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Abstract. In this paper we put forward theBounded Player Model for se-
cure computation. In this new model, the number of players that will ever
be involved in secure computations is bounded, but the number of com-
putations is not a priori bounded. Indeed, while the number of devices and
people on this planet can be realistically estimated and bounded, the num-
ber of computations these deviceswill run can not be realistically bounded.
Further, we note that in the bounded player model, in addition to no a pri-
ori bound on the number of sessions, there is no synchronization barrier,
no trusted party, and simulation must be performed in polynomial time.

In this setting, we achieve concurrent Zero Knowledge (cZK) with
sub-logarithmic round complexity. Our security proof is (necessarily)
non-black-box, our simulator is “straight-line” and works as long as the
number of rounds is ω(1).

We further show that unlike previously studied relaxations of the
standard model (e.g., bounded number of sessions, timing assumptions,
super-polynomial simulation), concurrent-secure computation is still im-
possible to achieve in the Bounded Player model. This gives evidence
that our model is “closer” to the standard model than previously stud-
ied models, and study of this model might shed light on constructing
round efficient concurrent zero-knowledge in the standard model as well.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [21], are a fundamental building block in cryptography. Loosely speaking,
a zero-knowledge proof is an interactive proof between two parties — a prover
and a verifier — with the seemingly magical property that the verifier does not
learn anything beyond the validity of the statement being proved. Subsequent to
their introduction, zero-knowledge proofs have been the subject of a great deal
of research, and have found numerous applications in cryptography.
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Concurrent Zero Knowledge. The original definition of zero knowledge is only
relevant to the “stand-alone” setting where security holds only if the protocol
runs in isolation. As such, unfortunately, it does not suffice if one wishes to run a
zero-knowledge proof over a modern network environment, such as the Internet.
Towards that end, Dwork, Naor and Sahai [16] initiated the study of cZK proofs
that remain secure even if several instances of the protocol are executed concur-
rently under the control of an adversarial verifier. Subsequent to their work, cZK
has been the subject of extensive research, with a large body of work devoted
to studying its round-complexity. In the standard model, the round-complexity
of cZK was improved from polynomial to slightly super-logarithmic [34,25,33].
In particular, the Õ(log k)-round construction of [33] nearly matches the lower
bound of Ω̃(log k) w.r.t. black-box simulation [11].

Despite a decade of research, the Õ(log k)-round construction of [33] is still
the most round-efficient cZK protocol known. Indeed, the lower bound of [11]
suggests that a breakthrough in non-black-box simulation techniques is required
to achieve cZK with sub-logarithmic round complexity.1

Round-efficient cZK in Relaxed Models: Bounded Concurrency. While the round-
complexity of cZK in the standard model still remains an intriguing open ques-
tion, a long line of work has been dedicated towards constructing round-efficient
cZK in various relaxations of the standard model.

An interesting relaxation of the standard model (and related to our setting)
that has been previously studied is the bounded-concurrency model [2], where an
a priori bound is assumed over the number of sessions that will ever take place
(in particular, this bound is known to the protocol designer). It is known how
to realize constant-round bounded cZK [2], and also constant-round bounded-
concurrent secure two-party and multi-party computation [31].

Even though our model can be seen as related to (and a generalization of)
the bounded concurrency model, the techniques used in designing round efficient
bounded concurrent zero-knowledge do not seem to carry over to our setting.
In particular, if there is even a single player that runs an unbounded number
of sessions, the simulation strategies in [2,31] breakdown completely. This seems
inherent because of the crucial difference this model has from our setting (which
can understood by observing that general concurrent secure computation is pos-
sible in the bounded concurrent setting but impossible in our setting).

Bare Public Key and Other Preprocessing Models. The zero-knowledge pre-
processing model was proposed in [24] in the stand-alone setting and in [13]
in the context of cZK. In [13], interaction is needed between all the involved
players in a preprocessing phase. Then, after a synchronization-barrier is passed,
the preprocessing is over and actual proofs start. Interactions in each phase can
take place concurrently, but the two phases can not overlap in time. An im-
proved model was later proposed in [10] where the preprocessing is required to

1 In this paper we only consider results based on standard complexity-theoretic and
number-theoretic assumptions; in particular, we not consider “non-falsifiable” as-
sumptions such as the knowledge of exponent assumption.
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be non-interactive, and the model is called “Bare Public-Key” (BPK) model,
since the non-interactive messages played in the preprocessing can be consid-
ered as public announcements of public keys. In this model it is known how
to obtain constant-round concurrent zero knowledge with concurrent soundness
under standard assumptions [14,15,37,36].

The crucial restriction of the BPK model is that all players who wish to ever
participate in protocol executions must be fixed during the preprocessing phase,
and new players cannot be added “on-the-fly” during the proof phase. We do
not make such a restriction in our work and as such, the techniques useful in
constructing secure protocols in the BPK model have limited relevance in our
setting. In particular, constant round cZK is known to exist in the BPK model
using only black-box simulation, while in our setting, non-black-box techniques
are necessary to achieve sublogarithmic-round cZK.

Other Models. Round efficient concurrent zero-knowledge is known in a number
of other models as well (which do not seem to be directly relevant to our setting).
In the SPS model [30], the zero-knowledge simulator is allowed to run in super-
polynomial time, as opposed to running in polynomial time (as per the standard
definition of [21]). Indeed, this relaxation has yielded not only constant-round
cZK [30], but also concurrent-secure computation [26,12,18]. This stands in con-
trast to the standard model, where concurrent-secure computation is known to
be impossible to achieve [27] even with static input [5,1,19]. Other models where
constant round cZK (as well as concurrently secure computation) is known in-
clude the timing model [16], the common reference string [7,8] model, etc.

Our Question. While the above relaxations of the standard model have their
individual appeal, each of these models suffers from various drawbacks, either
w.r.t. the security guarantees provided (e.g., as in the case of the SPS model), or
w.r.t. the actual degree of concurrency tolerated (e.g., as in the case of the timing
model). Indeed, despite extensive amount of research over the last decade, the
round-complexity of cZK still remains open. In this work, we ask the question
whether it is possible to construct cZK protocols with sub-logarithmic round-
complexity in a natural model that does not suffer from the drawbacks of the
previously studied models; namely, it does not require any preprocessing, as-
sumes no trusted party or timing assumptions or an a priori bound on the
number of protocol sessions, and requires standard polynomial-time simulation
and standard complexity assumptions.

1.1 Our Results

In our work, we construct a concurrent (perfect) zero-knowledge argument sys-
tem with sub-logarithmic round-complexity in a mild relaxation of the standard
model; we refer to this as the Bounded Player model. In this model we only as-
sume that there is an a priori (polynomial) upper-bound on the total number of
players that may ever participate in protocol executions. We do not assume any
synchronization barrier, or trusted party, and the simulation must be performed
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in polynomial time. In particular, we do not assume any a priori bound on the
number of sessions, and achieve security under unbounded concurrency. As such,
our model can be viewed as a strengthening of the bounded-concurrency model.2

Below, we give an informal statement of our main result.

Theorem 1. Assuming dense crypto systems and claw-free permutations, there
exists an ω(1)-round concurrent perfect zero-knowledge argument system with
concurrent soundness in the Bounded Player model.3

Our security proof is (necessarily) non-black-box, and the simulator of our pro-
tocol works in a “straight-line” manner. Our result is actually stronger since we
only require a bound on the number of possible verifiers, while there is no restric-
tion on the number of provers. We prove concurrent soundness since sequential
and concurrent soundness are distinct notions in the Bounded Player model for
the same reasons as shown by [29] in the context of the BPK model.

We stress that while our model bears some resemblance to the BPK model,
known techniques from the BPK model are not applicable to our setting. In-
deed, these techniques crucially rely upon the presence of the synchronization
barrier between the pre-processing phase and the protocol phase, while such a
barrier is not present in our model. As such, achieving full concurrency in our
model is much harder and involves significantly different challenges. An impor-
tant problem left open by our work is the existence of a constant round con-
current zero-knowledge protocol in the bounded player model. Our techniques
(necessarily) require a super-constant number of rounds to keep the simulation
time polynomial.

We further show that the impossibility results of Lindell for concurrent-secure
computation [27] also hold in the Bounded Player model. This gives evidence
that the Bounded Player model is much closer to the standard model than
the previously studied models, and the study of this model might shed light
towards the goal of constructing round efficient concurrent zero-knowledge in
the standard model as well.

1.2 Our Techniques

Recall that in the Bounded Player model, the only assumption is that the total
number of players that will ever be present in the system is a priori bounded.
Then, an initial observation towards our goal of constructing sub-logarithmic
round cZK protocols is that the black-box lower-bound of Canetti et al. [11] is
applicable to our setting as well. Indeed, the impossibility result of [11] relies on

2 Note that an upper-bound on the total number of concurrent executions implies an
upper-bound on the total number of players as well.

3 We note that if one only requires statistical (as opposed to perfect) zero knowledge,
then the assumption on claw-free permutations can be replaced by collision-resistant
hash functions. We further note that our assumption on dense cryptosystems can
be further relaxed to trapdoor permutations by modifying our protocol to use the
coin-tossing protocol of Barak and Lindell [4].
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an adversarial verifier that opens a polynomial number �(k) of sessions and plays
adaptively at any point of time, depending upon the transcript generated “so
far”. The same analysis works in the Bounded Player model, by assuming that
the adversarial verifier registers a new key each time a new session is played.
In particular, consider an adversarial verifier that schedules a session si to be
contained inside another session sj . In this case, a black-box simulator does not
gain any advantage in the Bounded Player model over the standard model. The
reason is that since the adversarial verifier of [11] behaves adaptively on the
transcript at any point, after a rewind the same session will be played with a
fresh new key, thus rendering essentially useless the fact that the session was
already solved before. Note that this is the same problem that occurs in the
standard model, and stands in contrast to what happens in the BPK model
(where identities are fixed in the preprocessing and therefore do not change over
rewinds).

From the above observation, it is clear that we must resort to non-black-box
techniques. Now, a natural approach to leverage the bound on the number of
players is to associate with each verifier Vi a public key pki and then design an
FLS-style protocol [17] that allows the ZK simulator to extract, in a non-black-
box manner, the secret key ski of the verifier and then use it as a “trapdoor”
for “easy” simulation. The key intuition is that once the simulator extracts
the secret key ski of a verifier Vi, it can perform easy simulation of all the
sessions associated with Vi. Then, since the total number of verifiers is bounded,
the simulator will need to perform non-black-box extraction only an a priori
bounded number of times (once for each verifier), which can be handled in a
manner similar to the setting of bounded-concurrency [2].

Unfortunately, the above intuition is misleading. In order to understand the
problem with the above approach, let us first consider a candidate protocol
more concretely. In fact, it suffices to focus on a preamble phase that enables
non-black-box extraction (by the simulator) of a verifier’s secret key since the
remainder of the protocol can be constructed in a straightforward manner fol-
lowing the FLS approach. Now, consider the following candidate preamble phase
(using the non-black-box extraction technique of [4]): first, the prover and veri-
fier engage in a coin-tossing protocol where the prover proves “honest behavior”
using a Barak-style non-black-box ZK protocol [2]. Then, the verifier sends an
encryption of its secret key under the public key that is determined from the
output of the coin-tossing protocol.

In order to analyze this protocol, we will restrict our discussion to the simpli-
fied case where only one verifier is present in the system (but the total number
of concurrent sessions are unbounded). At this point, one may immediately ob-
ject that in the case of a single verifier identity, the problem is not interesting
since the Bounded Player model is identical to the bare-public key model, where
one can construct four-round cZK protocols using rewinding based techniques.
However, simulation techniques involving rewinding do not “scale” well to the
case of polynomially many identities (unless we use a large number of rounds)
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and fail4. Moreover the use of Barak’s [2] straight-line simulation technique is
also insufficient since it works only when the number of concurrent sessions is
bounded (even when there is a single identity), but instead our goal is to obtain
unbounded concurrent zero knowledge. In contrast, our simulation approach is
“straight-line” for an unbounded number of sessions and scales well to a large
bounded number of identities. Therefore, in the forthcoming discussion, we will
restrict our analysis to straight-line simulation. In this case, we find it instructive
to focus on the case of a single identity to explain our key ideas.

We now turn to analyze the candidate protocol. Now, following the intuition
described earlier, one may think that the simulator can simply cheat in the
coin-tossing protocol in the “inner-most” session in order to extract the secret
key, following which all the sessions can be simulated in a straight-line manner,
without performing any additional non-black-box simulation. Consider, however,
the following adversarial verifier strategy: the verifier schedules an unbounded
number of sessions in such a manner that the coin-tossing protocols in all of these
sessions are executed in a “nested” manner. Furthermore, the verifier sends the
ciphertext (containing its secret key) in each session only after all the coin-tossing
protocols across all sessions are completed. Note that in such a scenario, the
simulator would be forced to perform non-black-box simulation in an unbounded
number of sessions. Unfortunately, this is a non-trivial problem that we do not
know how to solve. More concretely, note that we cannot rely on techniques
from the bounded-concurrency model since we cannot bound the total number
of sessions (and thus, the total number of messages across all sessions). Further,
all other natural approaches lead to a “blow-up” in the running time of the
simulator. Indeed, if we were to solve this problem, then we would essentially
construct a cZK protocol in the standard model, which remains an important
open problem that we do not solve here.

In an effort to bypass the above problem, our first idea is to use multiple (ω(1),
to be precise) preamble phases (instead of only one), such that the simulator is
required to “cheat” in only one of these preambles. This, however, immediately
raises a question: in which of the ω(1) preambles should the simulator cheat?
This is a delicate question since if, for example, we let the simulator pick one of
preambles uniformly at random, then with non-negligible probability, the simu-
lator will end up choosing the first preamble phase. In this case, the adversary
can simply perform the same attack as it did earlier playing only the first pream-
ble phase, but for many different sessions so that the simulator will still have
to cheat in many of them. Indeed, it would seem that any randomized oblivious
simulation strategy can be attacked in a similar manner by simply identifying
the first preamble phase where the simulator would cheat with a non-negligible
probability.

Towards that end, our key idea is to use a specific probability distribution
such that the simulator cheats in the first preamble phase with only negligible

4 Indeed when the simulator rewinds the adversarial verifier, there is a different view
and therefore the adversary will ask to play with new identities, making useless the
work done with the old ones, as it happens in the standard model.
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probability, while the probability of cheating in the later preambles increases
gradually such that the “overall” probability of cheating is 1 (as required). Fur-
ther, the distribution is such that the probability of cheating in the ith preamble
is less than a fixed polynomial factor of the total probability of cheating in
one of the previous i − 1 blocks. Very roughly speaking, this allows us to pre-
vent the adversary from attacking the first preamble where the simulator cheats
with non-negligible probability. More specifically, for any session, let us call the
preamble where the simulator cheats the “special” preamble. Further, let us
say that the adversary “wins” a session if he “stops” that session in the spe-
cial preamble before sending the ciphertext containing the verifier’s secret key.
Otherwise, the adversary “loses” that session. Then, by using the properties of
our probability distribution, we are able to show that the adversary’s proba-
bility of losing a session is less than 1/n times the probability of winning. As
a consequence, by careful choice of parameters, we are able to show that the
probability of the adversary winning more than a given polynomially bounded
number of sessions without losing any sessions w.r.t. any given verifier is negli-
gible. Once we obtain this fixed bound, we are then able to rely on techniques
from the bounded-concurrency model [2] to handle the bounded number of non-
black-box simulations. For the sake of brevity, the above discussion is somewhat
oversimplified. We refer the reader to the later sections for more details.

Impossibility of Concurrent-secure Computation. Once we have a cZK protocol
(as discussed above) in the Bounded Player model, it may seem that it should
be possible to obtain concurrent-secure computation as well by using techniques
from [31]. Unfortunately, this turns out not to be the case, as we discuss below.

The key technical problem that arises in the setting of secure computation
w.r.t. unbounded concurrency is the following. We cannot a priori bound the
total number of “output delivery messages” (across all sessions) to the adver-
sary; further, the session outputs cannot be “predicted” by the simulator before
knowing the adversary’s input. As such, known non-black-box simulation tech-
niques cannot handle these unbounded number of messages and they inherently
fail.5 We remark that the same technical issue, in fact, arises in the standard
model as well.

While the above argument only explains why known techniques fail, we can
also obtain a formal impossibility result. Indeed, it is not difficult to see that
the impossibility result of Lindell [27] also holds for the Bounded Player model.
(See the full version [22] for details.)

2 Preliminaries and Definitions

2.1 Bounded Player Model

In this paper, we consider a new model of concurrent security, namely, the
bounded player model, where we assume that there is an a priori (polynomial)

5 We note that this problem does not occur in the case of zero knowledge because the
adversary does not have any input, and the session outputs are fixed to be 1.
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upper bound on the total number of player that will ever be present in the sys-
tem. Specifically, let n denote the security parameter. Then, we will consider an
upper bound N = poly(n) on the total number of players that can engage in
concurrent executions of a protocol at any time. We assume that each player Pi

(i ∈ N) has an associated unique identity idi, and that there is an established
mechanism to enforce that party Pi uses the same identity idi in each protocol
execution that it participates in. We stress that such identities, do not have to
be established in advance. New players can join the system with their own (new)
identities, as long as the number of players does not exceed N .

We note that this requirement is somewhat similar in spirit to the bounded-
concurrency model [2,31], where it is assumed that the adversary cannot start
more than an a priori fixed number of concurrent executions of a protocol. We
stress, however, that in our model, there is no a priori bound on the total number
of protocol sessions that may be executed concurrently. In this respect, one can
view the Bounded Player model as a strengthening of the bounded-concurrency
model. Indeed, one can argue that while the number of devices and people on
this planet can be realistically estimated and bounded, the number of concurrent
protocol executions on these devices can not.

Implementing the Bounded Player model. We formalize the Bounded Player
model by means of a functionality FN

bp that registers the identities of the player
in the system. Specifically, a player Pi that wishes to participate in protocol
executions can, at any time, register an identity idi with the functionality FN

bp .
The registration functionality does not perform any checks on the identities that
are registered, except that each party Pi can register at most one identity idi,
and that the total number of identity registrations are bounded by N . In other
words, FN

bp refuses to register any new identities once N number of identities have

already been registered. The functionality FN
bp is formally defined in Figure 1.

Functionality FN
bp

FN
bp initializes a variable count to 0 and proceeds as follows.

– Register commands: Upon receiving a message (register, sid, idi) from
some party Pi, the functionality checks that no pair (Pi, id

′
i) is already recorded

and that count < N . If this is the case, it records the pair (Pi, idi) and sets
count = count+ 1. Other wise, it ignores the received message.

– Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some
party Pj or the adversary A, the functionality checks if some pair (Pi, idi)
is recorded. If this the case, it sends (sid, Pi, idi) to Pj (or A). Otherwise, it
returns (sid, Pi,⊥).

Fig. 1. The Bounded Player Functionality FN
bp
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In our constructions we will only require that the identities correspond to
values in the range of a one-way function. We note that in this particular case,
the functionality FN

bp bears much resemblance to the bulletin-board certificate
authority functionality [23], which suffices for obtaining authenticated channels
[9]. We finally remark that our model is also closely related to the Bare Public-
Key model, introduced by Canetti et al. [10]. However, we stress that unlike the
Bare Public-Key model, we do not assume any synchronization barrier between
the registration phase and the protocol computation phase. In particular, we
allow parties to register their identities even after the computation begins.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the Bounded
Player model. Our definition, given below, is an adaptation of the one of [33] to
the Bounded Player model, by also considering non-black-box simulation. Some
of the text below is taken verbatim from [33].

Let ppt denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive
argument for a language L. Consider a concurrent adversarial verifier V ∗ that,
given input x ∈ L, interacts with an unbounded number of independent copies
of P (all on the same common input x and moreover equipped with a proper
witness w), without any restriction over the scheduling of the messages in the
different interactions with P . In particular, V ∗ has control over the scheduling
of the messages in these interactions. Further, we say that V ∗ is an N -bounded
concurrent adversary if it assumes at most N verifier identities during its (un-
bounded) interactions with P .6

The transcript of a concurrent interaction consists of the common input x,
followed by the sequence of prover and verifier messages exchanged during the
interaction. We denote by viewP

V ∗(x, z,N) the random variable describing the
content of the random tape of the N -bounded concurrent adversary V ∗ with
auxiliary input z and the transcript of the concurrent interaction between P
and V ∗ on common input x.

Definition 1 (cZK in Bounded Player model). Let 〈P, V 〉 be an interac-
tive argument system for a language L. We say that 〈P, V 〉 is concurrent zero
knowledge in the Bounded Player model if for every N -bounded concurrent non-
uniform ppt adversary V ∗, there exists a ppt algorithm S, such that the fol-
lowing ensembles are computationally indistinguishable,
{viewP

V ∗(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n) and {S(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n).

2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK
construction.

6 Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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Perfectly Hiding Commitment Scheme. In our constructions, we will make use of
a perfectly hiding string commitment scheme, denotedCom. For simplicity of ex-
position, we will make the simplifying assumption that Com is a non-interactive
perfectly hiding commitment scheme (even though such a scheme cannot exist).
In reality, Com would be taken to be a 2-round commitment scheme, which can
be based on collections of claw-free permutations [20]. Unless stated otherwise,
we will simply use the notation Com(x) to denote a commitment to a string x,
and assume that the randomness (used to create the commitment) is implicit.

Perfect Witness Indistinguishable Argument of Knowledge. We will also make
use of a perfect witness-indistinguishable argument of knowledge system for all
of NP in our construction. Such a scheme can be constructed, for example, by
parallel repetition of the 3-round Blum’s protocol for Graph Hamiltonicity [6]
instantiated with a perfectly hiding commitment scheme. We will denote such
an argument system by 〈PpWI, VpWI〉.

Perfect Witness Indistinguishable Universal Argument. In our construction, we
will use a perfect witness-indistinguishable universal argument system, denoted
〈PpUA, VpUA〉. Such an argument system can be constructed generically from
a (computational) witness-indistinguishable universal argument pUA by using
techniques of [32]. Specifically, in protocol 〈PpUA, VpUA〉, the prover P and veri-
fier V first engage in an execution of pUA, where instead of sending its messages
in the clear, P commits to each message using a perfectly hiding commitment
scheme. Finally, P and V engage in an execution of a perfect zero knowledge ar-
gument of knowledge where P proves that the “decommitted” transcript of pUA
is “accepting”. The resulting protocol is still a “weak” argument of knowledge.

Perfect (Bounded-Concurrent) Zero-Knowledge. Our cZK argument crucially
uses as a building block, a variant of the bounded cZK argument of Barak
[2]. Similarly to [32], we modify the protocol appropriately such that it is per-
fect bounded cZK. Specifically, instead of a statistically binding commitment
scheme, we will use a perfectly hiding commitment scheme. Instead of a com-
putationally witness-indistinguishable universal argument (UARG), we will use
a perfect witness indistinguishable UARG, denoted 〈PpUA, VpUA〉. Further, the
length parameter �(N) used in the modified protocol is a function of N , where
N is the bound on the number of verifiers in the system. Protocol 〈PpB, VpB〉N
is described in Figure 3 and can be based on claw-free permutations.

Resettable Witness Indistinguishable Proof System. We will further use a re-
settable witness-indistinguishable proof system [10] for all of NP. Informally
speaking, a proof system is resettable witness indistinguishable if it remains
witness indistinguishable even against an adversarial verifier who can reset the
prover and receive multiple proofs such that the prover uses the same random
tape in each of the interactions. While the focus of this work is not on achiev-
ing security against reset attacks, such a proof system turns out to be useful
when arguing concurrent soundness of our protocol (where our proof relies on a
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rewinding based argument). We will denote such a proof system by 〈PrWI, VrWI〉.
It follows from [10] that such a proof system can be based on perfectly hiding
commitments.

Dense Cryptosystems [35]. We will use a semantically secure public-key encryp-
tion scheme, denoted as (Gen,Enc,Dec) that supports oblivious key gener-
ation (i.e., it should be possible to sample a public key without knowing the
corresponding secret key). More precisely, there exists a deterministic algorithm
OGen that takes as input the security parameter 1n and a sufficiently long
random string σ and outputs a public key pk ← OGen(1n, σ), where pk is per-
fectly indistinguishable from a public key chosen by the normal key generation
algorithm Gen. For simplicity of exposition, we will assume that the OGen al-
gorithm simply outputs the input randomness σ as the public key. Such schemes
can be based on a variety of number-theoretic assumptions such as DDH [35].

3 Concurrent Zero Knowledge in Bounded Player Model

In this section, we describe our concurrent zero-knowledge protocol in the
bounded player model.

Relation Rsim. We first recall a slight variant of Barak’s [2] NTIME(T (n))
relation Rsim, as used previously in [32]. Let T : N → N be a “nice” function
that satisfies T (n) = nω(1). Let {Hn}n be a family of collision-resistant hash
functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be
a perfectly hiding commitment scheme for strings of length n, where for any
α ∈ {0, 1}n, the length of Com(α) is upper bounded by 2n. The relation Rsim

is described in Figure 2.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).
Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈
{0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1 if and only if: |y| ≤ |r| − n, c =
Com(h(Π); s) and Π(y) = r within T (n) steps.

Fig. 2. Rsim - A variant of Barak’s relation [32]

Remark 1. The relation presented in Figure 2 is slightly oversimplified and
will make Barak’s protocol work only when {Hn}n is collision-resistant against
“slightly” super-polynomial sized circuits. For simplicity of exposition, in this
manuscript, we will work with this assumption. We stress, however, that as dis-
cussed in prior works [3,31], this assumption can be relaxed by using a “good”
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error-correcting code ECC (with constant distance and polynomial-time encoding
and decoding procedures), and replacing the condition c = Com(h(Π); s) with
c = Com(ECC(h(Π)); s).

Parameters: Security parameter n, length parameter �(N).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w such that RL(x,w) = 1.

Stage 1 (Preamble Phase):

V → P : Send h
R←Hn.

P → V : Send c = Com(0n).

V → P : Send r
R← {0, 1}�(N).

Stage 2 (Proof Phase):
P ↔ V : A perfect WI UARG 〈PpUA, VpUA〉 proving the OR of the following

statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈Π,y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π,y, s〉) = 1.

Fig. 3. Protocol 〈PpB, VpB〉N

3.1 Our Protocol

We are now ready to present our concurrent zero knowledge protocol, denoted
〈P, V 〉. Let P and V denote the prover and verifier respectively. Let N denote
the bound on the number of verifiers present in the system. Let fowf denote a
one-way function, and (Gen,Enc,Dec) denote a dense public key encryption
scheme. Let 〈PpB, VpB〉N denote the perfect zero-knowledge argument system as
described above. Further, let 〈PpWI, VpWI〉 denote a perfect witness indistinguish-
able argument of knowledge, and let 〈PrWI, VrWI〉 denote a resettable witness
indistinguishable proof system.

The protocol 〈P, V 〉 is described in Figure 4. For our purposes, we set the
length parameter �(N) = n3 ·N ·P (n), where P (n) is a polynomial upper bound
on the total length of the prover messages in the protocol plus the length of the
secret key of the verifier.

The completeness property of 〈P, V 〉 follows immediately from the construc-
tion. Due to lack of space, we defer the proof of soundness to the full ver-
sion [22]. We remark that, in fact, we prove concurrent soundness of 〈P, V 〉,
i.e., we show that a computationally-bounded adversarial prover who engages in
multiple concurrent executions of 〈P, V 〉 (where the scheduling across the ses-
sions is controlled by the adversary) cannot prove a false statement in any of
the executions, except with negligible probability. We note that similarly to the
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Parameters: Security parameter n, N = N(n), t = ω(1).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.
Private Input to V : A public key pk = (y0, y1) and secret key sk = (b, xb) s.t.

b
R← {0, 1}, yb = fowf(xb).

Stage 1 (Preamble Phase): Repeat the following steps t times.
V → P : Send pk = (y0, y1).

P → V : Choose σp
R← {0, 1}n and send cp = Com(σp).

V → P : Send σv
R← {0, 1}n.

P → V : Send σp. Let σ = σp ⊕ σv.
P ↔ V : An execution of 〈PpB, VpB〉N to prove the following statement: ∃s s.t.

c = Com(σp; s).
V → P : Send e1 = Encσ(xb), e2 = Encσ(xb).
V ↔ P : An execution of resettable WI 〈PrWI, VrWI〉 to prove the following

statement: ∃〈i, b, xb, s〉 s.t. ei = Encσ(xb; s) and yb = fowf(xb).
Stage 2 (Proof Phase):

P ↔ V : An execution of perfect WIAOK 〈PpWI, VpWI〉 to prove the OR of the
following statements:
1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈b, xb〉 s.t. yb = fowf(xb).

Fig. 4. Protocol 〈P, V 〉

Bare Public-Key model [10], “stand-alone” soundness does not imply concur-
rent soundness in our model. Informally speaking, this is because the standard
approach of reducing concurrent soundness to stand-alone soundness by “inter-
nally” emulating all but one verifier does not work since the verifier’s secret keys
are private. Indeed, Micali and Reyzin [29] gave concrete counter-examples to
show that stand-alone soundness does not imply concurrent soundness in the
BPK model. We note that their results immediately extend to our model.

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in
the Bounded Player model.

3.2 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is con-
current zero-knowledge in the bounded player model. Towards this end, we will
construct a non-black-box (polynomial-time) simulator and then prove that the
concurrent adversary’s view output by the simulator is indistinguishable from
the real view. We start by giving an overview of the proof and then proceed to
give details.
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Overview. Barak’s argument system [2] is zero-knowledge in the bounded con-
currency model where the concurrent adversary is allowed to open at most
m = m(n) concurrent sessions for a fixed polynomial m. Loosely speaking,
Barak’s simulator takes advantage of the fact that the total number of prover
messages across all sessions is bounded; thus it can commit to a machine that
takes only a bounded-length input y that is smaller than the challenge string r,
and outputs the next message of the verifier, in any session. In our model, there
is no bound on the total number of sessions, thus we cannot directly employ
the same strategy. Towards this, an important observation in our setting is that
once we are able to “solve” a verifier identity (i.e., learn secret key of a verifier),
then the simulator does not need to do Barak-style simulation anymore for that
identity. But what of the number of Barak-style simulations that the simulator
needs to perform before it can learn any secret key? Indeed, if this number were
unbounded, then we would run into the same problems that one encounters when
trying to construct non-black-box cZK in the standard model. Fortunately, we
are able to show that the simulator only needs to perform a bounded number
of Barak-style simulations before it can learn a secret key. Thus, we obtain the
following strategy: the simulator commits to an “augmented machine” that is
able to simulate almost all of the simulator messages by itself; the remaining
simulator messages are given as input to this machine. As discussed above, we
are able to bound the total number of these messages, and thus by setting the
challenge string r to be more than this bound, we ensure that the simulation
is correct. More specifically, the input passed by the simulator to the machine
consists of transcripts of concurrent sessions where again the simulator had to
use Barak-style simulation7 and the (discovered) secret keys of the verifiers to
be used by the machine to carry on the simulation by itself (without performing
Barak-style simulation).

The Simulator. We now proceed to describe our simulator. The simulator SIM
consists of two main parts, namely, SIMeasy and SIMextract. Loosely speaking,
SIMextract is only used to cheat in a “special” preamble block of a session in
order to learn the secret key of a verifier, while SIMeasy is used for the remainder
of the simulation, which includes following honest prover strategy in preamble
blocks and simulating the proof phase of each session using the verifier’s secret
key as the trapdoor witness. Specifically, SIMextract cheats in the 〈PpB, VpB〉N
protocol by committing to an augmented verifier machine Π that contains the
code of SIMeasy, allowing it to simulate all of the simulator messages except
those generated by SIMextract (in different sessions). As we show below, these
messages can be bounded to a fixed value. We now describe the simulator in
more detail.

Setup and Inputs. Our simulator SIM interacts with an adversary V ∗ = (V ∗
1 , . . . ,

V ∗
N ) who controls verifiers V1, . . . , VN . V ∗ interacts with SIM in m sessions, and

7 The reason we pass this transcript as input is that in this way we can avoid the
blow up of the running time of the simulator when nested Barak-style simulations
are performed.
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controls the scheduling of the messages. We give SIM non-black-box access to
V ∗. Throughout the interaction, SIM keeps track of a tuple β = (β1, . . . , βN)
representing the secret keys SIM has learned so far. At any point during the
interaction either βi = ski (more precisely, βi is one of the coordinates of ski) or
βi is the symbol ⊥. Initially, SIM sets each βi to ⊥, but it updates β through-
out the interaction as it extracts secret keys. Additionally, SIM keeps a counter
vector a = (a1, . . . , aN ), incrementing ai each time it executes a preamble block
using SIMextract against V ∗

i . We have SIM halt and output FAIL if any ai
ever surpasses n3. Our technical lemma shows that this happens with negligible
probability. Finally, we have SIM keep track of a set of tuples

Ψ =
{(

(i, j, k)γ ;φγ

)
: γ = 1, . . . , n3N}

where each (i, j, k)γ ∈ [N ]×[m]×[t] and φγ is a string. The tuples (i, j, k)γ repre-
sent the preamble blocks played by SIMextract; specifically, (i, j, k) corresponds
to the k−th block of the j−th session against V ∗

i . The string φγ is the collection
of simulator messages sent in block (i, j, k)γ . This set of tuples Ψ (along with β)
will be the extra input given to the augmented machine. As we show below, the
total size of Ψ will be a priori bounded by a polynomial in n.

Consider the interaction of SIM with some V ∗ impersonating Vi. Each time
V ∗ opens a session on behalf of Vi, SIM chooses a random k ∈ {1, . . . , t} accord-
ing to a distribution Dt which we define later. This will be the only preamble
block of the session played by SIMextract provided that βi =⊥ when the block
begins. If SIM has already learned the secret key ski, it does not need to call
SIMextract. We now describe the parts of SIM beginning with SIMeasy.

The sub-simulator SIMeasy. Recall that SIMeasy is run on input β and Ψ . When
SIMeasy is called to execute the next message of a preamble block, it checks if the
message is already in Ψ . If this is the case, SIMeasy just plays the message. Oth-
erwise, SIMeasy plays fairly, choosing a random σp and sending cp = Com(σp; s)
for some s. Upon receiving σv, it returns σp and completes 〈PpB, VpB〉 using s as
its witness. Its receipt of encryptions (e1, e2) and acceptance of 〈PrWI, VrWI〉 ends
the preamble block. If SIMeasy does not accept V ∗’s execution of 〈PrWI, VrWI〉
it aborts the interaction, as would an honest prover.

When SIMeasy is called to execute 〈PpWI, VpWI〉 then it checks if the secret
key of the verifier is in β. If yes, SIMeasy completes 〈PpWI, VpWI〉 using ski as its
witness. Otherwise, βi =⊥ and SIMeasy halts outputting FAIL. Our technical
lemma shows that the latter does not happen, except with negligible probability.

The sub-simulator SIMextract. When SIMextract is called to execute preamble
block k of session j with verifier V ∗

i , it receives Ψ , β and a as input. We assume
βi =⊥ since otherwise, SIM would not have called SIMextract. Immediately
upon being called, SIMextract increments ai and adds the tuple

(
(i, j, k);φ

)
to

Ψ . Initially, φ is the empty string, but each time SIMextract sends a message, it
appends the message to φ. By the end of the block, φ is a complete transcript
of the simulator messages in preamble block (i, j, k).



Concurrent Zero Knowledge in the Bounded Player Model 75

The preamble block begins normally, with SIMextract choosing a random
string and sending cp, a commitment to it. Upon receiving σv, however, SIMextract

runs Gen obtaining key pair (σ, τ) for the encryption scheme and returns σp =
σ ⊕ σv. Next, SIMextract enters 〈PpB, VpB〉 which it completes using the al-
ready extracted secret key. Formally, when V ∗ sends h, beginning 〈PpB, VpB〉,
SIMextract chooses a random s and sends Com

(
h(Π); s

)
, where Π is the next

message function of V ∗, augmented with the ability to compute all the inter-
mediate messages sent by SIMeasy. The machine Π takes input y = (Ψ, β) and
outputs the next verifier message in an interaction between V ∗ and a machine
M who plays exactly like SIMeasy with the following exception. For each tuple(
(i, j, k);φ

) ∈ Ψ , M reads its messages of block (i, j, k) from the string y. In
order to simulate SIMeasy in the subprotocols 〈PpWI, VpWI〉, M also uses the
tuple β = (β1, . . . , βN ) received as input, where each βi is the secret key of the
i′-th verifier (if available), and ⊥ otherwise.

After committing to Π , and receiving r, SIMextract completes 〈PpUA, VpUA〉
using witness (Π,Ψ‖β, s) where Ψ and β might have been updated by other exe-
cutions of SIMextract occurring between the time SIMextract sent Com

(
h(Π); s

)

and received r. Our counter ensures that |Ψ | is a priori bounded, while |β| is
bounded by definition. By construction,Π correctly predicts V ∗’s message r, and
so (Π,Ψ‖β, s) is a valid witness for 〈PsUA, VsUA〉. Finally, SIMextract receives en-
cryptions e1, e2 and the proof of correctness in 〈PrWI, VrWI〉. It now decrypts the
ciphertexts using τ thereby learning secret key ski of V

∗
i . If the decrypted value

is a valid secret key ski, then it updates β by setting βi = ski. Otherwise, it
outputs the abort symbol ⊥ and stops. (It is easy to see that since the proof
system 〈PrWI, VrWI〉 is sound, the probability of simulator outputting ⊥ at this
step is negligible.)

Analysis. There are two situations in which SIM outputs fail: if some counter
ai exceeds n3, or if SIMeasy enters an execution 〈PpWI, VpWI〉 without knowl-
edge of sk. Note that the latter will not happen, as to enter an execution of
〈PpWI, VpWI〉, all preamble blocks, in particular the one played by SIMextract,
must be complete, ensuring that SIMextract will have learned sk. In our main
technical lemma, we show that no counter will surpass n3 by proving that after
SIM has run SIMextract n

3 times against each Vi controlled by V ∗ it has, with
overwhelming probability, learned sk. Before stating the lemma, we introduce
some terminology.

Now, focusing on a given verifier, we say that V ∗ has stopped session j in block
k if the k−th preamble block of session j has begun, but the (k+1)−th has not.
We say that V ∗ is playing strategy k′ = (k′1, . . . , k

′
m) if session j is stopped in

block k′j for all j = 1, . . . ,m. As the interaction takes polynomial time, V ∗ only
gets to play polynomially many strategies over the course of the interaction. Let
kj ∈ {1, . . . , t} be the random number chosen by SIM at the beginning of session
j as per distribution Dt. This gives us a tuple k = (k1, . . . , km) where the kj are
chosen independently according to the distribution Dt (defined below). At any
time during the interaction, we say that V ∗ has won (resp. lost, tied) session j if
k′j = kj (resp. k′j > kj , k

′
j < kj). A win for V ∗ corresponds to SIM having run
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SIMextract, but not yet having learned sk. As SIM only gets to call SIMextract

n3 times, a win for V ∗ means that SIM has used up one of its budget of n3

without any payoff. A loss for V ∗ corresponds to SIM running SIMextract and
learning sk, thereby allowing SIM to call SIMeasy in all remaining sessions. A
tie means that SIM has not yet called SIMextract in the session, and therefore
has not used any of its budget, but has not learned sk.

Notice that these wins and ties are “temporary” events. Indeed, by the end
of each session, V ∗ will have lost, as he will have completed the preamble block
run by SIMextract. However, we choose to use this terminology to better convey
the key intuition of our analysis: for SIM to output FAIL, it must be that at
some point during the interaction, for some identity, V ∗ has won at least n3

sessions and has not lost any. We will therefore focus precisely on proving that
the probability that a PPT adversary V ∗ runs in the experiment m sessions so
that the counter for one identity reaches the value n3 is negligible.

For a verifier strategy k′ and a polynomial m, let P(k′,m)(W,L) be the prob-
ability that in an m−session interaction between V ∗ and SIM that V ∗ wins for
some identity exactly W sessions and loses exactly L, given that V ∗ plays strat-
egy k′. The probability is over SIM ’s choice of k with kj ∈ {1, . . . , t} chosen
independently according to Dt (defined below) for all j = 1, . . . ,m.

The Distribution Dt and the Main Technical Lemma. Define Dt to be the distri-
bution on {1, . . . , t} such that pk′ = Probk∈Dt

(
k = k′

)
= εnk′

, where ε is such
that

∑
pk′ = 1. Note that ε is negligible in n.

Lemma 1 (Main Technical Lemma). Let k′ be a verifier strategy and m =
m(n) a polynomial. Then we have P(k′,m)(n

3, 0) is negligible in n.

The above proves that any verifier strategy has a negligible chance of having n3

wins and no losses. As V ∗ plays polynomially many (i.e., N) strategies through-
out the course of the interaction, the union bound proves that V ∗ has a negligible
chance of ever achieving n3 wins and 0 losses. From this it follows that, with
overwhelming probability, V ∗ will never have at least n3 wins and no losses,
which implies that SIM outputs FAIL with negligible probability as desired.
The main idea of the proof is similar to the random tape switching technique
of [33] and [28].

Proof. We fix a verifier strategy k′ and a polynomial m and write P (W,L)
instead of P(k′,m)(W,L). Let pk′ (resp. qk′) be the probability that V ∗ wins
(resp. loses) a session given that he stops the session in block k′. We chose
the distribution Dt carefully to have the following two properties. First, since
p1 = εn is negligible, we may assume that V ∗ never stops in the first block of a
session. And secondly, for k′ ≥ 2 we have,

qk′ =
k′−1∑

i=1

pk′ = ε
nk′ − 1

n− 1
≥ εnk′

2n
=

pk′

2n
.

It follows that no matter which block V ∗ stops a session in, it will hold that
the probability he wins in that session is less then 2n times the probability that
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he looses that session. We will use this upper bound on the probability of V ∗

winning a single session to show that P (n3, 0) is negligible.
Let A be the event, (W,L) = (n3, 0), B be the event W +L = n3 and ¬B the

event W + L �= n3. Since, A ⊂ B, and since P (A|¬B) = 0, we have that

P (n3, 0) = P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) = P (A|B)P (B) ≤ P (A|B),

and so it suffices to prove that P (A|B) is negligible. We continue the proof for
the case W + L = n3 (and thus m ≥ n3).

If W+L = n3 then V ∗ ties all but n3 of the sessions. Let C = {C ⊂ [m] : |C| =
n3}. Then C is the set of possible positions for the sessions which are not ties.
We are looking to bound P

(
(W,L) = (n3, 0)

∣∣W + L = n3
)
and so we condition

on the C ∈ C. Once a fixed C is chosen, the position of each session which is not
a tie is determined. Each such session must either be a win or a loss for V ∗. Let
p be the probability that some such session is a win. Since we proved already
that the probability that V ∗ wins in a given session is less then 2n times the
probability that V ∗ looses in that session, we have that p ≤ 2n(1 − p). Solving
gives p ≤ (

1 − 1
2n+1

)
. It follows that for any C ∈ C, the probability that all

sessions in C are wins is

(
1− 1

2n+ 1

)n3

≤
[(

1− 1

2n+ 1

)2n+1]n
≤ e−n.

From the viewpoint of random tape switching, we have shown that for every
random tape causing every session of C to be a win, there are exponentially
many which cause a different outcome, we therefore have: P (n3, 0) ≤ P

(
(W,L) =

(n3, 0)
∣
∣W + L = n3

)
=

∑
C∈C P

(
(W,L) = (n3, 0)

∣
∣C

)
P (C) ≤ e−n

∑
C∈C P (C) =

e−n as desired.

Bounding the length parameter �(N). From the above lemma, it follows that the
total length of the auxiliary input y to the machine Π committed by SIMextract

(at any time) is bounded by n3 ·N ·P (n), where P (n) is a polynomial upper bound
on the total length of prover messages in one protocol session plus the length of a
secret. Thus, when �(N) ≥ n3 ·N · P (n), we have that |y| ≤ |r| − n, as required.

In the full version [22] we show through a series of hybrid experiments that
the simulation is perfectly indistinguishable from the real game.
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