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Concurrent Single-Label Image Classification

and Annotation via Efficient Multi-Layer Group

Sparse Coding
Shenghua Gao, Liang-Tien Chia, Ivor Wai-Hung Tsang, and Zhixiang Ren

Abstract—We present a multi-layer group sparse coding
framework for concurrent single-label image classification and
annotation. By leveraging the dependency between image class
label and tags, we introduce a multi-layer group sparse structure
of the reconstruction coefficients. Such structure fully encodes
the mutual dependency between the class label, which describes
image content as a whole, and tags, which describe the compo-
nents of the image content. Therefore we propose a multi-layer
group based tag propagation method, which combines the class
label and subgroups of instances with similar tag distribution
to annotate test images. To make our model more suitable
for nonlinear separable features, we also extend our multi-
layer group sparse coding in the Reproducing Kernel Hilbert
Space (RKHS), which further improves performances of image
classification and annotation. Moreover, we also integrate our
multi-layer group sparse coding with kNN strategy, which greatly
improves the computational efficiency. Experimental results on
the LabelMe, UIUC-Sports and NUS-WIDE-Object databases
show that our method outperforms the baseline methods, and
achieves excellent performances in both image classification and
annotation tasks.

Index Terms—sparse coding, image classification, image anno-
tation, kernel trick

I. INTRODUCTION

Image classification and image annotation are two classical

problems in computer vision. Given an image, image classi-

fication tells people what is the theme of the image (high-

level semantic meaning), and image annotation tells people

what objects are inside the image and their properties (tags

for image component descriptions). This paper targets single-

label image classification where each image only belongs to

one class.

Lots of image classification [23][40] and image annota-

tion [43][55] frameworks have been developed in recent years.

However, most of these frameworks solve the image classifica-

tion or image annotation independently. As we know, the high-

level semantic meaning of an image can help the prediction of

objects in this image, and image components can jointly help

predict the semantic class label of this image. For example,
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Fig. 1. An illustration of image tags, class label, and their concurrence map
on UIUC-Sports dataset. For UIUC-Sports, there are 8 classes, and 175 tags.
The concurrence map shows that usually a tag only appears in one or very
few classes, so we can predict the tag based class label, and vice versus.

in Fig. 1, the class label “snowboarding” and tags “snow”,

“ski”, “athlete”, etc. can reciprocally boost the prediction

of each other. To further illustrate the relationship between

image class label and tags, we also show the concurrence of

the class label and tags on UIUC-Sports dataset in Fig. 1.

The concurrence map shows that usually a tag only appears

in one or very few classes, so we can predict the tag based

class label, and vice versus. Such dependency between class

label and tags shows that the image classification and image

annotation are closely related, which motivates us to solve im-

age classification and image annotation problems concurrently.

Meanwhile, from the image users’ perspective, concurrent

image classification and annotation enhance the users’ under-

standing of the image content. Fig. 1 also illustrates a possible

application of such concurrent image classification and image

annotation: someone takes lots of images in different activities,

like snowboarding, skiing, swimming, etc. By using image

classification, images belonging to different activities can be

automatically sorted out. Then by using image annotation

technique, each image can be annotated with different tags

which further describe the image contents, we can group

images based on a high-level semantic concept, and each tag

which may be a name of object in the image, like “snow”,

“athlete”, is used to describe the image contents.1

Recently sparse coding has demonstrated good performance

for single-label image classification [47][53][50] under the as-

sumption that “If sufficient training samples are available from

each class, it would be possible to represent the test samples

1As for the multi-label image classification task on, for example, PASCAL
VOC datasets, it is a different application scenario. On PASCAL VOC
datasets, multiple objects appear in the same image, like car, person, bike.
No higher-level concepts (like scene or activities concepts) are given to group
these images. Therefore such task is different from the task we are dealing
with.



2

as a linear combination of those training samples from the

same class [47]”. Moreover, sparse coding also demonstrates

good performance for image annotation task [45][26] with a

label transfer strategy.

Motivated by the success of sparse coding for single-label

image classification and image annotation, as well as the

close relationship between image classification and image

annotation, in this paper, we present a multi-layer group sparse

coding framework. Such a framework not only inherits the

ability of sparse coding in single-label image classification, but

also encodes additional prior information, including the depen-

dency between the class label and tags, and group sparsity of

the reconstruction coefficients (sparse codes) corresponding to

the instances with the same class label, etc. The architecture

of our multi-layer group structure is depicted in Fig. 2.

Specifically, our multi-layer group sparse architecture contains

three layers: the instance layer, the class-based group layer

and the tag-based subgroup layer. On the class-based group

layer, the sparse codes corresponding to the instances with the

same class label form a class-based group. On the tag-based

subgroup layer, the sparse codes corresponding to the instances

with both the same class label and similar tag distribution

form a tag-based subgroup. The sparsity on these three layers

implies the minimal number of the instances, class-based

groups and tag-based subgroups are used for reconstructing

a test image. Based on the reconstruction error for each class-

based group and tag-based subgroup, we can classify and

annotate the test image concurrently.

The contributions of this paper can be summarized as

follows. Firstly, we present a multi-layer group sparse coding

framework to solve the image classification and image an-

notation problems simultaneously. Multi-layer group sparsity

structure preserves the mutual dependency between the class

label and image tags. Secondly, we apply the normalized

cut method to form tag-based subgroups. These tag-based

subgroups encode the image component information. Based on

the predicted class label and the reconstruction error for each

tag-based subgroup, we propose a multi-layer group based tag

propagation method which improves the robustness of image

annotation. Thirdly, we extend our multi-layer group sparse

coding in the RHKS and propose kernel multi-layer group

sparse coding. Our kernel multi-layer group sparse coding

captures the nonlinearity of features, and further improves

performances of both image classification and annotation

tasks.

This paper is an extension of our previous work [15],

and we extend our work in the following aspects: (i) We

extend our formulations to more general cases; (ii) Besides F-

measure, we also adopt the widely used Precision and Recall

for annotation evaluation. (iii) We conduct more experiments

for more complete evaluation, like evaluating the effects of

different parameters, using a toy dataset to illustrate reason

of performing multi-layer group sparse coding in RKHS. (iv)

We propose to use kNN strategy to accelerate the proposed

kernel multi-layer group sparse coding on large-scale image

classification task. (iv) The computational complexity of the

solver is analyzed.

The rest of this paper is organized as follows: Related work
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Fig. 2. Multi-layer group structure illustration. The codebook has the multi-
layer group structure, therefore the reconstruction coefficients are sparse for
different groups in each layer.

will be briefly discussed in Section II. We will describe the

details of our multi-layer group sparse coding in Section III.

Experiments will be conducted in Section IV. We will con-

clude our work in Section V.

II. RELATED WORK

Our work is closely related to the image classification,

image annotation, and sparse related methods.

Lots of works have been done by using sparse coding

for image classification, like sparse coding based spatial

pyramid matching [49], Locality-constrained Linear Coding

(LLC) [46], Laplacian Sparse coding (LSc) [17], Kernel S-

parse Representation (KSR)[16], etc. Specifically, given lots

of extracted features, like SIFT [30], HOG [11], Marco-

feature [5], these sparse coding techniques are used to encode

these features. Then max pooling [38] or other feature pooling

techniques [6][21] are used to aggregate the information ob-

tained in previous feature coding step for image representation.

Moreover, to preserve the spatial information, Spatial Pyramid

Matching (SPM) [23] is usually adopted. After representing

each image as a vector, Support Vector Machine (SVM) is

usually used for training the classifiers and predicting the

label of the test image. However, all the above mentioned

sparse coding techniques are used for feature coding in image

representation process other than used as the classifier for label

prediction.

Image annotation methods can be broadly divided into three

categories. (i) Generative model [12][32][3]: it propagates key

words to the image according to the learnt joint distributions

between image features and tags. (ii) Discriminative model

[7][10][18][35]: it models the image annotation as a multi-

label classification problem and learns a classifier for each key

word. (iii) Nearest Neighbor related methods [54][41][19][44]:

they propagate the tags of the training samples to the image

to be tagged based on their distance/similairty to the training

images. In this paper, the proposed technique learns the

relationship/similarity between the training images and images

to be tagged. Then it propagates the tags of the corresponding

training images to the image to be annotated accordingly.

As we aforementioned, image classification and image an-

notation are closely related for image understanding. Though



3

jointly solving image classification and annotation is an inter-

esting problem, little research has been done on this topic until

now. Recently Wang et al. [42] proposed the method of using

graphic models (multi-class sLDA and multi-class sLDA with

annotations) to tackle such a problem. Moreover, Li et al. [25]

proposed a method of using a hierarchical generative model

to solve image classification, annotation and segmentation.

All of these works are based on generative models. However,

there are too many parameters in generative models, and their

parameter estimation process is usually very computationally

expensive.

In our work, we perform the image classification by fol-

lowing the paradigm of sparse coding for face classification

[47][53] based on the given image representation, i.e., we

predict the label of the test image based on the sparse

coefficients. Here sparse coding works as the role of classifier.

Moreover, we also model the relationship/similarity between

the image to be annotated and all the images used for tag prop-

agation in the same formulation. Mathematically, our multi-

layer group sparse coding is closely related to bi-layer sparse

coding, group lasso (sometimes it is also called group sparse

coding) and sparse group lasso in terms of its formulation but

not the application. Compared with sparse coding, bi-layer

sparse coding and sparse group lasso encode additional prior

information.

Bi-layer sparse coding [27][28] was proposed to tackle

label-to-region problem. Bi-layer sparse coding contains the s-

parsity constraints on two layers: patch-to-patch reconstruction

layer and instance layer. Based on its sparse codes, the region

to be labeled is connected to several images with different

weights. Then related tags of these images can be propagated

to each region to be labeled.

Given a test image, the non-zero linear reconstruction

coefficients should only appear in one (in the ideal case)

or a number of class(es). Thus, group sparse coding lasso

was proposed [4]. In group sparse lasso, the reconstruction

coefficients corresponding to the instances within the same

class form a group, and the ℓ1 norm is imposed on the

group level. It aims at selecting as few classes as possible to

reconstruct the test data, and ℓ2 or ℓ∞ is usually imposed on

the sparse codes within each class. Furthermore, to emphasize

the sparse characteristics on both instance layer and group

layer, sparse group lasso, which is the combination of group

sparse coding and sparse coding, is also introduced to solve

regression problems recently [14].

III. MULTI-LAYER GROUP SPARSE CODING

In this section, we will describe the formulation of our

multi-layer group sparse coding, its optimization, tag-based

subgroup construction, and the prediction of the class label

and tags using sparse codes. Whereafter, we will extend our

formulation in the RKHS and propose the Kernel Multi-layer

Group Sparse coding. Moreover, to handle the large scale

problem, we also combine our multi-layer group sparse coding

with the kNN, and we also detail the computational cost of

such strategy.

A. Problem Formulation

There are tri-layer group sparse constraints in our concur-

rent image classification and image annotation problem, i.e.,

instance layer sparse constraint, class-based group layer sparse

constraint and tag-based subgroup layer sparse constraint.

(i) Given sufficient training images, a test image y can be

“sparsely” and linearly reconstructed by the training data of

the same class [47]. Here “sparsity” means that only a few

reconstruction coefficients are non-zeros. This is the sparsity

constraint on the instance layer. (ii) To emphasize that the

instances used for reconstructing the test data should come

from the same class, we gather the sparse codes of the

instances within the same class and form a class-based group.

We impose the sparsity constraint on these class-based groups:

making the groups with non-zero sparse codes as few as pos-

sible. This is the sparsity constraint on the class-based group

layer. (iii) Intuitively, the class label and the tags are closely

related. Such co-occurrence information helps the prediction of

each other. Thus we introduce an additional layer – tag-based

subgroup layer, between the instance layer and the class-

based group layer. We divide the images within the same class

label into different subgroups based on their tag distribution.

As shown in Fig. 2, the images within the same subgroup have

similar tag distribution, which means the components of these

images are similar. Ideally, these subgroups cover all the cases

of the tag distribution within each class. Given an instance to

be annotated, it can be reconstructed by using the instances

within a subgroup under the class-based group that it belongs

to. This subgroup contains all the components of an image to

be annotated. In practice, because the limitation of the training

samples within each class, we cannot get all the subgroups

with the same tag distribution. As a compromise, we divide

the instances within each class into several subgroups, and

the images within each subgroup have similar distribution.

We desire that the instances used for reconstruction come

from as few subgroups as possible – using the instances

from several subgroups are sufficient to reconstruct this test

image. Let the reconstruction coefficients corresponding to

each subgroup of the training data form a tag-based subgroup.

The reconstruction coefficients should be sparse for these tag-

based subgroups. Thus the sparsity constraint is introduced on

the tag-based subgroup layer. The multi-layer group structure

is illustrated in Fig. 2. An illustration of the sparsity on these

three layers is depicted in Fig. 3. From Fig. 3, we observe that

the reconstruction coefficients, the ℓ2 norm of the sparse codes

on class-based group layer and tag-based subgroups layer are

all sparse.

Suppose there are N classes in all. All the training images

of the ith class form the matrix Xi (1 ≤ i ≤ N ). The images

in Xi are divided into Gi tag-based subgroups. Denote the

images in the gth tag-based subgroup as Xig (1 ≤ g ≤ Gi),

the kth images in the tag-based subgroup Xig as Xk
ig (Xk

ig ∈
R

d×1, 1 ≤ k ≤ Nig , here Nig is the number of images in

tag-based subgroup Xig , and d is the feature dimension for

each image), and X as the matrix of all the images. Then we



4

have the following relations:

Xig = [X1
ig, X

2
ig, . . . , X

k
ig, . . . , X

Nig

ig ] ∈ R
d×Nig

Xi = [Xi1, Xi2, . . . , Xig, . . . , XiGi
] ∈ R

d×
∑

g Nig

X = [X1, X2, . . . , Xi, . . . , XN ] ∈ R
d×

∑
i

∑
g Nig

(1)

Denote the reconstruction coefficient of instance y correspond-

ing to Xk
ig , Xig , Xi, X as V k

ig, Vig , Vi and V respectively.

They satisfy the following relations:

Vig = [V 1
ig, V

2
ig, . . . , V

k
ig, . . . , V

Nig

ig ]T ∈ R
Nig×1

Vi = [V T
i1 , V

T
i2 , . . . , V

T
ig , . . . , V

T
iGi

]T ∈ R

∑
g Nig×1

V = [V T
1 , V T

2 , . . . , V T
i , . . . , V T

N ]T ∈ R

∑
i

∑
g Nig×1

(2)

Based on the previous definition, the sparsity corresponding

to the instance layer, class-based group layer and tag-based

subgroup layer can be formulated as ∥V ∥1,
∑

i ∥Vi∥p and
∑

i

∑

g ∥Vig∥p. Therefore we formulate the objective of multi-

layer group sparse coding as follows:

min
V

1

2
∥y −XV ∥2F + λ∥V ∥1 +

N
∑

i=1

wi∥Vi∥p

+
N
∑

i=1

wi

Gi
∑

g=1

γig∥Vig∥p (3)

Here λ, wi and γig are the weights on different layers and

different groups. ℓp norm is used on the sparse codes within

each (sub)group. When p = 1, the formulation becomes a

tri-layer sparse coding, which is closely related to the bi-layer

sparse coding [27][28]. However, the correlation of the images

within each (sub)group will be lost if ℓ1 norm is used. In

the following sections, we set p = 2. Namely ℓ2 norm is

used to encode the sparse codes within each (sub)group as an

unit [14][22].

B. Objective Optimization

The objective of our formulation is convex, but it is

non-smooth. Moreover, the class-based groups and tag-based

subgroups are overlapped with each other. Commonly used

methods for solving group sparse coding, like block coor-

dinate descend method [13][31][14][36], are not suitable for

optimizing our objective function because of the non-separable

variables. Recall that ∥x∥1 =
∑

i |xi| =
∑

i ∥xi∥2 (where x
is a vector, xi is its ith entry, and |xi| is absolute value of

xi.), therefore we can rewrite Equation (3) as the summation

of ℓ2 norm imposed on each group:

min
V

1

2
∥y −XV ∥2F +λ

N
∑

i=1

Gi
∑

g=1

Nig
∑

k=1

∥V k
ig∥2 +

N
∑

i=1

wi∥Vi∥2

+

N
∑

i=1

wi

Gi
∑

g=1

γig∥Vig∥2 (4)

In this formulation, the groups are in three forms: each

instance forms a group (group number is
∑N

i=1

∑Gi

g=1 Nig),

class-based group (group number is N ), tag-based subgroup

(group number is
∑N

i=1 Gi). The total group number M =
∑N

i=1

∑Gi

g=1 Nig +N +
∑N

i=1 Gi. All the groups are indexed

by the set B = {b1, b2, . . . , bM}, which is defined as a subset

of the powerset of {1, 2, . . . ,
∑N

i=1

∑Gi

g=1 Nig}. Let the sparse

codes and the weight corresponding to group b be Vb and βb

respectively. Then Equation (4) can be further simplified to

the following formulation:

min
V

1

2
∥y−XV ∥2F +

∑

b∈B

βb∥Vb∥2 =
1

2
∥y−XV ∥2F +Ω(V )

(5)

which is a group lasso problem with overlapped groups.

It can also be deemed as a case of tree-structured lasso

problem [20]. Recently, Chen et al. propose the Proximal-

Gradient method [8] to efficiently optimize tree-structured

lasso regression problem. In this paper, we adopt this method

to optimize Equation (4).

Let α = [αT
b1
, αT

b2
, . . . , αT

bM
]T (α ∈ R

∑
b∈B

|b|×1) be a

vector defined on the domain Q ≡ {α|∥αb∥2 ≤ 1, ∀ b ∈ B}.

Define C (C ∈ R

∑
b∈B

|b|×
∑N

i=1

∑Gi
g=1

Nig ) as a matrix, whose

rows are indexed by all pairs of (i, b) ∈ {(i, b)|i ∈ b, i ∈
{1, 2, . . . ,

∑N

i=1

∑Gi

g=1 Nig}}, and columns are indexed by

j ∈ {1, 2, . . . ,
∑N

i=1

∑Gi

g=1 Nig}. Each element of C is given

as:

C(i,b),j =

{

βb if i = j,

0 otherwise.
(6)

Then fµ(V ) = maxα∈Q αTCV − µ
2 ∥α∥

2
2 is the smooth

approximation of Ω(V ). Here µ is a positive smoothness

parameter, which is used to control the accuracy of approxi-

mation. Smaller µ corresponds to more precise approximation.

We set it to 10−3 in our experiments. By substituting Ω(V )
with fµ(V ) in Equation (5), we arrive at the following smooth

optimization problem:

min
V

1

2
∥y −XV ∥2F + fµ(V ) (7)

This objective function can be efficiently optimized by

using Nesterov’s method [34], which is an accelerated gradient

method. It can be shown that the solution of Equation (7)

can be sufficiently close to the optimal solution V ⋆ of

Equation(3).2

C. Tag-Based Subgroup Construction in Multi-layer Group

Sparse Coding

One important issue is how to form the subgroups based

on the image tag distribution. Each image can be represented

by a vector in which each entry is either 1 or 0 representing

whether the occurrence of a certain tag in the image or not.

However, it may not be proper to adopt traditional k-means to

partition the images into clusters because Euclidean distance

is not appropriate for evaluating the distance between such tag

vectors.

The criteria for our tag-based subgroup construction are

given as follows: The inter-group similarity should be as

large as possible, and the intra-group similarity should be as

small as possible. Therefore, we can formulate such subgroup

construction problem as a normalized cut problem [39]. Each

2For more details on proximal-gradient method, please refer to refer-
ence [8].
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predict  class label:  
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sky, tree

Fig. 3. An illustration of sparse codes, ℓ2 norm of the sparse codes group
on class-based group layer (∥Vi∥2) and tag-based subgroup layer (∥Vig∥2),
and reconstruction error of class-based group and tag-based subgroup.

image is a vertex of a graph, the edge between the images

is weighted by the similarity between two vertices. By using

the normalized cut algorithm, we can cut the whole graph

into some subgraphs. The images within each subgraph form

a subgroup which satisfies our criteria. Cosine distance is

adopted to calculate the similarity between image tag vectors

due to its effectiveness in characterizing the similarity between

text documents.

D. Class Label and Tag Prediction

Following the previous work [47][52], we predict the test

image’s class label based on the reconstruction error in the

class-based group, and assign the test image to the class

with the minimum reconstruction error. The reconstruction

error corresponding to the ith class can be computed as

e(i) = ∥y − XiVi∥
2
F . The class label of y can be obtained

as follows:

Class Label of y ⇐ argmin
i
{e(1), e(2), . . . , e(i), . . . , e(N)}

(8)

After predicting the class label of the instance, we select

some tag-based subgroup(s) of the predicted class to annotate

the test image. The sparsity of sparse codes on the three layers

and the reconstruction error for each class-based group and

tag-based subgroup are shown in Fig. 3. The (sub)groups

with non-zero ℓ2 norm of the sparse codes and smaller

reconstruction error are closely related to the test image. To

be consistent with previous work, the selection of subgroup(s)

is(are) also based on the reconstruction error. Suppose the

predicted class label of the test image y is i. Then we can

calculate the reconstruction error corresponding to each tag

subgroup Xig: r(g) = ∥y − XigVig∥
2
F (1 ≤ g ≤ Gi), and

sort the reconstruction error for these subgroups in ascending

order. The resultant subgroup index order after such sorting is

{g1, g2, . . . , gj , . . .}, which is a permutation of {1, 2, . . . , Gi}.

Suppose the tag matrix for subgroup gi is Tgi , in which each

column is the tag representation of one image. We first use the

tags in subgroup g1 to annotate the test image. To annotate the

image with k tags, we weight the tags within subgroup g1 by

the sparse codes (Tg1Vg1 ). Then we sort these tags in subgroup

Algorithm 1 Multi-layer group Based Tag Propagation

1: INPUT: The test data y and its predicted class label i;
Training data: Xig; Sparse codes: Vig; Tag matrix:

Tig, g ∈ {1, 2, . . . , Gi}; Tag number of image y: k;

2: OUTPUT: The tag set for y: T (y).
3: Calculate reconstruction error for each subgroup: r(g) =

∥y −XigVig∥
2
F ;

4: Sort r(g) in ascending order and get the corresponding

group index: [g1, g2, . . . , gj , . . . , gGi
].

5: Initialize j = 1, T (y) = ∅;

6: WHILE (|T (y)| < k && j <= Gi)

7: Weight tags using sparse codes: Ttmp = TigjVigj ;

8: Sort Ttmp;

9: Propagate top (k − |T (y)|) tags which are not

included in T (y) to T (y) according to Ttmp;

10: j = j + 1;

11: END

g1 and propagate the top k tags to the test image. If the tag

number in subgroup g1 is less than k, then we will sequentially

use subgroup g2, g3, and so on, until the tag number is reached.

The details of such multi-layer group based tag propagation

method are given in Algorithm 1.

There are some advantages for our multi-layer group based

tag propagation method. First of all, using all the images with-

in each subgroup enhances the robustness of image annotation.

Though those images with higher weight are more important,

the test image may not have exactly the tag distribution with

the image with the largest sparse code. So it may not be stable

to use only one image for tag annotation. To overcome such

a problem, we use all the images within the subgroup for

tag propagation. Secondly, those images with higher weights

play more important roles for the reconstruction of the test

image. Weighting the instances within each subgroup with

their corresponding sparse codes can emphasize the different

importance of different instance for the reconstruction of the

test image. Please refer to Section IV-F for the comparisons

between different tag propagation methods.

E. Multi-layer Group Sparse Coding in RKHS

Recently, kernel methods [37] have been successfully ap-

plied to sparse coding problems [16][53], and experimental

results show that the kernel sparse representation can achieve

higher accuracy for both image classification and face recog-

nition. Moreover, the sparse codes learnt by the kernel sparse

representation can capture nonlinear similarity between the

instances, and is more discriminative than that of learnt by

general sparse coding.

Motivated by the excellent properties of kernel methods,

we propose the kernel multi-layer group sparse coding, which

is the multi-layer group sparse coding in a high dimensional

space mapped by some explicit function ϕ(·). The objective
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of kernel multi-layer group sparse coding is given as follows:

min
V

1

2
∥ϕ(y)− ϕ(X)V ∥2F + λ∥V ∥1 +

N
∑

i=1

wi∥Vi∥2

+

N
∑

i=1

wi

Gi
∑

g=1

γig∥Vig∥2 (9)

By using the kernel trick: ϕ(x)Tϕ(y) = κ(x, y), we can

rewrite Equation (9) as follows:

min
V

1

2
(κ(y, y)− 2V TKX(y) + V TKXXV ) + λ∥V ∥1

+
N
∑

i=1

wi∥Vi∥2 +
N
∑

i=1

wi

Gi
∑

g=1

γig∥Vig∥2 (10)

where KXX is a
∑

i,g Nig ×
∑

i,g Nig matrix with

{KXX}ij = κ(xi, xj), and KX(y) is a
∑

i,g Nig × 1 vector

with {KX(y)}i = κ(xi, y). We also adopt the proximal-

gradient method to optimize this objective. The computational

cost of kernel multi-layer group sparse coding is the same

as that of multi-layer group sparse coding except for the

additional cost for pre-computing the kernel matrix.

As we use spatial pyramid representation for each im-

age, which is a combination of visual word histograms in

different spatial regions, we will use Histogram Intersection

Kernel (HIK) due to its excellent performance in evaluating

the similarity between two histograms [48]. Another advantage

for choosing HIK is that HIK is a parameter-free kernel. The

HIK between two normalized histograms Y1 and Y2 is defined

as K(Y1, Y2) =
∑

i min(Y1i, Y2i).

F. Accelerating Multi-layer Group Sparse Coding with kNN

In our method, the computational cost usually increases with

the size of the dictionary [24], which restricts the proposed

formulation for the classification for datasets with many cat-

egories. To solve this problem, we propose to combine our

method with kNN strategy. That is, we select only a few

categories based on the similarity of the test image to the

training categories, and the image to category similarity is

calculated as the average similarity of the test sample to all the

training sample of that category. Then only the top k categories

are selected and used as the refined dictionary. Another reason

for incooperating kNN into our multi-layer group sparse

coding comes from the work of Locality-constrained Linear

Coding [46] which uses the kNN strategies to refine the

codebook first for the feature to be encoded. In this way,

the locality information of the feature to be encoded can be

preserved and usually improves the feature coding quality.

Specifically, the main computational cost of our method

comes from the optimization of Equation (7). According to [8],

to achieve the ϵ accuracy for the optimization of Equation (7),

the total computational cost is O(J2d + (J2 +
∑

b∈B |b|)/ϵ)
(Here J =

∑

i

∑

g Nig is the size of the codebook X , and

|B| =
∑

i

∑

g Nig +N +
∑

i Gi is the number of the groups).

After using kNN strategy, suppose the indices corresponding

to the selected k categories form a set S, i.e., |S| = k,

then the codebook size to JkNN =
∑

i∈S

∑

g Nig, and the

number of the groups corresponding to the reduced codebook

becomes |BkNN | =
∑

i∈S

∑

g Nig + k +
∑

i∈S Gi). As a

result, by using the kNN strategy, the total computational

cost for achieving ϵ accuracy for objective (7) becomes

O(J2
kNNd + (J2

kNN +
∑

b∈BkNN
|b|)/ϵ). Compared with the

computational cost without using kNN, for large-scale dataset,

k ≪ N , as a result, JkNN ≪ J and |BkNN | ≪ |B|. Take

NUS-WIDE-Object as an example, there are 26 categories,

and the time for calculating the KMlGSC coefficients is around

10.87 second, but using kNN (k=10), the computational cost

greatly reduced to 2.35 second, which is about 4.6 times

faster than the original algorithm, but the performance is still

comparable (For more details, please refer to Section IV).

Therefore we can conclude that kNN strategy can greatly

reduce the total computational cost and make our algorithm

possible to handle large-scale dataset.

G. Discussions

In the previous sections, the formulations are proposed

based on the application in concurrent image classification

and annotation, and only three layers are considered. We can

generate our formulation to more general cases. Denote the

reconstruction coefficients corresponding to the gth group as

Vg , and denote the norm on Vg as ∥Vg∥p (p = 2 or inf),
then we can get the following more general multi-layer group

sparse coding problem (Equation 11). We can also extend

this more general multi-layer group sparse coding to RKHS,

and get the Kernel Multi-layer group sparse formulation in

Equation 12.

min
V

1

2
∥y −XV ∥2F +

∑

g

λg∥Vg∥p (11)

min
V

1

2
∥ϕ(y)− ϕ(X)V ∥2F +

∑

g

λg∥Vg∥p (12)

As shown in Fig. 4, based on the group structure (over-

lapped, non-overlapped, or tree-structure), we can get overlap-

ping group lasso, non-overlapping group lasso and tree-guided

group lasso, and similar objective optimization strategy can be

used.3 In real applications, we can select the corresponding

formulation based on the specific task we are tackling.

IV. EXPERIMENTS

In this section, we will experimentally evaluate the proposed

method for image classification and annotation as well as the

effect of different parameters.

A. Classification of Sparse Representation in RKHS on Toy

Data

Previous work has shown the effectiveness of bi-layer

sparse coding [14][29], so here we propose to use the toy

data to demonstrate the reason of using sparse coding in

RKHS, i.e., Kernel Sparse Representation (KSR) [16] for the

3For more details about the optimization of different variants, please refer
to [8].
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g7 

(a): non-overlapping group lasso (b): overlapping group lasso 

g1 

g2 g3 

g4 g5 g6 g8 

(c): tree-guided group lasso 

g1 g2 g3 g4 g1 
g2 g4 

Fig. 4. An illustration of different formulations under different group
structure.

classification of nonlinear separable data. Though KSR has

been proposed by Gao et al. [16], none experimentally evaluate

it on simulated data. To illustrate its usefulness for nonlinearly

separable data, we generate two classes as follows: The data

collection C1 contains 1000 instances and each instance is

30D. Each dimension is uniform distributed among [0 1],

then we normalize the ℓ2 norm of each instance to 1. So

the data in C1 are distributed on the ball with radius 1. The

data collection C2 contains 1000 instances and each instance

is 30D. Each dimension is uniform distributed among [0 1],

then we normalize the ℓ2 norm of each instance to 1.2. So

the data in C2 are distributed on the ball with radius 1.2.

We illustrate the data used in the experiments in Fig. 5. In

this experiment, we sample 800 instances from C1 and C2

randomly as training samples, and use the rest (400) as test

data to perform the classification problem by following the

paradigm of sparse coding for face recognition [47], i.e., we

predict the label of the instance according to the reconstruction

error. For Kernel Sparse representation, we use the Gaussian

kernel (κ(x1, x2) = exp(−γ∥x1−x2∥
2)) and set the parameter

γ in Gaussian kernel to be 1/d (d is the dimension of the

data. Here it is 30.). We list the performance of sparse coding

and KSR in table I. We can see that our Kernel Sparse

representation greatly outperforms the sparse coding for the

nonlinearly separable data. For our image classification in

this paper, the SPM or BoW model is chosen for image

representation, which is also nonlinearly separable, therefore

it convinces us we can perform the kernel multi-layer group

sparse coding to further boost the performance of image

classification.

1.0

1
.2

C2

C1

Fig. 5. An illustration of toy data used in simulated experiments. Data from
C1 are distributed on the blue ball, and data from C2 are distributed on the
red ball.

4

TABLE I
PERFORMANCE OF SPARSE CODING IN RKHS ON TOY DATA. THE VALUE

IN THE BRACKET IS THE THE WEIGHT OF SPARSITY TERM.

Sc(0.01) KSR(0.01) Sc(0.05) KSR(0.05)

accuracy (%) 49.60±0.46 83.50±0.89 50.08±0.24 83.10±2.0

sparsity (%) 0.98 1.02 0.54 0.97

B. Dataset Description

We use the following datasets to evaluate our methods:

UIUC-Sport and LabelMe datasets which are used in the

work of Wang et al. [42], and NUS-WIDE-Object [9] dataset.

UIUC-Sport dataset contains 1792 images which are classified

into 8 classes. We resize the max side (width or height) of

images to 400 pixels and keep the aspect ratio. Following

the setting of Wang et al. [42], we evenly split the data into

training and test data for each class. LabelMe dataset [42]

also contains 8 classes. To be consistent with the work of

Wang et al. [42], we only use images with 256× 256 pixels.

We randomly select 100 images as training data and randomly

select another 100 images as test data. The total image number

is 1600. NUS-WIDE-Object dataset contains 30,000 images

and 31 classes. We use 26 classes in our experiments,5 and

120 images are used as the training data and 40 images as the

test data for each class. Need to mention that we only use the

images with single class label and multiple tags. The number

of image tags on the LabelMe, UIUC-Sport and NUS-WIDE-

Objects databases are 274, 175 and 813 respectively.

C. Experimental Setup

Following the work of Wang et al. [42], we also adopt

densely-sampled SIFT feature, whose step size and patch size

are 4 and 24 respectively. Then we quantize all the features

into 400 clusters by using k-means. To preserve the spatial

information, spatial pyramid representation [23] is also used.6

We use three levels, and the weights corresponding to different

levels are all 1. ℓ2 norm is used to normalize the histogram

inside each level. For image annotation, we get rid of the tags

whose frequencies are less than three. For the number of tag-

based subgroups, we set Gi = 10 for each class. We repeat

the experiments 10 times independently on the LabelMe and

UIUC-Sport databases, and we use the first 120 (40) images

that have single class label and multiple tags in the standard

partition of training (test) set provided by the NUS-Wide-

Object database.

Following the work of Wang et al. [42], we use the

classification accuracy to evaluate the performance of image

classification, and use F-measure of top K tags to evaluate

the performance of image annotation. To be consistent with the

work of [42], we also set K = 5 in our experiments. Moreover,

we also report the performances of different methods under the

measurement of Precision and Recall, which are commonly

5books, flags, zebra, computer and whales are not used due to the very
small number of training images.

6We use BoW features for the NUS-WIDE-Object dataset because spatial
pyramid representation is not provided by this dataset, and BoW is a histogram
feature. HIK is also suitable for BoW features.
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TABLE II
PERFORMANCE COMPARISON BETWEEN UNIFORM SETTING (UNIFORM)

AND GROUP SIZE WEIGHTED PARAMETER SETTING (WEIGHTED) (%).

setting
LabelMe UIUC-Sport

Accuracy F measure Accuracy F measure

Uniform 75.69 42.27 76.78 52.04

Weighted 76.24 43.43 76.63 53.25

used criteria for image annotation evaluation. Define Precision

as the percentage of correct tags out of the top K propagated

tags, and define Recall as the percentages of correct tags

propagated out of all the ground-truth tags of the image. Then

F-measure is defined as follows:

F -measure =
2× Precision×Recall

Precision+Recall
(13)

D. Parameter Evaluation

To reduce the amount of parameter tunings in (kernel) multi-

layer group sparse coding, we use the following two methods

to simplify the parameters setting:

Uniform Setting. We set wi = w0, ∀ i ∈ [1, N ], wi ×
γig = γ0, ∀ i ∈ [1, N ], g ∈ [1, Gi]. In this way, there are 3

parameters in Equation (3) and Equation (9): λ, w0 and γ0.

In our experiments, we set w0 = γ0 = 10−3, λ = 10−2.

Group Size Weighted Parameter Setting. Such weighting

strategy is designed for group lasso, and it is used by Chen et

al. [8] and Yuan et al. [51]. The weight for certain group is

proportional to the square root of the instance number in that

group. That is: βb = θ
√

|Vb| in Equation (5). Then we can get

λ = θ, wi = θ
√

|Vi| and wi × γig = θ
√

|Vig| in Equation (3)

and Equation (9). In this way, there is only one parameter θ in

the whole formulation. In our experiments, we set θ = 10−3.

We list the performance of these two parameter setting

methods on the UIUC-Sport and LabelMe datasets in Table II.

From the results, we can see that the group size weighted

parameter setting usually achieves better performance than

the uniform setting. More importantly, there is only one

parameter in such parameter setting method, which can greatly

simplify the parameters in the formulations of our method.

Thus such group size weighted parameter setting is adopted in

the following experiments. Need to mention that there are also

some other parameter setting methods, for example, combining

uniform setting and group size weighted parameter setting. Our

method may achieve even better performance by using some

other advanced parameter setting methods.

E. Performance Comparison

We compare our multi-layer group sparse coding (MlGSc)

and kernel multi-layer group sparse coding (KMlGSc) with

the following related work: (i): multi-class sLDA with an-

notations (McsLDAA) [42]. (ii): Sparse coding with instance

based annotation (ScIBA). For image classification, we use

sparse coding framework [47]. For annotation, we adopt the

strategy of instance based annotation (please refer to Section

IV-F for details). (iii): Sparse group lasso and instance based

annotation (SGLIBA). Sparse group lasso corresponds to the

bi-layer group sparse coding with sparsity on instance layer

TABLE III
PERFORMANCE COMPARISONS BETWEEN DIFFERENT METHODS FOR

CONCURRENT IMAGE CLASSIFICATION AND ANNOTATION (%).

LabelMe
Accuracy F-measure Precision Recall

McsLDAA [42] 76.0 38.7 NA NA

ScIBA [47] 75.24 31.21 45.97 38.22

SGLIBA [14] 75.13 37.24 43.29 36.18

MlGSC 76.24 43.43 49.94 42.53

KMlGSC 82.94 48.12 55.21 47.23

UIUC-Sport
Accuracy F-measure Precision Recall

McsLDAA [42] 66.0 35.0 NA NA

ScIBA [47] 74.32 48.02 57.66 43.26

SGLIBA [14] 76.15 44.21 52.92 39.93

MlGSC 76.63 53.25 63.54 48.20

KMlGSC 79.37 55.43 66.11 50.15

NUS-WIDE-Object
Accuracy F-measure Precision Recall

ScIBA [47] 18.85 6.01 6.44 6.19

SGLIBA [14] 18.65 7.9 6.43 11.75

MlGSC 19.52 9.74 6.22 22.22

KMlGSC 20.96 10.48 11.38 10.81

and class-based group layer. We use sparse group lasso [14] for

image classification, and use instance based annotation method

to annotate the test image. The performance comparisons

between different methods are given in Table III.7

Table III shows that our methods outperform the baseline

methods in both image classification and annotation tasks

on all the datasets. We can see that our multi-layer group

sparse coding outperforms sparse coding and sparse group

lasso, which shows the effectiveness of our tag-based subgroup

layer. By using the kernel technique, our method achieves

the best performance. Compared with multi-class sLDA with

annotations, the performance of our method increases by

more than 10% for image classification, and our method also

improves the F-measure by 6.94% and 13.37% respectively for

image annotation on the LabelMe and UIUC-Sports datasets.

These demonstrate the effectiveness of our multi-layer group

structure.

We also list the confusion matrices of the LabelMe and

UIUC-Sport datasets in Fig. 6. From the results, we can

observe that some classes are easily misclassified to each other,

such as “croquet” and “bocce”, “street” and “inside city”,

etc. We list some classification and annotation results of our

method in Fig. 7.

F. Comparison Between Different Annotation Strategies

We compare our multi-layer group based tag propagation

method with the following methods. The class label informa-

tion is not used in the following methods.

Instance based annotation. Since the magnitude of the

sparse codes hints at the importance of certain training images

in the reconstruction of the test image, the priority of the train-

ing images used for tag propagation is based on the magnitude

of its corresponding sparse code. Then, the tag propagation

priority for each image is based on their frequencies in the

whole dataset.

7We set θ = 5 × 10
−3 in group size weighted parameter setting on the

NUS-WIDE-Object dataset because of different features.
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rock climbing

climber, rock, rope, 

hook, knapsack 

rock climbing

climber, rock, rope, 

hook, knapsack, plant, sky

sailing

athlete, sky, hill, 

sailing boat, water 

sailing

athlete, sky, hill, 

sailing boat, water 

rowing

athlete, floater, oar, 

plant, rowboat 

rowing

athlete, floater, oar, 

plant, rowboat 

rowing

athlete, battledore, floor, 

net, wall

rowing

athlete, battledore, floor, 

net, wall, door, 

bocce

athlete, ball, lawn, 

sky, tree

sailing

athlete, boat, building, 

sky, sailing boat

snowboarding

house, plant, ski,

skier, sky

snowboarding

house, plant, snow field,

skier, sky, audience, ski

croquet

athlete, grass, mallet, 

mallet, wicket

croquet

athlete, grass, mallet, plant 

croquet, wicket, ground

polo

athlete, grass, horse,

mallet, tree

polo

athlete, grass, horse,

mallet, tree, ball

bocce

ball, lawn, sky, stand, tree,

athlete, coach, drink

bocce

ball, lawn, sky, 

stand, tree

croquet

athlete, ball, lawn, 

mallet, tree

croquet 

athlete, ball, lawn, 

mallet, tree

bocce

athlete, ball, lawn, grass,

tree, coach, spectator 

croquet

athlete, ball, lawn, sky, tree, 

crosspiece, mallet, wicket

polo

athlete, ball, lawn, mallet, 

tree, sign, horse

rowing

athlete, boat, building, sky,

bank, oar, lake, tree

Fig. 7. Some results on the UIUC-Sport dataset. The class label/tags under the images (in black) are the results of our method. The ones in red are wrongly
predicted, and the ones in blue are ground-truth. We also list some images with easily-misclassified class label in the last row.

Subgroup based annotation without the inference of

class label. We rank all the tag-based subgroups in ascending

order according to their reconstruction error. The subgroup

with the minimum reconstruction error is firstly used as the

unit for tag propagation. We also weight the tag matrix using

the sparse codes and propagate those tags with higher weight

first.

Greedy label transfer [1][2]. This method annotates the

test image based on its k nearest neighbors, tag frequency and

tag co-occurrence information.

We evaluate the capability of these methods for image

annotation on the LabelMe and UIUC-Sport databases. Be-

sides F-measure, we also adopt Precision and Recall as other

evaluation criteria. Fig. 8 shows the good performance of our

multi-layer group based image annotation in terms of all the

evaluation criteria, and it verifies the effectiveness of the class

label, and the robustness of subgroup based methods in image

annotation.

G. The Effect of The Number of Subgroups

In our work, graph cut is used to determine the tag-

based subgroups, and it performs the role of clustering. The

determination of the group number in clustering is an open

problem. Therefore it is not easy to determine the best number

of the subgroups. In our experiments, because the images in

each category are not too many (around 100 images), for

simplification, we fix this parameter to a small value (10) on

all the datasets, and each subgroup has about 10 images. If we

have enough samples for each category, we then can increase

this parameter to better characterize the distribution of the

tags. Specifically, we test the performance of our algorithm

on UIUC-Sports by setting it to be 5, 8, 10, 12. We show

the performances under different parameter setting in Fig. 9.

We can see that the small change of the group number has

little effect on the final performance. Please note that if we

further increase this number to the the images numbers within

each class (the largest value it can be, around 100 for UIUC-

Sports and LabelMe), our multi-layer group sparse coding

corresponds to the case of sparse group lasso, which is a
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tall building 1.7% 2.5% 4.8% 5.2% 2.9% 1.7% 2.2% 79.0%

Confusion Matrix on the LabelMe dataset
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rockclimbing 92.9% 0.1% 0.7% 0.1% 0.4% 0.3% 3.1% 2.4%

badminton 1.3% 89.8% 1.1% 0.7% 0.5% 1.6% 1.9% 3.1%

bocce 4.9% 7.0% 48.7% 25.7% 2.9% 3.5% 3.5% 3.9%

croquet 3.1% 0.8% 9.2% 80.6% 1.7% 1.9% 1.9% 0.8%

polo 0.4% 2.3% 1.6% 8.2% 78.8% 2.2% 3.8% 2.5%

rowing 1.5% 1.3% 1.3% 1.9% 1.2% 86.7% 5.0% 1.1%

sailing 2.1% 0.6% 0.2% 1.8% 0.5% 11.1% 76.1% 7.6%

snowboarding 10.9% 2.3% 2.3% 2.1% 1.9% 5.9% 15.1% 59.5%

Confusion Matrix on the UIUC-Sport dataset

Fig. 6. Confusion matrices of our multi-layer group sparse coding on the
LabelMe and UIUC-Sport datasets.
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Fig. 8. Performance comparison based on different annotation strategies on
the LabelMe and UIUC-Sport datasets.

combination of sparse coding and group lasso. Table III shows

that our method outperforms sparse group lasso by 1% in terms

of classification accuracy on all datasets, and 6.3%, 9.0%, and

1.8% in terms of F-measure on LabelMe, UIUC-Sport and

NUS-WIDE-Object dataset. This also proves the usefulness

of our multi-layer group sparse coding framework.
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Accuracy Precision Recall F-measure 

The Effect of the Number of Subgroups 
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Fig. 9. The effect of varying the number of subgroups on UIUC-Sports.

H. Acceleration with Refined Dictionary

Here we evaluate the performance of Multi-layer group

sparse coding with kNN technique on NUS-WIDE-Object

dataset. Because BoW representation is used, we use the

histogram intersection to evaluate the similarity between two

images. The results of the method are listed in Table IV. We

can see that by using kNN strategy the computational cost can

be greatly reduced but the performance is still comparable with

that without using kNN.

TABLE IV
CLASSIFICATION PERFORMANCE BY USING kNN. THE NUMBER IN THE

BRACKET IS k.

Accuracy (%) time (sec)

KMlGSC 20.96 10.87±1.78

KMlGSC(10) 19.52 2.35±0.32

KMlGSC(15) 20.19 4.92±0.83

V. CONCLUSION

This paper presents a multi-layer group sparse coding

framework for concurrent image classification and annotation

problems. The main contribution of our method is our multi-

layer group sparse structure, which encodes the class infor-

mation, tag distribution information as well as the mutual

dependency between them. Based on such information, we

propose the multi-layer group based tag propagation method

to annotate the test image. We also extend our work in the

RKHS and propose kernel multi-layer group sparse coding.

Furthermore, we also integrate our method with the kNN

strategy, which greatly improves the computational efficiency.

Experimental results show that our method can achieve excel-

lent performances in both image classification and annotation

tasks.

It is worth noting that this paper focuses on the study of con-

current single-label image classification and image annotation;

however, recently there is a multi-label image classification

task [33] on, for example, PASCAL VOC datasets, where

multiple objects appear in the same image. Following [45],

one future direction is to apply sparse coding based method

to solve multi-label image classification problem.
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