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Abstract

Fordigital circuits synthesized fiomdata-jlow graphs,

this paper presents a method totestthe circuit concur-

rently with its rwrmal operation. Themethod tests hard-

ware elements when they are not in use in the data-jlow

graph. An algorithm for synthesizing the test circuit is pre-

sented that starts with the data-jlow graph, generating a

circuit to cycle test vectors through the idle hardware and

produce a signature so as to give a built-in-self-test. By

utilizing idle computational time for testing, the method

reduces test-time overheads.

1.0 Concurrent testing and applicability of

the test method

At the present time, many ICS are tested only by pro-

duction tests at the factory. More rccentl y some circuits

have used built-in self-test. This makes production test-

ing easier and also allows them to be tested in the field by

service personnel during “power up” or even tested

remotely over telephone lines. Concurrent tests can be run

at the same time that the circuit is processing data. This

allows testing of circuits that run continuously, as in tele-

phone central offices, air-traffic control systems, or pro-

duction control systems. Concurrent testing can also give a

faster warning if a system develops a fault. A machine tool

control, for example, may be changed to a “safe” mode if a

fault is detected. Concurrent testing is also a practical way

to detect soft errors, such as caused by power glitches,

metastability, electromagnetic transients, or leaky dynami-

c RAMS.

The test method presented here is a concurrent, built-in

self-test which can be incorporated into the dab-paths yn-

thesis process. Testing of a circuit is time-shared with the
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data processing in some manner. Because the testing is

concurrent with the data processing, the method can

reduce test-time overheads and therefore offers an advan-

tage over scan-based tests that require high test times. Fur-

ther, the method allows at-speed testing of the circuit. A

majority of ASICS are not tested at speed; process variants

can cause a circuit to pass a low speed test but fail at-

speed in the system.

The test method runs pseudorandom test vectors

through the circuit. To avoid storing a large number of

comparison vectors some form of response compression

or signature must be used to check if an error has

occurred. Common response compression schemes such

as ones counting or signature analysis could be used.

These and other compression methods are well covered in

chapter 10 of [1]. This paper will assume signature analy-

sis is used. Since the signature is generated in parallel with

the data, it may give warning of a fault before it affects the

data. On the other hand, the warning may come slightly

later. We envision using the test on circuits where a com-

plete test would be done with 232 or fewer test vectors and

a complete test would be completed every few seconds.

The test method will test mainly the datapath and not

the controller. It will test that the instructions are

sequenced properly and also test the connections from

the controller to each controlled element. However, it will

not test control bits, in say a microcode ROM, which

control true data as opposed to test data. Methods for con-

currently testing these parts of the controller would have

to be merged with the method described here.

2.0 Previous work

Concurrent testing has been widely applied to com-

putational units using error-checking codes, to PLAs [1]

and systolic arrays [2] using methods that apply to these

partictdar architectures. This paper presents a new and

unique concurrent, or on-line, test method that specifically



applies to circuits synthesized from data flow graphs. The

closest previous work is [3]. However, it does not relate to

dau-path synthesis; off-line testing resources are modified

so that they can observe normal circuit inputs and outputs

during system operation. The test technique, therefore,

depends on a set of test vectors appearing as input data in

the course of the circuit’s normal operation.

Testability in data-path synthesis has been addressed

by many, including [4] [5] [6]; they investigate the incor-

poration of prevalent of-line test methodologies such as

scampaths and BIST in the datr-path synthesis process.

3.0 Testing idle operators

As a first step in data-path synthesis, the algorithm is

translated into a da~-flow graph. The dataflow graph

shows the causality of the operations. Then, as was done

in Figure 1(a) the operations (three multiplications and a

subtraction) can be assigned to definite clock cycles or

control-steps, and to definite hardware units (multipliers

Ml, M2 and subtracter S 1). Also storage registers (R1, R2

and R3) can be assigned to hold data between clock

cycles. A clock going to all the registers is assumed. The

circuit is completely synchronous. The circuit must also

have a controller, which is not shown here. The controller

controls the data flow in the data-path.The data-flow graph

shows explicitly what hardware is used during each clock
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cycle. This makes it easy to identify, on a time local-

ized basis, when an operator or a register is available for

concurrent testing.

For the above datr-flow graph, the operators and regis-

ters which are idle during the control steps are shown in

Figure l(b). The operators can have pseudorandom test

vectors run through them in these particular control steps

without interfering with the normal flow of data. Figure 2

shows the data-flow graph (DFG) and a completed test

data-flow graph (TDFG) which nms in parallel with the

data processing. The TDFG must duplicate every path in

the data flow graph. For example, the path from R1 into

Ml connected as a squarer in step C-2 in the DFG is

duplicated in steps C- 1 and C-4 in the TDFG. As another

example, the subtracter deposits its output into R2 during

C-4 in the DFG and C-2 in the TDFG. The testing checks

each operator, each register and each bus-multiplexer path.

Note that the original register allocation is changed when

the test path is added. One has to add new registers to

carry the test results.

A pseudorandom number generator and a signature col-

lector are put in at convenient points in the circuit. In this

case they were both put in C-step 2. Data in the test da~-

flow graph is collected and compressed in the signature

collector. The circuit is assumed to be in an infinite loop.

The dati-path calculation is repeated generating a new

value of D every 4th C-step. The test program is in a much
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Figure 1

(a) The data-flow graph of a circuit to calculate the discriminant of a quadratic equation.

(b) The operators and registers unused in a given control-step.
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The data-flow graph and the test data-flow graph for the ‘discriminant’ example.

larger loop. For a 16 bit generator clocked every four C-

steps, it would loop approximately 216 times before check-

ing the signature. Typically, the pseudorandom generator

can also act as a loop counter. At the completion of its

sequence it could initiate hardware action to cheek the sig-

nature, clear necessary registers and restart the test loop.

Concurrent testing requires some extra registers and

nndtiplexers but requires no increase in the number of

operators. For the above example DFG, concurrent testing

adds two registem and two MUXS over the original circuit

[7]. The selj_test also requires a pseudo-random number

generator, a signature collector and a way to check that

the signature is correct. It would be, however, premature

to draw conclusions about the extra overhead required for

the test since the example circuit is very small and hardly

typical. But, it is clear that the saving is in checking the

operators and the expense is in the increased number of

registers and MUXS.

3.1 Test model and completeness of the test

The test, as mentioned above, can be described as a

concurrent built-in self test. It is a non-exhaustive, ran-

dom-pattern firnctional test based on high level not gate

level models of the data-path modules. No assumption is

made regarding the fault model of the modules. The

pseudo-random test patterns exercise the function of the

data-path modules which include the set of functional

blocks and the set of interconnections between the func-

tional blocks. Because the testing can be run in real time,

this test method has an advantage over scan-based tests

both in terms of test-times and the ability to test the circuit

at-speed.

We are currently investigating the fault coverage of

these tests. Our preliminary simulations of some example

data paths have been encouraging. Our opinion is as fol-

lows:

● It might be unlikely that the tests will have the

fault coverage expeeted for production testing witl-

out additions, like test-point insertion, to improve

fault coverage. However, unlike production testing

which is targeted only at permanent faults, concu-

rent testing targets both permanent as well as tram

sient faults. Siewiorek has estimated that even in the

best of environments, transient errors occur au order

of magnitude more often than permanent faults [8].

* Hewlett Packard has used signature analysis for

field testing for several years. They seem to have

found the.method useful, and the fault coverage they

experience should be similar to that of this proposal

[9].

● Certain test-flow connections disturb the random-

ness of the test veetors as is explained below.
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If equal inputs are placed on an adder, the least signifi-

cant output bit will always be zero. Equal inputs on a mul-

tiplier make the least-but-one significant bit zero.

Multiplying a random number by a constant, like “4” in

Figure 2, means all the results in the output register, RY,

must be multiples of 4, and the two least significant bits

will be 00. RY will subsequently test multiplier M2 with

vectors ending in 00. These test vectors will still end in 00

after passing through M2 and being applied to test sub-

tracter S 1. In general, if an immediate multiplicative con-

stant contains a factor 2k, the last k bits in the product will

be zero. Addition or subtraction of a constant, whether it

contains factors of 2k or not, does not restrict the sum or

difference. Thus addition and subtraction will pass on as

good test vectors as they receive. However, division will

usually make high-order quotient bits zero and the output

of a divider could pass on poor test vectors.

To combat this so called entropy [10] reduction in the

test vectors, one can re-randomize the data in the TDFG

by injecting new test vectors at multiple points in the

graph.

4.0 Building the test data-flow graph

algorithmically

Figure 3(a) shows the data-path for a more complex

algorithm. It was created to illustrate how a TDFG can be

generated. The operations in the DFG are scheduled into

C-steps before the test-path is considered. The registers

in the data-path have initially been put in so that each

result is stored in a separate register. These registers will

later be merged to give a much smaller set of registers.

The start of the test path is shown on the right in Figure

3(a). The registers are given small Roman letters and are

split i.e. an output register like e will eventually be merged

with one or more input registers like g. The output regis-

ters are drawn as triangles as a reminder that they cannot

be merged i.e. e andf must be separate physical registers.

However, rectanguk input registers like a and c could

merge as could a and d. Even a and b could merge pro-

vided one was willing to tolerate the loss of randomness in

the test vectors. This is explained in Section 3.1. In the

dab-path, the results of a new cycle of computation are

placed in R15 and R16 every six C-steps. The test path,

however, could be cyclic i.e. the output in r could be fed

back into one or more of the input test registers a, b, cord.

4.1 Constructing the register-merge graph

To build the test data-flow graph one starts by list-

ing all the transfer paths in the dab-flow graph; this is the

list of paths that must be tested. There are four t}pes of

transfer paths:

● Transfers from a register into an operator’s left

input.

● Transfers from a register into an operator’s right

input

● Transfers

● Transfers

Rather than test

from an operator into a register.

from a register into another register.

a complete operation i.e. a complete

transfer path from an input register through the operator to

the output register, we test the transfers associated with the

operation, individual y, as two separate transfers: a trans-

fer from the input register into the operator and a transfer

from the operator into an output register. Figure 3(b) illm-

trates the procedure for the example data-flow graph. For

each transfer, the test registers that can take part in testing

the transfer are shown alongside the data-path registers

participating in the transfer. Figure 3(c) explains the con-

struction of the register-merge graph. The register-merge

graph is a graphical representation of the relations between

the registers in the dati-path and those in the test-path. For

both the register-to-operator and operator-to-register trans-

fers, the registers (nodes) which connect to the same pin

on the same operator, are joined by an edge in the register-

merge graph. A register-to-register transfer is represented

by an edge between the nodes corresponding to the two

registers.

Besides the necessity of merging registers to duplicate

all transfer paths of the data-path in the test-path, one may

also want to merge registers to reduce circuit area. A heu-

ristic for register merging was developed by Midwinter

[11]. The heuristic orders the mergers on the basis of an

estimated saving of buses and MUXS. After extensive

experimentation, she obtained the largest area saving

when the registers were merged in the following order:

1. Transfers that have the same source and same desti-

2.

3.

nation. An examples is R4 and R11; both registers

store the transfer out from the adder, +1, as well as

the transfer into the left input of multiplier, xl.

Transfers with the same source. An example is R8 and

R15 which both receive data out from the multiplier,

X2.

Transfers with the same

R1 and R1O. Both send

adder, +1.

destination. An example is

data into the left input of
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h, q

i, r

a, j

b, k

e, I

c, m

d, n

f, o

(a) The example data-flow graph on the left with the idle operators in each control step shown on right

(b) All the transfers that must be tested.

(c) Constructing the register-merge graph.
Consider the transfer from the adder output into registers R4, RI 1 and R13. In the test path the adder has an

out put into registers i and E Thus registers R4, R11 and R13 must merge with i and K Since three registers
must merge with two, this means that at least one merger must take place between R4, R11 and R13. The
triangle in the lower right symbolizes this. Showing registers i and r in an ellipse touching all three sides of the
triangle, indicates that all three registers must, in some way, merge with i and E In this case the same R4, R11
and R13 are also part of a transfer into x1. The possible test registers for this transfer a and j, must also merge
with R4, R11 and R13. Thus they also go inside the ellipse. The number in the square over the top of the register
label is the C-step in which the transfer takes place. Placing the C-steps beside the register conveniently shows
which mergers cannot be done. The graph is completed to include all the transfer paths in the data-flow graph.
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(b)
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for graphs:

............

lP- X_ ...indicates the C-step in which the register is used

Z&.represents a register loaded from a test operator

‘w”

The following represent two registers with:

~ ... the same source and destination.

~ ...... the same source.
~ ..... the same destination.

(a) The complete register-merge graph.
~ .....
~ .....

represents register-to-register transfer

represents two registers which cannot

(b) Desirable test register mergers. be merged, and still test all the data paths.

(c) The register-merging process.

4. Transfers between the same operators but with the One does not want the register-merge graph to indicate

source and destination interchanged. An example is all mergable register combinations, or even the alternative

R8 and R13 which store the transfers from X2 to +1 of all non-mergable combinations. These grow rapidly. By

and +1 to X2 respectively. showing only desirable mergers, the size of the register-

5. Transfers with nothing in common.
merge graph is reduced from O(c2~) to 0(c2f). Here f is

the number of functional units in the data-flow graph and

Register-to-register transfers must be added to this list. c is the number of C-steps. For the dati-flow graph in

Currently we place them about 3.5, slightly after same- Figure 3, ~= 3 and c = 6. Note that the number of regis-

de,stination transfers. The ordering of the mergers is repre- ters, or transfers, in the dati-flow graph is O(cf).

sented on the register-merge graph by the thickness of the

line that depicts the merger; the thickest line shows the 4.2 Reduction of the register-merge graph

most beneficial merger. The above ranking for mergers,

however, is only considered after the mergers necessary to
The completed register-merge graph shown in Figure

satisfy testability constraints.
4(a) may now be reduced. Reducing the register merge-
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graph involves successively merging registers (nodes in

the graph). Registers used in the same C-step in the DFG

cannot merge. In the TDFG, two test output registers also

cannot be merged if they are in the same C-step. However,

test registers used as inputs to operators in the same C-

step, can with some restrictions be merged. Such a merger

may reduce the register count, however, in a C-step, merg-

ing of two input test registers to the same operator should

be avoided because such a merger results in identical test

vectors being applied at the two inputs of an operator. This

can affect the fault coverage of the testing as explained in

Seetion 3.1. Desirable and forbidden mergers for the test

registers are shown by the small graphs in Figure 4(b).

The primary objective of the register merging is to sat-

isfy the constraints set out by testability considerations;

the secondary objective is to reduce the number of regis-

ters, buses or MUXS that will be required. Testability con-

straints or restrictions on the mergers are generated

because we would like the TDFG to duplicate every path

in the DFG. These restrictions might forbid some mergers

or could force other mergers. Register-merging proceeds

on the basis of an ordering of mergers. This ordering can

be translated into the following set of ranked objectives:

~
ontrol DFG
te~

c-1 Yz
R; R2 R3

VT

:.:.:.: :.:.:. -- .:.:.:. -- - -- -- -- - - -. . . . . . . .

+
c-2

c-3

c-4

c-5

C-6

Figure 5

1.

2.

3.

4.

5.

Do any mergers on the graph that are forced.

Expand the influence of these forced mergers to

adjacent nodes. Such an expansion may force other

mergers, or may add some further restrictions.

If there are no forced mergers, merge the registers

which reduce the MUX and bus area. These are the

edges with the thickest lines.

If there is no other guide, choose the merger that

causes the least restriction on other possible mergers.

Finally, cheek any remaining registers for potential

mergers that might result in reducing the total num-

ber of registers required.

Restrictions or constraints on other mergers, that arise

as a result of a particular register merge operation, are

propagated outward on the graph from the merger and stop

when no further restrictions are propagated. Restrictions

include reduction of choice of test cycles that a merger

forces on other transfers. This provides the data for objex-

tive 4. However if the choice of test cycles is reduced to

zero for any transfer, the merger is recorded as impossi-

ble. Because of limitations on the length of the paper we

cannot full y describe the register-mergers. However, the

. . .

R6

R6 R1

R6 R5

‘2A......AR3...........

&
R5 R6

. . . . . . . . ------,L#18r ““””:... ““.””. . . . . . . . . . .
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x x
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The data-flow graph and completed test data-flow graph.
—
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merging process is illustrated in Figure 4(c). There, one

notes that the immediate constant, #17 cannot merge with

either registers R5 or R14. Since two of R5, #18 and R14

must merge, R5 must be merged with R14. As a result of

this forced merger, R5 which must be tested by one of e or

1, cannot be merged with e because R5 = R14 is used in

control-step 2. This forces the merger of R5 with 1. Each

merger adds further incompatibility with adjacent nodes

and may result in more forced mergers. The dab-flow

graph and the final test data-flow graph are shown in Fig-

ure 5. Pseudorandom numbers were injected into R3 and

R4 which had no “natural” inputs. The signature can be

collected at any convenient point. The operator hardware

has not increase~ testing adds three registers and doubles

the number of MUXS.

Because of constraints on the length of the paper the

procedure for building the test-flow graph as well as for

reducing the graph could not be fully described. The

authors can be contacted for details of the procedures.

5.0 Summary

The advantages of the test method are:

1. Testing can be done concurrently while the circuit

is running.

2. It can detect transient, or soft errors.

3. It tests the circuit at-speed.

4. It does not require an increase in the area of large

arithmetic elements.

The disadvantages are

1. The test coverage will not be as high as with test

methods that apply test vectors directly to operator

inputs. We are examining ways to improve test cov-

erage in concurrent testing.

2. There is an increase in the number of registers and

the bus/MUX area. The controller area will

increase since most of the control is for registers

and MUXS.

3. The method depends on using slack time on the

operators. A pipelined system would reduce this

slack time, and might be hard to schedule.
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