
Concurrent Replication of Parallel and Distributed Simulations

Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, Lorenzo Donatiello
Dipartimento di Scienze dell’Informazione, Università degli Studi di Bologna,

Mura Anteo Zamboni 7, 40126, Bologna, Italy
{bononi, bracuto, gdangelo, donat}@cs.unibo.it

Abstract

Parallel and distributed simulations enable the analysis
of complex systems by concurrently exploiting the
aggregate computation power and memory of clusters of
execution units. In this paper we investigate a new
direction for increasing both the speedup of a simulation
process and the utilization of computation and
communication resources. Many simulation-based
investigations require to collect independent observations
for a correct and significant statistical analysis of results.
The execution of many independent parallel or distributed
simulation runs may suffer the speedup reduction due to
rollbacks under the optimistic approach, and due to idle
CPU times originated by synchronization and
communication bottlenecks under the conservative
approach. We present a parallel and distributed
simulation framework supporting Concurrent Replication
of Parallel and Distributed Simulations (CR-PADS), as
an alternative to the execution of a linear sequence of
multiple parallel or distributed simulation runs. Results
obtained from tests executed under variable scenarios
show that speedup and resource utilization gains could be
obtained by adopting the proposed replication approach
in addition to the pure parallel and distributed
simulation.

1. Introduction

 Many fields of research currently adopt simulation-
based techniques for the analysis, in order to obtain deep
insight of new systems’ design, tuning and optimization.
Many systems of interest for the analysis may be
characterized by complex model definition and dynamic
interactions among a possibly huge set of model
components. The accuracy of simulation results requires a
detailed definition and simulation of every single model
component of the whole complex system model. To
overcome the computation and memory bottlenecks of
mono-processor architectures [22, 23], many practical
experiences have demonstrated that a solution for the

 This work is supported by MIUR FIRB funds, under the project:
“Performance Evaluation of Complex Systems: Techniques,
Methodologies and Tools”

simulation of such systems is achievable by using parallel
and distributed models and architectures, i.e. a Parallel or
Distributed Discrete Event Simulation (PDES) approach
[14, 16]. The IEEE 1516 Standard for Modeling and
Simulation High Level Architecture (HLA) is a recently
approved standard dealing with component-oriented
distributed simulation [7, 12]. It defines rules and
interfaces allowing for heterogeneous model components’
interoperability in distributed simulation.
In presence of a complex dynamic system, the
implementation of a parallel or distributed simulation
would lead to synchronization and communication
overheads [3, 4]. The research on the optimization and
overheads reduction in parallel and distributed
simulations has gained a great interest, leading to the
design and implementation of parallel and distributed
models and simulation frameworks [3, 10, 17, 22, 24]. In
general, an inverse tradeoff exists that determines a
mutual worsening in the speedup: i) by reducing the
degree of parallelism in the computation or, conversely,
ii) by the communication bottlenecks and blocking
synchronization primitives among many heterogeneous
simulation components. Many research activities dealt
with dynamic balancing of logical processes’ executions
(both cpu-loads and virtual time-advancing speeds) by
trading-off communication, synchronization and speedup,
both in optimistic and conservative approaches [8, 10,
17]. Adaptive behavior in the management of the model
at runtime, to control the overheads due to the model
dynamics, have been considered in [3]. A perfect load
balancing over the execution units is difficult to obtain,
due to the model dynamics and the asymmetry of the
physical execution units. For these reasons, a majority of
rapidly executed components (Logical Processes, LPs)
may be idle waiting the synchronization of at least one
single late component. This means that the execution of a
majority of execution units is often blocked (by wasting
local CPU time), and the whole simulation process
proceeds with the speed of the slowest components. The
frequent synchronizations are usually implemented as
message passing primitives, and may be heavily affected
by the overheads for communication management and
communication bottlenecks.
In this paper we investigate a new direction for trying to
maximize the speedup of the simulation processes and the

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

utilization of computation and communication resources
in the system architecture supporting the parallel or
distributed simulation. Our assumption, based on a
common analysis rule, is that a simulation-based analysis
requires many independent parallel or distributed
simulation runs, to collect many independent set of
observations for a correct and significant statistical
analysis of results. Our proposal is to realize a parallel
and distributed simulation framework which is able to
implement Concurrent Replications of Parallel and
Distributed Simulations (CR-PADS), rather than
executing a sequence of multiple parallel or distributed
simulation runs. The replication concept [11, 13, 15, 20,
21, 22, 24] is intended here as a mechanism that
duplicates the logical processes (LPs) of parallel and
distributed simulation runs starting from the initialization
phase of every single run. Every replica is based on the
common model definition, and realizes an independent
execution (i.e. replicas do not require mutual
synchronization) based on local initial parameters,
variable factors for the analysis, and different random
number generation seeds. The CR-PADS is intended as a
way to maximize the speedup and utilization of system
resources when implementing a set of parallel and
distributed simulations of complex dynamic system
models. This approach is substantially different from the
simulation Cloning concept [6, 18]. Simulation cloning
has been demonstrated as a good technique for supporting
“faster than real time” simulation [18] and “what if”
analysis [6] being based on the active cloning of multiple
instances of the initial simulation process at “decision
points” that may be met during the simulation. The CR-
PADS approach is not intended as a way to investigate all
the possible evolutions from a “decision point”, like in
the Cloning approach. The CR-PADS replication
approach is also different from the Multiple Replications
in Parallel (MRIP) approach adopted for the concurrent
execution of independent sequential simulation runs, like
in the Akaroa2 framework [1, 2, 11, 13, 15, 22]. The aim
of MRIP in Akaroa2 is basically to give a simple way to
the modeller for initiating multiple independent runs of
sequential simulators over different processors. To the
best of our knowledge, Akaroa2 offers a controlled
environment for launching multiple independent
sequential simulations, each one executed over a single
CPU, without managing the concept of parallel and
distributed simulation. With respect to CR-PADS
approach, Akaroa2 and the MRIP approach may have
limitations in exploiting the aggregate resources of a
cluster of execution units, and the adoption of distributed
models, which are some of the motivations in favour of
the parallel and distributed simulation.
The implementation of the CR-PADS mechanism has
been defined and tested over the Advanced RTI System
(ARTÌS) framework [5]. The ARTÌS framework is a

middleware currently under implementation, whose
design is inspired to the High Level Architecture (HLA)
design and IEEE 1516 Standard. Results obtained for the
simulation of a complex dynamic system model (i.e. a
wireless ad hoc network model) demonstrate that a
speedup gain can be obtained by adopting the proposed
replication approach as an alternative to a sequence of
standalone parallel and distributed simulations. The
speedup is obtained up to a given amount of replicas and
has evidenced a dependence on the model characteristics.
Basically, trashing effects are introduced when the
saturation of the computation power of all the CPUs has
been achieved. An excessive number of replicas would
result in additional trashing effects under the management
viewpoint. Given the light and efficient implementation
of CR-PADS the number of replicas causing trashing is in
a range that exceeds the typical amount of runs required
to achieve a good statistical relevance, i.e. thin confidence
intervals, from the collected observations.
 The paper structure is the following: in section 2 we
outline some concepts about the parallel and distributed
simulation cloning and replication; in Section 3 the key
issues for the replication mechanism implementation and
the ARTÌS middleware are defined; in section 4 a
prototype wireless system’s model and a set of simulation
results are presented to evaluate the concurrent replication
approach; in section 5 we summarize our conclusions and
future work.

2. Cloning and Replication of Parallel and
Distributed Simulations

The Multiple Replications in Parallel (MRIP) is a
technique that we cite here as a reference for our work [1,
2, 11, 13, 15, 20, 21]. This technique consists in
launching multiple runs of independent sequential
simulations in parallel over a set of concurrent CPUs.
Every simulation run is executed from the beginning up
to the end on the same CPU, under the control of a single
scheduler (i.e. a monolithic sequential simulation). Some
frameworks like Akaroa2 provide support for the MRIP
when launching simulations based on common sequential
simulation tools like PTolemy, NS2, OMNET++ [13, 22].
To the best of our knowledge, the MRIP approach for
parallel and distributed simulations is still to be
investigated.

2.1. Parallel and Distributed Simulation

The architecture of the physical execution units (PEUs)
can be organized in different ways: from a parallel multi-
processor architecture with shared memory up to a
distributed cluster of PCs interconnected by LANs or
even by the Internet. The research community called a

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

parallel simulation the concurrent execution of a single
simulation run over a tightly coupled multi-processor
architecture, and a distributed simulation the concurrent
execution of a single simulation run over a loosely
coupled set of execution units, each one running on a
possibly different HW architecture and separate local
memory. In the optimistic approaches for implementing
parallel and distributed simulations, several simulation
components may bet on forecasting and computing one
out of the possible evolutions, in order to obtain a
maximum exploitation of the parallel execution. In
solutions like the Time Warp [19], many model
components advance their evolution without worrying
about causality maintenance at least until a violation of
causality is revealed: in such case a costly process called
rollback is executed to restore the processes states to a
global safe-state. Such optimistic implementations were
thought as a way to maximize the utilization of expensive
computation architectures. The efficiency of optimistic
implementations would depend heavily on the
evolutionary characteristics of the models: highly
independent, predictable or self-correlated models would
behave better than unpredictable ones, since independent
sub-models may have few common “decision points”
affecting each others’ evolution, and the choices made at
“decision points” could be performed on the basis of
more effective “oracles” that could reduce the need for
frequent rollbacks. Needless to say, rollbacks can reduce
the efficiency of the simulation process in significant
way. In the conservative approach, each “time advance”
in the model evolution is made under the conservative
assumption that all previous events have been processed
in correct timestamp order, by all the parallel and
distributed model components. Frequent synchronizations
(i.e. blocking and unblocking event executions) of all the
model components are performed for ensuring a
conservative implementation of the causal order of
events.

2.2. IPC Communication for Parallel and
Distributed Simulation

The communication among LPs in a parallel simulation is
usually efficient and reliable because it can be supported
by the classical mechanisms for local inter-process
communication (IPC) like pipes, FIFO channels and
Shared Memory. Possible advantages given by local IPC
communication mechanisms are: reliable
communications, ordering maintenance of messages, and
efficiency, intended as high bitrate and low latency
channels among LPs. The shared memory solution
requires a control of the concurrent accesses to mutual
exclusive areas: the efficient implementation of control
primitives by the operating system is a necessary
condition for the efficiency of the communication.

The distributed simulation approach is based on the
implementation of concurrent LPs executed over
distributed physical execution units (PEUs). The
advantages of distributed simulation architectures can be
summarized as: i) theoretical scalability, given by the
arbitrary extension of the PEU architecture, ii) the
possible geographical distribution of PEUs, which could
be exploited to deal with management and reliability
issues, and iii) the fault tolerance based on the possible
substitution of unreliable or disconnected PEUs. The
communication among LPs can be supported typically by
external inter-process communication mechanisms, i.e.
message passing based on packet-based communication
over heterogeneous interconnection networks. External
IPC solutions are usually less reliable and efficient than
local IPC. The assumptions about the network
infrastructures to be adopted ranges from efficient LANs
up to unreliable and high-latency Internet-based
communication. In some scenarios, both parallel and
distributed PEUs can be used to execute simulations.
Given the low performance and reliability of network
based communication, it is clear that local IPC is
preferable (if available) to be exploited over parallel
architectures.

2.3. Parallel and Distributed Simulation Cloning

The simulation cloning technology was introduced as a
concurrent evaluation mechanism, in the context of
parallel simulation [18]. Simulation cloning allows the
creation of copies of a simulation process (clones) at
“decision points”, which are evaluated at runtime, but
need to be defined preliminary in the model design phase.
When a set of clones is created, each clone would execute
a different possible evolution of the current scenario, each
one related to any choice made at the decision point. The
main flow of events of a simulation may be recursively
split in separate flows characterizing a different evolution
of clones, starting from the decision points. The
advantage of simulation cloning is basically obtained by
the concurrent investigation of alternative choices, by
exploiting the concurrent computation of parallel and
distributed architectures. Clones’ evolutions originated by
bad choices can be killed at runtime to reduce the
overheads.
The cloning approach includes the management of
different time axes in parallel, in order to support a
runtime forecasting functionality [24]. In [6] the aim to
support users willing to run existing complex simulation
models, gave to reusability and transparency issues a top
role while enabling simulation cloning. This is the reason
for cloning design on HLA-compliant distributed
simulations, which led to the introduction of the concept
of virtual federates [6, 18]. A preliminary discussion of
the design and implementation challenges and solutions,

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

like virtual logical processes (VLPs) and virtual messages
(VMs), can be found in [6, 18]. The design and
implementation of runtime support for cloning of HLA-
based parallel and distributed simulations is quite
complex and challenging effort. This is even more critical
under HLA-based and Data Distribution Management
(DDM) based implementations.

2.4. The Concurrent Replication of Parallel and
Distributed Simulations

The replication concept is intended here as a mechanism
that duplicates the logical processes (LPs) of parallel and
distributed simulation runs starting from the initialization
phase of every single run. Each replica is based on a
common model definition, and realizes an independent
run execution based on local initial parameters, variable
factors for the analysis, and different random number
generation seeds. In other words, many independent
simulation runs are executed concurrently by replicating
them (just as clones) only at the beginning of the
simulation process.

2.4.1. Motivations for the Concurrent Replication. In
the following we are going to explain the motivations for
our proposal of a Concurrent Replication mechanism for
Parallel and Distributed Simulation (CR-PADS) by
sketching the differences among the MRIP, the PDES and
the CR-PADS approaches, under the computation and
communication viewpoints.
In figure 1, by assuming that a set of N CPUs are made
available for computation (no matter if they belong to
parallel or distributed architectures) we want a set of
many independent runs to be executed (only two in the
figure for clarity). Obviously, the aim is to have the
completion of the overall simulation process in the lowest
time and with the maximum utilization of computation
and communication resources. By focusing on the MRIP
approach (figure 1a), the independent runs can be
executed by launching in parallel the sequential
simulations over the available CPUs. It results that the
possible concurrency of the model execution cannot be
exploited to obtain simulation speedup, because every
computation is linearly executed as a sequence of tasks.
In this scenario, the model data structures and
computation must fit on the CPU system and may suffer
memory and computation limitations. Moreover, as the
figure 1a illustrates, if the available resources are more
than the number of runs required, the potential associated
to some resources may remain unexploited.
The parallel (or distributed) discrete event simulation
(PDES) approach (see figure 1b) may introduce
advantages, because every independent run could exploit
the whole computation architecture, by mapping and
exploiting the degree of parallelism inherent to the model

over the concurrent CPUs. This implies that a single run
may complete in less time than a sequential run. On the
other hand, the linear execution of two (or many) runs in
the scenario of figure 1b may result in a speedup
depending on the number of resources and the number of
runs required under MRIP and PDES, respectively. It is
worth noting that the advantages of the aggregate memory
architecture may assist the model data structures
management, and that the whole set of computation
resources (CPUs) can be exploited in parallel.

Figure 1. Comparing MRIP vs. PADS vs. CR-PADS

The problem arising under the PDES scenario is
represented in the figure 1b, where frequent
synchronizations are required among the model
components (by assuming a conservative event-based or
time-stepped implementation). Every synchronization
barrier initially unblocks the concurrent computation of
CPUs. As soon as the computation phase is terminated,
every process starts a message passing phase to
synchronize again its execution with other processes. This
implies that i) the whole set of processes advance with the
speed of the slowest (or more computation intensive) one,
and ii) the final phase before the synchronization barrier
is communication-intensive and may suffer additional
delays due to the congestion and delays of the inter-
process communication infrastructure. The
communication delay may result in a high percentage of
the whole synchronization delay, under loosely coupled
distributed architectures (e.g. over CPUs interconnected
by LAN or Internet technology). In other words, as
shown in figure 1b, every simulation process may result
in a sequence of mixed and interleaving bottleneck phases
originated i) by the CPU computation and ii) by
synchronization and communications, respectively.
In this work we investigate how to obtain a more fluent
computation and communication by merging the
execution tasks of more than one parallel or distributed

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

simulation replica over the computation and
communication architecture. By launching multiple,
independent and concurrent parallel or distributed
simulation runs, idle CPU time could be avoided by
switching to the execution of computation requests by the
other replicas which already completed their
synchronization phase. The same principle could be
exploited under the communication system viewpoint,
because the message passing from all the replicas may
increase the uniform utilization of the communication
system. As a result, idle CPU phases, and idle or
congested communication phases, could be smoothed
over time. This may result in additional speedup with
respect to the time required for completing the whole set
of simulation runs. The risk in this approach is to spend
too much time in switching processes’ executions, and in
the creation of communication bottlenecks and livelocks,
resulting in trashing effects. Our design is based on a set
of guidelines that we followed in order to obtain the
maximum advantage from the replication mechanism, by
opportunely managing the processes executions and
communications, and by keeping under control the
overheads introduced.

2.4.2. Advantages of the Replication approach. Among
the advantages of a concurrent replication approach for
parallel and distributed simulations, at the top layer we
identify the possible speedup obtainable when executing a
set of many independent runs, or the possible concurrent
analysis of different scenarios (defined at the beginning
of the run). Specific implementation guidelines could lead
to additional advantages. As an example, we defined the
structure of the ARTÌS framework such that a separation
of the simulation and replication management is
specifically devoted to a clean design and to the
exploitation of management techniques that reduce the
communication overheads.
Replicas are created by replicating virtual LPs that realize
a simulation run. A set of replicas of virtual LPs is
managed as a single LP by the runtime management. This
simplifies the management under the ARTÌS viewpoint
and allows an optimization and balancing of the
utilization of communication resources, based on queue
management, priority and fairness protocols. The
management of Random Numbers Generators (RNGs) is
simpler than in the cloning approach, because seeds can
be chosen at the beginning of the runs, without
originating correlated sequences whose effect could bias
the analysis of results at the end of a set of simulation
runs.
3. The CR-PADS Implementation

Recently proposed and implemented middleware
solutions based on the IEEE 1516 Standard have shown
that the parallel and distributed simulation of massive and

complex systems can result in relevant overheads [3, 4].
Overheads are due to the complex and full management
of a wide set of runtime services and to the latency due to
distributed communication bottlenecks. Specifically, the
implementation of the interprocess communication
services has been implemented in sub-optimal way,
without considering the heterogeneity of the simulation
execution platforms [3, 4].
The HLA implementation criticisms [3, 4, 7, 9] and the
lack of efficient Open Source runtimes are the main
motivations behind the design and implementation of a
new parallel and distributed simulation middleware
named Advanced RTI System (ARTÌS) [5]. The aim of
the ARTÌS middleware is to support parallel and
distributed simulations of complex systems, based on a
minimal set of efficiency-oriented middleware services.
The ARTÌS design is oriented to support the model
components’ heterogeneity, distribution and reuse, and to
increase the simulation performances, scalability and
speedup, in parallel and distributed simulation scenarios.
Another design issue of the ARTÌS framework is the
dynamic adaptation of the interprocess communication
layer to the heterogeneous communication support
offered by possibly different simulation-execution units.
Specifically, the ARTÌS design is based on the adaptive
evaluation of the communication bottlenecks and support
for multiple communication infrastructures and services,
from shared memory to Internet-based communication.
The ARTÌS implementation follows a component-based
design, that results in easily extendable middleware (see
figure 2a). The solutions proposed for time management
and synchronization in distributed simulations have been
widely analyzed and discussed in the design phase.
Currently, ARTÌS supports the conservative time
management based on both the time-stepped approach,
and the Chandy-Misra-Bryant (CMB) algorithm. The
extension of ARTÌS to support optimistic time
management algorithms (Time Warp) is ongoing work.

3.1. Implementation of Replication in ARTÌS

Given the top level structure of ARTÌS shown in figure
2a, ARTÌS supports the execution of LPs over the RTI
kernel. The RTI kernel implements time management
policies, object ownership and declaration management,
data distribution management, federation management
and other functions. At the bottom layer of the RTI, the
Runtime Communication layer (RTIComm) manages the
communication based on the underlying communication
system that connects the PEUs’ architecture. Specifically,
communication is implemented over shared memory for
parallel processors, over Reliable-UDP for LANs and
TCP/IP for Internet-based communication.
In ARTÌS, many design optimizations have been applied
to obtain adequate protocols for synchronization and

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

communication over Local Area Networks (LAN) or
Shared Memory (SHM) multiprocessor architectures. In
our vision the communication and synchronization
middleware should be adaptive and user-transparent
about all the optimizations required to improve
performances. The current scheme adopts an incremental
straightforward policy: given a set of LPs on the same
physical host, such processes always communicate and
synchronize via read and write operations, performed
within the address space of LPs, in the shared memory
(see PEU X on figure 3). To implement these services we
have designed, implemented and tested many different
solutions, based on inter-process communication (IPC)
semaphores and locks, busy-waiting, and "wait on
signals" with a limited set of temporized spin-locks. The
latter solution has demonstrated very low latency and
limited CPU overhead, good performances obtained in
multi-CPU systems, good scalability, and no need to
reconfigure the operating system kernel level.
Two or more LPs located on different hosts (i.e. no
shared memory available), on the same local area network
segment, communicate by using a light Reliable-UDP (R-
UDP) transport protocol over the IP protocol. Two or
more LPs located on Internet hosts rely on standard
TCP/IP connections (see PEUs X and Y in figure 3).
Given the ARTÌS design, the abstractions of LPs,
messages, channels and simulation-runs appear as objects
implemented over the RTI kernel. In order to manage
efficiently the management of messages among LPs, an
active thread is waiting for messages on each channel,
and demultiplexes messages to the above layers by
adopting an efficient callback mechanism. The time
management layer also adopts callback techniques to
avoid polling techniques over the RTIComm layer, that
may reduce performances.
The Replication mechanism has been inserted in ARTÌS
directly over the RTIComm layer. This facilitates the
need to maintain transparency to the LPs, and light
implementation of the replication mechanism. The choice
to realize replication at the above layers would have given
benefits under the optimization viewpoint, at the
additional expenses of ad hoc re-implementation of the
replication services for each time management policy.
The Replication management layer is the funnel for
replicas over the RTIComm layer (see figure 2b). The
Replication layer generates the replicas of each LP, and
manages messages from/to LPs of each replica. The set of
processes and threads of each simulation replica has been
designed as a tree-like structure, whose inter-process
communication is based on highly efficient UNIX pipes.
UNIX pipes have been preferred to shared data structures,
because messages have limited size and the consistency
management of shared data structures would introduce
latency and additional overheads.

a b
Figure 2. The ARTÌS and Replication architecture

Figure 3. Parallel and distributed CR-PADS structure

The proposed implementation architecture allows
optimization of the communication management locally
to the LPs. Alternative architectures aiming to reduce the
communication bottleneck are currently under evaluation.
In the following, we sketch the dynamic behavior of the
Replication management layer when replicating a LP in a
parallel or distributed simulation run.

1) the user’s simulator code is compiled with ARTÌS
2) the simulation run is started

a) execute initialization
b) call ARTIS_init() API who creates LP_father

3) ARTIS_init() calls Replication_init()
4) LP_father calls RTI_kernel_init()

a) RTI_kernel_init() creates threads for
communication and initialization of LP replicas
that will be created by the LP_forker thread

b) each LP replica create a new pipe_listener thread
to receive messages from the LP_father

5) the LP_father creates the LP_ forker process
a) LP_forker process generates new replicas (upon

request from the user)
6) LP_father waits on its own communication pipes
7) Simulation run starts

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

a) once LP replicas send messages, the Replication
layer sends the message to the LP_father pipe

b) once the LP_father receives messages, it adds
headers for multiplexing and manage the
message by adopting the standard RTI kernel
functions to send the message to the receiver LP.

c) once a message is received by the thread of the
receiver LP, the receiver LP demultiplexes the
message to the pipes of the LP replicas, where
the message is handled

The set of operations 7.a.b.c is executed until the LP
process terminates, and all its resources are freed.

4. Performance Evaluation

To test our framework we implemented a time-stepped,
conservative, parallel and distributed discrete-event
simulation of a mobile wireless system.

4.1. Simulation system and simulation model

Our simulation testbed consists of two different
environments: i) parallel and ii) distributed discrete-event
simulation of model components. In the parallel
environment for simulation the model components are
executed as logical processes over a dual processor
physical execution unit (PEU). Specifically, the PEU is an
Intel Dual Xeon Pentium IV 2800 Mhz, with 3 GB RAM,
Debian GNU/Linux OS with kernel version 2.6.

In the distributed environment the logical processes are
mapped over a set of physical execution units (PEUs),
connected by a physical LAN network. Specifically, the
execution architecture is composed by three
homogeneous units defined like the aforementioned PEU.

As a testbed for our replication framework, we realized a
conservative, time-stepped simulation of a complex and
dynamic model. The simulation model we considered for
the simulations is a wireless mobile ad hoc network
model. The mobile ad hoc network is realized by
Simulated Mobile Hosts (SMHs), each one characterized
by random mobility and CBR traffic (that is, ping
messages sent to all the neighbor SMHs in their reception
area). The number of simulated SMHs has the effect of
controlling the average SMH density in the system. The
SMH mobility causes changes in the network topology
and the SMH dynamics. Since the model design is out of
scope in this paper, we simply characterize the model
execution by noting that: i) the computation required for
each SMHs per timestep is in the order of O(#SMH^2)
and, ii) the communication and synchronization required
among SMHs is in the order of O(K*#SMHs) per
timestep. All the model choices have been defined in

order to realize a stressing test for our simulation
framework.

4.2. Performance results

 In this section we present the results of some testbed
simulation experiments executed to analyze the
performance of the proposed CR-PADS approach in
presence of parallel and distributed environments.

We performed multiple runs of each experiment, and the
confidence intervals obtained with a 95% confidence
level are lower than 5% the average value of the
performance indices shown.

 In the following we define M as the number of physical
execution units (PEUs) supporting the simulation
execution, and N as the total number of logical processes
(LPs) implemented for each simulation run. As mentioned
above, each PEU is composed by a dual processor
machine. With the “CR-PADS OFF” label we identify a
legacy parallel and distributed simulation approach: that
is, simulation runs are executed in sequential order, by
activating N LPs at a time. With “CR-PADS ON” we
identify a parallel or distributed simulation executed
under the effect of the CR-PADS replication approach
described in previous sections. The “number of
replications” is intended as the number of independent
simulation runs executed (both sequentially when CR-
PADS is OFF, and in concurrent way when CR-PADS is
ON).

 In figures 4, 5 and 6 we report results for the parallel
simulation environment (M=1, N=2). Each figure shows
the Wall Clock Time (WCT) required for completing the
x simulation processes. Figure 4 shows the effect of 500
SMHs involved in the simulation (250 SMHs over the
N=2 LPs executed over the M=1 dual processor PEU).
Figure 5 and 6 show the same index with 1000 and 2000
SMHs, respectively. Results confirm that the CR-PADS
approach outperforms the sequential approach by
considering the WCT required to complete a whole set of
simulation runs. Each run is defined with fixed size of
300 timesteps. In figure 4, by increasing the number of
concurrent replications (up to 20), the CR-PADS results
are better than the traditional parallel simulation
approach. By increasing the number of SMHs up to 1000
(fig. 5) and 2000 (fig. 6) we are increasing the percentage
weight of local computation, with respect to the
percentage weight of communication, in the sequence of
synchronization steps, for each SMH during the
simulation runs. This means that we are pushing the
computation to saturate all the CPUs computation power.
When the computation load for LPs asymptotically
saturates the CPU computation power, the CR-PADS
approach becomes less efficient than the legacy PADS

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

approach, because it does not longer exploit any idle CPU
time in order to execute more concurrent replicas.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 500 SMHs

CR-PADS OFF
CR-PADS ON

Figure 4. Total WCT vs. Number of runs (replications)
Parallel simulation scenario: M=1, N=2, 500 SMHs

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 5. Total WCT vs. Number of runs (replications)
Parallel simulation scenario: M=1, N=2, 1000 SMHs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=1, N=2, 2000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 6. Total WCT vs. Number of runs (replications)
Parallel simulation scenario: M=1, N=2, 2000 SMHs

It is worth noting that the break-even in the number of
replicas is around 15 in figure 5 and around 6 concurrent
replicas in figure 6. As it was expected, the CR-PADS
approach introduces overheads when the number of
replicas is high and the computation of few replicas
saturates the computation power of all PEUs. It is worth
noting that in all the proposed scenarios, the CR-PADS
approach can give a speedup effect, at least limited to the
initial subrange in the number of concurrent replicas. By
focusing our attention to the distributed environment
(with M=3 and N=6), in figures 7, 8 and 9 we illustrate
the same results shown for the parallel simulation
scenario.

It is worth noting that the average communication latency
of distributed environments is at least one order of
magnitude bigger than the average latency experienced in
the parallel architecture.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 500 SMHs

CR-PADS OFF
CR-PADS ON

Figure 7. Total WCT vs. Number of runs (replications)
Distributed simulation scenario: M=3, N=6, 500 SMHs

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 1000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 8. Total WCT vs. Number of runs (replications)
Distributed simulation scenario: M=3, N=6, 1000 SMHs

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Replications

Ad Hoc Network, M=3, N=6, 2000 SMHs

CR-PADS OFF
CR-PADS ON

Figure 9. Total WCT vs. Number of runs (replications)
Distributed simulation scenario: M=3, N=6, 2000 SMHs

A significant latency implies long time required to
achieve synchronization at every timestep. This would
translate in better opportunities for CR-PADS to optimize
the concurrent execution of many runs, by exploiting a
better utilization of the PEU computation power, and by
reducing the global WCT required for completing the
simulations. The results confirm the expectations: for a
number of concurrent runs ranging from 1 up to 20, the
CR-PADS mechanism is able to give significant speedup
both in the 500 and 1000 SMHs scenarios (figures 7 and
8). When the scenario becomes computation-intensive
(2000 SMHs in figure 9) the CR-PADS approximates the
same results than the legacy PADS approach, and does
not introduce significant overheads in the range of 1 up to
10 concurrent replications.

Figure 10 illustrates the rate of event processing under
both parallel and distributed scenarios obtained for 10
simulation runs executed with and without the CR-PADS
framework in background. By looking at the figure 10,
CR-PADS allows a high event computation density when
the computation load in each timestep does not saturate
the available CPUs (that is, when SMH=500..1000).
When the computation load increases (SMH=2000) the
trashing effect of CR-PADS appears, basically because
there is not space for additional concurrency in the
computation. In the distributed scenario, the high latency
of communication reduces the computation concurrency
in legacy distributed simulations. As expected, the CR-
PADS mechanism is able to maintain a high computation
concurrency.

Figure 11 shows the effect of the communication layer
during the execution of distributed simulations. It is clear
how the CR-PADS mechanism is able to increase the
throughput of communication channels even when the
computation load is low. Conversely, when CR-PADS is
off, the communication channels are under-utilized.
When the computation load asymptotically saturates the

available CPUs, both the CR-PADS On and CR-PADS
Off implementations converge to the same network
utilization. This is due because the network
communication is generated as a function of the events
processed (that is the computation performed, which is
the system bottleneck in the current scenario).

0

20000

40000

60000

80000

100000

120000

140000

500 1000 2000
#SMH

p
ro

ce
ss

ed
 e

ve
n

ts
/s

ec

CR-PADS OFF,
10 Replicas,
Parallel
Scenario

CR-PADS ON,
10 Replicas,
Parallel
Scenario

CR-PADS OFF,
10 Replicas,
Distributed
Scenario

CR-PADS ON,
10 Replicas,
Distributed
Scenario

Figure 10. Analysis of event processing rate

0

1000

2000

3000

4000

5000

6000

7000

8000

500 1000 2000

#SMH

N
et

w
o

rk
 t

h
ro

u
g

h
p

u
t

(K
B

/s
)

CR-PADS OFF,
10 Replicas,
Distributed
Scenario

CR-PADS ON,
10 Replicas,
Distributed
Scenario

Figure 11. Analysis of communication throughput

5. Conclusions and future work
 In this paper we propose and investigate a new
direction for increasing both the speedup of a parallel or
distributed simulation process and the utilization of
computation and communication resources. A typical
implementation of a simulation-based investigation
requires to collect many independent observations for a
correct and significant statistical analysis of results. On
the other hand, the execution of many independent
parallel or distributed simulations may suffer the speedup
reduction due to rollbacks under the optimistic approach,
and due to idle CPU times originated by synchronization
and communication bottlenecks under the conservative

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

approach. We present a parallel and distributed
simulation framework supporting Concurrent Replication
of Parallel and Distributed Simulations (CR-PADS), as an
alternative to the execution of a linear sequence of
multiple parallel or distributed simulation runs. The
implementation of the CR-PADS mechanism has been
defined and tested over the Advanced RTI System
(ARTÌS) framework, which is inspired to the HLA
architecture. Results obtained from tests executed under
variable scenarios show that speedup gains could be
obtained by adopting the proposed replication approach
in addition to the pure parallel and distributed simulation.
Our future work will include the optimization of the
proposed framework, and the investigation of adaptive
automation of concurrent replication. We plan to
investigate the adoption of CR-PADS under other
conservative and optimistic approaches for parallel and
distributed simulation, and under massive parallel
computation architectures. We also plan to integrate CR-
PADS with a framework for adaptive load balancing and
migration of simulated entities, and with the components
for runtime transient and steady-state analysis of data,
confidence interval estimation, and run termination
management.

6. References
[1] D. Anagnostopoulos and M. Nikolaidou, “Executing a
Minimum Number of Replications to Support the Reliability of
FRTS Predictions”, proc. 7-th IEEE DS-RT 2003, Delft, The
Netherlands, Oct. 2003

[2] W. Biles and J.P.C. Kleijnen, “Statistical Methodology for
WEB-Based Simulation”, proc. 7-th IEEE DS-RT 2003, Delft,
The Netherlands, Oct. 2003

[3] L. Bononi, G. D'Angelo and L. Donatiello, "HLA-Based
Adaptive Distributed Simulation of Wireless Mobile Systems",
in Proceedings of IEEE/ACM Int’l Workshop on Parallel and
Distributed Simulation (PADS'03), San Diego, CA, 06/2003

[4] L. Bononi, M. Bracuto, G. D'Angelo and L. Donatiello, "A
New Adaptive Middleware for Parallel and Distributed
Simulation of Dynamically Interacting Systems", proc. 8-th
IEEE Int’l Symposium on Distributed Simulation and Real
Time Applications (DS-RT 2004), Budapest, Hungary, Oct.
2004

[5] L. Bononi, M. Bracuto, G. D'Angelo and L. Donatiello,
"ARTIS: a Parallel and Distributed Simulation Middleware for
Performance Evaluation", in LNCS 3280 - 2004 Proc. of the 19-
th International Symposium on Computer and Information
Sciences (ISCIS 2004), Antalya, Turkey, Oct. 2004, 627-637

[6] D. Chen, S.J. Turner, B.P. Gan, W.T. Cai, J. Wei and N.
Julka “Alternative Solutions for Distributed Simulation
Cloning”, Simulation, Vol. 79, No. 5-6, 299-315 (2003)

[7] J. Dahmann, R.M. Fujimoto, and R.M. Weatherly, “High
Level Architecture for Simulation: an update”, Winter
Simulation Conference, December 1998

[8] S.R. Das, “Adaptive protocols for Parallel Discrete Event
Simulation”, Proc. of Winter Simulation Conference, 1996

[9] W.J. Davis and G.L. Moeller, “The High Level Architecture:
is there a better way?”, proc. Winter Simulation Conf., 1999

[10] E. Deelman and B.K. Szymanski, “Dynamic load balancing
in parallel discrete event simulation for spatially explicit
problems”, Proc. of the 12-th workshop on Parallel and
distributed simulation PADS’98, July 1998

[11] E. de Souza Mota, K. Pawlikowski and A. Wolisz. "A
Perspective of Batching Methods in Simulation Environment of
Multiple Replications in Parallel", Proc. Winter Simulation
Conf. 2000, Orlando, Florida, USA, Dec. 2000, pp. 761-766

[12] DMSO: Defence Modeling and Simulation Office (1998),
High Level Architecture RTI Interface Specification, Ver. 1.3

[13] G. Ewing, K. Pawlikowski and D. McNickle. “Akaroa2:
Exploiting Network Computing by Distributing Stochastic
Simulation”, Proc. European Simulation Multiconference
ESM'99, Warsaw, ISCS, June 1999, pp. 175-181

[14] A. Ferscha, “Parallel and Distributed Simulation of
Discrete Event Systems”, In Handbook of Parallel and
Distributed Computing, McGraw-Hill, 1995

[15] F.Fitzek, E. Mota, E. Ewers, A. Wolisz, and K.
Pawlikowski, “An Efficient Approach For Speeding Up
Simulation Of Wireless Networks”, In Proc. of WMC 2000, San
Diego, California, USA, January 2000.

[16] R.M. Fujimoto, “Parallel and Distributed Simulation
Systems”, John Wiley & Sons, 2000

[17] B.P. Gan, Y.H. Low, S. Jain, S.J. Turner, W. Cai, W.J. Hsu
and S.Y. Huang, “Load balancing for conservative simulation
on shared memory multiprocessor systems”, Proc. of the 14-th
workshop on Parallel and distributed simulation (PADS’00),
May 28-31, 2000, Bologna, Italy, p.139-146

[18] M. Hybinette and R.M. Fujimoto. “Cloning parallel
simulations”. ACM Trans. Model. Comput. Simul., 11(4), 2001.

[19] D.R. Jefferson, "Virtual Time", ACM Trans. on Prog.
Languages and Systems, Vol.7 No.3, pp. 404-425, 1985

[20] K.G. Jones and S.R. Das, “Parallel Execution of a
sequential network simulator”, Proc. of the 2000 Winter
Simulation Conference, 2000

[21] Y.B. Lin, “Parallel independent replicated simulation on a
network of workstations”, In proc. of the 8-th workshop on
Parallel and distributed simulation, pp. 73--80, 1994.

[22] G.F. Riley, R.M. Fujimoto and M.H. Ammar, “A generic
framework for parallelization of network simulations”, Proc. of
MASCOTS'99, College Park, MD, October 1999

[23] G.F. Riley and M.H. Ammar, “Simulating Large Networks
How Big is Big Enough?”, Proc. of First Intern.l Conference on
Grand Challenges for Modeling and Simulation, Jan. 2002

[24] T. Schulze, S. Straßburger, and U. Klein, “HLA- federate
reproduction procedures in public transportation federations”
proceedings of the 2000 Summer Computer Simulation
Conference, July, Vancouver, Canada

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation (PADS’05)

1087-4097/05 $20.00 © 2005 IEEE

