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Abstract: The results of an experimental study to evaluate the characteristics of R-407C thermofluid

during condensation in a helically coiled copper tube heat exchanger are presented. The effects of

saturation temperature (Tsat), and mass and heat fluxes of refrigerant R-407C on thermal performance

and pressure drop were determined. The relationship between the refrigerant wall subcooling and

heat transfer coefficients was also investigated. This paper reports the effect of the temperature

of the water used as cooling medium on the heat transfer rate of condensing R-407C. The study

was conducted with mass flux of R-407C in the range of 100–450 kg/m2s, mass flux of the coolant

water in the range of 500–5000 kg/m2s and Tsat of 31 ◦C, 35 ◦C, and 39 ◦C. Compared with a straight

smooth tube, the use of the helical coiled (helicoidal) tube increased the condensation rate with a

corresponding pressure drop that depended on the value of Tsat of the refrigerant and temperature of

the coolant.
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1. Introduction

R-22 is a non-fully halogenated refrigerant that is commonly found in residential refrigeration units

and air conditioning (A/C) systems. However, environmental concerns are driving the replacement

of R-22 with R-407C or other suitable refrigerants. Fortunately, the vapor pressure of R-407C is the

same as that of R-22, so it can be installed in existing systems with no major modifications. R-407C is a

zeotropic mixed refrigerant that contains three hydrofluorocarbons (HFCs): difluoromethane (R-32),

pentafluoroethane (R-125), and tetrafluoroethane (R-134a) in the proportions by weight of 23%, 25%,

and 52%, respectively [1]. Due to the zeotropic nature of the refrigerant R-407C, a 6 ◦C temperature

glide occurs through any heat transfer process [2]. This normally increases the thermal efficiency of

refrigeration equipment.

The performance of R-407C was investigated experimentally by Devotta et al. [3] under retrofit

conditions to replace the original R-22 in window A/C systems. The results of their study showed a lower

cooling capacity, lower coefficient of performance, lower pressure drop, higher power consumption,

and higher discharge pressures. Aprea and Greco [2], Wei et al. [4], and Jabaraj et al. [5] reported that

R-407C is similar to R-22 with regard to the energy efficiency, temperature of the compressor discharge,

pressure, and other performance parameters. Passos et al. [6] evaluated the overall heat transfer

performance for R-407C and R-22 using a test rig with a horizontal, flat micro-fin tube condenser.

They determined that the overall heat transfer coefficient (HTC) using R-407C was lower than that

of R-22. Imran et al. [7] and Khalifa et al. [8] investigated numerically an air cooled condenser with
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finned tube using R-22 and R-407C. They concluded that the performance of the two refrigerants

was comparable.

Various tube configurations, such as pipes with added micro-fins, pipes of varying diameters,

and pipes with helical grooves, have been installed in A/C systems to enhance their performance by

increasing heat transfer rates. Several authors [9–11] have reported experimental investigations of the

effects of the shapes of fins and sizes of pipes on pressure loss and heat transferred by condensation when

using R-407C. Cavallini et al. [12] investigated the performance of R-22 and R-407C in micro-finned

and smooth tubes, and showed that the addition of micro-fins increased the HTC for similar operating

conditions. They found that the HTCs were lower for R-407C than for R-22 but the difference between

the respective HTCs decreased with increase in mass flux.

HTCs and corresponding pressure drops in tubes with small diameters carrying R22, R-134a,

R-407C and R-410A, have been studied by Wang et al. [13]. The condensation HTCs have been measured

by Eckels and Tesene [14] for several refrigerants in smooth plain and enhanced pipes. Both studies

found that the measured HTCs of R-22, R-134a, and R-410A were not significantly different given the

uncertainty of the data. Local heat transfer in smooth horizontal pipes during condensation of R-407C

and R-404A has been studied by Boissieux et al. [15].

The HTCs of condensation for the three refrigerants R-22, R-407C, and R-410A, for horizontal

plain, low-fin, and turbo-C tubes were studied experimentally by Jung et al. [1], who measured the

condensation HTCs for the three refrigerants with wall subcooling ranging from 3 ◦C to 8 ◦C. They also

found the HTCs of refrigerant R-407C to be 24–75% lower for R-22 for the plain and low-fin tube but

only 4–5% lower for the turbo-C tube.

Aroonrat and Wongwises [16–18] and Aroonrat et al. [17] performed experimental investigations

on the condensation and evaporation of R-134a in dimpled helically coiled and dimpled horizontal

tubes with different depths of dimpling. The dimples were to enhance the heat transfer by increasing

the flow turbulence. The main observations were that, with respect to smooth tubes, dimpling of the

horizontal tube could increase the HTC rate by up to 70% while dimpling of the helical tube increased

the HTC by as much as 88%. Tang et al. [19] experimentally studied the effect on the condensation

process of dimpling the outer surface of the inner tube of a co-axial tube-within-a-tube heat exchanger.

They demonstrated that condensation was enhanced by approximately 178% for a dimpled inner tube

compared to a smooth tube.

Yousef et al. [20] analyzed the comparative performance of the four refrigerants: R-22, R-134a,

R-407C, and R-410A, as alternative cooling fluids in a condenser in a steam power plant. Vijayan and

Srinivasan [21] experimentally investigated the performance of R-22 and R-407C in a window A/C

system that was originally charged with R-22 but later charged with R-407C. They found that the

coefficient of performance increased, and the power requirement and pressure ratio of the compressor

were reduced.

Bohdal et al. [22] reported an experimental and analytical study into the pressure drop, heat

transfer and condensation of three refrigerants R404A, R407C, and R410A flowing through vertical

mini- and micro-channels at high-pressure.

Sieres et al. [23] experimentally investigated optimizing the performance of a R-407C domestic

heat pump. The results of this study showed that for liquid-to-water systems the operating mode

determines the optimum charge, and that the refrigerant charge has a linear relationship with the

refrigerant level in the condenser.

Experimental and numerical investigations were carried out by Wang et al. [24] to assess the

relative thermal performance of trilobal twisted helical coils with different cross-sectional areas.

The thermal performance of the trilobal twisted tube was up to 1.31 times higher than that of plain

and elliptical tubes. Solanki and Kumar [25–27] reported experimental studies of the condensation

characteristic in helical coiled heat exchangers. The results revealed that as the quality of the vapor

fell so did the pressure drop, which resulted in performance factor reduction. A thorough numerical

analysis of the pitch, angle, and coil dimensions carried out on helical tube-in-tube and semicircular
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heat exchangers was reported by Abu-Hamdeh et al. [28]. They concluded that the coefficient of

performance for coils that were semi-circular in cross-section rather than circular was three times

greater than for conventional tube-in-tube arrangements.

Mozafari et al. [29] experimentally investigated the effect of different inclination angles of

helical coiled heat exchangers and found that deceasing the angle of inclination led to an increase in

performance factor. Qiu et al. [30] conducted a numerical study on the effect of the inclination angle

on R290 condensation in a mini-channel by evaluating the refrigerant charge, flow, and heat transfer.

The results demonstrated that as the angle of inclination increased both HTC and pressure drop

due to frictional forces also increased. Lee et al. [31] performed a numerical study of mini-tube heat

exchangers by evaluating film condensation based on thermofluid characteristics. They highlighted

that shear stresses over the film surface lead to an increased pressure drop and HTC. The liquid film

formed on the wall during the condensation processes caused an increase in velocity.

Some A/C, chilled water systems, and heat pumps use R-407C as the working medium. R-407C and

R-22 have very similar operating pressures and performance in dry expansion A/C arrangements.

However, conventional systems that operate with R-407C are approximately 25–30% less efficient than

systems that use R-22, especially at high ambient temperatures, which is very important in countries

such as Kuwait. The size of a condenser could be increased to increase its efficiency. This would be

feasible from the perspectives of installation, maintenance, and performance of a system if a helical

tube were used; it would also improve the HTCs and require less space. Studies of other refrigerants,

such as R-134a, have reported promising findings for the pressure drop and condensation heat transfer

in helical pipes. However, to the best of our knowledge, no prior investigations have been conducted

regarding the use of the R-407C refrigerant in a helical coiled tube heat exchanger.

In this investigation, local HTCs of R-407C during condensation were measured and recorded for

systematic changes in the values of Tsat, coolant temperature, and refrigerant and coolant mass fluxes.

How the subcooling temperature impacted on heat transfer performance at the higher value of Tsat

of 39 ◦C in a helical coiled tube was evaluated. The study concentrated on the characteristics of the

condensation component of the HTC associated with R-407C in the helicoidal tube.

2. Description of Experimental Test Rig

Figure 1 shows the experimental apparatus built to investigate pressure loss and condensation

heat transfer for R-407C. The status of the saturated liquid after the reservoir was observed through a

small glass window. A flow meter at the entrance to the evaporator was used to measure the R-407C

flow rate. The basic arrangement contained a test section, three independent closed cycles, and a data

logger. The three cycles are the cooling water, refrigerant, and hot water. The annular helical tube was

copper, and its dimensions are shown in Figure 2.

The experimental apparatus was allowed to reach equilibrium by turning the vacuum pump on

for an initial 4 h to make sure that all the refrigerant was evacuated from the loop, and the hot water

and cold water loops were filled. This was followed by the injection of R-407C into the refrigerant loop.

The temperature of the hot water loop mass flow was set to a suitable value to evaporate the refrigerant

in the evaporator. Simultaneously, the cold water loop was set to a value to suitably cool the refrigerant

in the condenser heat exchanger. The refrigerant was pumped to the evaporator then it was heated

sufficiently to ensure it fully vaporized. After passing over the auxiliary electric heater, the vapor

entered the helical tube condenser, where the cold water cooled the refrigerant. Following the helical

tube condenser, the refrigerant was cooled to its approximate initial temperature using an air-cooled

booster condenser.

Four sight glasses were installed throughout the test section to check the status of the refrigerant.

The helical tube test section was made of double tube copper of coil length 3 m. This was vertically

mounted as presented in Figure 2. The inner tube was the refrigerant side and the outer tube was

the waterside. The internal and external diameters of the inner tube were 7.39 mm and 9.54 mm,

respectively. The coil section was 216 mm in diameter and 25.6 mm pitch and contained nine turns
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with a total heat transfer area of 0.18 m2. The helical tube heat exchanger was counter-flow where the

water flowed upward and the refrigerant downward.             
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Figure 1. Schematic diagram of experimental test system.
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Figure 2. Dimensions of test section.

3. Operation and Procedure

The inner tube carried a flow of saturated vapor of refrigerant R-407C. As the vapor lost heat to

the coolant (chilled water) it condensed to a saturated liquid. The refrigerant entered the tank in the

refrigerant cycle and flowed to the steam generator.
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A bypass was included on the pump side of the cycle, to regulate the flow through the pipe into

the tank. The refrigerant temperature was regulated by an electrical heater installed at the inlet to the

condenser test section. The flow patterns at test section inlet and outlet were each observed by sight

glasses. The temperature and pressure were measured at the points labelled T and P, respectively,

for each of the refrigerant, hot water, and cooling water cycles.

The accuracy of the pressure measurement was ±0.1 psi. The entrance and exit temperatures of the

R-407C and water were obtained using k-type thermocouples. The accuracy of the thermocouples was

±0.5 ◦C. Figure 1 shows the positions of the temperature sensors, and the readings were recorded by

the data logger and retained for future use. The meters used to measure the flow rates of hot and cold

water and R-407C were pulse turbine digital flow meters with an accuracy of ±0.002 L/min. The rig

was filled with R-407C to the design pressure. All thermocouples were tested and adjusted to the

operational range (0–150 ◦C). The flow meter and pressure gauge were also calibrated. The commercial

data logger system, WebDAQ/100, was used to collect the required data.

4. Data Analysis

The data were analyzed to estimate the condensation HTCs and pressure losses in the helical

tube. An energy balance was used to calculate the quality of the refrigerant vapor at the inlet to the

condenser, according to the temperature of the water side of the helical tube condenser.

The heat transfer rate (Q) released from the refrigerant is defined as:

Q = mw Cpw (Tw,o − Tw,i) (1)

where Tw,i and Tw,o are the cooling water temperatures inlet and outlet, respectively, Cpw is the specific

heat of water, and mw is the mass flow rate of water [32].

The overall HTC can be expressed as:

Q = Uo A ∆TLMTD (2)

where ∆TLMTD is the logarithmic mean temperature difference for the two fluids used, Uo is the overall

HTC, and A is the cross-sectional area. The overall HTC is calculated using Equation (3), derived from

Equations (1) and (2):

U =
mw CPw (Tw,o − Tw,i)

A ∆TLMTD
(3)

The influence of single-phase heat transfer in the helical pipe can be ignored. Therefore, the ∆TLMTD

is defined by:

∆TLMTD =
(TR,O − TW,i) − (TR,i − TW,o)

ln[(TR,O − TW,i)/(TR,i − TW,o)]
(4)

where TR,i and TR,o are the temperatures of the refrigerant, R-407C, at the inlet and outlet, respectively.

The thermal properties of the refrigerants were estimated using the mean value of Tsat and mean

pressure in the condenser. The HTC for the refrigerant was estimated by:

Hr =
1

[

1
Uo
−

1
hw
−Rr

] (5)

where hw is the heat transfer coefficient for the coolant (water) [33], and Rr is thermal resistance for

R-407C. The average temperature should be compatible with the cooling water’s thermophysical

properties. The mass flux, mr, and mean heat flux, q, of R-470 are given by:

mr =
VR ρR
π

4 (d
2

i,2)
(6a)
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q = Q/π di2 L (6b)

where di,2 is the inner diameter of the inner tube, L is the length of the helical pipe, and VR and ρR are

the volumetric flows rate and density respectively of R-407C.

5. Results and Discussion

Three values of Tsat, 31 ◦C, 35 ◦C, and 39 ◦C, were used in the experiment to study how temperature

affected the performance of the condenser in an A/C unit containing R-407C. For helical tubes carrying

R-407C, the heat transfer rate for the refrigerant depends on flow patterns, pitch, curvature, and void

fraction. In this investigation, the helical tube had a fixed pitch and curvature. Experiments were

conducted for three different temperatures of the coolant as it entered the condenser. To simplify the

study, the wall temperature was maintained at 3 ◦C, 5 ◦C, and 7 ◦C by adjusting the temperature of the

coolant for each test.

The HTCs for condensation on the refrigerant side as a function of wall subcooling (2–10 ◦C) for the

three values of Tsat; 31 ◦C, 35 ◦C, and 39 ◦C are shown in Figure 3. Subcooling is defined as the cooling

of a liquid refrigerant below the condensing temperature at constant pressure. The wall subcooling

temperature is the temperature difference between the refrigerant condensation temperature and

the refrigerant temperature at the outlet of the condenser. Increasing the Tsat decreased the HTC,

so minimum HTC occurred for the highest value of Tsat (39 ◦C). In addition, the HTCs decreased as

wall subcooling temperatures increased. As the subcooled temperature increased, the temperature

difference between the water and refrigerant temperatures decreased causing the HTC to decrease.

As a result of the low wall subcooling temperature increases, the refrigerant temperature becomes

close to the water cooler temperature. Thus, a lower wall subcooling temperature should be used to

improve the performance.
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Figure 3. Condensation heat transfer coefficients of R-407C in helical tube as a function of wall

subcooling, with comparative results from Jung et al. [11].

For similar values of Tsat, the HTC determined for a smooth tube was less than that obtained for a

helicoidal tube. However, for a high wall subcooling temperature of approximately 10 ◦C, the HTC

for the helical tube showed a slightly lower value compared to the coefficient for the smooth tube.

In most practical applications the wall subcooling temperatures used are less than 9 ◦C, in which case

the helical tube will have a higher HTC.
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Figure 4 illustrates the overall HTC of R-407C in the helical tube against the subcooling

temperature of the wall. For comparison, three values of Tsat were used: 31 ◦C, 35 ◦C, and

39 ◦C. The refrigerant overall HTCs reduced linearly as the wall subcooling temperature increased.

Furthermore, these coefficients increased as the value of Tsat decreased. This occurred because of

changes in the flow patterns and the reduction in heat transfer to the coolant. Furthermore, when the

subcooling temperature increased, the thickness of the condensate layer increased, which decreased

the overall HTC.
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Figure 4. Overall heat transfer coefficient of R-407C in helical tube as a function of wall subcooling.

Pressure loss with wall subcooling temperature inside a helicoidal tube is shown in Figure 5. It was

noticed that the pressure loss increased as the wall subcooling temperature increased. As the wall

subcooling temperature increased, the refrigerant temperature decreased causing an increase in both

density and viscosity generated friction. According to the fundamental laws of fluids, pressure loss

has a positive relation with the density. For the three values of Tsat used, the pressure loss increased as

Tsat decreased.
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Figure 5. Pressure drop for R-407C in helical tube as a function of wall subcooling.

Massad et al. [34] compared the helical tube with other tube geometries and found that the loss in

pressure was greater than for straight tubes, due to the greater complexity of the flow patterns in the
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helical tube. For these different tube arrangements, the same mass flux in the helical tube will contain

swirls and a higher turbulence intensity, which results in higher pressure loss.

Alhajeri et al. [35] compared the pressure drop in a helical tube using R-134a with the pressure

drop in a micro-finned straight tube as reported by Eckels and Tesene [14]. It was concluded that the

pressure losses in helicoidal tubes were greater than the loss in micro-finned straight tubes in the case

of low refrigerant mass flux.

However, with decreasing refrigerant mass flux, the difference between the pressure losses in the

helical tube and the micro-fin straight tube increased, particularly as the temperature of the cooling

water increased. If they had used a greater range of mass flux in the study, the drop in pressure in the

straight micro-fin tube would have become greater than the decrease in the helical tube because of the

loss of pressure produced by the presence of the fins. In the case of a straight tube without fins, as is

well known, the pressure loss increases proportional to the length.

For R-407C, Figure 6 shows the mean heat flux as a function of coolant water mass flux for the

three temperatures 3 ◦C, 5 ◦C, and 7 ◦C. In this figure, two parameters were fixed: the mass flux of the

refrigerant was maintained at 155 kg/m2s and the value of Tsat at 35 ◦C. The relation indicates that

the heat flux of the refrigerant is considerably higher when the wall temperature is lower, and the

rate at which the heat flux increases is higher at lower wall temperatures. This is because of the

decreases in pressure, viscosity, and density of the refrigerants, which reduce friction, and this allows

the refrigerant to have a higher velocity. For low values of the coolant mass flux, about 500 kg/m2s,

the heat fluxes converge to a value of about 5 kW/m2. The heat flux increases with increase in coolant

mass flux and decreases with increase in coolant temperature. Therefore, for enhanced performance it

is recommended that a high coolant mass flux is used with low coolant temperature.
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Figure 6. Average heat flux of refrigerant R-407C as a function of coolant (water) mass flux through

heat exchanger for three coolant temperatures.

Figure 7 shows how coolant (water) mass flux varies with refrigerant mass flux with Tsat constant

at 35 ◦C. We see that for the three coolant water temperatures, 3 ◦C, 5 ◦C, and 7 ◦C, the refrigerant

mass flux increases as the mass flux of the coolant water increases but decreases as the coolant water

temperature increases. It follows that A/C systems that use R-407C require low coolant temperatures

for optimal operation.
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Figure 7. Mass flux of refrigerant R-407C as a function of coolant (water) mass flux through heat

exchanger for three coolant temperatures.

Figure 8 shows the HTC for R-407 as a function of refrigerant mass flux for the three values of

Tw: 3 ◦C, 5 ◦C, and 7 ◦C, when using the helical tube heat exchanger. As the refrigerant mass flux

increases, the refrigerant HTC also increases. The mass flux in Equation (6) shows that the increase

in the velocity of the refrigerant and liquid film causes the mass flux of the refrigerant to increase.

This occurred concurrently with the growth of the centrifugal force in the helical pipe which acts on

the inner wall increasing the turbulence within the flow of refrigerant and enhancing the heat transfer.

Once again, we see that an increase in coolant water temperature reduces the heat transfer, so the use

of coolant with a lower temperature increases the temperature difference and improves the refrigerant

HTC. With condensation the greater the volume of vapor that condensed, the lower will be the vapor

velocity, and the thicker the liquid film, both of which will reduce the average HTC.
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Figure 8. Effect of coolant (water) mass flux on refrigerant R-407C heat transfer coefficient.
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The vapor quality of the R-407C refrigerant at condenser inlet and outlet, xin and xout, respectively,

can be evaluated using Equation (7a,b).

xin =
hRi − hwi

hvi
(7a)

xout =
hRo − hwo

hvo
(7b)

where hw is the enthalpy of the saturated liquid; hv is the latent heat of vaporization, measured using

the entrance and exit temperatures of the test section; hR is the enthalpy of the refrigerant; and i and o

are the entrance and outlet of the condenser.

The experimentally measured values of HTC for R-407C as a function of the vapor quality is

shown in Figure 9 for Tsat values of 31 ◦C, 35 ◦C, and 39 ◦C. The vapor quality used in this figure is

the arithmetic mean of inlet and outlet qualities. The average HTC increases with increase in vapor

quality (lower liquid fraction). This is because the velocity of the refrigerant increased at higher values

of vapor quality (more gas phase) at which the shear was increased. Furthermore, secondary flow,

turbulence, and HTC were all increased owing to the continuous bend of the helical pipe. The void

fraction of the mixture increased when the vapor quality increased, forming a thinner condensate film

at the lower part of the pipe and increasing the interfacial area, which reduced the thermal resistance.

Consequently, the heat transfer mechanism was more efficient. The HTCs were higher at lower values

of Tsat and rose as vapor quality improved.
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Figure 9. Heat transfer coefficient as a function of average vapor quality of refrigerant.

Uncertainties

The analysis of the uncertainties of the test section of the helical tube for the condensation HTCs

was based on Moffat’s work [36] which also considered the pressure, temperature, water and mass

refrigerant flow rates. Referring to the experimental conditions that were used, the uncertainties

that were associated with the refrigerant’s mass flow rate, cooling water volume flow rate, cooling

water Reynolds number, and temperature differences were 0.25%, 0.34%, 3%, and ±0.4 ◦C, respectively.

In addition, uncertainties in the water side HTCs, refrigerant side HTCs, and overall HTCs were 7%,

21%, and approximately 18%, respectively.
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6. Conclusions

The pressure loss and heat transfer coefficient for refrigerant R-407C flowing in a helicoidal copper

pipe have been investigated experimentally utilizing a purpose-built test rig. Three saturation vapor

temperatures of 31 ◦C, 35 ◦C, and 39 ◦C were used in the study with the temperature of the wall

sub-cooling in the range 2–10 ◦C.

The experimental results showed that as the refrigerant mass flux increased, the heat transfer

coefficient increased. As the temperature of the saturated vapor of the refrigerant decreased, both the

refrigerant side HTC and the overall HTC increased. The refrigerant pressure loss in the helical tube

was found to be dependent on coolant wall temperature and refrigerant, Tsat. It increased with increase

in wall subcooling temperature and increased with decrease in Tsat. Thus, as the coolant (water) mass

flux increased, the pressure loss in the helical tube decreased.

This investigation has provided information that could be applied to enhance the design of helical

coiled tube condensers for A/C and refrigeration applications specially in hot ambient temperature:

we recommend the use of a lower wall subcooling temperature, low coolant temperature, high mass

flux of coolant, and high mass flux of refrigerant. In addition, using lower temperatures for the water

coolant resulted in a higher HTC on the refrigerant side. Furthermore, for higher ambient temperature,

a helical coiled tube performs better than a smooth tube through the high HTC to the same Tsat.
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Nomenclature

A heat transfer area, m2

CP specific heat, kJ/kg K

D diameter of the coil, m

d diameter of the copper tube, m

H heat transfer coefficient, W/m2 K

L total length of the helical pipe, m

m mass flow rate, kg/s

N number of turns in the coil

Gr mass flux, kg/m2s

P pitch of helical coil, m

q heat flux, W/m2

Q heat transfer rate

R
heat transfer resistance of the wall of the tube, m2

K/W

T temperature, K

U overall heat transfer coefficient, W/m2 K

x vapor quality

ρ density, kg/m3

∆TLMTD logarithmic mean temperature difference, K

i inlet or inner

o outlet, outer, overall

r wall resistance

w water

2 inner tube

1 outer tube
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