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Abstract (150 words max)

Condensation is a phase change phenomenon often encountered in nature and industry for
applications including power generation, thermal management, desalination, and environmental
control. For the past eight decades, researchers have focused on creating surfaces allowing
condensed droplets to be easily removed by gravity for enhanced heat transfer performance.
Recent advancements in nanofabrication have enabled increased control of surface structuring
for the development of superhydrophobic surfaces with even higher droplet mobility, and in
some cases, coalescence-induced droplet jumping. Here, we provide a review of new insights
gained to tailor superhydrophobic surfaces for enhanced condensation heat transfer considering
the role of surface structure, nucleation density, droplet morphology, and droplet dynamics.
Furthermore, we identify challenges and new opportunities to advance these surfaces for broad

implementation into thermo-fluidic systems.
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Introduction

Vapor condensation is a ubiquitous phenomenon occurring in nature' . We observe this
process in our daily lives, such as on a hot summer day when water accumulates on a cold drink
or when fog forms on a humid day. In industry, vapor condensation is an essential process in
power generation’, thermal management’, water desalination®’, and environmental control'’. For
example, the thermal efficiency of the steam cycle, responsible for the majority of an
industrialized nation’s power production, is directly linked to condensation heat transfer
performance. Meanwhile, in heating, ventilating, and air conditioning (HVAC) systems, which
account for ~20% of the total energy consumption in developed countries'', the accumulation of
condensed water on thermal components can lead to performance degradation and increased
costs. Furthermore, condensation on glass strongly influences the transmittance of light into
greenhouses, resulting in possible losses of 40% during the winter'2.

In these systems, vapor condenses on a surface rather than directly in the vapor phase due
to the reduced energy barrier for droplet nucleation'’. However, the vapor typically forms a thin
liquid film because of the high surface energy of industrial components (i.e., clean metals such as
copper, aluminum, stainless steel). While this mode which is known as filmwise condensation'*
(Figure 1a) is quite common, the formation of a liquid film is not desired due to the large
resistance to heat transfer. Meanwhile, if a surface is coated with a low-energy non-wetting
‘promoter’ material (i.e., long chain fatty acid, wax, polymer coating, self-assembled
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monolayer) ™, or if it naturally adsorbs hydrocarbons and impurities on its surface from the
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surroundings (as in the case of gold, silver, and chromium)~“, the vapor forms discrete liquid

droplets ranging in size from microns to millimeters™>’

. This process is known as dropwise
condensation® (Figure 1b). The progressive removal of these condensing droplets by gravity at
length scales comparable to the capillary length (2.7 mm for water)*’ > helps refresh the
surface for re-nucleation, and allows 5 — 7x higher heat transfer performance when compared to
the filmwise mode™.

For the past eight decades, dropwise condensation on common heat transfer materials has

been a topic of significant interest’*'

, with a focus on creating non-wetting surfaces via
promoter coatings for easy droplet removal. While robust coatings still continue to be a
challenge and require more development®’, recent advancements in nanofabrication have allowed

for the development of superhydrophobic surfaces®?, where nearly spherical water droplets form



with high mobility and minimal droplet adhesion. In addition, the role of surface structuring on

wetting characteristics have been studied in detail>>™

to enhance condensation performance by
reducing droplet departure sizes (€ 3 mm) and enabling faster clearing of the surface for re-
nucleation.

Yet when small water droplets (=<10—100 um) merge on suitably designed
superhydrophobic surfaces, they can undergo coalescence-induced droplet ejection or “jumping”
due to the release of excess surface energy (Figure 1c) 2. Jumping droplet condensation has
offered a new avenue to further enhance heat transfer by increasing the time-averaged density of
small droplets. However if the nucleation density is too high and the spacing between droplets is
reduced, droplet jumping cannot be sustained. Under such conditions, discrete droplets highly
adhered to the surface form and can have even worse performance than dropwise condensation,
leading to a flooding condensation mode (Figure 1d). The different fluid-surface interactions of
the four modes described above (filmwise, dropwise, jumping, and flooding) accordingly
determine the heat transfer performance.

To characterize the condensation performance, the heat flux, ¢’ is a commonly used
metric to quantify the amount of latent heat of phase change removed by the surface at a given
driving potential. This driving potential is represented by either the vapor—surface temperature
difference (AT = Ts(Py) — Twan) or the supersaturation, S, the ratio of the vapor pressure to the
saturation pressure at the surface temperature, S = pyap/ psa Twan). Accordingly, Figure le
summarizes the measured (filmwise and dropwise) and expected (Jumping and flooding)
performance of the four modes, showing ¢” with AT for steam at atmospheric pressure®’. If the
condensing steam is mixed with non-condensable gases, NCGs (air), the NCG can accumulate
adjacent to the surface creating an additional diffusional resistance for vapor molecules. The high
sensitivity of condensation heat transfer to small amounts (< 10 ppm) of air in the steam explains
the large range of values and trends shown in Figure 1e for the case of dropwise condensation
with NCGs. With the development of superhydrophobic materials, the heat transfer performance
should theoretically be able to exceed that of the highest values reported with dropwise
condensation. However, due to the complex fluid-surface interactions, the role of structures for
enhanced condensation on superhydrophobic surfaces has been unclear until recently, where we

have gained new understanding on fluid-surface processes during phase change.



In this article, we review the fabrication, characterization, wettability, and interfacial
dynamics of superhydrophobic materials during condensation and discuss insights from recent
studies for enhanced heat transfer performance. The review focuses on water as the working
fluid due to its favorable heat transfer properties (i.e., high latent heat of vaporization) and its
common use in industry. To better understand the physics of the process, we examine the role of
structures on emerging droplet morphology, nucleation density, droplet growth rate, and
departure characteristics. Furthermore, we discuss scalable materials for superhydrophobic
surfaces with experimentally demonstrated heat transfer performance. Finally, we provide
perspectives for the development of next generation nanostructured materials for enhanced

condensation heat transfer.

Condensation Physics on Superhydrophobic Surfaces
Wetting Phenomena

We first briefly provide background related to wetting phenomena to facilitate
understanding of condensation on superhydrophobic surfaces.

When a droplet is deposited on a flat surface, it can either wet the surface or form a
discrete droplet depending on the surface energy. Young3 % first proposed that the equilibrium
contact angle, 6, of the droplet is dictated by a force balance at the three phase contact line:

Vsv — Vst ’ )

Yw
where gy, y51 and yyy, are the solid-vapor, solid-liquid, and liquid-vapor surface tensions,

cosO =

respectively. Continuing the work of Young, Wenzel and Cassie subsequently extended the
wetting analysis to rough and porous surfaces. Considering a surface with roughness, r, defined
by the ratio of the total surface area to the projected area, Wenzel’” showed when the fluid wets

all of the rough area, the contact angle Ay is defined by:

cosOy, =rcosf. (2)

In contrast, Cassie and Baxter’® considered the case where the droplet rests on the tips of the

roughness and showed that the contact angle ¢ is defined by:

cosf;=¢@(cosf +1)—1, &)



where ¢ is the ratio of the solid area contacting the droplet to the projected area. The two droplet
morphologies described by equations 2 and 3 are termed Wenzel and Cassie, respectively.
Accordingly, in the case of hydrophobic surfaces (6 > 90°), the roughness amplifies the wetting
characteristics such that the surface becomes superhydrophobic, where contact angles exceed
150°. While Wenzel and Cassie droplets can both exist on these rough surfaces, the Wenzel state
is less desired owing to the higher adhesion to the substrate compared to the low adhesion Cassie
state’”. As a result, over the past decade, studies have focused on developing superhydrophobic
surfaces to limit droplet adhesion and increase water repellency’>*"*.

In the case of condensation, however, the nucleation of droplets through the vapor phase
can initiate within the roughness, such that Equations 2 and 3 may not apply. Previous studies
have shown that on structured superhydrophobic surfaces with well-controlled geometries
(defined in Figure 2a), highly adhered Wenzel droplets form during vapor condensation, which

32,44-46
0 In fact,

are distinct from the highly mobile Cassie droplets when deposited using a syringe
three different droplet morphologies exist during condensation, Wenzel (W) (Figures 2a, d),
partially wetting (PW) (Figures 2b, ¢), and suspended (S) (Figures 2c, f), where both S and PW
droplets are highly mobile compared to W droplets. Due to the importance of minimizing droplet
adhesion, knowledge of the emergent droplet morphology needs to be properly characterized and
understood in order to tailor the micro/nanostructured surfaces with controlled roughness, i.e.,

surface structuring, for enhanced heat transfer®’.

Structure Geometry and Nucleation Density
Structure geometry and nucleation density have specific roles in the emergent droplet

morphology (PW, S, or W). Previous studies have shown that there is a length-scale dependency

45,4849 29,50-53

of the surface structuring, i.e., microstructures versus nanostructures , and that global

thermodynamic analysis comparing the lower equilibrium energy state, i.e., Cassie vs Wenzel, is

insufficient*’, while often used to explain observed condensation behavior*¢#%:4-4

. Recently,
Enright et al. showed that the morphology of isolated droplets interacting with the surface
structures during growth from within a unit cell (volume between structures) is primarily due to:
1) energy barriers encountered by the droplet growing within the structured surface (Figure 3a),
and 2) droplet-droplet interactions governed by the nucleation density, i.e., the average spacing

between nucleation sites (L) relative to the structure length scale /.”> Meanwhile, S droplets



nucleating on the tips of structures are unconditionally stable assuming no droplet-droplet
interactions and external forces such as gravity.

Enright et al. focused on droplets nucleating within the unit cell because they are more
desirable for enhanced heat transfer. Their study showed that these droplets can either grow
above the structure forming a ‘balloon’ like PW droplet (Figure 3b), or laterally spread into the
structure forming a highly adhered W droplet (Figure 3¢)>**°. While the droplet morphology is
dictated by the intricate liquid/structure interaction dynamics, it can be approximately predicted
by comparing the energies of the non-equilibrium advancing Cassie and Wenzel states with a

dimensionless energy ratio:

cos b, ¢ -1

*—

cosB,y  rcosf,’
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where r = 1 + ndh/[* is the surface roughness, and 6, is the advancing contact angle on a flat
surface. Equation 4 implies that when £* > 1, W droplet morphologies are favored, while when
E* <1, PW droplets should emerge’’. In addition to this energy criterion, the nuclei of the
droplets need to be 2-5x of the spacing between the structures (Figure 3d) ((L)// >2-5). If
droplets grow and merge too close to each other such that (L)// <2—5, coalescence events bypass
the energy barrier associated with individual droplet growth (Equation 4) and flood the surface
forming undesired highly adhered W droplets (Figure 3e). Accordingly, a regime map defining
the parametric space with experimentally measured (L)// ratios and calculated £* in Figure 3f
determines the emergent droplet morphology for a wide variety of structure length scales,
geometries and nucleation densities. The results suggest that an important aspect is defining the
location of, and distance between nucleation sites to favor formation of highly mobile PW

droplet morphologies.

Tailoring Surface Chemistry for Nucleation

Controlling nucleation has been investigated, but has primarily focused on patterning

56-62

surface chemistry heterogeneities (hybrid hydrophobic/hydrophilic surfaces) at the length

scale of the structures or larger to simultaneously increase the nucleation rate (hydrophilic spots)
and achieve high droplet mobility (hydrophobic spots). Although spatial control of nucleation
has been demonstrated®, it was also accompanied by higher droplet adhesion®. The hydrophilic

130

spots on the surface act to pin the droplet and result in slower removal™". However, S droplets



with low adhesion were obtained using hybrid surfaces by ensuring that the height to thickness
ratio of the structures (i.e., with pillars having hydrophilic tops and hydrophobic valleys) is
relatively large®. Therefore, with proper design, hybrid surfaces have the potential to enhance
droplet shedding for enhanced condensation while controlling nucleation density.

To define the location of nucleation sites at length scales smaller than the structure
(< 10 nm), in order to delay flooding condensation, Enright et al.>> showed that defects in the

hydrophobic coatings exist®*®

, which with the proper structure geometry can be used to
determine the formation of highly mobile PW and S droplets. Hydrophobic coatings with tailored
defects present an opportunity to control droplet morphology while further enhancing heat

transfer.

Effect of Droplet Morphology on Growth Dynamics

While both PW and S droplets show advantages in terms of easy droplet removal as
opposed to W droplets, droplet growth prior to departure needs to be considered to determine the
desired morphology for enhanced heat transfer. Miljkovic et al.®” highlighted the importance of
considering droplet morphology on growth rates whereby in certain cases, surface structuring
can degrade heat transfer performance. Using a specific structure geometry, they demonstrated
that the growth rate and individual droplet heat transfer of PW droplets were 6x and 4-6x higher
than that of S droplets, respectively (Figure 4a, b). This difference was due to the fact that S
droplets are suspended on top of a composite air-solid interface, where the air is a significant
thermal resistance to droplet growth. To investigate the effect of the morphology on overall
surface heat transfer, a thermal resistance based droplet growth model was developed®’™"!
(Figure 4c) and demonstrated that surfaces favoring only S droplet formation degraded overall
performance by 71% when compared to flat hydrophobic shedding surfaces, despite their high
mobility®’. The study showed structure design needs to be carefully considered to minimize the
effect of the air beneath the droplet, while maintaining easy droplet removal. Accordingly, this
thermal resistance can be decreased by reducing the structure heights via nanoscale roughness.

To tailor the emergent droplet morphology, Miljkovic at al.*’ suggested a method to favor
PW droplet formation via the creation of thermodynamic energy barriers for nucleation on
structure tips72. By making the tip thickness comparable to the critical nucleation radius (=10-

30 nm for water), the energy barrier for nucleation on the tip is increased, resulting in favorable



droplet nucleation within the structure and stable formation of PW droplets*’. It is important to
note, this approach is valid assuming the nucleation density of droplets is low compared to the

density of the structures ((L)/ > 2—5) such that flooding is avoided (Figure 3f).

Droplet Departure

Once the droplets nucleate and grow with the desired morphology, droplets also need to
be quickly removed from the surface to enhance heat transfer’>. The recent works of Boreyko et
al.”” and Narhe et al.” presented a new experimental approach for efficient droplet departure,
whereby condensate droplets spontaneously jump on a superhydrophobic surface without any
external forces (Figure 5b). The average droplet radius at steady-state was thirty times smaller
than the capillary length (=2.7 mm for water), and therefore promises significant heat transfer
improvement due to the smaller time averaged distribution of droplets”. The spontaneous
motion is powered by the surface energy released upon droplet coalescence and the out-of-plane
jumping results from in-plane coalescence (Figure 5¢,d). While both PW and S droplet
morphologies are capable of jumping at equivalent length scales’®, as discussed earlier PW
droplets are favored due to their higher growth rates®’. It is important to note, if the solid fraction
of the structure is too large (¢ > 0.1), PW and S droplet jumping may not be possible due to high
adhesion.

To achieve droplet jumping, surface structures need to be designed with minimal droplet
adhesion by using nanoscale structures with low solid fractions (¢ > 0.1), or hierarchical

structures’ ™' (consisting of a dual length scale roughness of micro and nano structure).

76,82-84 50,52,85-89
d’® d>%>=

Extending the work of Boreyko, many researchers have modele and fabricate

surfaces that show stable droplet jumping. However, if the supersaturation is too large (high
nucleation density), flooding occurs and droplets strongly adhered to the surface are formed*”>”.
These nucleation density limitations still remain and need to be addressed to further increase the
operating range of superhydrophobic surfaces. Furthermore, heat transfer measurements are
required to better quantify the condensation enhancement when compared to state-of-the-art

dropwise condensing surfaces.



Condensation Heat Transfer Performance on Superhydrophobic Surfaces
Modeling of Enhanced Superhydrophobic Surfaces

As shown by the previous studies, condensation heat transfer performance on
superhydrophobic surfaces is dependent on many factors including droplet morphology, structure
geometry, and departure dynamics. To obtain design guidelines for enhanced condensation heat
transfer with superhydrophobic structured surfaces, Miljkovic et al.** developed a unified model
coupling individual droplet heat transfer, droplet size distribution, and droplet wetting
morphology. The emergent droplet wetting morphologies, PW and S jumping, PW and S non-
jumping, or W, were determined by coupling the structure geometry with the nucleation density
and considering local energy barriers to wetting. The model results suggest that a specific range
of geometries (0.5 — 2 um) and nucleation densities, allow for the formation of coalescence-
induced PW jumping droplets with a promise of 190% overall surface heat flux enhancement

. . . 84
over conventional flat dropwise condensing surfaces™ .

Fabrication of Scalable Nanostructures

While a considerable amount of work has focused on understanding and fabricating
superhydrophobic surfaces for potential enhancements in condensation?2>*+6768.7475.86-90 'hoat
transfer measurements that quantify the improvement in performance using these surfaces are
limited. In addition, many studies have used well-defined structures to facilitate the
understanding of the condensation process (carbon nanotubes’, nanowires™*, and nanoparticle

self-assembly’’, micropillars®~*

), however, it is also important to pursue scalable methods of
fabricating superhydrophobic surfaces for the implementation in large scale thermal applications.
Recently, researchers have proposed metal oxides to fabricate more scalable
superhydrophobic nanostructured surfaces*’**%>*° The nanoscale oxide can 1) better satisfy
the requirement for the structure density to be larger than the nucleation density in order to avoid
flooding>>, and 2) reduce the structure length scale beneath the droplet in order to minimize the

structure thermal resistance®’.

4
1.85,9 1‘93

The works of Miljkovic et al.*’ (Figure 6a-c), Feng et a , and Torresin et a
(Figure 6d-f) studied scalable functionalized copper oxide (CuQO) nanostructured surfaces.
Copper is a typical heat exchanger material where chemical-oxidation based CuO

nanostructuring allows for a self-limiting growth behavior, resulting in a low characteristic oxide



thickness (4 ~ 1 um) and a low parasitic conduction thermal resistance’’~*. From an industrial
perspective, the CuO fabrication method is appealing because it can be applied to arbitrarily
shaped surfaces, where the nanostructures form at low temperatures and do not require any high
temperature annealing or drying processes. While zinc oxide (ZnO) has also been proposed,
Narhe et al.”® showed that the ZnO nanostructures had favorable morphology (Figure 6g-i), but
were not able to achieve droplet jumping due to incomplete hydrophobic coating coverage,
relatively large solid fractions ¢ = 0.11, and subsequently larger droplet adhesion to the surface.
Furthermore, in addition to copper and zinc, opportunities remain to create scalable
nanostructured superhydrophobic surfaces with aluminum and stainless steel, which are

commonly used industrial heat exchanger materials*’.

Heat Transfer Experiments

An important metric for optimized superhydrophobic surfaces for condensation are
experimental heat transfer measurements, however, it is well-known that accurate results are
difficult to obtain. Due to the high sensitivity to the presence of non-condensable gasses (NCGs),
experiments need to be performed in controlled environments to ensure NCG content of
<0.25%.°%% In addition, the interfacial resistances, i.e., thermal grease, between the sample
substrate and test rig have led to a lack of repeatability in heat transfer measurements. Recently,
a few studies have conducted experimental investigations in pure vapor environments (no
NCGs)*7319%191 "The first performance measurement was achieved by Boreyko et al.'” via the
characterization of a jumping droplet thermal diode (Figure 7a). Although indirect (condensation
and evaporation performance were lumped together), the results showed forward and reverse
effective thermal conductivities of 350 W/mK and 0.29 W/mK, respectively (Figure 7b),
indicating that the jumping droplet mechanism enhanced heat transfer.

To specifically quantify condensation heat transfer performance, Miljkovic et al.” tested
superhydrophobic nanostructured CuO surfaces over a range of supersaturations (1.02 < .5 < 1.6)
(Figure 7c). They demonstrated that in the jumping regime where S < 1.12, heat transfer
coefficients were /jumping = 92 kW/mzK, 30% higher than that of state-of-the-art dropwise
condensing copper surfaces. However, at § > 1.12, flooding degraded performance to
Bifiooded = 44kW/m’K, 41% less than that of copper. Other studies have also observed flooding on

101

two-tier superhydrophobic CNT'®! and nanostructured CuO’? surfaces, due to high nucleation

10



densities compared to the structure density (Figure 3f), consequently underperforming compared
to dropwise condensation.

Although the results show potential for efficient droplet jumping heat transfer
enhancement, the flooding observed by many researchers suggests the needed to further reduce
the structure length scale and/or reduce and control the nucleation density at elevated

supersaturations.

Summary and Future Outlook

Superhydrophobic surfaces for enhanced condensation requires the careful control of
surface structure length scale and geometry, nucleation density, droplet morphology, and
departure dynamics. Currently, metal oxides are one of the most promising methods to create
these superhydrophobic surfaces in a scalable manner due to their ability to form PW droplets,
relatively large thermal conductivities, reduced structure length scales, and low droplet adhesion
for stable droplet jumping. In addition, jumping condensation has the potential to enhance heat

transfer in the presence of NCGs'**'**

via boundary layer mixing, in addition to the 30%
enhancement already observed in pure vapor environments. However, these surfaces remain
limited due to flooding for applications with low supersaturations. In the future, control of
nucleation density through the creation of coatings and deposition methods for the inclusion of
well-defined defects at the molecular scale, and minimization of the structure length scale are
promising pathways to extend the operating limits. Furthermore, significant efforts should be
placed on creating robust hydrophobic coatings at high temperatures. As in classical dropwise
condensation, the degradation of the hydrophobic coating poses significant challenges for
industrial implementation. One idea showing promise is the study and formation of naturally
occurring hydrophobic materials, such as rare-earth oxide ceramics'®.

A second avenue for future research is with structured surfaces infused with a lubricating
fluid, i.e., SLIPS, to reduce droplet adhesion'**'"7. SLIPS provide an alternative approach for
further performance enhancement at larger supersaturations'”", eliminating flooding of the
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surface structure while maintaining low droplet adhesion . In addition, the ability of these

: . 113-116
surfaces to be omniphobic

or superamphiphobic allows for their potential use in
applications involving low surface tension non-polar fluids such as refrigerants, where

superhydrophobic surfaces can no longer achieve non-wetting behavior. Although promising,
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further studies into the robustness of SLIPS under industrial conditions, as well as their
longevity, are needed in addition to experimental demonstration of heat transfer performance.
While limitations exist, progress in the area of superhydrophobic surfaces for enhanced heat
transfer has been considerable, deepening our fundamental knowledge, introducing new scalable
fabrication techniques, and setting new benchmarks for heat transfer performance. Further
advances in creating and tailoring robust nanostructures and hydrophobic coatings promise to
one day make superhydrophobic surfaces the material of choice for high heat flux condensation

applications.
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Figure 1 — Condensation heat transfer modes and performance. Images of (a) filmwise condensation on a
smooth hydrophilic Cu tube, (b) dropwise condensation on a silane coated smooth Cu tube, (c) jumping-
droplet superhydrophobic condensation on a nanostructured CuO tube (Inset: magnified view of the
jumping phenomena, scale bar is 500 um), and (d) flooding condensation on a nanostructured CuO tube"’.
(e) Heat transfer measurements for dropwise condensation of steam at near-atmospheric pressure®
(AT = Tg(Py) — Twan)- Superhydrophobic region shows expected performance enhancement due to
increased droplet mobility. Reprinted with permission from reference 47. Copyright 2013, American
Chemical Society.
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Figure 2 — Condensing droplet morphologies. Time-lapse schematics of a (a) Wenzel (W) droplet where
liquid fills the structures beneath the droplet; (b) partially wetting (PW) droplet where the liquid partially
fills the structure beneath the droplet, and (c) suspended (S) droplet where an air layer fills the structure
beneath the droplet® (schematics not to scale). Environmental scanning electron microscopy (ESEM)117'
27 images of droplets with the (d) W, (e) PW, and (f) S morphologies on a nanostructured surface
(h=6.1 um, [ =2 pm, d = 300 nm)®’ Reprinted with permission from reference 84. Copyright 2013,
American Society of Mechanical Engineers.
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Figure 3 — Effect of structure length scale and nucleation density on emergent droplet morphology.
(a) Schematic of a droplet growing within the confines of the structures. The liquid can either grow
laterally by filling the adjacent structures or by growing upwards above the structures’. Condensed
droplet growth observed using ESEM on structured surfaces with (b) Cassie droplets where / =2 um and
(c) Wenzel droplets where / = 4 pm.> Scale bar for (b, ¢) is 60 pm. Condensation behavior on a
microstructured surface (/ =4.5 pm, d =2 um, 2 =5 um, and £* = 0.75 + 0.04) is shown at a fixed
location with a scaled coalescence length of (d) (L)// =3.54 + 2.43 (PW droplets) and
(e) (LY/I=2.04 £ 0.6 (W droplets)*. Scale bar for (d, e) is 50 um. (f) Regime map characterizing the
dominant wetting behavior observed during condensation with coordinates of (L)// and E*. PW
morphologies (red 0) emerge at large (L)// and E* < 1 (shaded region). Wenzel morphologies (blue o)
emerge at low (L)// and/or E* = 1. Adapted with permission from references 55 (Copyright 2013,
American Chemical Society) and 54 (Copyright 2012, Royal Society of Chemistry).
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Figure 4 — Effect of droplet morphology on growth rate. Time evolution of the average droplet diameter
for (a) PW and (b) S droplets. The S droplet has a slower growth rate than the PW droplet due to poor
thermal contact between the base and substrate®’. (c) PW and S droplet model schematics and thermal

resistance diagram showing the liquid-vapor interface (R;), droplet conduction (R4), hydrophobic coating

(Rwe), pillar (R,), and gap (R,) thermal resistances®’. Reprinted with permission from references 67.

Copyright 2012, American Chemical Society.

16



-

-

Q- N Q - @
NN N AR ANNARAARARNANAN AANARRAANRRRRNAN

Figure 5 — Droplet departure modes — gravitational shedding versus jumping. Dropwise condensation on
a horizontally oriented (a) smooth hydrophobic surface and (b) structured two-tier superhydrophobic
surface (with micro pillars visible). Stages 1-3 of the condensation process characterize the initial
nucleation, immobile coalescence, and mobile coalescence (jumping droplets), respectively®. (c)
Coalescing process of two droplets. Upper photos: side-view imaging of two condensed drops with
diameters of 302 and 252 pm during merging; lower: modeled coalescence process®. (d) Coalescence-
induced transformation and jumping of the merged droplet. Upper photos: side-view images of
coalescence-induced droplet jumping; lower: modeled coalescence-induced droplet jumping®. Reprinted
with permission from references 29 (Copyright 2009, The American Physical Society) and 83 (Copyright
2012, Elsevier).




Figure 6 — Fabricated scalable nanostructured surfaces. FESEM images of a 5 min CuO surface with (a)

top view, (b) side view, and (¢) micro-goniometer contact angle measurement image (8, = 169.2 & 2.6°).

The sharp, knife-like CuO structures have characteristic heights, 42 ~ 1 um, solid fraction, ¢ ~ 0.023, and
roughness factor, r = 10.Y (d, e) SEM images of the copper surface structures at a 12 min immersion
time”. (f) Contact angle measurement on the nanostructured superhydrophobic copper surface (5 pL

droplet, 6, = 159 + 2°)”. (g) SEM images of zinc surface (24 h deposition) showing micro-flowers-like

structure (a ~ 12 um, b = 25 pm, ¢ = 10 pm)*. (h) The micro-flower area inside the circle in (g) at large
magnification. It shows nano sheets with average thickness 300 nm®>. (i) Contact angle measurement

of a 3 pl water droplet on the ZnO surface. Reprinted with permission from references 47, 93 (Copyright

2013, American Chemical Society), and 92 (Copyright 2010, Elsevier).
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Figure 7 — Experimental heat transfer results. (a) Schematic of the planar jumping-droplet thermal diode
(not to scale) in forward mode with jumping droplets returning the working fluid from the
superhydrophobic condenser to the superhydrophilic evaporator for continuous phase-change heat
transfer'”’. (b) Forward thermal conductivity (k;) versus the average vapor temperature of the thermal
diode (T,)."™ (c) Schematic showing experimental setup. The tube sample (Dop = 6.35 mm, Dyp = 3.56
mm, L = 131 mm) was cooled via chilled water flowing inside the tube at 5 + 0.1 L/min*’.

(h) Experimental and theoretical steady state condensation coefficient (4.) as a function of saturated vapor
pressure (P,) for tube surfaces shown in (d) undergoing filmwise, dropwise, flooding (z =5, 10, 20, and
45 min), and jumping (z = 10 min) condensation*’. Jumping condensation shows the highest condensation
HTC for low supersaturations (S < 1.12).*’ Adapted with permission from references 100
(Copyright 2012, American Institute of Physics), and 47 (Copyright 2013, American Chemical Society).
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Figure Captions

Figure 1 — Condensation heat transfer modes and performance. Images of (a) filmwise
condensation on a smooth hydrophilic Cu tube, (b) dropwise condensation on a silane coated
smooth Cu tube, (¢) jumping-droplet superhydrophobic condensation on a nanostructured CuO
tube (Inset: magnified view of the jumping phenomena, scale bar is 500 um), and (d) flooding
condensation on a nanostructured CuO tube”’. (¢) Heat transfer measurements for dropwise
condensation of steam at near-atmospheric pressure>’ (AT = Ty(Py) — Twan). Superhydrophobic
region shows expected performance enhancement due to increased droplet mobility. Reprinted
with permission from reference 47. Copyright 2013, American Chemical Society.

Figure 2 — Condensing droplet morphologies. Time-lapse schematics of a (a) Wenzel (W)
droplet where liquid fills the structures beneath the droplet; (b) partially wetting (PW) droplet
where the liquid partially fills the structure beneath the droplet, and (c) suspended (S) droplet
where an air layer fills the structure beneath the droplet® (schematics not to scale).
Environmental scanning electron microscopy (ESEM)''71%7 images of droplets with the (d) W,
(e) PW, and (f) S morphologies on a nanostructured surface (2= 6.1 um, / =2 pm,

d =300 nm).Reprinted with permission from reference 84. Copyright 2013, American Society of

Mechanical Engineers.

Figure 3 — Effect of structure length scale and nucleation density on emergent droplet
morphology. (a) Schematic of a droplet growing within the confines of the structures. The liquid
can either grow laterally by filling the adjacent structures or by growing upwards above the
structures™'. Condensed droplet growth observed using ESEM on structured surfaces with

(b) Cassie droplets where / =2 pm and (c) Wenzel droplets where / =4 um™. Scale bar for (b, c)
is 60 um. Condensation behavior on a microstructured surface (/ =4.5 um, d =2 pm, 7 =5 pm,
and £* =0.75 + 0.04) is shown at a fixed location with a scaled coalescence length of (d)

(L)1 =13.54+2.43 (PW droplets) and (e) (L)/[ =2.04 £ 0.6 (W droplets)™. Scale bar for (d, ¢) is
50 um. (f) Regime map characterizing the dominant wetting behavior observed during
condensation with coordinates of (L)// and E*. PW morphologies (red 0) emerge at large (L)//
and £* < 1 (shaded region). Wenzel morphologies (blue o) emerge at low (L)// and/or E* = 1.55
Adapted with permission from references 55 (Copyright 2013, American Chemical Society) and
54 (Copyright 2012, Royal Society of Chemistry).

Figure 4 — Effect of droplet morphology on growth rate. Time evolution of the average droplet
diameter for (a) PW and (b) S droplets. The S droplet has a slower growth rate than the PW
droplet due to poor thermal contact between the base and substrate®’. (c) PW and S droplet
model schematics and thermal resistance diagram showing the liquid-vapor interface (R;), droplet
conduction (Rq4), hydrophobic coating (Ry), pillar (R,), and gap (R,) thermal resistances®’.
Reprinted with permission from references 67. Copyright 2012, American Chemical Society.

Figure 5 — Droplet departure modes — gravitational shedding versus jumping. Dropwise
condensation on a horizontally oriented (a) smooth hydrophobic surface and (b) structured two-
tier superhydrophobic surface (with micro pillars visible). Stages 1-3 of the condensation
process characterize the initial nucleation, immobile coalescence, and mobile coalescence
(jumping droplets), respectively®’. (¢) Coalescing process of two droplets. Upper photos: side-
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view imaging of two condensed drops with diameters of 302 and 252 pm during merging; lower:
modeled coalescence process® . (d) Coalescence-induced transformation and jumping of the
merged droplet. Upper photos: side-view images of coalescence-induced droplet jumping; lower:
modeled coalescence-induced droplet jumping®. Reprinted with permission from references 29
(Copyright 2009, The American Physical Society) and 83 (Copyright 2012, Elsevier).

Figure 6 — Fabricated scalable nanostructured surfaces. FESEM images of a 5 min CuO surface
with (a) top view, (b) side view, and (c) micro-goniometer contact angle measurement image
(0, =169.2 £ 2.6°). The sharp, knife-like CuO structures have characteristic heights, 2= 1 um,
solid fraction, ¢ = 0.023, and roughness factor, » = 10.47 (d, €) SEM images of the copper
surface structures at a 12 min immersion time”". (f) Contact angle measurement on the
nanostructured superhydrophobic copper surface (5 pL droplet, 8, = 159 + 2°)*. (g) SEM images
of zinc surface (24 h deposition) showing micro-flowers-like structure (a = 12 pm, b = 25 pm,
c=10 ],Lm)92. (h) The micro-flower area inside the circle in (g) at large magnification. It shows
nano sheets with average thickness 300 nm’?. (i) Contact angle measurement

of a 3 ul water droplet on the ZnO surface. Reprinted with permission from references 47, 93
(Copyright 2013, American Chemical Society), and 92 (Copyright 2010, Elsevier).

Figure 7 — Experimental heat transfer results. (a) Schematic of the planar jumping-droplet
thermal diode (not to scale) in forward mode with jumping droplets returning the working fluid
from the superhydrophobic condenser to the superhydrophilic evaporator for continuous phase-
change heat transfer' . (b) Forward thermal conductivity (k¢) versus the average vapor
temperature of the thermal diode (73,)'®. (¢) Schematic showing experimental setup. The tube
sample (Dop = 6.35 mm, Dip = 3.56 mm, L = 131 mm) was cooled via chilled water flowing
inside the tube at 5+ 0.1 L/min"’. (h) Experimental and theoretical steady state condensation
coefficient (/) as a function of saturated vapor pressure (Py) for tube surfaces shown in

(d) undergoing filmwise, dropwise, flooding (z =5, 10, 20, and 45 min), and jumping

(z =10 min) condensation®’. Jumping condensation shows the highest condensation HTC for low
supersaturations (S < 1.12)*’. Adapted with permission from references 100 (Copyright 2012,
American Institute of Physics), and 47 (Copyright 2013, American Chemical Society).
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