-miss and several dependent memory fetches. Nevertheless, as pre-

viously written, our CNC on the GPU performs the SpMV 3 times faster than on the

CPU.

4 Conclusions
The Concurrent Number Cruncher aims at providing the fastest possible sparse linear

solver through hardware acceleration using new APIs dedicated to GPGPU. It uses

block compressed row storage, which is faster and more compact than compressed row

storage, enabling register blocking and vector processing on GPUs and CPUs (through

SSE2 instructions). To our knowledge, this makes our CNC the first implementation

of a general symmetric sparse solver that can be efficiently applied to unstructured

optimization problems.

Our BLAS operations on the GPU are 12.2 and 8 times faster for respectively

SAXPY and SDOT operations than on the CPU using SSE3-optimized Intel MKL li-

brary. As compared to our CPU SSE2 implementation, the SpMV is 3.1 times faster,

and the Jacobi-preconditioned conjugate gradient 3.2 times. We show that on any de-

vice BCRS-4x4 is significantly faster than 2x2, and 2x2 significantly faster than CRS.

Note that our benchmarks include all overheads introduced by the computations on the

GPU.

12 L. Buatois et al.

Fig. 7. Percentage of computational and memory bandwidth efficiency of different operations

implemented on the CPU and the GPU for 10242 vector size, 10242 dense matrix size and

Girl Face 4 model to test the SpMV in case of a parameterization. See Table 1 to determine

used implementations

While the GPGPU community is waiting for GPU double floating point precision,

graphics cards only provide single precision for the moment. Hence, our CNC targets

applications that do not require very fine accuracy but very fast performance.

As previously shown, operations on any device are limited either by the memory

bandwidth (and its latency), or by the computational power. In most BLAS operations,

the limiting factor is the memory bandwidth, which was limited to 49.6 GB/s for our

tested GPU. According to ATI announces, the memory of their next graphics card -

the high-end R600- will handle between 110 to 140 GB/s, which will surely strongly

increase the performance of our CNC and the gap with CPU implementations.

We plan to extend the parallelization of the CNC across multi-GPUs within a PC

(based on SLI or CrossFire configurations), across PC clusters, or within new visual

computing systems like the NVIDIA Quadro Plex containing multiple graphics cards

with multiple GPUs inside one dedicated box. Thus, we will use the CUDA API from

NVIDIA in the CNC to be compatible with the largest possible panel of GPUs. We

will build and release a general framework for solving sparse linear systems, including

full BLAS operations on sparse matrices and vectors, accelerated indifferently by an

NVIDIA with CUDA, or by an ATI with CTM. Note also that iterative non-symmetric

solvers (Bi-CGSTAB and GMRES) can be easily implemented using our framework.

We will experiment them in future works.

5 Acknowledgements

The authors thank the members of the GOCAD research consortium for their support

(www.gocad.org), Xavier Cavin, and Bruno Stefanizzi from ATI for providing the CTM

API and the associated graphics card.

GPU Concurrent Number Cruncher 13

References

1. Buck, I., Fatahalian, K., Hanrahan, P.: Gpubench: Evaluating gpu performance for numerical

and scientific applications. In: Proceedings of the 2004 ACM Workshop on General-Purpose

Computing on Graphics Processors. (2004)

2. : GPGPU (General-Purpose computation on GPUs). www.gpgpu.org

3. Keane, A.: CUDA (compute unified device architecture). In:

http://developer.nvidia.com/object/cuda.html. (2006)

4. Peercy, M., Segal, M., Gerstmann, D.: A performance-oriented data-parallel virtual machine

for gpus. In: ACM SIGGRAPH’06. (2006)

5. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic

texture atlas generation. In ACM, ed.: SIGGRAPH 02, San-Antonio, Texas, USA. (2002)

6. Mallet, J.: Discrete Smooth Interpolation. Computer Aided Design 24(4) (1992) 263–270

7. Levy, B.: Numerical methods for digital geometry processing. In: Israel Korea Bi-National

Conference. (November 2005)

8. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems. J.

Research Nat. Bur. Standards 49 (1952) 409–436

9. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA (1994)

10. Intel: Math kernel library. www.intel.com/software/products/mkl

11. AMD: Amd core math library. http://developer.amd.com/acml.jsp

12. Shewchuk, J.R.: An introduction to the conjugate gradient method without the

agonizing pain. Technical report, CMU School of Computer Science (1994)

ftp://warp.cs.cmu.edu/quake-papers/painless-conjugate-gradient.ps.

13. Krüger, J., Westermann, R.: Linear algebra operators for gpu implementation of numerical

algorithms. ACM Transactions on Graphics (TOG) 22(3) (2003) 908–916

14. Jung, J.H., O’Leary, D.P.: Cholesky decomposition and linear programming on a gpu, Schol-

arly Paper, University of Maryland (2006)

15. Galoppo, N., Govindaraju, N.K., Henson, M., Manocha, D.: LU-GPU: Efficient algorithms

for solving dense linear systems on graphics hardware. In: SC ’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing, Washington, DC, USA, IEEE Computer Society

(2005) 3

16. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: conjugate

gradients and multigrid. ACM Trans. Graph. 22(3) (July 2003) 917–924

17. Microsoft: Direct3d reference. msdn.microsoft.com (2006)

18. Segal, M., Akeley, K.: The OpenGL graphics system: A specification, version 2.0.

www.opengl.org (2004)

19. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook

for gpus: stream computing on graphics hardware. ACM Trans. Graph. 23(3) (2004) 777–

786

20. McCool, M., DuToit, S.: Metaprogramming GPUs with Sh. AK Peters (2004)

21. Fernando, R., Kilgard, M.J.: The Cg Tutorial: The Definitive Guide to Programmable Real-

Time Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

22. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of gpu algo-

rithms for matrix-matrix multiplication. In: HWWS ’04: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, New York, NY, USA, ACM

Press (2004) 133–137

