
J. Cryptol. (2014) 27: 45–66
DOI: 10.1007/s00145-012-9137-2

Concurrent Zero Knowledge, Revisited∗

Rafael Pass†

Cornell University, Ithaca, NY 14853, USA
rafael@cs.cornell.edu

Wei-Lung Dustin Tseng‡

Google Inc., 747 6th street, Kirkland, WA, USA
wdtseng@gmail.com

Muthuramakrishnan Venkitasubramaniam‡

University of Rochester, 621 Computer Sciences Building, Rochester, NY 14627-0226, USA
muthuv@cs.rochester.edu

Communicated by Oded Goldreich

Received 20 July 2010
Online publication 18 November 2012

Abstract. We provide a more general and, in our eyes, simpler variant of Prab-
hakaran, Rosen and Sahai’s (FOCS ’02, pp. 366–375, 2002) analysis of the concurrent
zero-knowledge simulation technique of Kilian and Petrank (STOC ’01, pp. 560–569,
2001).

Key words. Zero-knowledge, Concurrency, Oblivious simulation.

1. Introduction

Following the seminal works of Dolev, Dwork and Naor [8] and Feige and Shamir [11]
from the early 1990s, concurrent security of cryptographic protocols has been an active
area of research. Yet, it is still not well-understood when and where concurrent security
can be achieved. One potential reason for this might be the complexity of traditional

∗ The views and conclusions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the US government.

† R. Pass was supported in part by a Alfred P. Sloan Fellowship, Microsoft New Faculty Fellowship,
NSF CAREER Award CCF-0746990, AFOSR YIP Award FA9550-10-1-0093, and DARPA and AFRL under
contract FA8750-11-2-0211.

‡ Work of W.-L. Dustin Tseng and M. Venkitasubramaniam partially done while at Cornell University.

© International Association for Cryptologic Research 2012

mailto:rafael@cs.cornell.edu
mailto:wdtseng@gmail.com
mailto:muthuv@cs.rochester.edu

46 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

analyses. In this work we focus on generalizing and (in our eyes) simplifying analyses
of concurrent security in one of the most basic settings, namely that of zero-knowledge
proofs.

Zero-knowledge (ZK) interactive proofs [15] are paradoxical constructs that allow
one player (called the prover) to convince another player (called the verifier) of the
validity of a mathematical statement x ∈ L, while providing zero additional knowledge
to the verifier. Beyond being fascinating in their own right, ZK proofs have numerous
cryptographic applications and are one of the most fundamental cryptographic building
blocks. As such, techniques developed in the context of ZK often extend to more general
types of interactions.

The notion of concurrent zero knowledge, first introduced and achieved in the paper
by Dwork, Naor and Sahai [10], considers the execution of zero-knowledge proofs in
an asynchronous and concurrent setting. More precisely, we consider a single adversary
mounting a coordinated attack by acting as a verifier in many concurrent executions
(called sessions). Concurrent ZK proofs are significantly harder to construct and ana-
lyze. Since the original protocols by Dwork, Naor and Sahai (which relied on so-called
“timing assumptions”), various other concurrent ZK protocols have been obtained based
on different set-up assumptions (e.g., [4,7,9]). In the standard model without set-up as-
sumptions (the focus of our work), Canetti, Kilian, Petrank and Rosen [5] (building on
earlier works by Kilian, Petrank and Rackoff [20] and Rosen [29]) show that concurrent
Z K proofs for non-trivial languages, with so-called “black-box” simulators, require at
least Ω̃(logn) number of communication rounds. On the other hand, Richardson and
Kilian [28] constructed the first concurrent ZK argument in the standard model without
any extra set-up assumptions. Their protocol, which uses a black-box simulator, re-
quires O(nε) number of rounds. (See also the work of Canetti, Goldreich, Goldwasser
and Micali [4] for a somewhat different and more detailed analysis of this protocol.) Kil-
ian and Petrank [19] then introduced a new oblivious zero-knowledge simulator. Using
this simulation technique they obtained a simpler and cleaner analysis, and additionally
improved the round complexity to Õ(log2 n). Finally, the work of Prabhakaran, Rosen
and Sahai [27] further simplifies and improves the analysis of the oblivious simulator,
obtaining an essentially optimal round complexity of Õ(logn).

Despite these simplifications and improvements, the analysis of concurrent zero-
knowledge protocols remains quite complex. Furthermore, the different analyses are
tailored to different types of protocols. In particular, the most refined analysis from [27]
considers committed-verifier protocols, where the verifier commits to its messages in
advance; more specifically, as far as we know, the analysis has only been applied to
generalizations of the Goldreich–Kahan ZK protocol [13]. For instance, no generaliza-
tions of the Feige–Shamir ZK protocol [11] have been analyzed using it; apart from
theoretical interests, the Feige–Shamir ZK protocol is noteworthy due to its efficient
instantiations via “sigma protocols” [6].

In this work, we focus on simplifying and generalizing current analysis techniques
for concurrent ZK. More precisely, we provide a variant of Prabhakaran, Rosen and
Sahai’s (PRS) analysis [27] of the Kilian–Petrank (KP) zero-knowledge simulator [19].
Our contribution is twofold:

• In our eyes, this analysis is simpler and more flexible than the original PRS anal-
ysis. In particular, the analysis also directly applies to more efficient variants of

Concurrent Zero Knowledge, Revisited 47

the KP-simulator, resulting in concurrent ZK protocols with “tight” [12,14], and
even “precise” [22] simulations (i.e., simulations where the running-time of the
simulator is close to the running-time of the malicious verifier, in an execution-by-
execution manner). Such results were already established in [24], but required a
more elaborate analysis (building upon [27]).

• Our analysis applies to a broad range of protocols, and in particular to Feige–
Shamir-type protocols. As a consequence, we establish a simple ω(logn)-round
concurrent zero-knowledge argument of knowledge for NP based on one-way
functions. The same protocol construction also yields an poly(n)-round concurrent
statistical ZK argument of knowledge for NP, based on one-way functions (concur-
rent statistical ZK arguments were first constructed in [16] using a more complex
protocol). Furthermore, in a subsequent work, Lin et al. [21] rely on our analysis
to construct concurrent non-malleable zero-knowledge proofs for NP; our analysis
is helpful in this context since their protocol is not of the committed-verifier type.

Previous Techniques Kilian and Petrank’s (KP) ingenious simulation technique relies
on a static—and oblivious—rewinding schedule; namely, the simulator rewinds the ad-
versarial verifier after some fixed number of messages, independent of the content of
the messages and the interleaving schedule of the sessions. The crux of their analysis
is to show that using this rewinding schedule, every session is “successfully rewound”
at least once with high probability; in a successful rewind, the simulator can extract a
“trapdoor” that will allow it to complete the simulation. To bound the failure probability,
they rely on a subtle computation of conditional probabilities.

The elegant work of Prabhakaran, Rosen and Sahai (PRS) [26,27,30], on the other
hand, directly analyze the probability space of the simulator, i.e., count the random
tapes of the simulator; this makes the analysis both simpler and sharper. The idea is to
show that each “bad” random tape (that produces a failed simulation) can be mapped
into super-polynomially many distinct “good” tapes. This is done by identifying random
tape segments, called rewinding intervals, that can be “swapped” among each other in
order to turn a bad tape into a good one.1 The crux of their proof is then to count how
many such “swappings” actually generate new and distinct random tapes. However,
complications arise since swappings performed on different rewinding intervals may
overlap and even remove other possible rewinding intervals. A bit more precisely, the
PRS analysis focuses only on “disjoint” rewinding intervals, but performs a computa-
tion based on the “multiplicity” on those intervals. A count with multiplicity is needed
because the number of disjoint rewind intervals in general could not be guaranteed to
be sufficiently large, at least in the case of ω(logn) round protocols. (As we shall see,
in our analysis, we are able to swap also non-disjoint rewinding intervals; as a result,
we can avoid the count with multiplicities.)

Additionally, to enable this counting argument, the PRS analysis bounds the failure
probability of a “hybrid” simulator (which has access to the witnesses of input state-
ments). To show that the real simulator is indistinguishable from the hybrid simulator,
committed-verifier protocols are used; this is required to ensure that when changing the
hybrid simulator (which uses the actual witness) to the real simulator (which does not

1 Here we use the terminologies from Rosen’s thesis [30].

48 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

know the actual witness), indistinguishability holds despite the rewinds performed by
the simulator. Intuitively, the committed-verifier property ensures that the rewinds are
“harmless.”

Our Techniques We show how to directly analyze the failure probability of the actual
simulator (as opposed to a hybrid one), while (in our eyes) simplifying the counting
argument. Our key step is to identify a stronger notion of rewinding intervals, which
we call composable blocks. Just like rewinding intervals, properties of composable
blocks guarantee that a “swap” will generate a new good random tape; moreover, these
same properties are closed under composition—namely, the swapping of one such block
leaves other composable blocks intact, even if these composable blocks are not disjoint.
By this new composition property, it is enough to identify K composable blocks to
conclude that the simulation fails with probability less than 2−K .

In essence, our proof will consist of two simple steps: First, we establish local prop-
erties of a composable block (namely, that a swap generates one new good random tape,
and that swappings are composable); then, we count the number of composable blocks
on a bad random tape; as we shall see, each round in the protocol gives rise to a new
composable block. As such, our analysis conveys a strong intuition of how “each ad-
ditional round of the protocol halves the simulator’s failing probability.” However, we
emphasize that our techniques do not improve the “quantity” of the count (e.g., does not
improve upon the round-complexity of the PRS protocol).

To employ this new notion of composable blocks, we consider and analyze a “lazy”
variant of the KP simulator. Intuitively, the lazy KP simulator is identical to the KP
simulator but only makes use of information gathered in its rewinds after some delay.
The lazy KP simulator can only fail more often than the original KP simulator (and thus
our analysis indirectly also applies to the KP simulator); yet, considering this “weaker”
simulator enables our way of directly analyzing the failure probability of the simulation.
In a sense, much like making a stronger inductive hypothesis can simplify the inductive
step, our stronger notion of composable blocks and our weaker lazy KP simulator enable
and simplify the analysis. We note that the PRS analysis also seems to apply to the lazy
KP simulator, although this was not made use of in [27].

After directly bounding the failure probability of the real simulator, we provide a sim-
ple hybrid argument to show that the output of the simulator is indistinguishable from
the view of the verifier. The base case of this hybrid argument considers only a “straight-
line” (i.e., a non-rewinding) execution, and as such the analysis directly applies also to
committed-verifier protocols.

Overview We define concurrent ZK and give some preliminaries in Sect. 2. We con-
struct and analyze computational and statistical concurrent black-box ZK arguments of
knowledge in Sect. 3 (our main theorems). For completeness, we also provide a brief
overview of the PRS analysis in Appendix A.

2. Preliminaries

We assume familiarity with indistinguishability and interactive proofs. [n] denotes the
set {1, . . . , n}.

Concurrent Zero Knowledge, Revisited 49

2.1. Black-Box Concurrent Zero-Knowledge

Let (P,V) be an interactive proof for a language L. An m-session concurrent adver-
sarial verifier V ∗ is a probabilistic polynomial time machine that, on common input
x and auxiliary input z, interacts with m(|x|) independent copies of P concurrently
(called sessions). There are no restrictions on how V ∗ schedules the messages among
the different sessions, and V ∗ may choose to abort some sessions but not others. Let
ViewP

V ∗(x, z) be the random variable that denotes the view of V ∗(x, z) in an interac-
tion with P (this includes the random coins of V ∗ and the messages received by V ∗).
A black-box simulator S is a probabilistic polynomial-time machine that is given black-
box access to V ∗ (written as SV ∗

). Roughly speaking, we require that for every instance
x ∈ L, and every auxiliary input z, SV ∗(x,z)(x) can generate the view of V ∗(x, z) in an
interaction with P . Since we provide V ∗ with an auxiliary input, we can without loss
of generality restrict our attention to deterministic V ∗ (as V ∗ can always receive its
random coins as auxiliary advice).

Definition 1 (Black-box concurrent zero-knowledge [10]). Let (P,V) be an inter-
active protocol for a language L. Π is black-box concurrent zero-knowledge if for
all polynomials m, there exists a black-box simulator Sm such that for every com-
mon input x and auxiliary input z, and every deterministic m-session concurrent ad-
versary V ∗, S

V∗(x,z)
m (x) runs in time polynomial in |x|. Furthermore, the ensembles

{ViewP
V ∗(x, z)}x∈L,z∈{0,1}∗ and {SV∗(x,z)

m (x)}x∈L,z∈{0,1}∗ are computationally indistin-
guishable (as a function of |x|).

2.2. Other Primitives

Witness-Indistinguishable (WI) Proofs [11] Roughly speaking, an interactive proof is
witness indistinguishable if the verifier’s view is “independent” of the witness used by
the prover for proving the statement.

Definition 2 (Witness-indistinguishability). Let (P,V) be an interactive proof sys-
tem for a language L ∈ NP with witness relation RL. We say that (P,V) is witness-
indistinguishable for RL if for every probabilistic polynomial-time adversarial V ∗ and
for every two sequences of witnesses {w1

x}x∈L and {w2
x}x∈L satisfying w1

x,w
2
x ∈ RL(x),

the following two probability ensembles are computationally indistinguishable as a
function of n:

{
View

P(w1
x)

V ∗ (x, z)
}
n∈N,x∈L∩{0,1}n,z∈{0,1}∗

≈ {
View

P(w2
x)

V ∗ (x, z)
}
n∈N,x∈L∩{0,1}n,z∈{0,1}∗ .

Proofs and Arguments of Knowledge (POK, AOK) [2,11] An interactive proof (resp.
argument) is a proof (resp. argument) of knowledge if the prover convinces the verifier
that it possesses, or can feasibly compute, a witness for the statement proved.

Definition 3 (Proofs and arguments of knowledge [2]). An interactive protocol Π =
〈P,V 〉 is a proof of knowledge (resp. argument of knowledge) of language L with

50 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

respect to witness relation RL if Π is indeed an interactive proof (resp. argument)
for L. Additionally, there exists a polynomial q , a negligible function ν, and a prob-
abilistic oracle machine E, such that for every interactive machine P ∗ (resp. for every
polynomially-sized machine P ∗) and every x ∈ L, the following holds:

If Pr[〈P ∗,V 〉(x) = 1] > ν(|x|), then on input x and oracle access to P ∗(x),
machine E outputs a string from the RL(x) within an expected number of
steps bounded by

q(|x|)
Pr[〈P ∗,V 〉(x) = 1] − ν(|x|) .

The machine E is called the knowledge extractor.

Special-Sound (SS) Proofs [6] Special-sound proofs are proofs of knowledge with a
very rigid and useful structure.

Definition 4 (Special soundness). A 4-round interactive proof (P,V) for language
L ∈ NP with witness relation RL is special sound with respect to RL if (P,V) is public-
coin (i.e., verifier messages are segments of its random tape), and on input x, all verifier
messages have length g(|x|) ≥ |x|.

Moreover, there exists a deterministic polynomial-time extraction procedure X such
that on input x, with all but negligible probability in |x| over the choice of a uniform
ρ ∈ {0,1}g(|x|), for all α, β , β ′, γ , γ ′ such that β
= β ′, and (ρ,α,β, γ) and (ρ,α,β ′, γ ′)
are both accepting transcripts of (P,V) on input x, X(x, (ρ,α,β, γ), (ρ,α,β ′, γ ′))
outputs a witness w ∈ RL(x).

2.3. Known Protocols

In our construction of concurrent zero-knowledge arguments, we use:

• 4-round computational WI and SS proofs based on one-way functions. This can
be instantiated with a parallel repetition of the Blum Hamiltonicity protocol [3]
with 2-round statistically binding commitments constructed from one-way func-
tions [18,23].

• 4-round computational WI-AOK or poly(n)-round statistical WI-AOK based on
one-way functions. Again, this can be instantiated with the Blum Hamiltonicity
protocol with the help of 2-round statistically binding commitments ([18,23], this
actually gives a POK) or statistically hiding commitments [17] from one-way func-
tions.

3. Black-Box Concurrent Zero-Knowledge Arguments of Knowledge

In this section we re-prove the following theorem.

Theorem 1. Assume the existence of one-way functions. Then every language in NP
has an ω(logn)-round concurrent black-box ZK argument of knowledge, and a poly(n)-
round concurrent black-box statistical-ZK argument of knowledge.

Concurrent Zero Knowledge, Revisited 51

3.1. The Protocol

Our concurrent ZK protocol ConcZKArg (also used in [25]) is a slight variant of the
precise ZK protocol of [22], which in turn is a generalization of the Feige–Shamir
protocol [11]. The protocol for language L proceeds in three stages, given a secu-
rity parameter n, a common input statement x ∈ {0,1}n, and a “round-parameter”
k ∈ ω(logn):

Stage Init: The verifier picks two random strings r1, r2 ∈ {0,1}n and sends their im-
ages c1 = f (r1), c2 = f (r2) through a one-way function f to the prover. The verifier
then provides, in parallel, k instances of a 4-round computationally-WI and SS proof
of knowledge of the NP statement “c1 or c2 is in the image set of f ” (a witness here
would be a pre-image of c1 or c2). The first two (out of four) messages of each SS-
POK are exchanged in this stage. The end of Stage Init is called the START of the
protocol.

Stage 1: k message exchanges occur in Stage 1. In the j th iteration, the prover sends
βj ∈ {0,1}n, a random second last message of the j th SS-POK, and the verifier
replies with the last message γj of the SS-POK. These k iterations are called slots.
A slot is convincing if the verifier produces an accepting proof. If there is ever an
unconvincing slot, the prover aborts the whole session. The end of Stage 1 (after k

convincing slots) is called the END of the protocol.
Stage 2: The prover provides a 4-round computational-WI (resp. poly(n)-round

statistical-WI) argument of knowledge of the statement “x ∈ L, or one of c1 or c2

is in the image set of f .”

Completeness and soundness/proof of knowledge follow directly from the proof of
Feige and Shamir [11]; in fact, the protocol is an instantiation of theirs. Intuitively, to
cheat in the protocol a prover must “know” an inverse to c1 or c2 (since Stage 2 is an
argument of knowledge), which requires inverting the one-way function f . A formal
description of protocol ConcZKArg is shown in Fig. 1.

3.2. The “Lazy KP” ZK Simulator

We show that whenever k is super logarithmic (i.e. k = ω(logn)), our protocol is con-
current ZK. This requires us to construct a simulator Sim = SimV ∗(x,z)(x) that, given
input instance x ∈ L and black-box access to V ∗(x, z), outputs a view that is indistin-
guishable from the real view of V ∗(x, z). On a very high level, the simulation follows
that of Richardson and Kilian [28]. The simulator simulates Stage Init and Stage 1 of
the protocol by following the honest prover strategy, and attempts to rewind one of the
slots (i.e. the last two messages of the special-sound proofs provided by V ∗). If the sim-
ulator obtains two matching convincing slots, i.e., the slots are from the same round of
the protocol and share the same initial transcript, the special-soundness property allows
the simulator to compute a fake witness r such that f (r) = c1 or c2. This fake witness
can then be used to simulate Stage 2 of the protocol. Towards this goal, we let Sim be
an oblivious black-box simulator similar to [19].

52 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

Protocol ConcZKArg:

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage Init:

V uniformly chooses r1, r2 ∈ {0,1}n.
V → P : c1 = f (r1), c2 = f (r2) for a one-way function f .
V ↔ P : Exchange in parallel (interactively) the first two messages
α1, . . . ,
αk of k copies

of 4-round computational-WI and SS proofs on common input (c1, c2) with respect to the
witness relation:

Rf (c1, c2) = {
r : f (r) = c1 or f (r) = c2

}

Note that V acts as the prover in these SS-POK’s.

We say the protocol has reached START (of Stage 1) if all messages in Stage Init are exchanged.
Stage 1: For j = 1 to k do the following (called a slot)

P → V : The second last message βj of the j th SS-POK.
V → P : The last message γj of the j th SS-POK.

We say the protocol has reached END (of Stage 1) if all k SS-POK are accepted.
Stage 2:

P ↔ V : a 4-round computational-WI (or poly(n)-round statistical WI) argument of knowledge
from P to V on common input (c1, c2, x) with respect to the witness relation:

Rf ∨L(c1, c2, x) = {
(r,w) : r ∈ Rf (c1, c2) or w ∈ RL(x)

}

Fig. 1. Concurrent ZK argument of knowledge for NP with round parameter k.

Description of Sim Let n be the security parameter, m be a bound on the number of
concurrent sessions invoked by V ∗ and T be the total number of messages exchanged,
bounded by O(mk), a polynomial in n. Keep in mind that during black-box simulation,
we assume without loss of generality that V ∗ is deterministic; therefore the view of V ∗
is just the transcript of its interaction with the honest prover.

In order to extract a fake witness from V ∗, Sim follows an oblivious rewinding sched-
ule based only on the number of messages exchanged so far, just like in [19] and [27].
During the oblivious simulation, Sim keeps a repository of all messages generated by
V ∗ among all rewinds; whenever Sim encounters Stage 2 of the protocol, Sim looks for
matching convincing slots in this repository to compute the required fake witness. More
precisely, Sim uses the recursive procedure lazy-rewind described below.

At a high level, lazy-rewind(t, V , T) → (V ′, T ′) attempts to recursively simulate
V ∗(x, z) for t messages starting from a partial view V of V ∗, with the help of of a
repository of messages generated by V ∗ during rewinds, T (formally just a set of all
simulator query and verifier message pairs). If lazy-rewind is successful, it outputs a
longer view V ′ of V ∗ (that contains exactly t more verifier messages than V), and an
updated repository T ′ including verifier messages that lazy-rewind gathered from var-
ious rewinds (and most likely contains more verifier messages than what is recorded
in V ′). Sim simply outputs the view produced by lazy-rewind(T , V = ∅, T = ∅), i.e.,
lazy-rewind starting from the empty view and an empty repository.

Concurrent Zero Knowledge, Revisited 53

Fig. 2. A pictorial representation of the rewinding schedule of lazy-rewind. The boxes represent blocks, and
the lines represent threads. If this is the top level call (i.e., lazy-rewind(T ,∅,∅)), then the thicker thread is the
output thread, whose view is the output of Sim.

Description of lazy-rewind(t, s, h) At the base case of the recursion (t = 1), lazy-rewind
receives a message from V ∗ and produces a prover response; lazy-rewind behaves iden-
tically to an honest prover to generate Stage Init and Stage 1 messages. Whenever
a session reaches END, lazy-rewind will attempt to compute a fake witness r for the
session (f (r) = c1 or c2) by searching T for matching convincing slots. If this is suc-
cessful, the fake witness r is used to generate prover messages in Stage 2 of this session
(i.e. the WI-POK). Otherwise, lazy-rewind outputs ⊥, which in turn causes Sim to output
⊥ as well.2 In the end, lazy-rewind outputs the updated view V ′ of V ∗ (the input view
appended with the newly exchanged pair of messages), and the updated repository T ′
(the input repository inserted with the newly exchanged pair of messages).

When t > 1, lazy-rewind(t, V , T) proceeds roughly as follows: It first recursively
simulates V ∗ for t/2 messages twice starting from the partial view V . Then, continuing
from one of those simulations, lazy-rewind recursively simulates V ∗ for another t/2
messages, twice. More formally, lazy-rewind(t, V , T) calls itself four times as follows:

1. (V1, T1) ← lazy-rewind(t/2, V , T).
2. (V2, T2) ← lazy-rewind(t/2, V , T). Merge T1 and T2 into a larger repository of

messages T ′.
3. (V3, T3) ← lazy-rewind(t/2, V1, T ′).
4. (V4, T4) ← lazy-rewind(t/2, V1, T ′). Merge T3 and T4 into a larger repository of

messages T ′′.
5. Output (V3, T ′′).

Because the first two recursive calls to lazy-rewind (resp. the last two calls) have identi-
cal inputs (they differ only because they use different segments of Sim’s random tape),
they are called sibling calls. See Fig. 2 for an illustration of the rewinding schedule, and
Fig. 3 for a pseudo-code description.

Let us describe some terminology that is useful for the analysis Sim and lazy-rewind.
Because Sim follows an oblivious rewinding schedule, it always makes a fixed set of
calls to lazy-rewind at fixed moments in the simulation, and it always “connects” these
calls of lazy-rewind in a fixed way to generate partial views of V ∗. Intuitively, a thread
is one of these fixed connections.

2 We distinguish between legitimate failures, i.e., Sim may abort just like a prover should V ∗ fail to follow
the protocol, and simulation failures, i.e., Sim outputs ⊥ if it fails to compute a fake witness r .

54 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

lazy-rewind(t, V, T):

1. Base Case: t = 1. Exchange one pair of messages with V ∗.
(a) If the next scheduled message is from an aborted session where V ∗ has deviated from

the protocol (e.g., there has been an unconvincing slot), return (V‖abort, T) (i.e. do
nothing).

(b) If the next scheduled message is a Stage Init or Stage 1 prover message for session i,
compute a message p following the honest prover strategy. Let v be the response of V ∗;
if v deviates from the protocol (e.g., v is an unconvincing last message of a SS-POK)
abort session i.

(c) If the next scheduled message is a Stage 2 prover message for session i, use the com-
puted fake witness to compute the prover messages p for the WI−AOK, and let v be the
verifier response. Note that a fake witness must have already been computed to reach
this point in the simulation; see next bullet.

(d) After exchanging a pair of messages p and v, if we reach the END of a session, at-
tempt to compute a fake witness of the session using the special-soundness property
and previous messages stored in the repository T (in particular are looking for match-
ing convincing slots for session i). If lazy-rewind fails to compute a fake witness, output
⊥.

(e) Output (V‖p‖v, T ∪{V‖p‖v}), i.e., extend the input partial view with the message pair
(p, v) and enlarge the input repository with the new message generated by V ∗.

2. Recursive step
Simulate the first t/2 messages twice

(a) (V1, T1) ← lazy-rewind(t/2, V, T)

(b) (V2, T2) ← lazy-rewind(t/2, V, T)

Simulate the second t/2 messages twice
(c) (V3, T3) ← lazy-rewind(t/2, V, T1 ∪ T2)

(d) (V4, T4) ← lazy-rewind(t/2, V, T1 ∪ T2)

(e) output (V3, h3 ∪ h4)

Fig. 3. The recursive procedure used by Sim—the “lazy” KP simulator.

Definition 5 (Threads). A thread is a sequence of 0’s and 1’s; from the beginning of
the simulation, this sequence specifies, whenever a pair of sibling calls are encountered,
whether to follow the first or second sibling call of lazy-rewind, respectively. (A se-
quence may terminate prematurely to specify a “partial” thread.) The thread 00 . . .0
(of sufficient length) is the thread that follows the first sibling calls to the end of the
simulation, and is called the output thread because the view of V ∗ generated on this
thread is the output of Sim.

Given an execution of Sim (on an input x ∈ L and a random tape), a block intuitively
refers to the “location” (in the static rewinding schedule) of a call to lazy-rewind, as well
as the actual simulation performed by the call.

Definition 6 (Blocks). Given an execution of Sim, a block B is a pair B =
(Bloc,Bcontent), where Bloc specifies the location of a call of lazy-rewind and Bcontent

specifies the inputs and randomness of the same call. Formally Bloc is a partial thread
(that leads to and includes the lazy-rewind call), and Bcontent is just the inputs and ran-
dom tape used by the lazy-rewind call, i.e., (t, V , T , r). We say a block C is contained

Concurrent Zero Knowledge, Revisited 55

in block B if the recursive call of lazy-rewind corresponding to block C is nested inside
the recursive call of lazy-rewind corresponding to block B .

Due to the recursive nature of lazy-rewind, every block would contain four “smaller”
blocks; of these four blocks, we call the first pair (resp. the second pair) sibling blocks,
as they correspond to sibling calls of lazy-rewind. Finally, we say a block contains a
thread if the thread “passes through” the block.

Definition 7 (Threads in a block). Given an execution of Sim, we say a block B con-
tains a thread h if Bloc is a prefix of h.

Since lazy-rewind does not update the message repository T between sibling recur-
sive calls (sibling blocks), we call it lazy. This departs from previous works such as [19]
and [27], and is crucial for our analysis. We have also changed how blocks are threaded
together from [19] and [27]. In lazy-rewind, the second pair of recursive calls are con-
tinued from the first recursive call of the first pair (i.e. continued from view V1). This is
similar to the precise simulation of [22] and [24]. This choice is inconsequential for our
analysis, but will be useful later when we discuss precision in Sect. 3.6; [19] and [27],
in contrast, continue the recursive calls from the view V2. See Fig. 2 for an illustration
of blocks, threads and siblings in an execution of lazy-rewind.

3.3. Proof Overview

In order to prove the correctness of the simulation, we need to show that for every
adversarial verifier V ∗, the simulator runs in polynomial time and the output distribution
is “correct.” The running time of Sim can be bound just as in [19] and [27]. Sim spends
a maximum of poly(n) time on responding to each verifier message. It follows from the
recursive structure of the simulator that the number of messages exchanged is doubled
for each level of the recursion; since we have a recursive depth of log2 T , the running
time of the simulator is bounded by poly(n) · T · 2log2 T = poly(n) · T 2 = poly(n).

Intuitively, the correctness of the output view follows from the fact that Sim chooses
Stage Init and Stage 1 messages honestly, and that the protocol used in Stage 2 is witness
indistinguishable (this requires a proof later since Sim performs rewinds). Therefore, as
long as Sim gets stuck (outputs ⊥) with negligible probability, taken over the random
tapes of Sim (the random tape of V ∗ is fixed during black box simulation), the output
distribution is correct. Towards this goal we will show that the probability of getting
stuck at any point in the simulation is negligible.

Recall that Sim can only get stuck on a particular thread when the simulation reaches
the END of some session and could not extract the fake witness. Following the approach
of [27], we show that the probability of getting stuck on any session and any thread
is negligible. Since there are only polynomially many sessions and threads, the main
theorem follows by the union bound.

Fix any thread h and session i; from now on we refer to it as the “main” thread and the
“main” session, and call all other threads and sessions “auxiliary.” We say a random tape
of Sim is bad if Sim gets stuck at the END of main session i on the main thread thread
h; all other random tapes are called good (including those that got stuck on an auxiliary

56 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

session or thread). The high-level idea, just like in [27], is to show that for every bad
random tape, there exists super-polynomially many good random tapes. Furthermore,
the good tapes corresponding to any two bad tapes are disjoint. Hence the probability
of a tape being bad is negligible. From here on, START and END refer to those on the
main session and thread unless otherwise noted.

Here is how we generate good random tapes from bad ones. Recall that on a bad tape,
the simulator reaches END without extracting a “fake witness.” Hence, all slots on the
main thread are convincing (or else we would never reach END), but no corresponding
convincing slots are on an auxiliary thread prior to END (since otherwise Sim would
have extracted a witness). Intuitively, to generate a good tape from a bad one we just
need to “swap” a convincing slot from the main thread into an auxiliary thread. After the
swapping, should the simulation reaches END of the main session on the main thread, the
newly formed convincing slot on the auxiliary thread, together with the corresponding
convincing slot on the main thread, will allow Sim to compute the fake witness. Hence
the simulation may continue on without getting stuck. So far we have not deviated from
the analysis of [27].

To actually “swap” convincing slots, we modify the random tape of Sim. The basic
operation that we perform on the random tape is to exchange the randomness used by
sibling blocks (i.e., the segments of the random tape used to simulate these blocks).
Since sibling blocks are identical modulo randomness, swapping the random tape be-
tween siblings swaps the simulation result in the two blocks exactly. (In the rest of the
paper, we use the convention that after swapping a block B with its sibling B ′, the “new
block B” refers to the block in the old location of B ′ with the same content as the “old
block B ,” i.e., (B ′

loc,Bcontent).) Note that this “exact swap” property is made possible by
the lazy nature of Sim; the same property does not hold for the KP simulator where the
second sibling benefits from fake witnesses extracted during the execution of the first
sibling.

Intuitively, we call a block on the main thread composable if it satisfies the following
properties:

Goodness. Swapping a composable block with its sibling produces a good random
tape.

Composability. The above swap leaves other composable blocks on the main thread
composable.

Reversibility. Given the random tape obtained after swapping a composable block,
there is a procedure undo that reverses the swap. This ensures that the resulting good
tape is unique.

Consider K composable blocks with an ordering such that each swap will leave the
successive composable blocks still composable. Then, we can generate 2K − 1 good
random tapes by choosing to swap each block or not in the ordering. By a simple count-
ing argument, we will show that for any bad tape, there are k − 2 log2 T composable
blocks with an ordering, therefore generating 2k−2 log2 T distinct good tapes. We then
use the undo procedure to show that different bad tapes generate different good tapes.
Thus, if k ∈ ω(log2 T) = ω(logn), the probability of having a bad tape is negligi-
ble.

Concurrent Zero Knowledge, Revisited 57

3.4. The Actual Proof

Formally, Sim may output ⊥ for two reasons. Firstly, it may reach END without en-
countering two matching convincing slots after the START of the session; we call this a
rewinding failure. Secondly, Sim may not be able to compute a fake witness even though
it has access to matching special-sound transcripts; we call this a special-sound failure.
Special-sound failures are easy to upper bound; see Claim 8. As mentioned, the main
part of the proof is bounding the probability of rewinding failures.

3.4.1. Composable Blocks

We first define the notion of composable blocks and show that they satisfy the three
properties of goodness, composability and reversibility. Let us fix a particular main
session and main thread, and formally define a random tape to be bad if Sim encounters
a rewinding failure in the main session on the main thread; otherwise a random tape is
good. From here on START and END refers to those of the main session and main thread,
unless otherwise noted.

Definition 8 (Composable block). Consider an execution of Sim with any random tape
(not necessarily bad). A block B , with sibling B ′, is called a composable block (with
respect to the main thread and session), if it satisfies the following conditions:

Main block condition: B contains the main thread h, a convincing slot of the main
session (not necessarily on the main thread) and does not contain START (of the main
session on the main thread). The last condition is equivalent to saying that the prefix
of B contains START.

Sibling condition: B ′ does not contain any END (of the main session on the main
thread).

Tracing condition: The simulation after START but before B contains only convincing
slots on the main thread h, and contains no convincing slots on the auxiliary threads.

As we will soon see, the Main block condition and the Sibling condition implies good-
ness and composability, while the Tracing condition enables the undo procedure, which
implies reversibility. We also define an ordering relation > on composable blocks.

Definition 9. Let C and B be two blocks on a common thread. We write C > B iff

• C and B are disjoint, and C occurs before B (Case 1 in Fig. 4), or
• C and B are not disjoint, and C is a larger block that contains B (Case 2 in Fig. 4)

Note that given two blocks on the same thread, if they are not disjoint, then one must
contain another. Thus > is a total order on any set of blocks that share a common thread.

Finally, we define a deterministic undo function on random tapes in order to achieve
reversibility:

• Given a random tape τ ′, execute lazy-rewind with the tape τ ′. Call a block that
does not contain the main thread special if it contains a convincing slot of the main
session.

58 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

Fig. 4. Two possible block diagrams after the swapping procedure in Claim 2 (B and B ′ is swapped). The
main thread is shown in a thick line, and a composable block C > B , drawn with dashed lines, is shown in
two possible configurations.

• Let D be the first special block after START; that is, any other special block E after
START satisfies D > E. Swap the parts of τ ′ used by D and its sibling, and output
the new random tape.

Claim 2. Let τ be a random tape (not necessarily bad). Let B be a composable block
with sibling B ′ when lazy-rewind is executed with random tape τ , and let V be the
common prefix of B and B ′. Furthermore, let τ ′ be the random tape obtained after
swapping the blocks B and B ′. Then:

1. [Goodness]: τ ′ is a good random tape.
2. [Composability]: Any composable block C on τ with C > B is still composable

on τ ′.
3. [Reversibility]: undo(τ ′) = τ .

Proof. Recall that after the swapping, blocks B and B ′ are exchanged in the simula-
tion.

Goodness. When lazy-rewind is executed with τ ′, B ′ will now be on the main thread
(see Fig. 4). Recall that B ′ does not contain any END of the main session (sibling condi-
tion). Thus, if the END of the main session ever occurs on the main thread, it will occur
after both B and B ′ are executed. In that case, both the convincing slot in B (which is
now in an auxiliary thread) and the corresponding convincing slot on the main thread
(which must be there before END occurs) together forms a matching pair of convincing
slots that occurs after START. Moreover, this pair of convincing slots occur before END.
Thus τ ′ is a good tape.

Composability. Given a composable block C > B with sibling C′ on τ , we have two
cases as shown in Fig. 4. In case 1, when C is disjoint from B , the swapping of B and B ′
does not change the simulation inside C, C′, and between START and C. Respectively,
this leaves the main block condition, sibling condition, and tracing condition of C intact
on τ ′. On the other hand, in case 2 where C contains B , the swapping of B and B ′
again leaves the simulation inside C′ and between START and C unchanged, keeping
the sibling condition and tracing condition intact. In addition, since C still contains B

under τ ′, and B in turn contains a convincing slot, the main block condition still holds as
well (other parts of C may have changed). In both cases, C continues to be a composable
block on τ ′.

Reversibility. Finally, we need to show that undo(τ ′) = τ . After the swap (execut-
ing with random tape τ ′), block B no longer contains the main thread and contains a

Concurrent Zero Knowledge, Revisited 59

convincing slot; it is therefore a special block. Next we show that any block C > B is
not special. Either C occurs strictly before B , or it contains B (in this case C also con-
tains B ′). In the first case, block C is unchanged during the swap, and therefore is not
special because it does not contain a convincing slot (tracing condition). In the second
case, since C contains B ′ and therefore the main thread, it is not special. Thus, undo will
always locate B as the first special block and perform the correct inverse swapping to
recover τ .3 �

The next claim demonstrates how to compose multiple composable blocks.

Claim 3. Let τ be a bad random tape, B = {B1, . . . ,Bp} be a set of composable
blocks for τ . Then, we can generate a set of good random tapes, S(τ, B), by swapping
the various composable blocks in B, so that the following holds:

1. |S(τ, B)| ≥ 2p − 1.
2. For any bad tape τ ′
= τ and any set of composable blocks B′ for τ ′, S(τ, B) ∩

S(τ ′, B′) = ∅.

Proof. Since all composable blocks lie on the main thread, there is a total ordering of
the blocks. Without loss of generality, let B1 > B2 > · · · > Bp . Consider any non-empty
subsequence of 1, . . . , p, say u1, . . . , uq . There are 2p − 1 such sequences. Let τu1...uq

be the random tapes obtained from τ by swapping the blocks Bui
with its sibling, in the

order of i = q, q − 1, . . . ,1.
From Claim 2 it follows that τu1...uq is a good random tape. We further note that given

τu1...uq , we can recover the blocks Bu1 , . . . ,Buq by repeatedly applying undo until we
reach a bad tape (it will always be τ). Therefore given two different subsequences,
u1, . . . , uq and v1, . . . , vq ′ , we must have τu1...uq
= τv1...vq′ in order for undo to recover
a different set of swapped blocks. Thus, we obtain 2p − 1 distinct good random tapes.

Similarly, take any α ∈ S(τ, B) and β ∈ S(τ ′, B′) (good tapes produced by swapping
from τ and τ ′, respectively). Applying undo repeatedly on α until the result is a bad
tape will result in τ , while applying the same procedure on β will give τ ′. If τ
= τ ′,
then we must have α
= β . �

Corollary 4. Suppose every bad random tape has p composable blocks. Then, the
probability of a random tape being bad is at most 1/2p .

3.4.2. Number of Composable Blocks

We now proceed to count the number of composable blocks. First we introduce the
notion of minimal containing blocks (this is identical to minimal rewinding intervals as

3 Note that we here rely on the “exact” swapping of sibling blocks (a consequence of the lazy property
of Sim). Suppose that sibling blocks are not symmetric and that the second sibling uses information obtained
in the first sibling to compute fake witnesses. Then, if the END of an auxiliary session occurs before the
convincing slot in B ′ , it may now output ⊥ after the swapping (since it has lost the information collected in
B after the swap). In this case, block B would not exist when executing Sim with random tape τ ′ , and undo
would fail.

60 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

defined by [27]). For each slot, its minimal containing block is the minimal block on the
main thread that contains the slot. Claims 5 and 6 below together show that there are at
least k − 2 logT composable blocks when we run Sim with a bad tape. Claim 5, which
counts the number of minimal containing blocks, is identical to that of [27]; we include
it here for completeness.

Claim 5. In an execution of Sim with a bad random tape, there are at least k minimal
containing blocks.

Proof. As observed earlier, on a bad tape there will be k convincing slots of the main
session on the main thread (in order to reach END). We merely need to show that for
each slot, its respective minimal containing blocks are distinct. Suppose that two slots
share the same minimal containing block of length t . Since slots on the same thread are
disjoint, we reach a contradiction as one of the slots must be properly contained in one
of the two smaller blocks of size t/2. �

Claim 6. Consider an execution of Sim with a bad random tape τ . If there are k′
minimal containing block, then there are at least k′ − 2 logT composable blocks.

Proof. Let B be a minimal containing block that does not contain START or END.
Since START (or END) can only be in at most logT different blocks on the main thread
(since that is the recursion depth), we conclude that there are at least k′ − 2 logT such
blocks.4 It remains to show that B is a composable block. Let B ′ be the sibling of B .

The main block condition of composable blocks follows directly, while the tracing
condition on the main thread actually holds for the whole simulation from START to
END, since τ is a bad random tape. Thus, we only need to show that the sibling condition
is satisfied, i.e. B ′ does not contain END. Assume to the contrary that B ′ does contain
END. Since B and B ′ are siblings with a common starting point and B contains a slot
of the main session, B ′ must contain that same slot in a convincing manner in order
to reach END. On the other hand, B does not contain END. Thus B ′ will be executed
before the main thread reaches END (if at all), and this convincing slot will allow Sim
to compute the witness of the main session by the same argument in Claim 2. This
contradicts the fact that τ is a bad tape. �

3.4.3. Concluding the Proof

We first show that Sim gets stuck with negligible probability, and then use it in Claim 9
to conclude that the output distribution of SimV ∗

is computationally (resp. statistically)
indistinguishable from the real view of V ∗.

Claim 7. Sim encounters rewinding failures with negligible probability.

Proof. As mentioned before, since there are only polynomially many sessions and
threads, it suffices to show that the probability of the simulator getting stuck on any

4 This is the same counting argument used in [27] to count minimal rewinding intervals without START or
END.

Concurrent Zero Knowledge, Revisited 61

fixed thread and session is negligible. The union bound then shows that Sim overall gets
stuck with negligible probability

For any fixed thread and session, combining Claims 3, 5 and 6 show that a random
tape is bad with probability at most

1

2k−2 logT

This is negligible in n since T is polynomial in n and k = ω(logn). �

Claim 8. Sim encounters special-sound failures with negligible probability.

Proof. Suppose for the sake of contradiction that Sim encounters special-sound fail-
ures with non-negligible probability. Consider an unbounded adversarial prover P ∗ that
forwards the prover messages of the prefix of the SS-POK (Stage Init), in a random ses-
sion and random thread from an execution of SimV ∗

, to an outside honest verifier VSS

of the SS-POK (essentially we are forwarding messages between V ∗, who acts as the
prover of the SS-POK in Stage Init, to the outside honest verifier VSS). Since an execu-
tion of SimV ∗

only has polynomially many instances of Stage Init, P ∗ would contradict
the special-soundness property with non-negligible probability (i.e., produce a prefix of
the SS-POK where is it possible for the witness-computing procedure to fail, even when
supplied with two different completions of the prefix).

The actual “forwarding” procedure of P ∗ has a subtlety due to the rewinding nature
of Sim. In the middle of forwarding the prefix of a SS-POK from V ∗ to VSS , Sim may
decide to rewind V ∗ partially to an earlier point in the SS-POK proof. In a naive for-
warding scheme, this would require VSS to be rewound as well to generate fresh verifier
messages (which cannot be done). Fortunately, since the prefix of our SS protocol has
only two messages (non-interactive), such a rewinding cannot occur. �

Claim 9. If the argument of knowledge in Stage 2 is WI (resp. statistical WI), then the
ensembles {ViewP

V ∗(x, z)}x∈L,z∈{0,1}∗ and {Sim(x, z)}x∈L,z∈{0,1}∗ are computationally
(resp. statistically) indistinguishable (as a function of |x|).

Proof. We consider polynomially many intermediate hybrids Simi , 0 ≤ i ≤ m + 1,
that receive the real witnesses to the statements x1, . . . , xm. Simi proceeds as Sim until
the ith Stage 2 proof on the output thread, after which Simi continues in a straight-
line simulation with V ∗ using the real witnesses for Stage 2 proofs. (We note that a
similar type of “cut-off” simulator was used in [1].) Simi will output ⊥, however, should
Sim encounter a rewinding or special-sound failure during the ith proof. Clearly, Sim0
generates ViewP

V ∗(x, z) and Simm+1 generates Sim(x, z). Thus, it is enough to show
that for all i, the output of Simi and Simi+1, are computationally (resp. statistically)
indistinguishable.

We introduce yet another hybrid Sim′
i that proceeds as Simi except that it utilizes the

extracted fake witness for the ith proof. Sim′
i and Simi+1 differ only in that Simi+1 has

more chances to output ⊥. But by Claims 7 and 8, both actually outputs ⊥ with negli-
gible probability, and therefore they are statistically close. On the other hand, Simi and
Sim′

i differ only in the ith proof, which both simulators run in a straight-line fashion,

62 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

Fig. 5. A pictorial representation of a rewinding schedule with splitting factor 3.

without rewinds. Therefore they are computationally (resp. statistically) indistinguish-
able by the WI property of the Stage 2 proof. Thus, the output of Simi and Simi+1 are
indeed computationally (resp. statistically) indistinguishable. �

Claim 9 completes the proof of Theorem 1.

Remark. Since we have shown that our lazy simulator is a concurrent zero-knowledge
simulator, it follows directly that the KP simulator is also a concurrent zero-knowledge
simulator: because the KP simulator receives more information than the lazy simulator
at any point during the simulation (i.e. a bigger history repository h), the probability
that the KP simulator outputs ⊥ is no more than the probability that the lazy simulator
outputs ⊥. Thus, the same argument presented in Claim 9 can be applied also to the KP
simulator.

3.5. Improving the Running Time of the Simulator

A faster simulator gives tighter “knowledge security” [12,14]. In this section, we bound
the running time Sim by bounding the number of queries the Sim makes to V ∗. Recall
that T is the maximum number of queries needed in a straight-line execution of V ∗.
This means the recursive depth of lazy-rewind(T , ·, ·) invoked by Sim is at most log2 T .
Since lazy-rewind doubles the number of queries per recursive depth, Sim makes at most
T 2log2 T = T 2 queries.

We can reduce the number of queries by following the approach of [24]. Currently,
when lazy-rewind is asked to simulate t messages (a block of size t), it divides the t

messages into two halves and recursively calls itself on each half (creating blocks of
size t/2). One approach would be for lazy-rewind to divide each block into smaller
sub-blocks, thus reducing the recursive depth. For example, an illustration of dividing a
block into 3 equal parts is shown in Fig. 5 (this means lazy-rewind(t, ·, ·) would make
6 recursive calls of the form lazy-rewind(t/3, ·, ·)). Suppose we divide each block into g

equal sized sub-blocks; we call g the splitting factor. Then it immediately follows that
the recursive depth of lazy-rewind(T , ·, ·) becomes logg T , and the number of queries

made by Sim is reduced to at most T 2logg T .
Now that the Sim is making less queries overall, can it still successfully generate a

view of V ∗? It is easy to see that the combinatorial properties of composable blocks do
not change with this generalized rewinding scheme. Therefore, we only need to count
the number of composable blocks in this new rewinding schedule to bound Sim’s failure
probability. As in Sect. 3.4.2, we start by counting the number of minimal containing
blocks. The following two claims mirror Claims 5 and 6:

Concurrent Zero Knowledge, Revisited 63

Claim 10. In an execution of Sim with splitting factor g on a bad random tape, there
are at least k/(g − 1) minimal containing blocks.

Proof. Recall that in an execution with a bad tape, there are k convincing slots of
the main session on the main thread (in order to reach END). Since each slot has its
respective minimal containing block, and any block can be the minimal containing block
for at most g−1 slots (by the pigeon hole principle), there are at least k/(g−1) minimal
containing blocks. �

Claim 11. Consider an execution of Sim with splitting factor g on bad random tape τ .
If there are k′ minimal containing block, then there are at least k′ −2 logg T composable
blocks.

Proof. As shown in Claim 6, it still holds that any minimal containing block that does
not contain START or END is a composable block. Since START (or END) can only be
in at most logg T different blocks on the main thread (since that is the recursion depth),
we conclude that there are at least k′ − 2 logg T composable blocks. �

Following the claims in Sect. 3.4.3, we conclude that Sim with splitting factor g is
still a valid zero-knowledge simulator as long as

1

2k/(g−1)−logg T

is negligible in the security parameter n; this holds whenever k/g ∈ ω(logn). In par-
ticular, for any ε > 0, if we set g = 21/ε and k = ω(logn), then protocol ConcZKArg
remains secure and ω(logn)-rounds, and Sim makes at most T 1+ε queries to V ∗ where
T is the maximum number of queries needed in a straight-line interaction with V ∗.

3.6. Achieving a Precise Simulation

Precise zero-knowledge, introduced by Micali and Pass [22], considers an “execution-
by-execution” notion of knowledge-tightness; it requires that the view of any adversarial
verifier V ∗ be simulated in time closely related to the actual running time (as opposed
to the worst-case running time) spent by V ∗ in the view generated. More formally, a
zero-knowledge simulator has precision p(t) if for all views V of V ∗ generated by the
simulator, if V ∗ takes time t in the view V , then the simulator must have generated the
view in time p(t). See [22] for more detailed discussions and definitions.

Pandey et al. [24] recently extended precise ZK to the concurrent setting. The crux
of [24] is a slightly modified KP simulator:

1. The KP simulator is modified to obliviously rewind based on time, i.e., the number
of Turing machine steps taken by V ∗, instead of the number of messages sent
by V ∗.

2. The KP simulator is modified to output the view of V ∗ on the “first” thread that it
simulates (i.e., outputs the view in the first sibling block instead of the second).

In fact, the second modification could not be directly analyzed with the techniques
of [24] (based on the PRS analysis). Instead, [24] asks that sibling blocks be simu-
lated in parallel (instead of one after another); this requires subtle modifications to the

64 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

PRS analysis, and the addition of a doubling trick to guess the running time of V ∗ so
that the simulator knows how many recursive levels to simulated in parallel.

Looking at the lazy KP simulator, it already outputs the view of V ∗ on the “first”
simulation thread. Therefore, to make the lazy KP simulator precise, we only need to
modify it to rewind based on time. In other words, simply let lazy-rewind(t, ·, ·) simulate
V ∗ for t Turing machine steps instead of t messages. The observations in Sect. 3.5 then
allow us to obtain (and expand to arguments of knowledge) the main theorems of [24],
namely5:

Theorem 12. For any integer functions k and g satisfying k(n)/g(n) ∈ ω(logn), there
exists a O(k(n))-round concurrent zero-knowledge argument of knowledge for all of
NP, based on one-way functions, with precision p(t) ∈ O(t2logg t). In particular, for
any ε > 0, there exists a ω(logn)-round instantiation of the protocol with precision
p(t) ∈ O(t1+ε).

Acknowledgements

We are very grateful to Manoj Prabhakaran, Alon Rosen and Amit Sahai for helpful
discussions and comments. We are also deeply grateful to Oded Goldreich for his great
comments about the presentation of our results.

Appendix A. The PRS Analysis [27]

On Counting Arguments The PRS approach of mapping bad random tapes to good
random tapes is different from the approach taken in this paper. In this section, we
provide a brief overview of the PRS analysis.

Given a bad random tape, the PRS analysis deals with minimal rewinding intervals,
defined to be minimal blocks that contain a slot, without containing START or END.6

Since minimal rewinding intervals are not “composable” when they overlap, the PRS
analysis focuses on a (maximal) set of disjoint minimal rewinding intervals. To make up
for lost intervals due to overlapping, the PRS analysis swaps each minimal rewinding
interval not only with its sibling (as we do), but also with its “cousins.” See Fig. A.1 for
an illustration of cousins blocks. Note that a block may have many cousins (but only
one sibling). Moreover, swapping a block with its cousins may require an exchange of
random tape segments outside the two blocks, and therefore produce changes in the
simulation outside of the cousins

Next, the analysis needs to determine for each rewinding interval, how many cousins
swaps will result in a new distinct random tape; this step is complicated because a large
portion of the random tape maybe shuffled to perform a cousin swap, destroying other
potential rewinding intervals. Each rewinding interval is thus assigned a weight corre-
sponding to the number of available cousins. Finally, an analysis is used to lower-bound

5 As in [22] and [24], we also need to appropriately pad the verifier messages to ensure that the simulator
has enough time to generate its messages; see [22] and [24] for more details.

6 Here we adopt some of our terminologies to explain the PRS analysis.

Concurrent Zero Knowledge, Revisited 65

Fig. A.1. A pictorial representation of the original KP rewind schedule, extended from Fig. 5 of [27]. We
show how a rewinding interval B is related to its sibling (B ′), its parent (C), and its cousins (B ′,B ′′,B ′′′). To
swap block B with its cousin B ′′, one needs to exchange the randomness used on the two highlighted thread.

the sum of weights over the chosen (maximal) subset of disjoint rewinding intervals.
(Recall that, in contrast, our analysis is local—we are only required to show that a sin-
gle swap of a block with its sibling results in one new random tape.)

On the “Hybrid Simulator” To enable the above counting argument, the PRS anal-
ysis bounds the failure probability of a “hybrid rewinding simulator,” which uses the
witness of the input statement to produce a simulated view of V ∗. More specifically,
the hybrid simulator proceeds like the actual simulator to extract “fake witnesses”—
and fails whenever extraction does not work—but uses the real witness to complete the
Stage 2 proof. Next, the PRS analysis shows that the hybrid simulator is indistinguish-
able from the real simulator. This relies on the Stage 2 proof being committed-verifier,
so that the adversarial verifier cannot extract the witness used in the Stage 2 proof (and
thus distinguish the two simulators), even though there are many rewinds. In contrast,
we do not use a hybrid argument regarding two rewinding simulators (see Claim 9), and
so our analysis directly applies also to committed-verifier protocols.

References

[1] B. Barak, M. Prabhakaran, A. Sahai, Concurrent non-malleable zero knowledge, in FOCS’06 (2006),
pp. 345–354

[2] M. Bellare, O. Goldreich, On defining proofs of knowledge, in CRYPTO ’92 (1992), pp. 390–420
[3] M. Blum, How to prove a theorem so no one else can claim it, in Proc. of the International Congress of

Mathematicians (1986), pp. 1444–1451
[4] R. Canetti, O. Goldreich, S. Goldwasser, S. Micali, Resettable zero-knowledge (extended abstract), in

STOC ’00 (2000), pp. 235–244
[5] R. Canetti, J. Kilian, E. Petrank, A. Rosen, Black-box concurrent zero-knowledge requires ω̃(logn)

rounds, in STOC ’01 (2001), pp. 570–579
[6] R. Cramer, I. Damgård, B. Schoenmakers, Proofs of partial knowledge and simplified design of witness

hiding protocols, in CRYPTO ’94 (1994), pp. 174–187

66 R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam

[7] I. Damgård, Efficient concurrent zero-knowledge in the auxiliary string model, in EUROCRYPT ’00
(2000), pp. 418–430

[8] D. Dolev, C. Dwork, M. Naor, Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)
[9] C. Dwork, A. Sahai, Concurrent zero-knowledge: Reducing the need for timing constraints, in CRYPTO

’98 (1998), pp. 177–190
[10] C. Dwork, M. Naor, A. Sahai, Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004)
[11] U. Feige, A. Shamir, Witness indistinguishable and witness hiding protocols, in STOC ’90 (1990), pp.

416–426
[12] O. Goldreich, Foundations of Cryptography—Basic Tools (Cambridge University Press, Cambridge,

2001)
[13] O. Goldreich, A. Kahan, How to construct constant-round zero-knowledge proof systems for NP.

J. Cryptol. 9(3), 167–190 (1996)
[14] O. Goldreich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity for all languages in

NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)
[15] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J.

Comput. 18(1), 186–208 (1989)
[16] V. Goyal, R. Moriarty, R. Ostrovsky, A. Sahai, Concurrent statistical zero-knowledge arguments for NP

from one way functions, in ASIACRYPT ’07 (2007), pp. 444–459
[17] I. Haitner, M.-H. Nguyen, S.J. Ong, O. Reingold, S.P. Vadhan, Statistically hiding commitments and

statistical zero-knowledge arguments from any one-way function. SIAM J. Comput. 39(3), 1153–1218
(2009)

[18] J. Håstad, R. Impagliazzo, L. Levin, M. Luby, A pseudorandom generator from any one-way function.
SIAM J. Comput. 28, 12–24 (1999)

[19] J. Kilian, E. Petrank, Concurrent and resettable zero-knowledge in poly-logarithm rounds, in STOC ’01
(2001), pp. 560–569

[20] J. Kilian, E. Petrank, C. Rackoff, Lower bounds for zero knowledge on the internet, in FOCS ’98 (1998),
pp. 484–492

[21] H. Lin, R. Pass, W.-L. Dustin Tseng, M. Venkitasubramaniam, Concurrent non-malleable zero knowl-
edge proofs, in CRYPTO (2010), pp. 429–446

[22] S. Micali, R. Pass, Local zero knowledge, in STOC ’06 (2006), pp. 306–315
[23] M. Naor, Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)
[24] O. Pandey, R. Pass, A. Sahai, W.-L. Dustin Tseng, M. Venkitasubramaniam, Precise concurrent zero

knowledge, in EUROCRYPT ’08 (2008), pp. 397–414
[25] R. Pass, M. Venkitasubramaniam, On constant-round concurrent zero-knowledge, in TCC ’08 (2008),

pp. 553–570
[26] M. Prabhakaran, A. Sahai, Concurrent zero knowledge proofs with logarithmic round complexity, Cryp-

tology ePrint Archive, Report 2002/055 (2002). http://eprint.iacr.org/2002/055
[27] M. Prabhakaran, A. Rosen, A. Sahai, Concurrent zero knowledge with logarithmic round-complexity,

in FOCS ’02 (2002), pp. 366–375
[28] R. Richardson, J. Kilian, On the concurrent composition of zero-knowledge proofs, in Eurocrypt ’99

(1999), pp. 415–432
[29] A. Rosen, A note on the round-complexity of concurrent zero-knowledge, in CRYPTO ’00 (2000),

pp. 451–468
[30] A. Rosen, The round-complexity of black-box concurrent zero-knowledge, Ph.D. thesis, Weizmann

Institute of Science, 2003

http://eprint.iacr.org/2002/055

	Concurrent Zero Knowledge, Revisitedt0
	Abstract
	Introduction
	Previous Techniques
	Our Techniques
	Overview

	Preliminaries
	Black-Box Concurrent Zero-Knowledge
	Other Primitives
	Witness-Indistinguishable (WI) Proofs [FS90]
	Proofs and Arguments of Knowledge (POK, AOK) [FS90,BG92]
	Special-Sound (SS) Proofs [CDS94]

	Known Protocols

	Black-Box Concurrent Zero-Knowledge Arguments of Knowledge
	The Protocol
	The "Lazy KP" ZK Simulator
	Description of Sim
	Description of lazy-rewind(t,s,h)

	Proof Overview
	The Actual Proof
	Composable Blocks
	Number of Composable Blocks
	Concluding the Proof

	Improving the Running Time of the Simulator
	Achieving a Precise Simulation

	Acknowledgements
	Appendix A. The PRS Analysis [PRS02]
	On Counting Arguments
	On the "Hybrid Simulator"

	References

