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By using a mean-field approach, based on the Popov approximation, we calculate the temperature depen-
dence of the condensate fraction of an interacting Bose gas ofN atoms confined in an anisotropic harmonic
trap. For systems interacting with repulsive forces we find a significant decrease of the condensate fraction and
of the critical temperature with respect to the predictions of the noninteracting model with the same value of
N. An analytic result for the shift of the critical temperature holding to first order in the scattering length is also
derived.@S1050-2947~96!51212-6#

PACS number~s!: 03.75.Fi, 02.70.Lq, 67.40.Db

The recent experiments on Bose-Einstein condensation
~BEC! in magnetically trapped atomic vapors@1# have stimu-
lated a new interest in the theoretical study of inhomoge-
neous Bose gases. Although the atom clouds realized in
these experiments are very dilute, the effects due to the in-
teratomic forces are known to be important at low tempera-
ture. In particular, the shape and the energy of the condensate
cloud @2,3# as well as the dispersion law of the elementary
excitations@4# are strongly affected by the interaction. In the
very recent experiments by Meweset al. @5#, Jin et al. @6#,
and Meweset al. @7#, the measured release energy and exci-
tation frequencies of the collective modes have been found to
be in good agreement with the theoretical predictions,
thereby revealing important features of the trapped Bose
condensed gases that are undoubtedly connected to the inter-
particle interaction. The question of how two-body forces
affect the thermodynamic properties of these systems has
also been the object of several theoretical investigations@8#.
The critical temperature of the BEC transition in a homoge-
neous dilute gas has been recently calculated@9# using the
renormalization-group theory. The result is a shift towards
higher temperatures, with respect to the prediction of the
ideal Bose gas. Similar results have also been obtained with
path integral Monte Carlo simulations@10#; however, no de-
finitive conclusions have so far been drawn on the behavior
of the condensate fraction, nor of the critical temperature in
the presence of a confining potential@11#. The first experi-
mental data on these relevant quantities are now becoming
available@5,12#.

Finite-size effects on the temperature dependence of the
condensate fraction and on the critical temperature in the
presence of an external trap have recently been investigated
by several authors within the noninteracting model@13,14#.
In the presence of an anisotropic harmonic potential of the
form Vext5m(vx

2x21vy
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2z2)/2 this model predicts, in
the large-N limit, the well known results@8# for the critical
temperature
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cillator frequencies, and for the temperature dependence of
the number of atoms in the condensate
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Results~1! and ~2! are obtained using the semiclassical ap-
proximation for the excited states and setting the chemical
potential equal to zero at the transition. The first correction to
the critical temperature~1! due to the finite number of atoms
in the trap has recently been shown@14# to obey the law
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wherev̄5(vx1vy1vz)/3 is the mean frequency. This re-
sult can be obtained by still employing the semiclassical de-
scription for the excited states, while keeping the quantum
valuem53\v̄/2 for the chemical potential at the transition.
The discretization of the excited energy levels gives rise to
higher-order corrections todTc

0

In this Rapid Communication we present results for the
temperature dependence of the condensate fraction and for
the critical temperature of a dilute Bose gas interacting with
repulsive forces and confined in a harmonic potential. We
use a mean-field approach and the semiclassical approxima-
tion for the excited states. This approximation is expected to
be accurate for temperatures significantly larger than the os-
cillator temperature\v/kB . This condition is satisfied well
in a useful range of temperatures, providedN is sufficiently
large. In the presence of repulsive interactions we find that
the thermal depletion of the condensate is enhanced and the
critical temperature is shifted towards lower temperatures.
These results go in the opposite direction compared to the
homogeneous case, revealing an interesting behavior exhib-
ited by a confined Bose gas.

Our starting point is the finite-temperature generalization
of the Gross-Pitaevskii equation within the Popov approxi-
mation @15,16#
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The first equation describes the space variations of the con-
densate wave functionF(r )5^c(r )& at statistical equilib-
rium, wherec(r ) is the particle field operator. The second
one is the equation for the fluctuations of the condensate
F8(r ,t)5^c(r ,t)&2F(r ), which give the elementary exci-
tations of the system. In Eqs.~4! and~5!, Vext is the external
potential,m is the chemical potential,g54p\2a/m is the
interaction coupling constant fixed by thes-wave scattering
length a, n0 is the equilibrium condensate density
n0(r )5uF(r )u2, n(r )5^c†(r )c(r )& is the particle density,
and finallynT is the density of the thermally excited particles
nT(r )5n(r )2n0(r ). Equations ~4! and ~5! are obtained
from the equation of motion for the particle field operator
c(r ,t), by treating the cubic interaction term
gc†(r ,t)c(r ,t)c(r ,t) in the mean-field scheme. The Popov
approximation consists in neglecting the anomalous density
mT(r )5^c(r )c(r )&2F(r )2 entering the interaction term.
As discussed in Ref.@16# this approximation is expected to
be good for high temperatures wheremT!nT and also in the
low-temperature regime wherenT andmT are of the same
order but both are negligible. The present mean-field ap-
proach is expected to provide correctly the thermodynamic
properties of the system, apart from the critical behavior near
Tc where the mean-field approach is known to fail.

The energies of the elementary excitations can be explic-
itly obtained from Eq.~5! using the semiclassical WKB ap-
proximation. Let us write the fluctuations of the condensate
in the form F8(r ,t)5Aexp@iw(r ,t)#1Bexp@2iw(r ,t)#. In
the WKB approximation the coupled equations forF8(r ,t)
andF8* (r ,t), given by Eq.~5! and its complex conjugate,
can be solved in an explicit way, yielding the semiclassical
excitation spectrum

e~p,r !5AS p22m1Vext~r !2m12gn~r ! D 22g2n0
2~r !,

~6!

wherep5\¹w and e52\]w/]t are, respectively, the im-
pulse and the energy of the excitation. For a homogeneous
system at low temperatures, wherenT can be neglected, the
above excitations coincide with the usual Bogoliubov spec-
trum. The quasiparticles with energiese(p,r ) are distributed
according to the Bose distribution function
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whereas the particle distribution function can be obtained
from the Bogoliubov canonical transformations and is given
by
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where the partial derivative is taken at constant condensate
densityn0. The noncondensate density is then obtained by
integratingF(p,r ) in momentum space

nT~r !5E d3p

~2p\!3
F~p,r !, ~9!

and the total number of atoms out of the condensate is given
by

NT5E d3rnT~r !. ~10!

In the above equations the chemical potentialm is fixed by
the normalization condition

N5N0~T!1NT , ~11!

whereN0(T)5*d3rn0(r ) is the number of atoms in the con-
densate, withn0(r ) fixed by the solution of Eq.~4!.

We have solved Eqs.~4!–~11! in a self-consistent way
employing the following procedure:

~i! Equation~4! is solved, using the method described in
Ref. @3# for the condensate densityn0(r ) and the chemical
potentialm, by keeping fixed the numberN0(T) of particles
in the condensate and the densitynT(r ) of thermally excited
atoms.

~ii ! The condensate density and chemical potential found
in step~i! are used to calculate the excitation energies from
Eq. ~6!. A new densitynT is then obtained from Eq.~9!, and
new values for the number of atoms out of the condensate,
NT , and in the condensate,N0(T), are derived from Eqs.
~10! and ~11!.

~iii ! Steps~i! and step~ii ! are repeated until convergence
is reached.

It is worth noting that the present method accounts for
finite-size effects because of the quantum nature of Eq.~4!
for the order parameter and of the corresponding value of the
chemical potential. In particular, in the absence of interac-
tions, it reproduces result~3! for the shift of the critical tem-
perature.

In Fig. 1 we present our results for the temperature de-
pendence of the condensate fractionN0(T)/N for a system of
5000 Rb atoms interacting with scattering lengtha5110a0,
wherea0 is the Bohr radius, which is trapped in a deformed
harmonic potential fixed byaHO5(\/mv)1/257.9231025

cm with the deformation parameterl5vz /vx5vz /vy

equal toA8, according to the experimental conditions of Ref.
@6#. We have also considered the case of a spherical trap
~dotted lines!. As clearly emerges from the figure, finite-size
effects are not negligible for this value ofN; however, inter-
action effects are more important and result in a sizable
quenching of the condensate fraction. Contrarily the effects
of the deformation of the trap are always very small. The
sizable enhancement of the thermal depletion predicted by
our calculation follows from the fact that in the presence of
the harmonic trap the overlap between the condensed and
noncondensed densities is small. As a consequence it is en-
ergetically favorable for the atoms to leave the condensate
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where the density is higher and the effects of repulsion are
stronger. This behavior differs from the one exhibited by a
homogeneous dilute Bose gas at fixed density where the
same mean-field approach predicts a reduction of the thermal
depletion with respect to the prediction of the noninteracting
model.

When the number of atoms in the trap increases, the ef-
fects due to the interaction become more and more impor-
tant, as explicitly shown in Fig. 2, where we report results
for N0(T) corresponding to three values ofN (N5105,
106, 107). The calculations of Fig. 2 have been carried out
using the value 2.5631023 for the ratio a/aHO and
l518/320. This choice corresponds to the experimental situ-
ation of Ref. @5# for Na atoms. We have checked that for
such large values ofN the results forN0(T) are practically
indistinguishable from the ones with a spherical trap
(l51) and the same value ofa/aHO . Notice that the
quenching effects shown in Fig. 2 are quantitatively similar
to the ones of Fig. 1, despite the much larger values ofN
contained in the trap. This is due to the fact that in the trap of
Fig. 2 ~MIT-type trap! the ratioa/aH0 is a factor of 3 smaller
than in the trap of Fig. 1~JILA-type trap!.

The shiftdTc in the critical temperature can be estimated
analytically to the lowest order in the coupling constantg by
studying the behavior of the trapped gas for temperatures
T>Tc . In this case the order parameterF(r ) vanishes and
the dispersion of the elementary excitations takes the simple
Hartree-Fock form

e~p,r !5
p2

2m
1Vext~r !12gnT~r !2m. ~12!

To the lowest order ing the total number of particles above
Tc can be written, as a function of the chemical potential, in
the following form:
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where we have used Eqs.~7!–~10! with e(p,r ) given by Eq.
~12!. The quantityNT

0(m) is the integral of the noncondensed
densitynT

0(r ,m) given by the noninteracting model
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wherelT5\(2p/mkBT)
1/2 is the thermal wavelength and

g3/2(x)5(n51
` xn/n3/2.

Bose-Einstein condensation starts at the temperatureTc at
which the chemical potential reaches the energy of the low-
est solution of the Schro¨dinger equation corresponding to the
Hamiltonian ~12!. To the lowest order ing and for large
values ofN one finds
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2
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By expanding the right-hand side~rhs! of Eq. ~13! around
m50 andT5Tc

0, we obtain the following relationship for
the shiftdTc5Tc2Tc

0 of the critical temperature:

dTcE d3r
]nT

0

]T
52

3\v̄

2 E d3r
]nT

0

]m

22gE d3r
]nT

0

]m
@nT

0~r50!2nT
0~r !#, ~16!

where, for simplicity, we have dropped the argumentm50
from the nT

0 functions, evaluated here atT5Tc
0 . The shift

dTc of the critical temperature is hence the sum of two dis-
tinct effects given by the two terms on the rhs of Eq.~16!.
The first contribution is due to the finite number of particles
present in the trap and after a straightforward integration
gives exactly result~iii ! for the shift dTc

0/Tc
0 . The second

contribution arises instead from interaction effects and takes
the form

FIG. 1. Temperature dependence of the condensate fraction for
a system of 5000 Rb atoms in a deformed harmonic trap
(l5A8). The solid line is the result for the interacting case, the
dashed line is the exact result for the noninteracting case, and the
dot-dashed line corresponds to the noninteracting case in the ther-
modynamic limit @Eq. ~2!#. The dotted lines correspond to the
spherical case (l51) for the same number of atoms.

FIG. 2. Temperature dependence of the condensate fraction for
interacting Na atoms. The solid line corresponds toN5107, the
dashed line corresponds toN5106, and the dotted line to
N5105. The dot-dashed line is the result for the noninteracting case
in the thermodynamic limit@Eq. ~2!#.
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where S5(n,m51
` (1/n1/2m3/2)@1/(n1m)3/2#/z(3/2)z(2)

.0.281. By evaluating explicitly the numerical factors one
gets the relevant result

dTc
int

Tc
0 .21.33

a

aHO
N1/6. ~18!

The shift dTc
0 originating from finite-size effects is always

negative and vanishes in the large-N limit. For an axially
deformed trap it depends on the deformation parameter
l5vz /vx5vz /vy through the ratiov̄/v5(l12)/3l1/3

and is minimum for an isotropic trap. Contrarily, the shift
dTc

int due to interactions can be either negative or positive;
depending on the sign ofa, it increases asN1/6 and does not
depend on the deformation parameterl, but only on the
geometrical averagev. Furthermore it vanishes for a homo-
geneous system@see Eq.~17!#. This result is due to the fact
that, according to Eq.~12!, in a homogeneous system the
effects of the interaction aboveTc consist of a simple renor-
malization of the chemical potential. It is also important to
note that in the present mean-field approach the relationship
between the critical temperature and the corresponding value
of the density in the center of the trap is unaffected by the
interaction. The shift~18! is hence always associated with a

change in the central density produced by the interparticle
forces and differs from the one exhibited by an interacting
homogeneous gas at fixed density. The prediction
dTc5dTc

01dTc
int, obtained from Eqs.~3! and ~18!, agrees

well with the numerical values obtained in the self-consistent
calculation discussed above and reported in Figs. 1 and 2.
The relative importance of the two effects depends on the
value ofN. Notice however that the interaction effects de-
pend very weakly onN and scale asN1/6a/aHO . This behav-
ior should be compared with the effects of the interactions on
the low-temperature properties of the system~e.g., the size
and the energy of the condensate!, which instead scale@3# as
Na/aHO .

We finally note that according to the Ginzburg criterion
critical fluctuations violate the mean-field result in the region

dm5um2mcu<
m3g2Tc

02

\6 , ~19!

wheremc is the value of the chemical potential at the critical
point. These fluctuations can affect the shift in the chemical
potential at the critical point only to orderg2. It means that
the mean-field approach can provide a reliable prediction of
the shift of the critical temperature up to terms linear in the
scattering length. Higher-order effects should be investigated
using alternative methods, such as renormalization-group
theory@9# or numerical simulations@10#. A more systematic
discussion of the thermodynamic behavior of a trapped Bose
gas, including the temperature dependence of the density
profiles, the specific heat, and the superfluid density will be
the object of a future paper.
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