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1. INTRODUCTION

The realization of Bose Einstein condensates (BEC) and
quantum degenerate Fermi gases with cold atoms has been a
highlight of quantum physics during the past decade. Cold
atoms in the tens of nanokelvin range are routinely obtained via
combined laser- and evaporative-cooling techniques.1 For high-
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enough densities (≳1012 cm−3), the atomic de Broglie
wavelength becomes larger than the typical interparticle
distance, and thus, quantum statistics governs the many-body
dynamics of these systems. The characteristic features of the
physics of cold atomic gases are the microscopic knowledge of
the many-body Hamiltonians which are realized in the
experiments and the possibility of controlling and tuning
system parameters via external fields. External field control of
contact interparticle interactions can be achieved, for example,
by varying the scattering length via Feshbach resonances,2 while
trapping of ultracold gases is obtained with magnetic, electric,
and optical fields.3 In particular, optical lattices, which are
artificial crystals made of light obtained via the interference of
optical laser beams, can realize perfect arrays of hundreds of
thousands of microtraps,4,5 allowing for the confinement of
quantum gases to one-dimensional (1D), 2D, and 3D
geometries and even the manipulation of individual particles.6,7

This control over interactions and confinement is the key for
the experimental realization of fundamental quantum phases
and phase transitions, as illustrated by the BEC-BCS crossover
in atomic Fermi gases8 and the Berezinskii−Kosterlitz−
Thouless transition9 for cold bosonic atoms confined to 2D.
Breakthroughs in the experimental realization of BEC and

degenerate Fermi gases of atoms with a comparatively large
magnetic dipole moment, such as 52Cr,10−16,298,299,300 168Er,17

and 164Dy atoms18,19 (dipole moment 6 μB,7 μB, and 10 μB,
respectively, with μB Bohr’s magneton), and the recent
astounding progress in experiments with ultracold polar
molecules20−31 have now stimulated great interest in the
properties of low temperature systems with dominant dipolar
interactions (see reviews in refs 32−36 for discussions of
various aspects of the problem). The latter have a long-range
and anisotropic character, and their relative strength compared
to, e.g., short-range interactions can often be controlled by
tuning external fields or else by adjusting the strength and
geometry of confining trapping potentials. For example, in
experiments with polarized atoms, magnetic dipolar inter-
actions can be made to overcome short-range interactions by
tuning the effective s-wave scattering length to zero using
Feshbach resonances.10−13 This has already led to the
observation of fundamental phenomena at the mean-field
level, such as, the anisotropic deformation during expansion
and the directional stability18,37 of dipolar BECs. Heteronuclear
polar molecules in a low vibrational and rotational state, on the
other hand, can have large permanent dipole moments along
the internuclear axis with strength ranging between one tenth
and ten Debye (1 D ≃ 3.335 × 10−30 C·m). In the presence of
an external electric field (with a typical value of 103−104 V/cm)
mixing rotational excitations, the molecules can be oriented in
the laboratory frame and the induced dipole moment can
approach its asymptotic value, corresponding to the permanent
dipole moment. This effect can be used to tune the strength of
the dipole−dipole interaction.35 Additional microwave fields
allow for advanced tailoring of the interactions between the
molecules, where even the shape of interaction potentials can
be tuned with external fields, in addition to the strength. This
tunability of interactions forms the basis for the realization of
novel quantum phenomena in these systems, in the strongly
interacting limit.
As a result of this progress, in recent years dipolar gases have

become the subject of intensive theoretical efforts, and there is
now an extensive body of literature predicting novel properties
for these systems.32−36 It is the purpose of this review to

provide a summary of these recent theoretical studies with a
focus on the many-body quantum properties, to demonstrate
the connections and differences between dipolar gaseous
systems and traditional condensed-matter systems, and to
stress the inherent interdisciplinary nature of these studies. This
work covers spatially homogeneous as well as trapped systems,
and it includes the analysis of the properties of dipolar gases
both in the mean-field (dipolar Bose−Einstein condensates and
superfluid BCS pairing transition) and in the strongly
correlated (dipolar gases in optical lattices and low-dimensional
geometries) regimes.
We tried our best to include all relevant works of this

exciting, ever expanding field. We apologize in advance if some
papers (hopefully, not many) do not appear below.

2. DIPOLE−DIPOLE INTERACTION

For polarized dipolar particles, interparticle interactions include
both a short-range van der Waals (vdW) part and a long-range
dipole−dipole one. The latter is dominant at large interparticle
separations, and assuming a polarization along the z-axis as in
Figure 1a, the interparticle interaction reads

θ= −V
d

r
r( ) (1 3 cos )dd

2

3
2

(1)

Here d is the electric dipole moment (for magnetic dipoles d2

should be replaced with μ2, with μ the magnetic dipole
moment), r is the vector connecting two dipolar particles, and θ
is the angle between r and the dipole orientation (the z-axis).
The potential Vdd(r) is both long-range and anisotropic, that is,
partially repulsive and partially attractive. As discussed in the
sections below, these features have important consequences for
the scattering properties in the ultracold gas, for the stability of
the system, as well as for a variety of its properties.

2.1. Scattering of Two Dipoles

The long-range character (∼r−3) of the dipole−dipole
interaction results in all partial waves contributing to the
scattering at low energies, and not only, e.g., the s-wave, as is
often the case for short-range interactions. In fact, for dipole−
dipole interactions, the phase shift δl in a scattering channel
with angular momentum l behaves as δl ∼ k for l ≥ 0 and small
k (see, e.g., refs 38 and 39).
The effect of the anisotropy of the interaction is instead that

the angular momentum is not conserved during scattering: for
bosons and fermions, the dipole−dipole interaction mixes all
even and odd angular momenta scattering channels, respec-

Figure 1. (a) Geometry for the interaction of two aligned dipoles. (b)
Tunability of the dipole−dipole interaction by using a time-varying
aligning field. The angle ϕ between the dipole orientation and the z-
axis determines the strength and the sign of the effective interaction.
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tively. Due to the coupling between the various scattering
channels, the potential Vdd then generates a short-range
contribution to the total effective potential in the s-wave
channel (l = 0). This has the general effect to reduce the
strength of the short-range part of the interaction.
Thus, for two bosonic dipolar particles (even angular

momenta), the scattering at low energies is determined by
both the long-range and the short-range parts of the interaction.
This is in contrast to the low energy scattering of two fermionic
dipoles (odd angular momenta), which is universal in the sense
that it is determined only by the long-range dipolar part of the
interaction and is insensitive to the short-range details.
For a dilute weakly interacting gas, the above results allow a

parametrization of the realistic interparticle interaction between
two particles of mass m in terms of the following
pseudopotential40,41 (see also refs 42 and 43)

δ θ= + −V r g
d

r
r( ) ( ) (1 3 cos )

2

3
2

(2)

with

π
=

ℏ
g

a d

m

4 ( )2

(3)

parametrizing the short-range part of the interaction. We note
that the long-range part of the pseudopotential V(r) is identical
to the long-range part of the original potential and that the
scattering length a(d) controlling the short-range part depends
on the dipole moment. This dependence is important44 when
one changes the dipole moment, using external, e.g. electric,
fields, as explained below.
The strength of the dipole−dipole interaction can be

characterized by the quantity

=
ℏ

a
md

d

2

2

which has the dimension of length and can be considered as a
characteristic range of the dipole−dipole interaction, or dipolar
length. This length determines the low energy limit of the
scattering amplitudes, and, in this sense, ad is analogous to the
scattering length for the dipole−dipole interaction. For
chromium atoms with a comparatively large magnetic moment
of 6 μB (equivalent dipole moment d = 0.056 D), we have ad ≈
2.4 nm. For most polar molecules the electric dipole moment
ranges in between 0.1 and 1 D, while ad ranges from 1 to 103

nm. For example, the dipole moment of fermionic ammonia
molecules 15ND3 is d = 1.5 D with ad = 712 nm, while for
H12C14N it increases to d = 2.98 D and ad = 3620 nm. This
latter value of the effective scattering length is an order of
magnitude larger than, for example, the one for the
intercomponent interaction in the widely discussed case of a
two-species fermionic gas of 6Li, where aLi = −114 nm. Thus,
the strength of the dipole−dipole interaction between polar
molecules can be not only comparable with but even much
larger than the strength of the short-range interatomic
interaction.

2.2. Tunability of the Dipole−Dipole Interaction

One spectacular feature of the dipole−dipole interaction is its
tunability. In section 2.2.1 we first review methods for tuning
the strength and sign of dipolar interactions with an eye to cold
atoms, and then in section 2.2.2 we discuss tunability for the
specific case of polar molecules, where both the strength as well
as the shape of interactions can be engineered.

2.2.1. Tunability of Interactions in Cold Atoms. In ref
45 a technique has been developed to tune the strength as well
as the sign of dipolar interactions in atomic systems with a finite
permanent magnetic dipole moment. This technique uses a
combination of a static (e.g., magnetic) field along the z-axis
and a fast rotating field in the perpendicular xy-plane such that
the resulting time dependent dipole moment is (see Figure 1b)

ϕ ϕ= + Ω + Ωt d t td e e e( ) { cos [ cos( ) sin( )] sin }z x y

Here Ω is the rotating frequency of the field and the angle ϕ, 0
≤ ϕ < π/2, is determined by the ratio of the amplitudes of the
static and rotating fields. The above expression implies that the
dipoles follow the time-dependent external field adiabatically.
This in turn sets an upper limit on the values of the rotating
frequency Ω, which should be (much) smaller than the level
splitting in the field. However, if the frequency Ω is much larger
that the typical frequencies of the particle motion, over the
period 2π/Ω the particles feel an average interaction Vd

θ α ϕ⟨ ⟩ = −V
d

r
r( ) (1 3 cos ) ( )d

2

3
2

The latter differs from the interaction for aligned dipoles, eq 1,
by a factor α(ϕ) = (3 cos2 ϕ − 1)/2, which can be changed
continuously from 1 to −1/2 by varying the angle ϕ. Thus, this
method allows “reversal” of the sign of the dipole−dipole
interaction and even cancellation of it completely for ϕ = a cos
1/√3 = 54.7, similar to the case of NMR techniques.46 We
note that an analogous technique can also be applied for the
electric dipole moments of, e.g., polar molecules. We will
review applications of this method below.

2.2.2. Effective Hamiltonians for Polar Molecules. In
the following we will be often interested in manipulating
interactions for polar molecules in the strongly interacting
regime. In particular, we will aim at modifying not only the
strength but also the shape of interaction potentials, as a basis to
investigate new condensed matter phenomena. This usually
entails a combination of the following two steps: (i)
manipulating the internal (electronic, vibrational, rotational,
...) structure of the molecules, and thus their mutual
interactions, using external static (dc) electric and microwave
(ac) fields, and (ii) confining molecules to a lower-dimensional
geometry, using, e.g., optical potentials, as exemplified in Figure
2. Under appropriate conditions, the resulting effective
interactions can be made purely repulsive at large distances
(e.g., at characteristic distances of 10 nm or more), as in the 2D
example of Figure 3a. On one hand, this has the effect to
suppress possible inelastic collisions and chemical reactions
occurring at short-range (i.e., at characteristic distances of ac ≲
1 nm), and on the other hand, it allows study of interesting
condensed matter phenomena originating from the often-
unusual form of the two-body (or many-body-) interaction
potentials. In the next few subsections, we review techniques
for the engineering of the interaction potentials which will be
used in the many-body context in section 6.
Our starting point is the Hamiltonian for a gas of cold

heteronuclear molecules prepared in their electronic and
vibrational ground-state,
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Here the first term in the single particle Hamiltonian
corresponds to the kinetic energy of the molecules, while
Vtrap(ri) represents a trapping potential, as provided, for
example, by an optical lattice or an electric or magnetic trap.
The term Hin

(i) describes the internal low energy excitations of
the molecule, which for a molecule with a closed electronic
shell 1Σ(ν = 0) (e.g., SrO, RbCs, or LiCs) correspond to the
rotational degree of freedom of the molecular axis. This term is

well described by a rigid rotor Hin
(i) = Hrot

(i) = BJi
2 with B the

rotational constant (in the few to tens of GHz regime) and Ji
the dimensionless angular momentum. The rotational eigen-
states |J,M⟩ for a quantization axis z and with eigenenergies BJ(J
+ 1) can be coupled by a static (dc) or microwave (ac) field E
via the electric dipole moment di, which is typically of the order
of a few Debye.
In the absence of electric fields, the molecules prepared in a

ground rotational state J = 0 have no net dipole moment, and
they interact via a van-der-Waals attraction Vvdw ∼ −C6/r

6,
reminiscent of the interactions of cold alkali metal atoms in the
electronic ground-states. Electric fields admix excited rotational
states and induce static or oscillating dipoles, which interact via
strong dipole−dipole interactions Vdd with the characteristic 1/
r3 dependence given in eq 1. For example, a static dc field
couples the spherically symmetric rotational ground state of the
molecule to excited rotational states with different parity, thus
creating a nonzero average dipole moment. The field strength
therefore determines the degree of polarization and the
magnitude of the dipole moment. As a result, the effective
dipole−dipole interaction may be tuned by the competition
between an orienting, e.g., dc electric field and the quantum (or
thermal) rotation of the molecule. This method effectively
works for the values of the field up to the saturation limit, at
which the molecule is completely polarized (typically 104 V/
cm).
The many body dynamics of cold polar molecules is thus

governed by an interplay between dressing and manipulating
the rotational states with dc and ac fields, and strong dipole−
dipole interactions. In condensed matter physics, one is often
interested in effective theories for the low-energy dynamics of
the many-body system, after the high-energy degrees of
freedom have been traced out. The connection between the
full molecular N-particle Hamiltonian (4) including rotational
excitations and dressing fields, and an effective low-energy
theory can be made using the following Born−Oppenheimer
approximation: The diagonalization of the Hamiltonian HBO =
∑i

N[Hin
(i) − diE] + ∑i<j

N Vdd(ri − rj) for frozen spatial positions
{ri} of the N molecules yields a set of energy eigenvalues

Figure 2. System setup: Polar molecules are trapped in the (x,y)-plane
by an optical lattice made of two counter-propagating laser beams with
wavevectors ± kL = ± kLez (blue arrows). The dipoles are aligned in
the z-direction by a dc electric field Edc ≡ Edcez (red arrow). An ac
microwave field is indicated (green arrow). Inset: Definition of polar
(ϑ) and azimuthal (φ) angles for the relative orientation of the
intermolecular collision axis r12 with respect to a space-fixed frame,
with axis along z. [Adapted from ref 57.]

Figure 3. (a) Effective repulsive interaction potentials in 2D. Solid line: Dipolar potential Veff
2D(ρ) = D/ρ3 induced by a dc electric field in the

configuration of Figure 2 [Edc > 0 and Eac(t) = 0]. Dash-dotted line: “Steplike” potential induced by a single ac microwave field and a weak dc field
(see also Figure 5). Dashed line: Attractive potential induced by the combination of several ac fields and a weak dc field. The potentials Veff

2D(ρ) and
the separation ρ are given in arbitrary units. (b) Potential V(ρ,z)/(ℏΩ) versus ρ/ah and z/ah for |m| = 1 for 40K87Rb in a Ω = 2π(50 kHz) trap, where
ah = 56.4 nm, a ̅ = 6.25 nm,48 and d = 0.2 D. White circles: saddle points. Dashed lines: semiclassical trajectory for the collision of two molecules. The
dashed half-circles show a ̅ and ad. (Panels a and b are adapted from refs 57 and 60, respectively.)
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Veff
3D({ri}), which can be interpreted as the effective interaction

potential in the single-channel many-body Hamiltonian

∑= + +
=
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⎥
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V V
p

r r
2

( ) ({ })
i

N
i

i ieff

1

2

trap eff
3D

(5)

The term Veff
3D({ri}) represents an effective N-body interaction,

which can be expanded as a sum of two-body and many-body
interactions

∑ ∑= − + +
< < <

V V Wr r r r r r({ }) ( ) ( , , ) ...i

i j

N

i j

i j k

N

i j keff
3D 3D 3D

(6)

where in most cases only two-body interactions are considered.
The dependence of Veff

3D({ri}) on the electric fields E provides
the basis for the engineering of the many body interactions, as
described below.
We note that the attractive part of the interaction potential

can induce instabilities in a dipolar gas at the few body level as
well as at the many-body level (this latter case will be discussed
in section 3). For example, for several experimentally relevant
mixed alkali-metal diatomic species such as KRb, LiNa, LiK,
LiRb, and LiCs,47 there exist chemically reactive channels that
are energetically favorable, leading to particle recombination
and two-body losses in the gas. The rate of chemical reactions
can be strongly enhanced by dipole−dipole interactions which
can attract molecules in a head-to-tail configuration (e.g., θ = 0
in Figure 1a) to distances on the order of typical chemical
interaction distances, ac ≲ 1 nm.48−56 One aim of interaction
engineering is to control these interactions in order to stabilize
the gas against particle losses. This will enable the study of
complex condensed matter phenomena in these systems.
2.2.3. Stabilization of Dipolar Interactions in 2D. The

simplest example of stabilization of dipolar interactions against
inelastic collisions is sketched in Figure 2 and consists of a
system of cold polar molecules in the presence of a polarizing
dc electric field oriented in the z-direction and of a strong
harmonic transverse confinement Vtrap = μΩ2z2/2 with
frequency Ω and characteristic length ah = (ℏ/mΩ)1/2. The
latter is provided, e.g., by an optical lattice along z.
Figure 3b shows a countour plot of the interaction potential

V(ρ,z) for two dipoles in this quasi-2D geometry, where

πε

= +
Ω

= − +
−

+
Ω

V V
m z

C

r

d z r

r

m z

r r( ) ( )
4

(1 3 / )

4 4

eff
3D

2 2

6
6

2 2 2

0
3

2 2

Here ρ⃗ = (ρ,ϕ,z) represents the distance between the two
molecules in cylindrical coordinates, and r ≡ |ρ⃗|. The first term
is the isotropic vdW potential, assuming the molecules are in
their rotational ground state, with a vdW length a ̅ = (2π/Γ(1/
4)2)(2μC6/ℏ

2)1/4.58,59 The second term is the anisotropic
dipolar potential, with induced dipole moment d and dipolar
length ad.
Figure 3b illustrates essential features of reduced dimensional

collisions: for finite d, the repulsive dipole−dipole interaction
overcomes the attractive van-der-Waals potential in the (z = 0)-
plane at distances r > a ̅ ≫ ac, realizing a repulsive in-plane
potential barrier (blue dark region). In addition, the harmonic
potential confines the particles’s motion in the z direction. The
combination of the dipole−dipole interaction and of the

harmonic confinement thus yields a three-dimensional potential
barrier separating the long-distance, where interactions are
repulsive, from the short-distance one, where interactions are
attractive and inelastic processes can occur. If the collision
energy is smaller than the height of the barrier at the saddle
point (white circles), the particles’ motion is confined to the
long-distance region, where particles scatter elastically. Particle
losses are due to tunneling through the potential barrier at a
rate Kj

(re). Within a semiclassical (instanton) approximation valid
for ad ≫ max{ah,a ̅}, the tunneling rate Kj

(re) is well
approximated by the exponential form

ω∝ −K c a aexp[ ( / ) ]j p d h
(re) 2/5

(7)

The constant c has been recently computed numerically by
Julienne, Hanna, and Idziaszek61 to be c ≈ 3.03, while the
“attempt rate” ωp

62 for the scattering of two isolated dipoles
reads ωp ∝ (ℏ2κ4ah

4/μ), independent of particles’ statistics. Here
κ is the momentum for a collision with relative kinetic energy
Eκ = ℏ2κ2/(2μ), with aκ = 2π/κ the de Broglie wavelength. For
particles in a crystalline configuration (see section 6.1), ωp will
be proportional to the frequency of phonon oscillations around
the mean particle positions ωp ∼ (d2/μa5)1/2, with a the mean
interparticle distance. The expression eq 7 shows that
collisional losses may be strongly suppressed for any molecular
species for a large enough dipole moment or strength of
transverse confinement.
In ultracold collisions one often has the following separation

of length scales: aκ ≫ ah ≫ a ̅≫ ac, and ad can be tuned by, e.g,
increasing the external dc field. Parts a and b of Figure 4 show

numerical results for reactive and elastic collision rates of
bosonic and fermionic KRb molecules, respectively, and for
several strengths of transverse confinement. Here aκ, ah, and a ̅
are on the order of hundreds of nanometers, tens of
nanometers, and less than 10 nm, respectively. Because of the
moderate dmax = 0.5 D of KRb molecules, here ad ≲ ah and the
semiclassical regime of large ad of eq 7 is not reached.
Nevertheless, in stark contrast to collisions in 3D,50 the figure
shows that the ratio between elastic and inelastic collision rates

Figure 4. Quasi-2D elastic (el) and reaction (re) rate constants Kj for
(a) identical KRb bosons (j = 0) and (b) identical KRb fermions (j =
1) at a collision energy of E = kB(240 nK) = h (5 kHz) for three
different trap frequencies Ω/(2π) = 25 kHz, 50 kHz, and 150 kHz.
Heavy lines: CC. Light lines: UBA or instanton. Horizontal lines show
the unitarity limits. Vertical arrows show where ηj = 100. (From ref
60.)
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increases rapidly with d, signaling an increased stability with
increasing d. For bosons, the exact numerical results (thick
lines) approach rapidly the semiclassical instanton limit (thin
lines) with increasing d. The behavior of the inelastic rates for
fermions is explained in detail in refs 60 and 63.
Recent landmark experimental results from the JILA group

with fermionic KRb molecules show a strong suppression of
inelastic collisions and increase of elastic ones with d, in
excellent agreement with the predictions of Figure 3. This
opens the way to the study of strongly correlated phenomena in
these systems.
2.2.4. Advanced Interaction Designing: Blue-Shield-

ing. By combining dc and ac fields to dress the manifold of
rotational energy levels, it is possible to design effective
interaction potentials Veff

3D(ri − rj) with (essentially) any shape
as a function of distance. For example, the addition of a single
linearly polarized ac field to the configuration of section 2.2.3
leads to the realization of the 2D “steplike” potential of Figure
3a (black dashed-dotted line), where the character of the
repulsive potential varies considerably in a small region of
space. The derivation of this effective 2D interaction is sketched
in Figure 5.57,64 The (weak) dc-field splits the first-excited

rotational (J = 1)-manifold of each molecule by an amount ℏδ,
while a linearly polarized ac-field with Rabi frequency Ω is blue-
detuned from the (|g⟩ − |e⟩)-transition by ℏΔ; see Figure 5a.
Because of ℏδ and the choice of polarization, for distances ρ ≫
(d2/ℏδ)1/3, the relevant single-particle states for the two-body
interaction reduce to the states |g⟩ and |e⟩ of each molecule.
Figure 5b shows that the dipole−dipole interaction splits the
excited state manifold of the two-body rotational spectrum,
making the detuning Δ position-dependent. As a consequence,
the combined energies of the bare ground state of the two-
particle spectrum and of a microwave photon become
degenerate with the energy of a (symmetric) excited state at
a characteristic resonant (Condon) point ρC = (d2/ℏΔ)1/3,
which is represented by an arrow in Figure 5b. At this Condon
point, an avoided crossing occurs in a f ield-dressed picture, and
the new (dressed) ground state potential inherits the character
of the bare ground and excited potentials for distances ρ ≫ ρC
and ρ ≪ ρC, respectively. Figure 5d shows that the dressed
ground state potential (which has the largest energy) is almost
flat for ρ ≫ ρC and it is strongly repulsive as 1/ρ3 for ρ ≪ ρC,
which corresponds to the realization of the steplike potential of

Figure 3a. We remark that, due to the choice of polarization,
this strong repulsion is present only in the plane z = 0, while for
z ≠ 0 the ground state potential can become attractive. The
optical confinement along z of section 2.2.3 is therefore
necessary to ensure the stability of the system.
The interactions in the presence of a single ac field are

described in detail in ref 57, where it is shown that in the
absence of external confinement this case is analogous to the
(3D) optical blue-shielding developed in the context of
ultracold collisions of neutral atoms,65−67 however with the
advantage of the long lifetime of the excited rotational states of
the molecules, as opposed to the electronic states of cold
atoms. The strong inelastic losses observed in 3D collisions
with cold atoms65−67 can be avoided via a judicious choice of
the field’s polarization, eventually combined with a tight
confinement to ensure a 2D geometry (as e.g. in Figure 2
above). For example, in ref 68 it is shown that in the presence
of a dc field and of a circularly polarized ac field the attractive
time-averaged interaction due to the rotating (ac-induced)
dipole moments of the molecules allows for the cancellation of
the total dipole−dipole interaction. The residual interactions
remaining after this cancellation are purely repulsive 3D
interactions with a characteristic van-der-Waals behavior Veff

3D(r)
∼ (d4/ℏΔ)/r6. This 3D repulsion provides for a shielding of the
inner part of the interaction potential, and thus, it will strongly
suppress inelastic collisions in experiments.
Recent works69,70 have considered the microwave spectra of

alkali-metal dimers including hyperfine interactions. It is an
important open question to determine the effects that the
presence of internal states, such as, e.g., hyperfine states, have
on the broad class of shielding techniques described above.

3. WEAKLY INTERACTING DIPOLAR BOSE GAS

3.1. BEC in a Spatially Homogeneous Gas

Let us discuss now the influence of the dipole−dipole
interaction on the properties of a homogeneous single-
component dipolar Bose gas. (This and the next sections are
substantially revised and updated versions of the corresponding
parts of ref 32.) This can be most conveniently done in the
language of second quantization. For this purpose we introduce
the particle creation and annihilation field operators ψ̂†(r) and
ψ̂(r) satisfying the standard bosonic commutation relation

ψ ψ ψ ψ ψ ψ δ

ψ ψ ψ ψ

̂ ̂ ′ ≡ ̂ ̂ ′ − ̂ ′ ̂ = − ′

̂ ̂ ′ = ̂ ̂ ′ =

† † †

† †

r r r r r r r r

r r r r

[ ( ), ( )] ( ) ( ) ( ) ( ) ( )

[ ( ), ( )] [ ( ), ( )] 0

The corresponding second quantized Hamiltonian of the
system then reads

∫ ∫ψ μ ψ

ψ ψ ψ ψ

̂ = ̂ −
ℏ

∇ − ̂ + ′

̂ × ̂ ′ − ′ ̂ ′ ̂

†

† †

⎡

⎣
⎢

⎤

⎦
⎥H

m

V

r r r r r

r r r r r r

d ( )
2

( )
1

2
d d

( ) ( ) ( ) ( ) ( )

2
2

(8)

where m is the mass of the particles, V(r) is the interparticle
interaction, and the chemical potential μ fixes the average
density n of the gas. We consider the case when the system is
away from any “shape” resonances38,39,71 and, therefore, replace
the original interparticle interaction with the pseudopotential
(eq 2). Assuming that the system is dilute, na3 ≪ 1, we can
write the Hamiltonian as

Figure 5. Design of the steplike potential of Figure 3a (black dashed-
dotted line): (a) Rotational spectrum of a molecule in a weak dc field.
The dc field splits the (J = 1)-manifold by an amount ℏδ. The linearly
polarized microwave transition with detuning Δ and Rabi frequency Ω
is shown as an arrow. (b) BO-potentials for the internal states for Ω =
0 (bare potentials), where |g;e⟩± ≡ (|g;e⟩ ± |e;g⟩)/√2. The resonant
Condon point ρC is indicated by an arrow. (c) ac-field-dressed BO-
potentials. The dressed ground state potential has the largest energy.
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∫

∫

ψ μ ψ ψ
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where Vd is given by eq 1 and g = 4πℏ2a/m (as compared to eq
3, we omit the dependence of the scattering length a on the
dipole moment d). Note that the scattering length has to be
positive, a > 0, to avoid an absolute instability due to local
collapses.72

As we will see below, an important parameter that
determines the properties of the system described by the
Hamiltonian (eq 9) is

ε
π

= =
ℏ

=
d

g

md

a

a

a

4

3 3

1

3
dd

d
2 2

2
(10)

It measures the strength of the dipole−dipole interaction
relative to the short-range repulsion. In the case εdd < 1, the
short-range part of the interparticle interaction is dominant
while the dipole−dipole interaction results in only small
corrections. For a positive scattering length a, the system is
stable and exhibits BEC at low temperatures. This case
corresponds to earlier experiments10,13 with Cr BEC (εdd ≈
0.1613). It was found that the corrections due to magnetic
dipole−dipole interaction between 52Cr atoms are of the order
of 10%.
For the opposite case εdd > 1, the anisotropic dipole−dipole

interaction plays the dominant role, resulting in instability of a
spatially homogeneous system.73−75 This instability can be seen
in the dispersion relation E(p) between the energy E and the
momentum p of excitations in the Bose-condensed gas, which
can be easily obtained within the standard Bogoliubov
approach:

ε θ

= +

= + + −

⎡
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m
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m
nV
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m
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2
4 [1 (3 cos 1)]dd

2 2

2 2

(11)

Here θ is the angle between the excitation momentum p and
the direction of dipoles, and V(p) = g + (4πd2/3)(3 cos2 θ − 1)
is the Fourier transform of V(r) = gδ(r) + Vd(r). Signatures of
the anisotropic behavior of the speed of sound have been
recently observed in ref 300. For εdd > 1, the excitation energies
E(p) at small p and θ close to π/2 become imaginary, signaling
the instability (collapse). This instability of a spatially
homogeneous dipolar Bose gas with dominant dipole−dipole
interaction is a result of a partially attractive nature of the
dipole−dipole interaction.

3.2. BEC in a Trapped Gas

The above consideration shows that the behavior of a spatially
homogeneous Bose gas with a strong dipole−dipole interaction
is similar to that of a Bose gas with an attractive short-range
interaction characterized by a negative scattering length a < 0.
In the latter case, however, the collapse of the gas can be
prevented by confining the gas in a trap, provided the number
of particles N in the gas is smaller than some critical value Nc, N
< Nc (see, e.g., ref 72). This is due to the finite energy
difference between the ground and the first excited states in a
confined gas. For a small number of particles, this creates an

effective energy barrier preventing the collapse and, therefore,
results in a metastable condensate. The same arguments are
also applicable to a dipolar BEC in a trap; see refs 15 and 16
with one very important difference: The sign and the value of
the dipole−dipole interaction energy in a trapped dipolar BEC
depend on the trapping geometry, and therefore, the stability
diagram contains the trap anisotropy as a crucial parameter.

3.2.1. Ground State. The Hamiltonian for a trapped
dipolar Bose gas reads

∫

∫

ψ μ ψ

ψ ψ ψ ψ

ψ
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∇ − + + | ̂ |
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where

ω ω= + +ρU
m

x y zr( )
2
[ ( ) ]ztr

2 2 2 2 2

(13)

is the trapping potential and we again use the pseudopotential
(eq 2) for the short-range part of the interparticle interaction
assuming that the system is away from “shape” resonances. For
the trapping potential, we consider the experimentally most
common case of an axially symmetric harmonic trap
characterized by the axial ωz and radial ωρ trap frequencies.
The aspect ratio of the trap l is defined through the ratio of the
frequencies: l = (ωρ/ωz)

1/2 = lz/lρ, where lz = (ℏ/mωz)
1/2 and lρ

= (ℏ/mωρ)
1/2 are the axial and radial sizes of the ground state

wave function in the harmonic oscillator potential (eq 13),
respectively. For l < 1, one has a pancake-form (oblate) trap,
while the opposite case l > 1 corresponds to a cigar-form
(prolate) trap. Taking into account the anisotropy of the
dipole−dipole interaction, one can easily see that the aspect
ratio l should play a very important role in the behavior of the
system.
The standard mean-field approximation corresponds to

taking the many-body wave function in the form of a product
of single-particle wave functions:

∏ ψΨ =
=

t tr r r( , ..., ; ) ( , )N

j

N

j1

1
1

(14)

The condensate is then described by the condensate wave
function ψ(r, t) =√Nψ1(r,t) normalized to the total number of
particles, ∫ dr| ψ(r,t)|2 = N, and governed by the time-
dependent Gross−Pitaevskii (GP) equation

∫
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(15)

The validity of this approach was tested in refs 41 and 44 by
using many-body diffusion Monte Carlo calculations with the
conclusion that a GP equation with the pseudopotential (eq 2)
provides a correct description of the gas in the dilute limit na3

≪ 1. Note that, being the product of single-particle wave
functions, the many-body wave function (eq 14) does not take
into account interparticle correlations at short distances due to
their interaction, which takes place at interparticle distances |r
− r′| ≲ ad = md2/ℏ2. This change of the wave function is taken
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into account in eq 15 by the contact part of the pseudopotential
(eq 2) [the fourth term on the right-hand-side of eq 15] but
ignored in the last term of eq 15 because the main contribution
to the integral comes from large interparticle distances (of
order the spatial size of the condensate).
Let us first consider stationary solutions of eq 15, for which

ψ(r,t) = ψ0(r) and ψ0(r) obeys the stationary GP equation

∫

ω ρ ω ψ

θ
ψ ψ

μψ

−
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∇ + + + | |

+ ′
−

| − ′|
| ′ |

=
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2 2
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2
2

3 0
2

0
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where ρ2 = x2 + y2. Numerical analysis of eqs 15 and 16 was
performed in refs 40, 73, 74, 76, and 77 on the basis of
numerical solutions of the nonlinear Schrödinger equation (eq
16) together with variational considerations with the Gaussian
ansatz for the condensate wave function. In refs 41 and 44 the
problem was treated using diffusive Monte Carlo calculations,
while the authors of ref 78 apply the Thomas−Fermi
approximation that neglects the kinetic energy and allows
obtainment of analytical results.
We begin the discussion of the results with the case of a

dominant dipole−dipole interaction, εdd ≫ 1, such that the
third term on the left-hand-side of eq 16 can be neglected. This
case demonstrates already all important features of the behavior
of dipolar condensates. The general case will be briefly
discussed at the end of this section.
Let us introduce the mean-field dipole−dipole interaction

energy per particle

∫ ψ
θ

ψ= ′ | |
−

| − ′|
| ′ |V

N
r r r

r r
r

1
d d ( )

1 3 cos
( )0

2
2

3 0
2

(17)

which together with the trap frequencies ωz and ωρ are
important energy scales of the problem. One can easily see that
the value of the chemical potential μ and the behavior of the
dipolar condensate are determined by the aspect ratio of the
trap l, the quantity V/ℏωρ, and the parameter σ = Nad/lρ.
Notice also that the anisotropy of the dipole−dipole interaction
results in squeezing the cloud in the radial direction and
stretches it in the axial one (along the direction of dipoles) in
order to lower the interaction energy. For this reason, the
aspect ratio of the cloud L = Lz/Lρ is always larger than the
aspect ratio l of the trap. Here Lz and Lρ are the axial and the
radial sizes of the cloud, respectively.
We now summarize the results of the stability analysis of the

dipolar condensate with εdd ≫ 1 (eq 16 with g = 0)74,76,79 (see
also ref 77 for the stability analysis in a general harmonic trap).
The mean-field dipole−dipole interaction is always attractive, V
< 0, for a cigar shaped trap l ≥ 1, causing instability (collapse)
of the gas if the particle number N exceeds a critical value Nc.
This critical value depends only on the trap aspect ratio l. It was
found that the shape of the cloud with N close to Nc is
approximately Gaussian with the aspect ratio L ≈ 2.1 for a
spherical trap (l = 1) and L ≈ 3.0 for an elongated trap with l
≫ 1.
For a pancake shaped trap with l ≤ 1, the situation is more

subtle. In this case, there exists a critical trap aspect ratio l∗ ≈
0.43, which splits the pancake shaped traps into soft pancake
traps (l∗ < l ≤ 1) and hard pancake traps (l < l∗). For soft

pancake traps, one has again a critical number of particles Nc

such that the condensates with N > Nc are unstable. For N close
to Nc and l→ l∗, the aspect ratio of the cloud Lc approaches the
aspect ratio of the trap, Lc → l∗. Note that in this case the
collapse occurs even in a pancake shaped cloud with positive
mean dipole−dipole interaction V due to the behavior of the
lowest quadrupole and monopole excitations (see section
3.2.2).
For hard pancake traps, it was argued in refs 74 and76 that

the dipolar condensate is stable for any N because the dipole−
dipole interaction energy V is always positive. On the other
hand, by using more advanced numerical analysis and a larger
set of possible trial condensate wave functions, the authors of
ref 79 found that the dipolar condensate in a hard pancake trap
is also unstable for a sufficiently large number of particles.
Similar conclusions were drawn in ref 77. It was found that the
critical values of the parameter σ for the instability to occur are
orders of magnitude larger than in soft pancake and cigar
shaped traps. In addition, the regions in parameter space were
discovered where the maximum density of the condensate is
not in the center of the cloud such that the condensate has a
biconcave shape. (Analogous behavior of the condensate in a
general three-dimensional harmonic trap was found in ref 77;
see also refs 80 and 81.) These regions exist also in the
presence of a small contact interaction with |a| ≲ 0.2ad, but
their exact position and size depend on a. It is important to
mention that condensates with normal and biconcave shapes
behave differently when the instability boundary is crossed. The
condensate with a normal shape develops a modulation of the
condensate density in the radial direction, so-called “radial
roton” instability, similar to the roton instability for the infinite-
pancake trap (l → ∞);82 see section 3.2.3. On the other hand,
it is the density modulations in the angular coordinate that lead
to the collapse of biconcave condensatesa kind of “angular
roton” instability in the trap. In the latter case, one has
spontaneously broken cylindrical symmetry.
The behavior of the trapped dipolar condensate can be

simply captured by means of a Gaussian variational ansatz for
the condensate wave function ψ0(r):

ψ
π
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= − −

ρ ρ
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2

2

2

2
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where the equilibrium radial size Lρ and the cloud aspect ratio L
can be found by minimizing the energy. Note that in order to
describe biconcave shaped condensates, one has to consider
(see ref 79) a linear combination of two wave functions: the
first one is a Gaussian (eq 18), and the second one is the same
Gaussian multiplied by H2(x/Lρ) + H2(y/Lρ), where H2 is the
Hermite polynomial of the second order.
For large values of the parameters Na/li, where i = ρ or z, are

large (but still Na3 ≪ 1), one can use the Thomas−Fermi
approximation to find the chemical potential and the shape of
the cloud.78 This case corresponds to small kinetic energy, as
compared to other energies, and therefore, we can neglect the
corresponding term with derivatives in eq 16. The GP equation
then becomes
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The solution of this equation reads
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where n0 is the density of the condensate in the center of the
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The energy of the condensate is
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and the radii of the condensate in the radial and axial directions
Rρ and Rz are
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= ρR LRz (23)

and the corresponding aspect ratio of the cloud L can be found
from the equation
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Note that the above equation coincides with the equation on
the aspect ratio for the Gaussian variational ansatz (eq 18)
when the kinetic energy contribution is neglected, as shown in
ref 73. It was also found that the Thomas−Fermi
approximation agrees well with numerical results when used
to analyze the stability of the condensate. However, the critical
number of particles cannot be found in the Thomas−Fermi
approximation because both terms in the expression (eq 21) for
the energy have the same dependence N7/5 on the number of
particles N after taking into account the expressions (eqs 22
and 23) for Rρ and Rz.
Let us now briefly discuss the stability of a dipolar

condensate in the general case with g ≠ 0. It is obvious that
for an attractive short-range interaction with g < 0 the
condensate can only be (meta)stable for a small number of
particles. For a repulsive short-range interaction with g > 0 and
weak dipole−dipole interaction 0 ≤ εdd < 1, the condensate is
always stable. For εdd > 1 the dipolar condensate can only be
metastable for a number of particles smaller than a critical
value, N < Nc, which depends on εdd and the trap aspect ratio l.
This means that the (metastable)condensate solution provides
only a local minimum of the energy, while the global minimum

presumably corresponds to a collapsed state with L → ∞ or,
for l < 1, a kind of density modulated state.

3.2.2. Collective Excitations and Instability. We have
already mentioned that collective excitations play an important
role in the stability analysis of a dipolar condensate. They also
determine the dynamics of the gas and, therefore, are of
experimental interest.
For a trapped dipolar condensate, the analysis of excitations

is usually performed on the basis of the Bogoliubov−de Gennes
equations, which can be obtained by linearizing the time-
dependent GP equation (eq 15) around the stationary solution
ψ0(r). This can be achieved by writing a solution of eq 15 in the
form

ψ ψ ε ω ω= + − + * −⎡⎣t u i t v i tr r r r( , ) ( ) ( ) exp( ) ( ) exp( )]0

where the second term describes small (ε ≪ 1) oscillations of
the condensate around ψ0(r) with (complex) amplitudes u(r)
and v(r). To the first order in ε, the linearization of eq 15 gives
the Bogoliubov−de Gennes equations
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where V(r − r′) is given by eq 2. The solution of these linear
equations provides the eigenfunctions (uj(r),vj(r)) with the
amplitudes uj(r) and vj(r) obeying the normalization condition

∫ δ* − * =u u v vr r r r rd [ ( ) ( ) ( ) ( )]i j i j ij

and the corresponding eigenfrequencies ωj of the collective
modes. The Bogoliubov−de Gennes equations (eqs 25 and 26)
can also be obtained by diagonalizing the Hamiltonian equation
(eq 13) in the Bogoliubov approximation, which corresponds
to splitting the field operator ψ̂(r) into its mean-field value
ψ0(r) and the fluctuating quantum part expressed in terms of
annihilation and creation operators α̂j and α̂j

† of bosonic
quasiparticles (quanta of excitations):

∑ψ ψ α α̂ = + ̂ + * ̂†u vr r r r( ) ( ) [ ( ) ( ) ]
j

j j j j0

The normalization condition for the amplitudes uj(r) and vj(r)
ensures the bosonic nature of the excitations: The operators α̂j
and α̂j

† obey the canonical Bose commutation relations.
Nonlocality of the dipole−dipole interaction results in an

integrodifferential character of the Bogoliubov−de Gennes
equations (eqs 25 and 26), making it hard to analyze them both
analytically and numerically. A simpler way is to study the
spectrum of small perturbations around the ground state
solution of the time-dependent GP eq 15 (see ref 83 for this
approach to atomic condensates). Using this approach in

Chemical Reviews Review

dx.doi.org/10.1021/cr2003568 | Chem. Rev. 2012, 112, 5012−50615020



combination with the Gaussian variational ansatz73,84 or the
Thomas−Fermi approximation,85 it is possible to obtain
analytic results for several low energy excitation modes.
As an illustration, let us consider a Gaussian variational wave

function
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The variational parameters here are the complex amplitude A,
the widths Rη, the coordinates of the center of the cloud η0, and
the quantities αη and βη related to the slope and the curvature,
respectively. The normalization of the wave function to the
total number of particles N provides the constraint

π= | | =N A t R R R( ) constx y z
3/2 2

(28)

To find the equations governing the variational parameters,
we notice that the time-dependent GP equations (eq 15) are
equivalent to the Euler−Lagrange equations for the action
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We therefore can obtain an effective Lagrangian Leff that
depends on the variational parameters by inserting eq 28 into
the previous equation and integrating over space coordinates.
We obtain
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where φ is the phase of A [the modulus of A was excluded by
using eq 28] and we set η0(t) = 0 and αη(t) = 0 for simplicity
(this corresponds to ignoring the so-called sloshing motion of
the condensate). The standard Euler−Lagrange variational
procedure
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with qj = (Rη, βη) provides equations of motion for the
parameters Rη, and βη:
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The above equation describes the motion of a particle with a
unit mass in the potential
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Therefore, the frequencies of small amplitude oscillations
around the stationary solution can be read from the second
derivatives of the potential U(R) at its minimum. In this way
one can obtain the frequencies for the first three compressional
excitation modes. In refs 73 and 84, these frequencies and the
corresponding shapes of the cloud oscillations were found for a
cylindrical symmetric trap, Rx = Ry = Rρ, Rz = LRρ; see Figure 6.

In the considered cylindrical geometry with dipoles oriented
along the z-axis, the projection M of the angular momentum on
the z-axis is a good quantum number that can characterize the
mode: One has M = 0 for modes 2 and 3 and M = 1 for mode
1. Modes 2 and 3 are often called breathing and quadrupole
modes, respectively, and we will follow this convention here.
(In the Thomas−Fermi approximation, one can find analytical
expressions for these modes; see ref 85.) It is important that,
with increasing strength of the dipole−dipole interaction, the
quadrupole mode 3 demonstrates the tendency toward
instability, and it becomes unstable when εdd reaches some
critical value. This character of instability via softening of mode
2 is similar to that in a Bose gas with a short-range attractive
interaction (a < 0).
The situation for a dipolar gas with dominant dipole

interactions is more complicated.79,84,86 It was found (see ref
84) that the instability of collective modes of a dipolar BEC is
reminiscent of a gas with an attractive short-range interaction
only if the trap aspect ratio is larger than the critical one, l ≫ l*
(numerically was found l > 1.29): The lowest frequency
“breathing” mode 2 becomes unstable when the parameter σ =
Nad/lρ → σc. The variational approach discussed above provides
the scaling behavior of its frequency ω2 near the critical point

Figure 6. Low-energy excitation modes of a dipolar condensate.
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(see ref 84): ω2 ∼ (σc − σ)β, with β = 1/4, which is very close to
the experimental value β ≈ 0.2 for Chromium BEC.15

For intermediate values of l above l* (0.75 < l < 1.29), the
mode which drives the instability (the lowest frequency mode)
is a superposition of breathing and quadrupole modes with the
exponent β still close to 1/4. The mode has the breathing
symmetry (mode 2) for σ far below σc, while it changes and
becomes quadrupole-like (mode 3) as σ approaches the critical
value σc.
For l close to l* (l < 0.75) the lowest frequency is the

quadrupole mode 3. The frequency of this mode ω3 tends to
zero as σ approaches the critical value, ω3 ∼ (σc − σ)β, with the
exponent β ≈ 1/4 if l is not too close to l∗. When l approaches
l*, one has σc → ∞, and β > 1/4. Finally, when l = l*, the
frequency of the lowest frequency quadrupole mode ω3 can be
zero only for σ = ∞.86 (Note that this result cannot be
reproduced within the Gaussian variational ansatz, which in
general does not provide reliable results close to the instability;
see ref 84.)
Collective modes for the case l < l* were analyzed in ref 79

on the basis of the Bogoliubov−de Gennes equations (eqs 25
and 26). The two possible types of solutions for the stable
condensate were already mentioned above: A pancake
(normal) shaped condensate (the maximum condensate
density is in the center of the trap), and a biconcave shaped
condensate (the maximum condensate density is at some
distance from the center of the trap). It was found that, in the
case of a pancake condensate, the mode which drives the
instability has zero projection of angular momentum on the z-
axis, M = 0, and consists of a radial nodal pattern. The number
of the nodal surfaces increases with decreasing l (flattening of
the condensate). This “radial roton” mode in a confined gas can
be viewed as an analog of the roton mode in an infinite-pancake
trap from ref 82; see below. In a biconcave condensate near the
instability, the lowest frequency mode has nonzero projection
of the angular momentum on the z-axis, M ≠ 0. This mode is
an “angular roton” in the trap: For a biconcave-shaped
condensate, the maximum density is along the ring, and an
angular roton corresponds to density modulation along this
ring. The instability in this case corresponds to the collapse of
the condensate due to buckling of the density in the angular
coordinate and, therefore, breaks the cylindrical symmetry
spontaneously (see ref 79 for more details).
3.2.3. Roton Instability of a Quasi 2D Dipolar

Condensate. Let us now discuss the effects of the long-
range and anisotropic character of dipole−dipole forces in the
physically simpler case of an infinite pancake shaped trap, with
the dipoles perpendicular to the trap plane.82 It was found that
a condensate with a large density n0 can be dynamically stable
only when a sufficiently strong short-range repulsive interaction
is present. Otherwise, excitations with the certain in-plane
momenta q become unstable when the condensate density n0
exceeds the critical value nc. Interestingly, the excitation
spectrum of a stable condensate with the density n0 < nc has
a roton−Maxon form similar to that in the superfluid helium
(see also ref 87 for the quasi-2D version of this problem).
The time-dependent GP equation for the condensate wave

function ψ(r,t) of dipolar particles harmonically confined in the
direction of the dipoles (z-axis) reads
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where ωz is the confining frequency. Let us assume the ground
state to be uniform in the in-plane directions such that the
ground state wave function ψ0(z) is independent of the in-plane
coordinate r = (x,y). We can then integrate over r′ in the
dipole−dipole term of eq 33 with the result
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(34)

where gd = 8πd2/3. This one-dimensional equation is similar to
the GP equation for short-range interactions. The simplest case
corresponds to g + gd > 0, where the chemical potential μ is
always positive. Let us consider the case μ ≫ ℏωz (large
condensate density) such that we can use the Thomas−Fermi
approximation to find the condensate density profile in the
confined direction:

ψ= = −n z z n z L( ) ( ) (1 / )0 0
2

0
2 2

where n0 = μ/(g + gd) is the condensate maximum density and
L = (2μ/mωz

2)1/2 is the Thomas−Fermi size.
Equation 33 can now be linearized around the ground state

solution ψ0(z) to obtain the Bogoliubov−de Gennes equations
for the excitations. These equation are eqs 25 and 26 with
Utr(r) = mωz

2z2/2 and ψ0(r) = ψ0(z). Having translational
symmetry in the in-plane directions, we can characterized the
solutions of these equations by the momentum q of the in-
plane free motion. In addition to q, we also have an integer
quantum number j ≥ 0 related to the motion in the z-direction
such that the amplitudes {u(r),v(r)} have the form {u(z), v(z)}
exp(iqρ). After introducing the new functions f± = u ± v, the
Bogoliubov−de Gennes equations read82
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is the kinetic energy operator and
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is the interaction operator. The solution of the above equations
provides excitation frequencies ωj(q) which depend on both j
and q. The most relevant for the stability analysis is the lowest
frequency branch ω0(q), for which the confined motion is not
excited in the limit q → 0.
Because of the nonlocality of the dipole−dipole interaction,

an effective coupling (the last term in eq 37) becomes
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momentum dependent. For small in-plane momenta qL ≪ 1,
excitations of the lowest branch are essentially two-dimensional
with a repulsive effective coupling, and their spectrum has been
found in ref 88. These excitations are phonons propagating in
the xy-plane with the sound velocity cs:

ω μ= =q c q c m( ) , (2 /3 )s s0
1/2

In the opposite limit of large in-plane momenta qL ≪ 1, the
excitations are three-dimensional and the interaction term is
then reduced to

ψ= −− −H f g g z f z[ ] (2 ) ( ) ( )
dint 0

2

Equations 35 and 36 are then equivalent to the Bogoliubov−de
Gennes equations for the excitations in a condensate with a
short-range interaction with the strength 2g − gd. This
interaction is repulsive if the parameter β ≡ g/gd > 1/2, and
all excitation frequencies in this case are real and positive for
any in-plane momentum q and condensate density n0. In the
other case β < 1/2, the interaction is attractive, resulting in
dynamical instability of a condensate with regard to high
momentum excitations at a sufficiently large density.
The analysis in the Thomas−Fermi regime of the system of

eqs 35 and 36 in the most interesting case qL ≫ 1 and β close
to the critical value 1/2 was performed in ref 82. It was found
that at the critical value β = 1/2 the momentum dependence of
the excitation frequencies is characterized by a plateau (see
Figure 7a), and the j-th branch reads

ω ε ω= + ℏ + + ≫q j j qL( ) [1 ( 3)/2], 1j q z
2 2 2 2

where εq = ℏ2q2/2m.
For β ≠ 1/2, the lowest branch of the spectrum is
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β β

β β
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− +
+ +
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(2 1)(5 2 )

3(1 )(2 )
, 1q q z0

2 2 2 2

(38)

where the condition μεq|2β − 1|/(1 + β) ≪ ℏ2ωz
2 was assumed.

Equation 38 provides us with two types of behavior of the
lowest-frequency mode ω0(q). It either monotonously increases
with q (see Figure 7b) when β > 1/2 or has a minimum if β <
1/2. Combined with the fact that ω0(q) grows with q for qL ≪
1, the existence of this minimum results in a roton−Maxon
character of the spectrum as a whole (see Figure 7b). This type
of the excitation spectrum in an infinite pancake trap can be
understood as follows: For small in-plane momenta qL ≪ L−1,

excitations have two-dimensional character and are phonons
because the dipoles, being oriented perpendicular to the plane
of the trap, repel each. On the other hand, excitations with large
momenta q ≫ L−1 have three-dimensional character, and
hence, the repulsion between them is reduced. The excitation
frequency therefore decreases with an increase of q, reaches a
minimum, and starts to increase again as the excitations
continuously enter the single-particle regime.
The roton minimum for β close to 1/2 found from eq 38 is

located at q = (16μδ/15ℏωz)
1/2/lz, where δ =

1/2 − β, and lz =
(ℏ/mωz)

1/2 is the harmonic oscillator length for the confined
motion and corresponds to the excitation frequency

ω ω μδ= ℏ − (8 /15)z0min
2 2 2

This minimum becomes deeper with increasing density
(chemical potential) or δ, and it reaches zero at q = √2/lz
for μδ/ωz = 15/8. Excitations for larger values of μδ/ℏωz have
imaginary frequencies for q ∼ lz

−1, and therefore, the condensate
becomes unstable.
Equations 35 and 36 for various values of β and μ/ℏωz were

solved numerically in ref 82. The results for the excitation
spectrum in the Thomas−Fermi regime are shown in Figure 7,
demonstrating a good agreement between numerical and
analytical approaches.
For non-Thomas−Fermi condensates, the stability does not

require as strong a short-range repulsive interaction as in the
Thomas−Fermi regime because of a large kinetic energy in the
confined direction. The spectrum of excitations in this case also
has a roton−Maxon character, although the appearance of the
roton minimum and the instability take place at smaller values
of β; see ref 82 for details.
Up to now, a roton−Maxon dispersion was observed only in

liquid He with strong interparticle interactions. Dipolar
condensate provides the first example of a weakly interacting
system with a roton−Maxon excitation spectrum. This
spectrum can be controlled and manipulated by changing the
density, the strength of the confinement, and the short-range
interaction, starting from the Bogoliubov-type spectrum, then
creating the roton minimum, and finally reaching the point of
instability.
It is important to point out that the existence of the roton

minimum with q ≠ 0 at a given β < 1/2 for μ/ℏωz just below
the point of instability is likely to indicate the existence of a new
ground state, presumably with a periodic density modulation.
This is in contrast to the instability of condensates with

Figure 7. Dispersion law ω0(q) for (a) β = 1/2, μ/ℏωz = 343; (b) β = 0.53, μ/ℏωz = 46 (upper curve) and β = 0.47, μ/ℏωz = 54 (lower curve). The
solid curves show numerical results. (Taken from ref 82. Copyright 2003 American Physical Society.)
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attractive short-range interaction, which is driven by unstable
long wavelength excitations resulting in local collapses. In this
case, the chemical potential is negative and not bounded from
below such that no new ground state exists. In section 6 we will
show that the excitation spectrum of a two-dimensional dipolar
gas in the strongly interacting regime n2ad

2 ≳ 1 also has the
roton minimum, and the system undergoes a liquid to solid
quantum phase transition.

4. WEAKLY INTERACTING DIPOLAR FERMI GAS

In this section we discuss fermionic dipolar gases in the weakly
interacting regime. Most of the discussion will be devoted to a
single-component (polarized) dipolar gas with only brief
mention of some results available for two- and more-
component dipolar systems.
The crucial differences in the behavior of many-body

fermionic systems as compared to bosonic ones are related to
the Pauli principle: identical fermions are not allowed to be in
the same quantum state. As a result, the many-body wave
function of a single component Fermi gas should be
antisymmetric with respect to permutations of the positions
of any two particles. In the second quantization, this requires
that the field operators ψ̂(r) and ψ̂† obey the canonical
anticommutation relations

ψ ψ ψ ψ ψ ψ δ

ψ ψ ψ ψ

̂ ̂ ′ ≡ ̂ ̂ ′ + ̂ ′ ̂ = − ′

̂ ̂ ′ = ̂ ̂ ′ =

† † †

† †

r r r r r r r r

r r r r

{ ( ), ( )} ( ) ( ) ( ) ( ) ( )

{ ( ), ( )} { ( ), ( )} 0

As a direct consequence, the wave function of a relative motion
of two identical fermions is allowed to have components with
only odd values, L = 1, 3, ..., of the angular momentum, and
vanishes when the interparticle distance tends to zero.
Therefore, the low-energy scattering of two identical fermions
is insensitive to the short-range part of their interaction and is
solely determined by the long-range dipole−dipole part Vd. As a
result, for a single-component polarized dipolar Fermi gas, we
can omit the contact term in eq 2, and the corresponding
Hamiltonian then reads
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(39)

where Vd is given by eq 1 and Utr(r) is the trapping potential (if
present).
Another consequence of the Pauli principle is that the state

of a many-body system of fermions at a low temperature T is
completely different from that for bosons. The average number
of ideal fermions in a quantum state i with the energy εi is given
by the Fermi−Dirac distribution

ε ε
ε μ

= =
− +

n f
T

( ) ( )
1

exp[( )/ ] 1
i i

i
FD

where μ is the chemical potential, which depends on T and, as
usual, ensures the fixed total number of particles N = ∑in(εi).
The ground state (T = 0) therefore corresponds to an all
quantum state with εi ≤ μ(T = 0) ≡ εF being completely
occupied [n(εi) = 1], while the states with εi > εF are empty
[n(εi) = 0]. The energy εF is called the Fermi energy and sets
the typical energy scale as a many-body system of fermions.

The ground state of an ideal homogeneous Fermi gas with εp
= p2/2m corresponds to the so-called Fermi sphere: All
quantum states with momenta p below the Fermi momentum
pF = (2mεF)

1/2 are occupied, and the states with p > pF are
empty. The states with momentum p = pF form a surface in the
momentum space called the Fermi surface, which separates the
filled and empty states. Semiclassical state counting provides
the relation between the Fermi momentum pF and the density n
of a single-component homogeneous gas:
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6
F

3

2 3 (40)

For a trapped Fermi gas we can establish a similar relation,
but between the local Fermi momentum pF(r) and the local
density of the gas n(r),
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where

μ= −p m Ur r( ) 2 [ ( )]
F tr (42)

provided the chemical potential μ is much larger than the level
spacing in the trapping potential Utr(r). This condition
corresponds to a large number of particles N in the trap,
most of them occupying high energy states of the trapping
potential. The wave functions of these states are quasiclassical
(see, for example, ref 89), and the calculation of the gas density
results in eq 41, which is the essence of the local-density
(Thomas−Fermi) approximation. This approximation is
legitimate when the trapping potential changes slowly over
distances of the order of the average interparticle separation
n−1/3 ∼ ℏ/pF. For an ideal Fermi gas in a harmonic potential,
expression 42 gives
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where pF(0) = (2mμ)1/2 is the Fermi momentum in the center
of the trap and RTFα = (2μ/mωα

2)1/2 is the Thomas−Fermi size
of the gas cloud in the α-direction. The density of the gas in
this approximation, according to eq 41, reads
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(43)

where n0 = (2mμ)3/2/(6π2ℏ3) is the density in the trap center.
The calculation of the total number of particles with the use of
the above density distribution relates the chemical potential μ
to the total number of particles N and the parameters of the
trap:

μ ω= ℏ ̅ N(6 )1/3

where ω̅ = (ωxωyωz)
1/3.

For understanding of the properties of the fermionic systems,
it is important to keep in mind that the ground state in the
form of a filled Fermi sphere stores a large amount of kinetic
energy. This guarantees applicability of the perturbation theory
for dilute dipolar systems with pFad/ℏ ≪ 1. Another
consequence is the improved stability of fermionic dipolar
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gases, as compared to the bosonic ones, against collapse due to
the attractive part of the dipole−dipole interaction. This can be
understood as follows: The energy per volume for a
homogeneous dipolar Fermi gas with density n and an
effectively attractive two-body interaction can be written as

ε= −
E n

V
n Ad n

( ) 3

5
F

2 2

where the first term is the kinetic energy of the filled Fermi
sphere and the second term is the interaction energy with some
numerical coefficient A of the order unity. The first term scales
as n2/3 (see eq 40) and provides an energy barrier between
states with small n and positive energy and collapsing states
with n → ∞ and negative energy. Therefore, one expects
stability against collapse when the system is dilute [n−1/3 ≫ ad
or, equivalently, pFad/ℏ ≪ 1] and instability in the dense
system with n−1/3 ≲ ad when the interaction energy becomes
comparable to or larger than the kinetic energy. Applying this
argument to a trapped single-component dipolar Fermi gas, one
expects to have a stable gas for pF(0)ad/ℏ < 1 or N1/6ad/l < 1,
where l is the oscillator length, and we use eq 43 to obtain N ∼
[pF(0)l/ℏ]

6. We provide more details on the issue of stability
later.

4.1. Effects of Dipole−Dipole Interactions

When considering effects of interparticle interactions in Fermi
systems, one has to keep in mind two possible scenarios
depending on whether the properties of the system (the ground
state and excitations) change continuously or abruptly when
interactions are switched on. In the first case, an interacting
system is called a normal Fermi liquid (in other words, belongs
to the Fermi liquid universality class) and has properties that
are very much similar to those of an ideal Fermi gas. Of course,
the interaction leads to the appearance of new features
(collective modes, for example), which are absent in a
noninteracting gas, but for many applications, the system can
be considered as an ideal gas of fermionic noninteracting
quasiparticles. For weak interparticle interactions, the proper-
ties of the interacting system can be obtained with the help of
perturbation theory, starting from the noninteracting Fermi gas.
In the second scenario, the ground state and excitations of the
interacting system are qualitatively different from those of the
noninteracting Fermi gas, and a system is in the non-Fermi
liquid universality class. This scenario is usually associated with
breaking of some symmetries of an ideal gas: phase (or gauge)
symmetry in a superfluid Fermi liquid or translational
symmetry in a charge-density wave or crystal state. The new
ground state cannot be continuously connected with the filled
Fermi sphere (ground state of a noninteracting Fermi gas), and
therefore, one has to go beyond simple perturbative expansions
to describe those states. It is important to mention that one
does not necessarily need a strong interaction for the second
scenario. For example, even an infinitesimally small attractive
interaction results in a superfluid ground state. The smallness of
the interaction in this case manifests itself in low (much smaller
that TF) critical temperature, Tcthe temperature above which
the superfluid properties disappear and the system returns to a
normal Fermi liquid. In contrast, the charge-density wave state
requires strong interaction, and this state disappears at
temperature comparable to or larger than TF when the gas is
essentially classical.
As we will discuss below, depending on an experimental

setup, both scenarios are possible in a polarized dipolar gas: A

3D polarized dipolar gas is in the superfluid state for low
temperatures, T < Tc ≪ TF, and in the normal state (Fermi-
liquid) for T > Tc. The state of a monolayer of polarized dipoles
depends on the temperature and the relative angle between the
dipole moments and the motion plane of molecules. For the
perpendicular orientation of dipoles, the gas is in the normal
state, but starting from some critical tilting angle, it becomes a
superfluid at small enough temperatures, T < Tc. In both cases,
the increase of the strength of the dipole−dipole interaction
leads to the instability of the homogeneous state, resulting in a
collapse or formation of a density-wave state with broken
translational symmetry.

4.2. Normal (Anisotropic) Fermi Liquid State

We begin with a discussion of a normal Fermi liquid state of a
dipolar fermi gas, which is a generic state for a fermionic dipolar
gas at finite (Tc < T < TF) temperatures, as well as for a purely
repulsive (in a monolayer, for example) dipolar gas, in a weakly
interacting regime kFad < 1. Following the original idea of
Landau, an interacting normal Fermi system (Fermi liquid) can
be described in terms of fermionic quasiparticles, which can be
viewed as particles together with the disturbances they produce
in the system due to interactions with other particles (particles
surrounded by particle−hole excitations)dressed particles. In
the ground state, the quasiparticles occupy all states with
energies smaller than or equal to the chemical potential μ ≈ εF,
forming a filled Fermi sphere (in a spatially uniform dipolar gas,
this corresponds to a deformed Fermi sphere in momentum
space due to the anisotropy of the dipole−dipole interaction;
see below). Excited states are obtained by moving some
quasiparticle from occupied states below μ to empty ones
above: creation of particle−hole excitations. The advantage of
this description is that weakly excited states correspond to a
small number of particle−hole excitations near the Fermi
surface and, hence, can be described using the dilute gas
approximation. Note that, although we are talking about filled
quasiparticle states inside the Fermi sphere, quasiparticles in the
Fermi liquid are well-defined only in the vicinity of the Fermi
surface where their energies ε(p) are much larger than the
inverse of their lifetimes τp due to decay via creation of
particle−hole pairs. (In a weakly interacting gas, the
quasiparticles are well-defined for all momenta.) This is
because the presence of occupied states below the Fermi
energy strongly reduces the phase space volume for such
processes, and as a result, the lifetime τp of the quasiparticle
near the fermi surface in a Fermi liquid is much larger than the
corresponding time τc in a classical gas with the same
interparticle interactions and density, τp ∼ [εF/ε(p)]

2τc ≫ τc.
But for those quasiparticles, we actually need to describe low-
energy excitations of the Fermi system and its behavior at low
temperatures and under weak external perturbations.
The change of the quasiparticle distribution δnp (we assume

here a spatially homogeneous gas) results in the change of the
energy of the system

∑ ∑δ ε μ δ δ δ= + + ′
′

′E n
V

f n np p p[ ( ) ]
1

2
( , )

p

p

p p

p p

, (44)

where ε(p) = δE/δnp|δnp=0 is the quasiparticles energy (counted

from the chemical potential μ) and the second term describes
the interaction between quasiparticles with f(p,p′) = δ2E/
δnpδnp′|δnp=0 being the Landau f-function, which plays a crucial

role in the Fermi-liquid theory, and can be either calculated
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perturbatively (if the gas is weakly interacting) or measured
experimentally. Note that the function f describes the change of
the quasiparticles energy under the change of quasiparticle
distribution as a result of their interaction,

∑δε δ= ′
′

′f np p p( ) ( , )
p

p

which gives rise to Fermi-liquid corrections and makes possible
collective motion of quasiparticles (collective modes) even
when collisions between quasiparticles can be neglected.
For states close to the Fermi surface (the boundary between

occupied and empty states), the quasiparticle energy has the
form

ε ≈
*

−
p

m
p pp( ) ( )F

F

where pF is the Fermi momentum specifying the Fermi surface
in momentum space, and m* is the effective mass. The Fermi
momentum pF is related to the density in the same way as in
the ideal gas (eq 40) reflecting the fact that numbers of particles
and quasiparticles are equal, while the effective mass m* can be
expressed in terms of the f-function (see, for example, ref 90)
The compressibility κ = n−2 dμ/dn, where μ = dE/dn is the
chemical potential, is another important quantity, which can
also be expressed in terms of f-function. For a stable system,
one must have κ > 0. Therefore, the knowledge of the
compressibility as a function of system parameters provides us
with stability conditions of the system against collapse. The
stability of the system against possible deformations δnp of the
Fermi surface around its equilibrium form (Pomeranchuk
criterion91,90) can be obtained from the requirement that the
change of the energy caused by this deformation, (eq 44) is
positive. In this way, one can detect instabilities different from
collapse, related to the nonuniform change of the Fermi surface.
The f-function determines also collective modes in the Fermi

liquid (Landau zero sound), which correspond to a collisionless
coherent dynamics of particle−hole excitations. The simplest
way to describe zero sound is to use a semiclassical (or Wigner)
quasiparticle distribution function n(r,p,t), which is the Fourier
transform of a single-particle density matrix with respect to the
relative coordinate,

∫ ψ ψ= ′⟨ ̂ + ′ ̂ − ′ ⟩

× − ′ ℏ

†n t t t

i

r p r r r r r

pr

( , , ) d ( /2, ) ( /2, )

exp( / )

and describes the local momentum distribution of particles at
position r. In the ground state of a spatially homogeneous
system, n0(r,p,t) = θ(pF − p) corresponds to a filled Fermi
sphere. For a thermal equilibrium state, the step function θ(pF
− p) has to be replaced with the Fermi-Dirac distribution,
nT(r,p,t) = [exp(ε(p)/T) + 1]−1.Time evolution of the
nonequilibrium distributions n(r,p,t) = neq(p) + δn(r,p,t) is
described by the quasiparticle kinetic equation

ε ε∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=
⎛

⎝
⎜

⎞

⎠
⎟

t
n t

p r r p
r p( , , ) 0

(45)

where ε = ε(p) +∑p′ f(p,p′) δn(r,p,t) and the collision integral,
which normally appears on the right-hand side, is set to zero
assuming low temperatures, as discussed above. The solutions
of this equation of the form δn(r,p,t) ∼ κ(p) exp[i(kr − ωt)]
≪ neq(p) with ω = ck and c > vF are called Landau zero sound

and describe coherent motion of particle−hole pairs:
propagation of a deformation of the Fermi surface. Generically,
solutions of this kind exist when f(p,p′) is positive (for more
details and exact criteria, see, for example, ref 90). Note that the
condition c > vF separates the zero-sound from the continuum
of particle-hole excitations and ensures its long lifetime. In the
opposite case, the energy of zero-sound waves would be inside
the continuum of particle−hole excitations and, hence, the
waves would rapidly decay into incoherent particle−hole
excitations (Landau damping).

4.2.1. Anisotropic Fermi Surface and Single-Particle
Excitations. Due to anisotropy of the dipole−dipole
interaction, the Fermi surface in a dipolar gas is not a sphere
any more and the modulus of the Fermi momentum depends
on the direction. The effective mass becomes a tensor that can
be defined from the relation between the Fermi momentum pF
and fermi velocity vF = ∂ε(p)/∂p|p=pF, pFi = mij*vFj. This can

easily be seen by using the following variational ansatz92,93

θ
α

α= − + −n p p p pp( ) [
1
( ) ]

F x y z

2 2 2 2 2

(46)

and the variational parameter α is found by minimizing the total
energy of the system with the interaction energy calculated in
the Hartree−Foch approximation:

∫

∫
π

π

=
ℏ

−
′

ℏ
− ′ ′

E

V
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n V n

p
p

p p
p p p p

d

(2 ) 2
( )

1

2

d d

(2 )
( ) ( ) ( )d

3

2

6
(47)

where V is the volume of the system and only exchange (Fock)
terms contribute to the dipole−dipole interaction energy
because the direct Hartree contribution

∫= ′ − ′ ′E n V nr r r r r r
1

2
d d ( ) ( ) ( )d d

where n(r) is the gas density, vanishes in a homogeneous gas as
a result of angular integrations. It was found that β < 1 so that
the Fermi surface is deformed into a spheroid stretched along
the direction of dipoles (prolate spheroid). These findings were
supported by microscopic calculations in the spirit of Landau
liquid theory in refs 94 and 95. The quasiparticle energy
calculated from eq 47 reads

∫ε
π

μ= −
′

ℏ
− ′ ′ −

p

m
V np

p
p p p( )

2

d

(2 )
( ) ( )d

2

3

which corresponds to the following Landau f-function for a
spatially homogeneous gas

′ = − − ′f Vp p p p( , ) ( )d
hom

(48)

with only exchange contribution. Note that the condition of
spatial homogeneity of the gas is essential for the validity of eq
48. This is because the Fourier component of the dipole−
dipole interaction Vd(q) is nonanalytic for q → 0 (the limit
depends on the direction q approaches zero). As a result, the
direct (Hartree) contribution vanishes only in the spatial
homogeneity gas, in which one has Vd(q) averaged over the
direction of q, which is zero. In an inhomogeneous gas, this is
not the case and one also has the contribution of the direct
dipole−dipole interaction; see, for example, eq 52, describing
spatially inhomogeneous variations of the quasiparticle
distribution.
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Setting ε(p) to zero gives the position of the Fermi surface in
momentum space pF = npF(n), where n is a (radial) unit vector
(direction) in momentum space. The chemical potential μ then
has to be defined self-consistently from assuming a fixed gas
density n = kF

3/6π2:

∫ ∫ ∫
π

θ ε
π

=
ℏ

− =
ℏ

n p p
p

p n
d

(2 )
[ ( )]

1

(2 )
d d

p n

3 3
0

( )
2F

For weak interaction one finds94
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where θn is the angle between n and the z-axis. This gives β = 1
− 2adkF/9π. The energy and the chemical potential are
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After expanding the quasiparticle energy in the vicinity of the
Fermi surface, ε(p) ≈ vF(p − pF), one finds

95 that the tensor of
the effective mass has only longitudinal m*L(n) and transverse
m*T(n) components:

=
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where Eθ is the polar angle unit vector and
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3
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Calculations for moderate strengths of the dipole−dipole
interactions and finite temperatures were performed in refs 92,
94, and 96 including the trapped case (ref 92), as well as 2D
(monolayer) and 1D (tube) gases and a two-component
dipolar gas (ref 95). We mention here only some details for a
monolayer and refer to these references for more details.
In a 2D dipolar gas (monolayer), when the chemical

potential μ is much smaller than the frequency ωz of the
transverse confining potential in the z-direction, μ ≪ ωz, the
transverse wave function of particles is limited to the ground
state wave function ϕ0(z) of the harmonic oscillator, such that
ψ(r) = ψ(ρ) ϕ0(z), where ρ = (x,y) = (ρ cos ϕρ,ρ sin ϕρ) is the
in-plane vector. The corresponding effective 2D dipole−dipole
interaction for the in-plane motion
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(49)

where Ψ(a,b;z) is the confluent hypergeometric function and θ
is the angle between the direction of the dipoles (in the (x,z)-
plane) and the motion in the (x,y)-plane, has the following
Fourier transform

π

θ θ φ
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× −

V
d

l
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p( ) 2 ( / 2 )
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d
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2

2
2

(50)

where w(x) = x exp(x2) erfc(x), with erfc(x) being the error
function and ϕp the angle between p and the x-axis. For p ∼ pF
≪ lz, one has

π θ θ φ≈ −
ℏ

−V
d

p Pp( ) [2 (cos ) sin cos 2 ]
pd

2D
2

2
2

(51)

which is linear in p. (Strictly speaking, expression 51 contains
also a constant which depends on the regularization of the
Fourier integral at the origin. This constant corresponds to a
short-range inerparticle interaction and, hence, has no physical
effect in a single component Fermi gas because all its
contributions should vanish upon proper antisymmetrization.
We therefore set this constant to zero.) Within the Hartree−
Fock approximation, one then obtains (assuming adkF ≪ 1)
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for the position p = npF(n) of the Fermi surface, where now n
= (cos ϕn, sin ϕn) is the unit vector of direction in the (x,y)-
plane, and
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for the longitudinal (along n) and transverse (perpendicular to
n) components of the effective mass, respectively.95 Note that
for θ = 0 (dipoles are perpendicular to the plane and, therefore,
the system has rotational symmetry around the z-axis) the
deformation of the Fermi surface disappears and vF = pF/m*
with m*/m ≈ 1 − 4adkF/3π.

4.2.2. Collective Modes (Landau Zero Sound).
Collective modes in a dipolar gas can be studied on the basis
of the kinetic equation, eq 45. For small deviation of the
quasiparticle distribution from equilibrium of the form

δ κ ω≈ − ≪n t i t nr p p kr p( , , ) ( ) exp[ ( )] ( )eq

the kinetic equation reduces to the following equation on the
unknown function κ(p)
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(52)

where ▽p = ∂/∂p and the wave vector k is assumed to be
much smaller than kF = pF/ℏ, k ≪ kF. In the Hartree−Fock
approximation, the f-function is f(k,p,p′) = Vd(k) − Vd(p −
p′); see the comments below eq 48 and refs 94 and 95.
Equation 52 was analyzed numerically for a 3D gas in refs 94
and 95 and in 2D gas in refs 95 and 97. (Note that in a 2D gas
(monolayer) the first term in the f-function can be omitted
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following the arguments from the end of the previous section.)
The results for the sound velocity in a 3D gas together with the
propagation limit due to the particle−hole continuum are
shown in Figure 8 as a function of the propagation angle (the
angle between k and the z-axis). They show that the collective
mode can propagate only in the certain cone of directions
around the direction of dipoles polarization. This is counter-
intuitive to some extent because this is the direction in which
two dipoles attract each other; on the other hand, in the
perpendicular direction, in which dipoles repel each other and,
hence, one would expect the existence of the collective mode,
no zero sound is possible. This can be understood by noting
that the zero-sound propagation is dominated by the exchange
contribution, not a direct one, and therefore, the intuition based
on the direct interaction does not work; see ref 94 for more
discussions of this issue. The sound velocity depends strongly
on both the propagation direction θk and interactions strength
adkF: It increases monotonically with θk for adkF ≲ 1 and
becomes nonmonotonic in θk for adkF > ; see Figure 8.
In a dipolar monolayer (quasi-2D gas), the situation is even

more intriguing because the existence of zero-sound and the
value of the sound velocity strongly depend on the propagation
direction (ϕk is the angle between k and the x-axis), on the
tilting angle θ, and on the strength of the interaction. In this
case, there are no collective modes if the tilting angle is smaller
that some critical value that depends on the interaction
strength; see Figure 9.
This is again counterintuitive because the direct interaction

for small tilting angles is purely repulsive (dipoles are almost
perpendicular to the motion plane), and one would expect
stable collective zero-sound modes. However, similar to the 3D
case, the f-function contains only an exchange contribution, and
this explains such peculiar behavior of collective modes. (The
collective modes without an exchange contribution were
considered in ref 96.) Note also that with increasing the tilting
angles from the critical one, the direction in plane, in which one
has propagating zero-sound, changes from those around the
projection d∥ of the dipole moment d on the plane to those
around the direction perpendicular to d∥ (when the polar-
ization of dipoles approaches the plain); see Figure 10.
Note, however, that the above results for collective modes

were obtained with the f-function in the lowest-order Hartree−
Fock approximation, f(k,p,p′) = Vd(k) − Vd(p − p′). Taking
higher order terms into account can change the situation: As
was shown in ref 98 for the case of a 2D dipolar Fermi gas
polarized perpendicular to the motion plane, θ = 0, the

inclusion of second order contributions to the f-function results
in the appearance of a stable zero-sound mode with the velocity
s = vF[1 + 2(adkF)

4].

4.3. BCS Pairing in a Homogeneous Single-Component
Dipolar Fermi Gas

The partial attractiveness of the dipole−dipole interaction
opens the possibility for BCS pairing in a fermionic many-body
dipolar system at sufficiently low temperatures. As we will see
in this section, the pairing in dipolar systems has generically an
unconventional character (different from a singlet isotropic s-

Figure 8. Speed of sound (solid curve) in a 3D dipolar Fermi gas as a function of the angle of propagation θk relative to the direction of polarization,
for dipolar interaction strengths adkF = 1 (left panel) and adkF = 3 (right panel). The speed is measured in units of vF. The dashed curve represents a
lower bound on the speed of any undamped mode. (Taken from ref 94. Copyright 2010 American Physical Society.)

Figure 9. Speed of zero sound in a 2D dipolar Fermi gas as a function
of the tilting angle θ for adkF = 1 and the propagation angles ϕk = 0
(upper panel) and ϕk = π/2 (lower panel). The shaded region
corresponds to strong damping. (Taken from ref 97.)
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wave pairing as in a two-component fermionic system with an
isotropic attractive interaction), and a superfluid state has many
peculiar properties that are different from those of conventional
superconductors. Indeed, the s-wave (together with other even
angular momenta) two-particle interaction channel is forbidden
in a single-component Fermi gas by the Pauli principle. On the
other hand, the angular part of the matrix element for the
dipole−dipole interaction between the states with the angular
momentum L = 1 (p-wave channel) and its projection on the z-
axis M = 0 is negative (i.e., corresponding to an attractive
interaction):

θ
π

⟨ = = | − | = = ⟩ = − <L M L M1, 0 1 3 cos 1, 0
4

5
02

(53)

and, therefore, can lead to BCS pairing. (The matrix elements
between the states with M = ±1 are positive.) It easy to see that
this pairing should be anisotropic, reaching its maximum
amplitude in the direction of dipolar polarization when two
dipoles attract each other, and being zero in the perpendicular
directions corresponding to repulsive dipole−dipole interac-
tion. As we will see, the dominant contribution has p-wave
symmetry.

The Cooper pairing in a polarized single-component dipolar
Fermi gas has been discussed in refs 99 and 100 within the BCS
approach with the restriction to purely p-wave pairing. An exact
value of the critical temperature and the angular dependence of
the order parameter for a dilute gas were found in ref 101.
After omitting the contribution of the short-range part of the

interparticle interaction, as discussed above, the Hamiltonian of
a homogeneous single-component polarized dipolar Fermi gas
reads
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(54)

We considered the property of the system with this
Hamiltonian in the dilute limit nad

3 ≪ 1 and at temperatures
T much smaller than the chemical potential μ (or the Fermi
energy εF), T≪ μ = εF ≈ (ℏ2/ 2m)(6π3n)2/3, relevant for
Cooper pairing. In this case one can neglect the corrections δμ
to the chemical potential due to the dipole−dipole interaction
because δμ ∼ d2n ∼ εF(naa

3)1/3 ≪ εF.
The BCS pairing corresponds to a nonzero value of the order

parameter

ψ ψΔ − = − ⟨ ̂ ̂ ⟩Vr r r r r r( ) ( ) ( ) ( )d1 2 1 2 1 2

which can be viewed as a wave function of Cooper pairs.
Because of anticommutativity of the fermionic field operators,
Δ(r1 − r2) changes sign under the exchange of particles r1 ↔ r2
forming a pair. As a consequence, the order parameter in
momentum space

∫Δ = − ℏ Δip r pr r( ) d exp( / ) ( )

is also antisymmetric, Δ(−p) = −Δ(p). Because of the
anisotropy of the dipole−dipole interaction, the angular
momentum L of the relative motion of two particles is not a
conserved quantum number, but its projection on the z-axis (in
the considered geometry) is. We can therefore write Δ(p) in
the form

∑Δ = Δ ̂Yp p p( ) ( ) ( )
L

L L

odd

0
(55)

where YLM p̂( ) are the spherical harmonics and p̂ is the unit
vector in the direction of the momentum p. We keep in the
sum only odd angular momentum L following the discussion
above and set M = 0 in every term. This is because M is
conserved and, following eq 53, only for M = 0 does one have
an attractive interaction.
A nonzero order parameter and, therefore, the superfluid

properties in the system appear for temperatures below some
temperature Tc, which is the critical temperature of the
superfluid transition. This critical temperature and the order
parameter Δ for temperatures below Tc can be found from the
gap equation102,103 (we use the momentum representation and
assume the order parameter to be a real function of momentum
p)
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Figure 10. Speed of zero sound in a 2D dipolar Fermi gas as a function
of the propagation angle ϕk for adkF = 1 and θ = π/4 (upper panel)
and θ = π/2 (lower panel). The shaded regions correspond to strong
damping. (Taken from ref 97.)
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where E(p) = [Δ2(p) + (p2/2m − μ)2]1/2 is the energy of
single-particle excitations in the superfluid gas. The effective
interparticle interaction is described by the function V(p,p′) =
Vd(p − p′) + δV(p,p′). Here Vd(q) is the Fourier transform of
the bare dipole−dipole interaction potential Vd(r):

π
θ= −V dq( )

4

3
(3 cos ( ) 1)d q
2 2

(57)

with θq being the angle between the momentum q and the z-
axis, and δV(p,p′) corresponds to corrections to the bare
interparticle interaction Vd resulting from many-body effects.
The effective interaction V(p,p′) describes all scattering
processes in the system which transform a pair of particles
with momenta p′ and −p′ into a pair with momenta p and −p.
The leading process here is the direct scattering of the two
particles on each other [the term Vd(p − p′)], while the many-
body corrections δV(p,p′) describe processes of higher order in
Vd. The leading terms in δV are second order in Vd (see ref
104) and correspond to scattering processes in which the two
colliding particles interact with each other indirectly with an
involvement of particle−hole excitations which they create in
the system (see more details in ref 101). These processes are
important even in the weakly interacting case (although they
are of second order in the small parameter) because they result
in the pre-exponential factor in the expression for the critical
temperature; see eq 59.
The gap equation (eq 56) can be simplified for temperatures

just below Tc because for such temperatures the order
parameter Δ(p) is small and, hence, the right-hand-sides of
eq 56 can be expanded in powers of Δ(p). The resulting
equation

∫
π

ξ ξ

Δ = −
′

ℏ
′

× ′ Δ ′ +
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⎣
⎢

⎤

⎦
⎥

V

K p
K p

p
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p p

p
p

( )
d

(2 )
( , )

( ) ( )
( ) ( )

2

3

3

(58)

where K(p) = tanh(ξ/2T)/2ξ and ξ = p2/2m − μ, is equivalent
to the Ginzburg−Landau equation for a spatially homogeneous
order parameter. .
Note that eq 58 always has the trivial solution Δ = 0, which

corresponds to a normal phase of the Fermi gas. The Cooper
pairing is associated with a nontrivial solution of the gap eq 58
which exists for temperatures T ≤ Tc. To find the critical
temperature Tc, it is sufficient to keep only the linear term in
the square brackets on the right-hand-side of eq 58 because Δ
→ 0 for T → Tc. The corresponding linearized gap equation
allows also finding the momentum dependence of the order
parameter. The absolute temperature dependent value of Δ is
determined by the nonlinear term on the right-hand-side of eq
58.
The result for the critical temperature reads (see ref 101 for

details)

ε
πε

= −⎜ ⎟
⎛

⎝

⎞

⎠
T

nd
1.44 exp

12
c F

F
2 (59)

For temperatures T close to Tc, the anisotropic order parameter
Δ(p) on the Fermi surface, p = pF, has the form

ϕΔ ̂ ≈ − ̂p T
T

T
p p( ) 2.5 1 ( )

F c
c

0
(60)

where

ϕ
π

θ̂ = ⎜ ⎟
⎛
⎝

⎞
⎠

p( ) 2 sin
2
cos p0 (61)

with θp being the angle between the vector p and the z-axis.
For momenta away from the Fermi surface, the order

parameter is

∫π

π
Δ ≈ −

̂′
− ̂′ Δ ̂′

d
V p pp

p
p p p( )

8

d

4
( ) ( )d F F2

The dependence of the order parameter Δ(p) on the
modulus p of the momentum p for several values of the angle
θp is shown in Figure 11.

This momentum dependence of the order parameter in a
dipolar Fermi gas is in contrast to that for pairing (both s- and
p-wave) due to a short-range interparticle interaction, in which
case the order parameter is a constant for momenta p ≲ ℏ/r0,
where r0 is the range of the interparticle interaction, and rapidly
decays for p > ℏ /r0.
The anisotropy of the order parameter in the momentum

space described by the function ϕ0(n) = √2 sin[(π /2) cos θ]
(see eq 60) provides another difference from the conventional
s-wave pairing, say in a two-component Fermi gas with a short-
range intercomponent attractive interaction. As a result of this
anisotropy, the gap |Δ(pFp̂)| in the spectrum of single-particle
excitations in a dipolar superfluid gas depends on the direction
of momentum p̂: The gap reaches its maximum in the
directions parallel to the direction of the dipoles (θp = 0, π),
while it vanishes in the direction perpendicular to the dipoles
(θp = π/2). Similar anisotropy is expected in the properties of
collective excitations and, as a result, in the response of the
dipolar superfluid dipolar Fermi gas.
The vanishing of the single-particle gap at θp = π/2 (and

arbitrary azimuthal angle ϕ, i.e. on the line on the Fermi surface
p = pF) results in the T2 dependence of the specific heat of the
gas at low temperatures T ≪ Δ0 ∼ Tc (the contribution of
collective excitations is proportional to T3). Note that, for the
conventional s-wave pairing, the low-temperature specific heat
is determined by the contribution of collective modes (∝T3),
while the contribution of single-particle excitations is
exponentially suppressed.
The above-mentioned properties of a superfluid dipolar

Fermi gas are similar to those of the polar phase of superfluid
liquid 3He. This phase, however, cannot be realized in

Figure 11. Order parameter Δ(p,θ) [in units of Δ(pF,θ)] as a function
of the momentum p (in units of pF) for various values of the polar
angle θ. (Taken from ref 101.)
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experiments because it has higher energy than the exper-
imentally observed A and B phases (see, e.g., ref 105). Note
that several heavy-fermion compounds in a superconducting
state (for a review of superconducting phases of heavy-fermion
compounds, see, e.g., refs 106, 107, and 108) also have lines of
zeros of the order parameter on the Fermi surface and, as a
consequence, a T2-dependence of the low-temperature specific
heat (see, e.g., ref 109).

4.4. BCS Pairing in a Trapped Single-Component Dipolar
Fermi Gas

Similar to the bosonic case, the trap geometry strongly
influences the BCS pairing in a polarized dipolar Fermi gas as
a result of the dipole−dipole interaction. It is natural to expect
that cigar-shaped traps are more favorable for pairing then
pancake-shaped ones because the dipole−dipole interaction is
on average attractive in the former case and repulsive in the
latter one. As a result, the critical temperatures in cigar-shaped
traps should be higher. This question was addressed in refs 86
and 110.
In a trapped gas, the BCS order parameter

ψ ψΔ = − ⟨ ̂ ̂ ⟩Vr r r r r r( , ) ( ) ( ) ( )1 2 d 1 2 1 2 (62)

depends on both coordinates r1 and r2 and not only on their
difference r1 − r2 as in the spatially homogeneous case, because
the translational symmetry is broken by the trapping potential.
To find the critical temperature Tctrap in the trap, it is sufficient
to consider the linearized gap equation:

∫Δ = − − ΔV Kr r r r r r r r r r r r( , ) ( ) d d ( , ; , ) ( , )1 2 d 1 2 3 4 1 2 3 4 3 4

(63)

with the kernel
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where ξν = εν − μ and ϕν(r) are the eigenenergies (shifted by
the chemical potential μ) and the eigenfunctions of the single-
particle Schrödinger equation in the trap

ϕ ε ϕ−
ℏ

Δ + =
ν ν ν

⎧
⎨
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⎫
⎬
⎭m

U rr r
2

( ) ( ) ( )
2

tr

where Utr(r) is given by eq 13. Note that the gap equation (eq
63) does not contain the mean-field Hartree−Fock corrections.
They lead to an unimportant change of parameters of the
Hamiltonian (eq 54) and, therefore, are not relevant for pairing.
The many-body contributions δV to the effective interparticle
interaction which are also absent in eq 63 (compare with eq
56) will be taken into account later.
The results of the analysis of eq 63 in ref 110 are the

following. When ωρ ≈ ωz ≪ Tc (shallow nearly spherical trap),
where Tc is the critical temperature of the BCS transition in a
spatially homogeneous gas with the density n equal to the
central density n0 in the trap, it is convenient to perform the
Fourier transformation with respect to the relative coordinate r
= r1 − r2,

∫Δ̃ = − ℏ Δ + −iR p r pr R r R r( , ) d exp( / ) ( /2, /2)

where r = (r1 + r2)/2 is the coordinate of the center of mass.
The characteristic scale of the p-dependence of Δ̃(R,p) is of the
order of the Fermi momentum pF, while for the R-dependence
it is of the order of the size of the cloud RTF, which is much
larger than the typical size ξ0 = pF/mTc of pairing correlations
(coherence length), RTF ≫ ξ0. We therefore can write the order
parameter on the local Fermi surface as Δ̃[R,p = npF(R)] =
Δ̃(R) φ0(n), where the function Δ̃(R) obeys the equation (see
ref 110 for details)
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with f x = f y = 1 − 3/π2, fz = 1 + 6/π2. The solution of this
equation, which is formally equivalent to the Schrödinger
equation for a three-dimensional anisotropic harmonic
oscillator, for the lowest eigenvalue gives the following
expression
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(65)

for the change of the critical temperature due to the presence of
the trapping potential. According to this expression, the critical
temperature in the trap is always smaller than that in the
homogeneous gas. In the considered case, we have ωα/Tc ≪ 1
but πεF/24nd

2 > 1 (weakly interacting gas). Taking into
account that 7ζ(3)/(48π2) ≈ 0.018, we see that the difference
between Tctrap and Tc is small if πεF/24nd

2 is not very large.
The order parameter just below Tc is given by the

corresponding eigenfunction and has the Gaussian form
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is the characteristic size in the α-th direction. If again the
quantity πεF/24nd

2 is not very large, we have lΔα ≪ RTF
(α), where

RTF
(α) = pF/mωα is the Thomas−Fermi radius of the trapped gas

cloud in the α-th direction. This means that the pairing takes
place only in the central part of the gas.
For a large number of particles, the gas is in the Thomas−

Fermi regime (eq 43), and we have the following relation

μ ω ω= ρN n( ) /6 z0
3 2

between the total number of particles N in the gas and the
density n0 in the center, where μ(n0) = (6π2ℏ3n0)

2/3/2m is the
chemical potential. For a fixed N and n0, this gives
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where ω̅ = (ωzωρ
2)1/3 and l = (ωρ/ωz)

1/2 is the trap aspect ratio.
The function F(l) = [7ζ(3)/48π2]1/2[2(1 − 3/π2)1/2l2/3 + (1 +
6/π2)1/2l−4/3] is shown in Figure 12. The minimum of F(l)

provides the optimal trap aspect ration l* = 1.23 (cigar shaped
trap, as expected) for the highest critical temperature in the
trapped gas with the fixed total number of particles N and the
density in the center n0 (the critical temperature Tc of the
homogeneous gas as a function of n0 is given by eq 59). The
optimal value is a result of the competition between the
anisotropic dipole−dipole interparticle interaction and the
finite-size effects: The former favors larger l (cigar shaped
traps) while the latter, due to the zero boundary condition on
the order parameter, acts on pairing, destructively imposing an
upper limit on l.
The numerical solution of the linearized gap (eq 63) for the

case μ ≫ ωz,ωρ ≈ Tc shows the existence of a critical trap
aspect ratio lc for a given interaction strength Γ = 36n(0)d2/πμ
and a number of particles N. This critical aspect ratio
corresponds to zero critical temperature, Tctrap = 0, such that
no pairing is possible in traps with l < lc. Alternatively, for fixed
values of the trap aspect ratio l and the number of particles N,
BCS pairing takes place if the interaction parameter Γ is large
enough, Γ > Γc. The existence of the critical values lc and Γc can
be understood as follows: Due to the fact that the order
parameter changes sign when the direction of the z-axis is
reversed, single-particle states involved in forming the order
parameter should have different (by an odd integer) quantum
numbers nz. As a result, these states have different energies (the
minimum difference is ωz) and can be paired only if the energy
gain due to pairing (which is of the order of the critical
temperature Tc) exceeds this difference. In the limiting case of
an infinite pancake trap with the confinement only in the z-
direction, this results in the appearance of a critical trap
frequency ωzc = 1.8Tc

86 with no pairing possible in traps with
ωz > ωzc.
The dependence of the critical interaction strength Γc on the

trap aspect ratio l for different N is shown in Figure 13. As
expected, the critical interaction strength Γc decreases with
increasing l. On the other hand, with increasing number of
particles N, the interaction parameter becomes larger, Γ ∼ N1/6,
and the critical aspect ratio lc decreases.
The order parameter Δ0(r) for a cigar shaped trap with l =

2.2 (see Figure 14) exhibits a nonmonotonic behavior with the
distance from the trap center. This is to be compared with the
monotonic behavior of the BCS order parameter in a two
component Fermi gas with a short-range attractive inter-
action111,112 under similar conditions. (It should be noted,

however, that oscillating and highly nonmonotonic behaviors of
the order parameter in a two component Fermi gas were
obtained in ref 113 in the regime of an intershell pairing Tc ≪
ω.)

4.5. BCS Pairing in a Two Component Dipolar Fermi Gas

Adding the second component in a dipolar Fermi gas opens the
possibility for a singlet interspecies pairing (equivalent to the s-
wave pairing in a two component atomic Fermi gas), in
addition to the triplet intraspecies pairing considered in section
4.3, and competition between them. Assuming chemical
stability of a mixture of two species of polarized dipolar
particles with equal masses, concentrations, and dipole
moments (a mixture of fermionic polar molecules with two
different hyperfine states, for example), this problem was
considered in ref 114. The corresponding Hamiltonian reads

∫
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where α = ± denotes two different species, the intraspecies
interaction Vαα(r) is the dipole−dipole one, Vαα(r) = Vd(r),
while the interspecies interaction Vαα′(r) for α′ ≠ α contains a
short-range part Vs(r) = (4πas/m)δ(r) in addition to the

Figure 12. Function F versus the inverse trap aspect ratio l. (Taken
from ref 110.)

Figure 13. Critical lines Γc versus the aspect ratio l for different
numbers of particles N. The BCS pairing takes place above the
depicted curves. (Taken from ref 110.)

Figure 14. Order parameter for the aspect ratio l = 2.2 (cigar shaped
trap). The solid line shows Δ(z,ρ=0), and the dotted line corresponds
to Δ(z=0,ρ). (Taken from ref 110.)
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dipole−dipole interaction, Vαα′(r) = Vd(r) + Vs(r), para-
metrized by the s-wave scattering amplitude as.
The order parameter of singlet interspecies pairing

ψ ψΔ − = − ⟨ ̂ ̂ ⟩−+ − +Vr r r r r r( ) ( ) ( ) ( )s 1 2 1 2 1 2

in momentum space is now a sum of all partial waves with even
angular momentum L and zero azimuthal quantum number M,

∑Δ = Δ ̂p Yp p( ) ( ) ( )s

evenL

sL L0
(67)

The corresponding gap equation is similar to eq 56 with
V(p,p′) = Vd(p − p′) + 4πas/m + δV(p,p′).
In the BCS approach, when one neglects many-body

contributions including the deformation of the Fermi-sphere
in momentum space, the critical temperature of the singlet
superfluid transition is (see ref 114)
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and the corresponding order parameter on the Fermi surface
reads [compare with eq 61]

θ λΔ ̂ ≈ | |p p( ) cos[cos 3/ ]s F sp (69)

where |λs| is the largest positive root of the equation
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The order parameter (eq 69) is now a symmetric function
under p → −p, as it should be for a singlet pairing.
With the deformation of the Fermi surface taken into

account, the problem was solved numerically (see ref 114 for
details). It turns out that without contact interaction (as = 0)
the critical temperature of the triplet intraspecies pairing is
always higher and, therefore, the system undergoes the
transition into the triplet intraspecies BCS state; see section
4.3. The ground state in this case is a mixture of two
intraspecies triplet superfluids. However, switching on an
attractive contact interaction (as < 0), one can increase the
critical temperature of the singlet pairing and make it larger
than that for the triplet one, such that the ground state
corresponds to an interspecies singlet superfluid. The critical
value of askF as a function of D = nd2/εF and the corresponding
phase diagram are shown in Figure 15.

4.6. BCS Pairing in a Dipolar Monolayer

Let us now consider the possibility for superfluid pairing in a
polarized dipolar monolayera polarized single-component
dipolar gas confined to a (quasi)2D geometry by a harmonic
trapping potential V(z) = mωz

2z2/2, assuming ℏωz ≫ εF, where
εF = pF

2/2m is the Fermi energy of a Fermi gas with the 2D
density n2D = pF

2/4πℏ2. An important parameter of the problem
is the angle θ between the z-axis (normal to the 2D motion
plane) and the direction of the dipole polarization; see Figure
16. The effective 2D interaction between dipoles is given by eqs

49, 50, and 51. To see the possibility of BCS pairing, one has to
look at the component in the p-wave channel. Straightforward
but lengthy calculations115 show that it becomes negative when
sin θ > 2/3, and, therefore, the system becomes unstable against
BCS pairing. Note that the critical value θc = arcsin 2/3 = 0.73
(42°) is larger than the value arcsin 1/√3 = 0.62 (35°) of the
angle θ, above which the dipole−dipole interaction has
attractive directions in the (x,y)-plane.
Due to the anisotropy of the effective interaction (for θ > 0),

the azimuthal quantum number is no longer a conserving
quantity and, therefore, the superfluid order parameter contains
all odd harmonics in the azimuthal angle ϕ. In momentum
space,

∑ φΔ = Δ −
=

∞

k nk( ) ( ) cos[(2 1) ]
n

n k

1

with the components Δn(k) coupled to each other through the
gap equation. With only the n = 1 component taken into
account, the problem was solved in ref 115, in which it was also
found that the Fermi surface deformation due to anisotropy of
the effective interaction does not play any significant role in the
pairing problem and only slightly decreases the critical angle θc
when the strength of the interaction increases. This result was
confirmed by the analysis of ref 97, in which all components of
Δ(k) were taken into account. It appears that the critical angle
remains practically the same, and higher components of Δ(k)
with n > 1 are visible only at angles very close to θc. For larger
values of θ, one has Δn>1/Δ1 ≲ 10−2 such that the pairing has
indeed the p-wave character, Δ(k) ≈ Δ1(k) cos ϕk.
The critical temperature for the BCS pairing reads97

Figure 15. Dependence of the critical scattering length as* on the
strength of the dipole interaction D = nd2/εF, and the resulting
superfluid phase diagram. (Taken from ref 114. Copyright 2010
American Physical Society.)

Figure 16. Fermionic monolayer: Fermionic dipoles are confined to
the xy-plane. The dipoles are aligned in the xz-plane and form an angle
θ with the z-axis.
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The two functions F1(θ) and F2(kFlz,θ) in eq 70 describe
deviations from the simplest BCS approach (with no account of
the Fermi surface deformation): The exponent in eq 70 is
simply the p-wave component of the effective dipole−dipole
interaction on the undeformed Fermi surface. These deviations
result from many-body corrections to the interparticle
interaction and Fermi-liquid effects, as well as from the second
order contribution to the two-body quasi-2D scattering
amplitude. The latter includes virtual transitions to inter-
mediate states which are not necessarily limited to the ground
state of the transverse confinement. The virtual transitions to
excited states of the transverse confinement, together with
many-body contributions (those include corrections to the
interparticle interaction, Fermi surface deformation, and Fermi-
liquid effectseffective mass), contribute to the function F1(θ).
The virtual transitions to the states with ground state motion in
the transverse confining potential contribute to both functions
F1(θ) and F2(kFlz,θ) (see ref 97 for details). The latter
transitions provide the second order Born term to the purely
2D scattering amplitude on the effective potential (eq 49),
which has the so-called anomalous scattering contribution ∼k2
ln k (see more discussions below) due to long-range power
decay of the potential. This anomalous contribution gives rise
to the function F2(kFlz,θ). Equation 70 predicts a rapid growth
of Tc with increasing of the angle θ from the critical value θc =
arcsin 2/3 to the values of the order of tens of nanokelvin for
realistic experimental parameters; see Figure 17.
We obtain our results for the superfluid critical temperature

using the mean-field approach. However, as it is well-known,
this approach in two dimensions is only applicable at zero

temperature, while at finite temperature the long-range order is
destroyed by phase fluctuations and, therefore, the mean-field
order parameter is zero. In this case, the transition into the
superfluid phase follows the Berezinskii−Kosterlitz−Thouless
(BKT) scenario,116,117 and ref 118. In the weak coupling limit,
however, as it was pointed out by Miyake,119 the difference
between the critical temperature calculated within the mean-
field approach Tc and the critical temperature of the BKT
transition TBKT can be estimated as Tc − TBKT ∼ Tc

2/μ and,
therefore, is small as compared to Tc. As a result, our mean-field
calculations provide a reliable answer for the critical temper-
ature in the considered weak coupling regime adkF < 1.
Another interesting possibility to create a topologically

nontrivial superfluid state in a monolayer was considered in refs
120 and 121, in which the authors consider a monolayer with
fermionic dipoles oriented perpendicular to the plane (θ = 0)
and use the RF-dressing technique discussed in section 2.2.1 to
create an effective (time-averaged) attractive potential Veff(ρ→
∞) ≈ −deff2 /ρ3. At short distances, the potential Veff(ρ) has a
repulsive core that prevents low-energy particles from
approaching each other and, therefore, suppresses inelastic
collisions resulting in losses. The leading p-wave 2D scattering
amplitude for identical fermions was found121 to be

∫ ρ ρ ψ ρ πρ ρ
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≈ −
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+
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1
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where J1(z) is the Bessel function, ψk
(+)(ρ) is the radial wave

function of the p-wave relative motion, the constant C is
determined by the behavior of the potential at short distances,
and the length scale r∗ = mdeff

2 /ℏ2 depends on the details of the
RF-dressing (for BCS pairing, r∗; has to be positive; for more
details, see ref 121). The first term in eq 71 corresponds to the
p-wave Born amplitude for the potential Veff(ρ) = −(ℏ/m)r∗ρ−3
while the second term contains both the anomalous scattering
due to the dipole−dipole tail of the interparticle interaction and
the short-range contribution.
For kr∗ ≪ 1, the first term in eq 71 is negative and, therefore,

leads to a p-wave superfluid transition. The most stable low-
temperature p-wave superfluid phase in 2D has px + ipy
symmetry, Δk = Δ(k) exp(iφk), because this is the only p-
wave superfluid phase with a nonzero energy gap on the entire
Fermi sphere. The numerical solution of the gap equation120,121

shows that Δ(k) rises linearly for k ≲ kF and approaches a
constant πe−γTc for k ≳ kF. The critical temperature Tc reads

ε
κ π

= −
π
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⎡

⎣
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64

2

with the numerical coefficient A determined by the short-
distance behavior of the interparticle interaction. Note that the
value of the critical temperature is very sensitive to the short-
range part of the effective potential Veff(ρ) and, by modifying it,
can be varied within a few orders of magnitude, reaching the
values of the order of tens of nanokelvin for realistic
experimental parameters that correspond to the lifetime of

Figure 17. The critical temperature as a function of the tilting angle θ
for adkF = 2.5 and kFl ≈ 0.2. These values correspond to a gas of
fermionic 15ND3 molecules with the density n2D = 108 cm−2 and ωz =
2π × 100 kHz. (Taken from ref 97.)
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the system of the order of seconds; see ref 121 for details and
discussions.
The resulting px + ipy superfluid pairing spontaneously breaks

time-reversal invariance (the degenerate time-reversal partner is
the px − ipy state). This phase belongs to the class of the so-
called topological superconductors and can exist in one of two
topologically distinct phases, depending on the sign of the
chemical potential μ.122 The phase with μ < 0 is topologically
trivial (may be continuously deformed to the vacuum state),
while the phase with μ > 0 is topologically nontrivial (cannot be
continuously deformed to the vacuum) and has several very
interesting properties. One of the most interesting of them is
that the vortices in this superfluid carry localized zero-energy
states, described by a Majorana fermion. These Majorana states
obey non-Abelian exchange statistics123,124 and can possibly be
used for topologically protected quantum information process-
ing.125 In the considered case of the superfluid state of dipoles
in a monolayer, the chemical potential is positive, μ > 0, and the
resulting superfluid phase is topologically nontrivial.

4.7. BCS Pairing in a Bilayer Dipolar System

The single-component fermionic bilayer dipolar system (see
Figure 18) provides an example of a relatively simple many-

body system in which an entire range of nontrivial many-body
phenomena are solely tied to the dipole−dipole interparticle
interaction with its unique properties: long-range and
anisotropy. The long-range character provides an interparticle
interaction in single-component Fermi gases inside each layer
that otherwise would remain essentially noninteracting. For the
considered setup, this intralayer interaction is always repulsive
and gives rise to the crystalline phase for a large density of
particles (see section 2.2.3). More importantly, the long-range
dipole−dipole interaction couples particles from different
layers, allowing them to interact in the s-wave channel that is

dominant at low energies, allowing formation of bound states
and BCS pairing.126,127 The Hamiltonian of the system reads

∫
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where α = ± is the layer index, z± ≡ z ± l/2, with l being the
layer separation, ψ̂α(r) with r = (ρ,z) is the field operator for
fermionic dipolar particles (ρ = xex + yey) on the corresponding
layer α, Δ = Δr + ∂

2/∂z
2 is the Laplace operator, ωz is the

confining frequency in each layer such that lz = (ℏ/mωz)
1/2, and

μ′ is the chemical potential. The last term describes the intra-
(α = β) and interlayer (α ≠ β) dipole−dipole interparticle
interactions. Assuming a strong confinement, ℏωz ≫ μ′,T,
where T is the temperature, we can write ψ̂α(r) = ψ̂α(ρ) ϕ0(zα)
and, therefore, reduce the Hamiltonian (eq 72) to

∫

∫

∑

∑

ρ ψ ρ μ ψ ρ

ρ ρ ψ ρ ψ ρ ρ ρ ψ ρ

ψ ρ

= ̂ −
ℏ

Δ − ̂

+ ′ ̂ ̂ ′ − ′ ̂ ′

× ̂

α
α ρ α

α β
α β αβ β

α

=±

†

† †

⎧
⎨
⎩

⎫
⎬
⎭

H
m

V

d ( )
2

( )

1

2
d d ( ) ( ) ( ) ( )

( )

2D

2

,

(73)

for a two-component fermionic field ψ̂α(ρ), α = ±, with shifted
chemical potential μ = μ′ − ℏωz/2. The intracomponent
(intralayer) interaction Vαα(ρ) coincides with Vd

2D(ρ) in eq 49
for θ = 0, and the intercomponent (interlayer) interaction is
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The considered system is characterized by three character-
istic lengths: the dipolar length ad = md2/ℏ2, the interlayer
separation l, and the mean interparticle separation inside each
layer ∼kF−1, with kF = √4πn being the Fermi wave vector for a
2D single-component fermionic gas with the density n.
Therefore, the physics of the system is completely determined
by two dimensionless parameters which are independent ratios
of the above lengths. The first parameter g = ad/l (the ratio of
the dipolar length and the interlayer separation) is a measure of
the interlayer interaction strength relevant for pairing. In
experiments with polar molecules, the values of the dipolar
length ad are of the order of 102−104 nm: for a 40K87Rb with
currently available d ≈ 0.3 D, one has ad ≈ 170 nm (with ad ≈
600 nm for the maximum value d ≈ 0.566 D), and for 6Li133Cs
with the tunable dipole moment from d = 0.35 D to d = 1.3 D
in an external electric field ∼1 kV/cm, the value of ad varies
from ad ≈ 260 nm to ad ≈ 3500 nm. For the interlayer
separation l = 500 nm, these values of ad correspond to g ≲ 10.
The second parameter kFl measures the interlayer separation in
units of the mean interparticle distance in each layer. This
parameter can also be both smaller (dilute regime) and of the
order or larger (dense regime) than unity for densities n = 106−
109 cm−2 (for example, for l = 500 nm, one has kFl = 1 for n ≈ 3
× 107 cm−2). The two parameters g and kFl determine the
regime of interlayer scattering at typical energies of particles
(∼Fermi energy εF = ℏ2kF

2/2m), and their product, gkFl = adkF,
as usual, controls the perturbative expansion in the system and,
therefore, many-body effects.

Figure 18. Setup of the dipolar bilayer system: Two layers with the
thickness l0 of a 1D optical lattice formed by two counterpropagating
laser waves with wavevectors kL and − kL are filled with dipoles
oriented perpendicular to the layers. The interlayer distance l is π/kL.
An interlayer Cooper pair or molecule.
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The interlayer interaction has a very specific form resulting
from the anisotropy of the interaction: Two particles from
different layers attract each other at short and repel each other
at large distances, respectively, as a result of different mutual
orientations of their relative coordinate and of their dipole
moments. A peculiar property of V2D(ρ) is

∫ ρ ρ =Vd ( ) 02D

This means that its Fourier transform

∫ ρ ρ
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ℏρ− −V V e
m

gqleq( ) d ( )
2iq ql
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2
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vanishes for small q,

π̃ → ≈ −
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→V
m

gqlq( 0)
2

02D

2

The potential well at short distances is strong enough to
support at least one bound state for any strength of interlayer
coupling. For a weak coupling between layers (g ≪ 1), the
bound state is extremely shallow and has an exponentially large
size127 (see also ref 128):
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for the binding energy and

= ℏ ≈ ≫R mE l g l/ exp(4/ )b b
2 2

for the size, respectively. However, in the intermediate and
strong coupling cases (g ≲ 1) the size of the deepest bound
state becomes comparable with the interlayer separation:

= ℏ −E ml g g( / )2 (1 6/ )b
2 2

and

≈ −R l g(6 )b
1/4

respectively.
The specific properties of the interlayer potential (eq 75): It

decays exponentially for large momenta k ≫ l−1, while it is
proportional to k for k ≫ l−1, leading to different regimes of
scattering and, therefore, of the BCS pairing, depending on the
relation between g and kFl. This can be conveniently formulated
in terms of the vertex function Γ(E,k,k′), where the arguments
E, k, and k′ are independent of each other. This function
satisfies the following integral equation129
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The 2D scattering amplitude f k(φ), where φ is the angle
between k and k′, corresponds to (m / ℏ2)Γ(E,k,k′) with E =
ℏ2k2/m = ℏ2k′2/m. The solution of this equation127,128 reads as
follows:
For g < kFl ≲ 1, the leading contribution to scattering is given

by the first Born term

π
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For exp(−1/g2) ≪ kl < g < 1, the scattering is dominated by
the second order Born contribution
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which is momentum and energy independent and, hence, is
equivalent to a pseudopotential V0(ρ) = −(2πℏ2/m)(g2/
4)δ(ρ).
For exp(−1/g2) ≲ kl ≪ g < 1, higher order contributions

become important and one has to sum leading contributions
from the entire Born series. The result of this summation is
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(80)

where Eb is the energy of the bound state from eq 76. This
expression recovers the standard energy dependence of the 2D
low-energy scattering and has a pole at E = −Eb, as it should be.
The real part of the scattering amplitude, being zero at E = Eb,
changes from negative to positive values for E > Eb and E < Eb,
respectively. Note that, within the lowest order terms, a unique
expression for the scattering amplitude can be written as
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As one can see, the interlayer scattering amplitude is negative
in the s-wave channel [for the case exp(−1/g2) ≲ kl ≪ g < 1;
this requires E ∼ εF ≫ Eb, which is realistic in the limit g < 1].
This means that, at sufficiently low temperatures, the bilayer
fermionic dipolar system undergoes a BCS pairing transition
into a superfluid state with interlayer s-wave Cooper pairs,
characterized by an order parameter Δ(p) ∼ ⟨ψ̂−(p) ψ̂+(−p)⟩,
with ψ̂α(p) being the field operator in the momentum space,
which is independent of the azimuthal angle φ, Δ(p) = Δ(p).
The analysis of the corresponding gap equation was

performed in refs 126 and 127 (the latter includes many-
body effects), and we present here only the results for the
critical temperature Tc in the experimentally most interesting
case kFl ∼ 1 and g < 1, such that gkFl = adkF < 1 (results for
other cases can be found in ref )
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and the function f(x) is shown in Figure 19.The dependence of
the function τ(g,kFl) on kFl for several values of g is shown in

Figure 20.We see that the critical temperature decreases very
rapidly for kFl > 1 due to the fast decay of the scattering
amplitude. The optimal value of kFl is around 0.5, with the
critical temperature reaching values of the order of 0.1 μ for g ≈
0.9, which corresponds to gkFl ≈ 0.45 < 1.
This BCS state with interlayer Cooper pairs occurs in the

weak (interlayer) coupling regime when the size of the bound
state is larger than the interparticle separation (in other words,
the Fermi energy is larger than the binding energy). With
increasing interlayer coupling, the BCS state smoothly
transforms into a BEC state of tightly bound interlayer
molecules when the interparticle separation is larger than the
size of the bound state; see, for example, refs 126 and 130. Of
course, the BEC regime and BEC-BCS crossover are possible
only when the mean interparticle separation in each layer is
larger than the distance between the layers.
Let us now discuss possible physical realizations of the

interlayer pairing. In the experiments with polar molecules, the

values of the dipolar length ad are of the order of 10
2−104 nm:

for a 40K87Rb with currently available d ≈ 0.3 D, one has ad ≈
170 nm (with ad ≈ 600 nm for the maximum value d ≈ 0.566
D), and for 6Li133Cs with a tunable dipole moment from d =
0.35 D to d = 1.3 D (in an external electric field ∼1 kV/cm),
the value of ad varies from ad ≈ 260 nm to ad ≈ 3500 nm. For
the interlayer separation l of the order of a few hundred
nanometers, the corresponding values of the parameter g can be
both smaller and larger than unity (g ≲ 10).
The values of the parameter kFl are also within this range for

densities n = 106−109 cm−2 (for example, one has kFl = 1 for l =
500 nm and n ≈ 3 × 107 cm−2). Note, however, that the
optimal values of this parameter are around kFl ∼ 0.5 (see
Figure 20), and hence, the optimum value of the interlayer
separation is related to the density, which, in turn, should be
large enough to provide a substantial value for the Fermi
energy. For 40K87Rb molecules at the density n ≈ 4 × 108 cm−2,
in each layer one has εF ≈ 100 nK and kF = . Therefore, the
interlayer separation l should be relatively small, l ≲ 150 nm, to
meet the optimal conditions. For l = 150 nm one then has g ≈
1.1 (with current d ≈ 0.3 D), kFl ≈ 1, and Tc ≈ 0.1εF ≈ 10 nK.
Note that strictly speaking these values of parameters g and kFl
do not correspond to the weak coupling regime considered in
this paper, but rather to the intermediate regime of the BCS-
BEC crossover. However, based on the experience with the
BEC-BCS crossover in two-component atomic fermionic
mixtures, in which the critical temperature continues to grow
when approaching the crossover region from the BCS side, we
could expect that the above value of the critical temperature
provides a good estimate for the onset of the superfluidity in
the intermediate coupling regime.

4.8. Stability of Fermionic Dipolar Systems

As we have already mentioned, a polarized homogeneous
fermionic dipolar gas becomes unstable for strong dipole−
dipole interaction (adkF > 1). Unfortunately, for this strongly
interacting regime, the usage of the Hartree−Fock approx-
imation could not be rigorously justified. It is commonly
accepted, however, that the Hartree−Fock method is able to
provide a correct qualitative picture even in this regime,
although its quantitative results should be taken with care.
The simplest way to get quantitative insight into the

instability region for a 3D dipolar gas is to use the variational
ansatz (eq 46) to calculate the compressibility. It turns out93,94

that the compressibility of a homogeneous gas becomes
negative for adkF > 9.5, signaling the instability of the gas and
leading to a collapse.
For a trapped gas with N particles,92 the ansatz (eq 46) for

the momentum distribution has to be generalized to the ansatz
for the Wigner distribution function

θ
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where pF(r)
2 = pF

2 − λ2lω
−4[β(x2 + y2) − β−2z2 is the position-

dependent square of the Fermi momentum, λ and β are
variational parameters, pF = (48N)1/6λ1/2 ℏ/lω, and lω = (ℏ/
mω)1/2 with ω = (ωρ

2ωz)
1/3. Minimization of the energy with

respect to the variational parameters α, β, and λ gives
equilibrium density and local momentum distribution for a
given value of the trap aspect ratio l = (ωρ/ωz)

1/2. The
calculation of the compressibility shows that it becomes
negative for any value of the trap aspect ratio l provided the
value of the parameter N1/6ad/lω, which measures the strength

Figure 19. The function f(x). (Taken from ref 127.)

Figure 20. The function τ(g,x) for g = 0.7 (solid line), g = 0.8 (short-
dashed line), and g = 0.9 (long-dashed line). (Taken from ref 127.)
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of interparticle interaction, is sufficiently large. The dependence
of the critical value of N1/6ad/lω on the trap aspect ratio l is
shown in Figure 21. Note that the critical aspect ratio found in

ref 131, lc = 0.19, below which the trapped gas is stable for any
value of N1/6ad/lω, is an artifact of the approximation used in
this paper resulting from neglecting the deformation of the
local momentum distribution; see discussion in ref 92.
In a dipolar monolayer, the calculations of the compressi-

bility in ref 115 show that the collapse of the system takes place
for adkF ≈ 1 for θ = π/2 (dipoles are oriented parallel to the
plane) but for rapidly increasing values of adkF when the angle
between the dipole polarization and the plane increases. More
careful analysis of both long wavelength (collapse) and finite
wavelength (density wave) instabilities of a dipolar monolayer
can be performed by looking at the stability of the collective
modes: A collective mode becomes unstable when its frequency
tends to zero. The corresponding equation valid for a general
wave vector k of the collective mode reads
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where Γ̃(k,p,p′) =Vd
2D(ℏk)− Vd

2D(p − p′ + ℏk) for our case.
[Note that eq 52 follows from eq 81 after taking the limit k→ 0
and using the relation κ(p) = [ω − k▽pε(p)]γk(p)]. As a
result, an instability occurs when the equation
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has a nontrivial solution for some value of k. Note that, for
Γ̃(k,p,p′) = Vd

2D(ℏk) (when only the direct interaction is taken
into account and the exchange one is neglected), γk(p) is p-
independent and eq 81 reduces to

ω− ℏ Π =V kk1 ( ) ( , ) 0d
2D
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is the 2D polarization operator. Equation 83 is used to study
long wavelength (k → 0) plasmon oscillations in electrically
charged systems (see, for example, ref 132). Although keeping
only direct interaction in the long wavelength limit is legitimate
for Coulomb systems (because of divergence of the Coulomb
interaction, while the exchange one is finite due to nonzero
momentum transfer, |p−p′| ∼ pF), this approximation gives
physically incorrect results in a Fermi system with a finite
Fourier component of the interparticle interaction for small
momentum transfer (like in the considered case of a dipolar
monolayer). In this case, the direct and the exchange
contributions are of the same order and keeping only the
former results in unphysical results. Actually, for a short-range
interparticle interaction (with a momentum-independent
Fourier component), the two contributions cancel each other,
as it should be in a single-component Fermi gas. Similar
considerations are also applied to the analysis of instabilities in
dipolar systems on the basis of eq 82: Keeping the exchange
contribution in this equation is essential in order to obtain
correct results consistent with fermionic statistics of particles..
For k → 0, eq 82 is equivalent to the Pomeranchuk

criterion91,90 formulated in the framework of a Landau Fermi-
liquid. Numerical solution of this equation (for k = 0)97 shows
that the instability of the system for θ ≳ 3 π/8 corresponds to
mostly isotropic with some addition of the quadrupole (∼cos
2φ) deformation of the Fermi surface, i.e. to the collapse, that
takes place for adkF ≳ 1 (see Figure 22)

For θ ≲ 3π/8, the leading instability corresponds to the p-
wave (∼sin φ) deformation of the Fermi surface. However, this
instability is unobservable because for these values of the tilting
angle θ the system undergoes a density-wave instability at
smaller values of adkF.

133 This instability corresponds to a
nontrivial solution of eq 82 with finite k and takes place for adkF
≳ 1.5. For 0 < θ ≲ 3π/8, the corresponding vector k is along
the y-axis (ϕk = ±π/2) and has a modulus that is twice larger
than the Fermi wave-vector in the y-direction, k = ℏ−12pF(π/2)
ey. For θ = 0 (isotropic case), the instability vector k has no
preferable directions and the system is believed to become

Figure 21. Critical value of N1/6adkF as a function of the trap aspect
ratio l. The solid line represents the full variational calculation, while
the dashed line is obtained by forcing α = 1. (Taken from ref 92.
Copyright 2008 American Physical Society.)

Figure 22. Phase diagram of the 2D dipolar Fermi gas at T = 0. For 0
≤ adkF ≲ 1.5 and small tilting angles θ, the system is a normal Fermi
liquid (NFL). Thje transition to the supefluid state (SF) occurs at the
critical angle θc = 0.72. At moderately strong interactions, the system
either collapses or undergoes the transition into the density-wave
phase (DW). (Taken from ref 97.)
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unstable against formation of a crystalline state with a triangular
lattice.

5. DIPOLAR MULTILAYER SYSTEMS

Let us now briefly discuss known results on dipolar multilayer
systems. The stability against formation of inhomogeneous
(density wave) phases in a fermionic dipolar multilayer system
was discussed in ref 134 for a particular choice of the tilting
angle θ = arccos 1/√3 and in ref 135 for an arbitrary θ. The
analysis of these papers show that inclusion of exchange
interactions tends to stabilize the homogeneous state, resulting
in higher values of critical dipolar interaction strength as
compared to the simple random-phase-approximation (RPA)
approach. On the other hand, for multiple layers, this critical
dipolar interaction strength decreases with the number of
layers.
Another interesting feature of multilayer systems of dipoles is

the formation of many-body bound states in the form of a chain
(or filament) made of one dipole in each layer.136−139 (It was
argued in ref 138 that bound states involving two molecules
from the same layer do not exist.) The binding energy of such
chains increases with the number of involved molecules (or
layers). As a result, the ground state contains chains of
maximum length, while, at finite temperatures, the competition
between entropy that favors shorter chains and energy
preferring longer ones results in a nonmonotonic dependence
of the distribution on the length of the chains. For bosonic
dipoles, quantum fluids of such self-assembled chains (dipolar
chains fluid) and superfluidity of dipolar chains was considered
in ref 136. For fermionic dipoles, the situation is even more
interesting because chains with an even number of dipoles are
bosons, while those with an odd number of dipoles are
fermions. In this case, even at zero temperature, there is an
interplay between the Fermi statistics, in the form of a Pauli
principle giving rise to a finite kinetic energy of a filled Fermi
sphere, and the binding energy; see ref 137, where a Bose−
Fermi mixture of self-assembled noninteracting chains was
considered for the simple case of a three-layer system of
fermionic polar molecules oriented perpendicular to the layers.
For a more general case for both bosonic and fermionic dipoles,
which also includes interactions between chains, see ref 139.
The superfluidity in fermionic dipolar multilayer systems was

addressed in ref 140. The interlayer character of Cooper pairs
in this case leads to the competition for pairing among adjacent
layers resulting in a dimerized superfluid state as the ground
state, in which the system can be viewed as a stack of bilayers
with interlayer pairing correlations inside each bilayer and no
such correlations between layers belonging to different bilayers.
This state is characterized by a quasi-long-range superfluid
order in every bilayer. At some finite critical temperature, this
phase undergoes a phase transition into a dimerized
“pseudogap” phase with only short-range superfluid correla-
tions. These correlations disappear above the second critical
temperature, and the system is in the normal phase (see details
and proposals for experimental detections of the phases and
phase transitions in ref 140).

6. STRONGLY INTERACTING DIPOLAR GAS

Strong correlations are at the core of a number of fundamental
phenomena in many-body physics, ranging from the formation
of self-assembled ionic crystals to exotic phases such as high-Tc

superconductivity and spin liquids. The regime of strong

correlations between particles in a gas is generally obtained
when the strength of the interparticle interactions becomes
comparable to, or larger than, the average kinetic energy. There
are two main avenues to achieve this regime of strong
correlations: (i) the first is to decrease the kinetic energy by
placing particles on a latticewhich in the case of a dilute gas
has the effect of increasing the effective massand (ii) the
second is to increase the relative strength of interactions. In
gases of dipolar particles, strong correlations can be achieved
either way. In the following, we first discuss the phase diagram
for dipoles confined to 2D with tunable interactions (section
6.1), and then we review several works on exotic many-body
phases for interacting dipoles trapped in an optical lattice;
section 6.2.

6.1. Two-Dimensional Dipoles: Phase Diagram

The conceptually simplest example, although remarkably rich
from a physics point of view, is a system of cold polar molecules
in a dc electric field under strong transverse confinement. The
setup is illustrated in Figure 2a. A weak dc field along the z-
direction induces a dipole moment d in the ground state of
each molecule. These molecules interact via the effective
dipole−dipole interaction Veff

3D(r) = D(r2−3z2)/r5 according to
their induced dipoles, with D = d2. For molecules confined to
the x,y-plane perpendicular to the electric field, this interaction
is purely repulsive. For molecules displaced by z > r/√3, the
interaction becomes attractive, resulting in few-body and many-
body instabilities. As discussed in section 2.2, these instabilities
can be suppressed by a sufficiently strong 2D confinement with
the potential Vtrap(zi) along z, due to, for example, an optical
force induced by an off-resonant light field.64

The 2D dynamics in this pancake configuration is described
by the Hamiltonian

∑ ∑ ρ= +
ρ
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which is obtained by integrating out the fast z-motion. Equation
84 is the sum of the 2D kinetic energy in the x,y-plane and the
repulsive 2D dipolar interaction

ρ ρ=V d( ) /eff
2D 2 3

(85)

with ρij ≡ (xj − xi,yj − yi) a vector in the x,y-plane (solid line in
Figure 3a). The distinguishing feature of the system described
by the Hamiltonian (eq 84) is that tuning the induced dipole
moment d drives the system from a weakly interacting gas (a
2D superfluid in the case of bosons or a 2D Fermi liquid142) to
a crystalline phase in the limit of strong repulsive dipole−dipole
interactions. This transition and the crystalline phase have no
analog in the atomic bose gases with short-range interactions
modeled by a pseudopotential of a given scattering length.
A crystalline phase corresponds to the limit of strong

repulsion where particles undergo small oscillations around
their equilibrium positions, which is a result of the balance
between the repulsive long-range dipole−dipole forces and an
additional (weak) confining potential in the x,y-plane. The
relevant parameter is
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which is the ratio of the interaction energy and the kinetic
energy at the mean interparticle distance a. This parameter is
tunable as a function of d from small rd to large. A crystal forms
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for rd > 1, when interactions dominate, which for a dipolar
crystal is the limit of large densities. This density dependence is
different from that in Wigner crystals with 1/r−Coulomb
interactions, as realized, e.g., with laser cooled trapped ions.143

In the latter case, rc = [(e2/a)/ℏ2]/ma2 ∼ a, and the crystal
forms at low densities. In addition, the charge e is a fixed
quantity, while d can be varied as a function of the dc field.
Figure23 shows a schematic phase diagram for a dipolar gas

of bosonic molecules in 2D as a function of rd and temperature

T. In the limit of weak interactions rd < 1, the ground state is a
superfluid (SF) with a finite (quasi-)condensate. The SF is
characterized by a superfluid fraction ρs(T), which depends on
temperature T, with ρs(T = 0) = 1. A Berezinskii−Kosterlitz−
Thouless transition116,117 from the superfluid to a normal fluid
occurs at a finite temperature TKT = πρsh

2n/2m, as expected in
two dimensions. Recent numerical results in ref 144 obtained
with an exact Path-Integral Monte Carlo technique (PIMC)145

have shown that the superfluid fraction ρs(T), and thus TKT, has
a nonmonotonic behavior as a function of the interaction
strength rd, reaching a maximum of about ρs(TKT) = 0.9 at rd ≃
1.
In the opposite limit of strong interactions rd ≫ 1, the polar

molecules are in a crystalline phase for temperatures T < Tm

with Tm ≈ 0.089D/a3; see ref 141. The configuration with
minimal energy is a triangular lattice with excitations given by
acoustic phonons, with characteristic Debye frequency hωD/
(h2/ma2) ... 7.9√rd. The intermediate strongly interacting
regime with rd > 1 has been investigated using several
numerical, especially quantum Monte Carlo, techniques in
refs 64 and 146−149. Using an exact PIMC technique, a
quantum melting transition from the crystalline to the
superfluid phases has been determined to occur at a critical
interaction strength rQM = 18 ± 4.64

Confined Geometries. The addition of an in-plane
parabolic confinement of frequency ω∥ as realized in experi-
ments with magnetic or optical traps introduces a term
∑imω∥

2ri
2/2 in eq 84. The strength of interactions is now

characterized by the dimensionless ratio τ = (ad/l)
2, with l =

(h/mω∥)
1/2 the harmonic oscillator length. The physics of

classical mesoscopic crystals with τ ≫ 1 and dominant thermal

fluctuations has been first discussed in the context of excitonic
materials.151−154 It was found that small dipolar clusters with N
< 40 particles confined to parabolic potentials may not
crystallize in a triangular lattice, but rather arrange in shell-
like structures. Finite-T melting of these structures would
usually proceed through two separate (nonsharp) transitions,
corresponding to the loss of rotational and radial order.
Motivated by dipolar molecular and atomic gases, the focus

has now shifted toward the low-temperature regime of
dominant quantum fluctuations.150,152,155−159 For bosons, it
was recently determined156,150 that the quantum melting of
mesoscopic crystals (τ ≫ 1) into a superfluid (τ ≲ 1) is a sharp
crossover involving two intermediate phases: these are ring-
crystals, with vanishing superfluid fraction, and mesoscopic
superfluids with a modulated (e.g., nonhomogeneous) density.
Snapshots of quantum Monte Carlo simulations for N = 13
particles are shown in Figure 24 for all of these quantum
phases.

Having determined the low-temperature phase-diagram both
in the homogeneous situation and in confined geometries, the
remaining question is whether these phases, and in particular
the crystalline phase emerging at strong dipole−dipole
interactions, are in fact accessible with polar molecules. As
discussed in section 2.2, stable 2D configurations for the
molecules exist in the parameter region where the combination
of strong dipole−dipole interactions and transverse (optical)
trapping confines the particles’ motion to the large distance
region with a > l⊥, with l⊥ ... (12d2/mΩ2)1/5 the position of the
saddle points in Figure 3b (white circles). For a given induced
dipole d, the ground-state of an ensemble of polar molecules is
thus a crystal for mean interparticle distances l⊥ < a < amax,
where amax ≡ d2m/ℏ2rQM corresponds to the distance at which
the crystal melts into a superfluid. For SrO (RbCs) molecules
with permanent dipole moment d = 8.9 D (d = 1.25 D), amin ...
200 nm (100 nm), while amax can be several micrometers. Since

Figure 23. Tentative phase diagram for bosonic dipoles in 2D (see
setup in Figure 2) in the T−rd plane: crystalline phase for interactions
rd > rQM and temperatures below the classical melting temperature Tm

(dashed line).141 The superfluid phase appears below the upper bound
T < πh2n/2m (dotted line).116,117 The crossover to the unstable
regime for small repulsion and finite transverse confinement Ω for
polar molecules is indicated (hatched region). Hatched regions for rd
∼ rqm and at the crystal−normal phase transitions correspond to the
existence of possible exotic phases (see the Open Questions section in
the text). (Adapted from ref 64.)

Figure 24. (a−d) Monte Carlo snapshots of the density of particles in
all mesoscopic phases for N = 13 dipoles, as a function of the effective
mass τ: (a) superfluid; (b) supersolid; (c) ringlike crystals; (d) classical
crystal. (Image taken from ref 150. Copyright 2010 American Physical
Society.)
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for large enough interactions the melting temperature Tm can
be of the order of several microkelvin, the self-assembled
crystalline phase should be accessible for reasonable exper-
imental parameters using cold polar molecules.
Open Questions. Remarkably, there are still important

open questions concerning the phase diagram of two-
dimensional dipoles and, in particular, the order of the phase
transitions between the solid and liquid phases at zero and
finite temperature. While, as often happens,3 numerical results
are usually consistent with direct first order transitions, exotic
intermediate phases may occur in either case: (i) At f inite
T...Tm, an intermediate hexatic phase characterized by a short-
range positional and a quasi-long-range orientational (6-fold)
order may exist between the solid and the isotropic liquid
phases. Evidence for this hexatic phase, originally proposed by
Kosterlitz, Thouless, Halperin, Nelson, and Young,117,160,161

has been recently found numerically in ref 162. (ii) At low-
temperature, theoretical results suggest the presence of an
intermediate microemulsion bubble phase between the superfluid
and the solid. First introduced in the context of 2D electron
gases in Si MOSFETs by Spivak and Kivelson163 and never
observed so far (however, see below), a microemulsion should
prevent a first order transition in two dimensions. The
observation of either phase with cold dipolar gases would
constitute a breakthrough for condensed matter theory.
Strong correlations can also occur in weakly interacting

dipolar gases subject to rotation,164−168 which, as extensively
reviewed in ref 32, represents a key element to engineer
effective magnetic fields in ultracold atomic and molecular
gases. Strongly correlated phases similar to the Laughlin
quantum Hall states have been proposed in ref 165 for dipolar
bosons and for in ref 169 for dipolar fermions, while the
transition from the Laughlin liquid state to a dipolar crystal
state was addressed in ref 170. Recent work171 has now
provided quantitative estimates for the realization of Abelian
and non-Abelian gauge fields with polar molecules.

6.2. Optical Lattices

Hubbard Hamiltonians are model Hamiltonians describing the
low-energy physics of interacting fermionic and bosonic
particles in a lattice.172 They have the general tight-binding
form
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Here bi,σ (bi,σ
† ) are the destruction (creation) operators for a

particle at site i in the internal state σ, Jij
σ describes coherent

hopping of a particle from site i to site j (typically the nearest
neighbor), and Uij

σσ′ describes the onsite (i = j) or offsite (i ≠ j)
two-body interactions between particles, with ni,σ = bi,σ

† bi,σ.
Hubbard models have a long history in condensed matter
physics, where they have been used as tight-binding
approximations of strongly correlated systems. For example,
for a system of electrons in a crystal hopping from the orbital of
a given atom to that of its nearest neighbor, σ represents the
electron spin. A (fermionic) Hubbard model comprising
electrons in a 2D lattice with interspecies, on-site interactions
are thought to be responsible for the high-temperature
superconductivity observed in cuprates.173

In recent years, Hubbard models have been shown to provide
excellent microscopic descriptions of the low-energy physics of
interacting bosonic and fermionic atoms trapped at the bottom

of an optical lattice.174,175 Since the interactions between cold
atoms are short-ranged, in these systems the Hubbard
Hamiltonian typically has on site interactions only (Ui,i

σ,σ′ in eq
87). This is readily shown for the simple case of single-species
(σ = σ′) bosonic atoms with contact interactions, such as 133Cs
atoms prepared in their absolute internal (hyperfine, fine, ...)
ground state, and trapped in the lowest band of an optical
lattice. In the limit in which all energies involved in the system
dynamics are small compared to excitation energies to the
second band and neglecting the often-small overlap beyond
nearest neighboring densities, the microscopic many-body
Hamiltonian reduces to one of the form of eq 87 with
nearest-neighbor hopping energy J = Ji,i+1

σ and on-site
interactions U = Uii
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Here, {wi(r)} is a complete set of single-particle basis functions,
known as Wannier functions, which are linear combinations of
exact solutions of the Schrödinger equation in the periodic
optical potential V0(r) =∑α=1,3 V0,α sin

2(kαxα) (known as Bloch
functions) and are localized at individual sites j (here we focus
on the lowest lattice band only). The optical lattice has a depth
V0,α proportional to the intensity of the confining laser beams,
with wavevector kα. In atomic systems, the Hamiltonian
parameters in eq 88 can then be accurately controlled
independently using external (optical, magnetic) fields: by
increasing the intensity of the lattice laser light, J decreases
exponentially, while U can be broadly tuned, e.g., by varying the
scattering length as using magnetic Feshbach resonances.3

The resulting Bose−Hubbard Hamiltonian (BHH) has been
extensively studied in condensed matter physics.3,176 When the
atom number is commensurate with the number of lattice sites,
the BHH predicts a zero-temperature phase transition from a
superfluid (SF) phase to a Mott insulator (MI) with an
increasing ratio of the on site interaction U (due to repulsion of
atoms) to the tunneling matrix element J. In the MI phase, the
density (occupation number per site) is pinned at an integer
value n = 1, 2, ..., and the excitation spectrum shows a gap of
the order of U, corresponding to particle−hole excitations.
When the density is not integer, the low-energy phase is
superfluid for all strengths of the ratio J/U. The associated
phase diagram is sketched in Figure 25 as a function of the
chemical potential μ and the ratio J/U, the lobes denoting MI
regions of constant density.
Spectacular experiments with ultracold atoms have led to the

first observation and characterization of this superfluid/Mott-
insulator quantum phase transition for bosonic atoms,177−179

by looking at the interference of the expanded cloud, the
measurement of the gapped excitations, and the (lack of)
conductivity in the Mott phase. Further experimental work with
fermions may resolve the phase diagram of the fermionic
Hubbard model in 2D by performing an analog quantum
simulation of eq 87 with two-species of cold fermions.180−182

6.2.1. Dipoles on a 2D Lattice Monolayer. The long-
range and anisotropic character of dipole−dipole interactions
adds to the Bose−Hubbard model new possibilities to observe
quantum phases of fundamental interest. The simplest case is
that of an ensemble of single-species dipoles (σ = σ′) which are
all polarized perpendicular to the lattice plane, resulting in
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isotropic in-plane interactions. This adds to the BH
Hamiltonian terms of the kind ∑i<jUij

σσni
σnj

σ, with Uij
σσ = V/rij

3.
Extended Hubbard models have been extensively studied in

the literature. It has been predicted that in 2D lattices the
presence of finite range interactions gives rise to novel quantum
phases, like the charge-density wave (checkerboard), which is
an insulating phase with modulated density, and the supersolid
(SS) phase, with coexistence of superfluidity and of a periodic
spatial modulation of the density, different from the one of the
lattice.184 This latter phase has a particularly interesting and
storied history. First proposed in the context of the search for
the ground state of helium, it has been the subject of extended
theoretical and experimental investigations for almost 40 years.
While recent experiments may have spotted it in bulk solid
helium, its very own existence in free-space, that is in the
absence of an underlying periodic potential, is a matter of active
research and debate. With few exact theoretical tools available
in the strongly interacting regime, quantum Monte Carlo
(QMC) methods have so far established SS behavior in free-
space to be based on defects and disorder mechanisms, such as
the presence of superfluid dislocations and grain boundaries.185

Crucially, any commensurate bulk solid (including 4He) should
be insulating,186 notwithstanding recent theoretical pro-
posals.187

Several theoretical studies have demonstrated SS behavior in
tight-binding lattice models.183,184,188−198 Model systems with
nearest-neighbor (NN) or next-neighrest-neighbor (NNN)
interactions have been generally considered. The variety of
theoretical models and techniques which have been used has
resulted in a zoo of predictions. A general conclusion is that SS
behavior seems to be favored by finite-range interactions as well
as finite on-site interactions, Uii

σσ > Ji,i+1
σ . Quantum Monte Carlo

methods have determined the SS to occur for the following
models: (i) hard-core bosons (infinitely large Uii

σσ) on a triangular
lattice with NN interactions only, for densities comprised
between 1/3 < n < 2/3; (ii) hard-core bosons on a square lattice
with NN and NNN interactions for n < 0.25 and 0.25 < n < 0.5
between a “star” and a “stripe” solid at half filling; (iii) sof t-core
bosons (finite value of the ratio Uii

σσ > Ji,i+1
σ ) on a square lattice

with NN and n > 0.5. Phase separation, characterized by a
negative compressibility, has been predicted to occur in several
models, for example in the latter case (iii) with NN interactions
and n < 0.5. However, its origin can be traced back to the finite-
range character of the interactions (NN) considered in that

specific model, and thus, phase-separation may be expected to
disappear in the case of the infinite-range interactions
considered below.
Dipolar atomic and molecular gases trapped in optical lattices

can provide physical systems where the dynamics is microscopi-
cally described by extended-Hubbard Hamiltonians with long-
range, anisotropic, interactions,199 with Hamiltonian parame-
ters tunable with external fields. In particular, polar molecules
in optical lattices can provide for strong offsite dipolar
interactions, of the order of hundreds of kHz, decaying with
distance as 1/r3. Due to these strong interactions, two
molecules cannot hop onto the same site, and thus, the
particles may be treated as effectively “hard-core” (soft-core
particles may be realized with dipolar magnetic atoms). For a
lattice of 2D polarized hard-core dipoles, the microscopic
extended Bose−Hubbard Hamiltonian in the presence of long-
range interactions is
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The phase diagram of eq 89 has been recently computed for
2D triangular191 and square183 lattices using exact QMC
methods and no cutoff in the range of interactions. The zero-
temperature phase diagram on a square lattice is shown in
Figure 26. For large enough J/V, the low-energy phase is

superfluid, for all μ. For finite J, three main solid Mott lobes
emerge with densities n = 1/2,

1/3, and
1/4. These are the

checkerboard (CB), stripe, and star solids, respectively, with the
corresponding ground state configurations being sketched in
panels b−d. Analogous to the standard Mott insulating phases
of Figure 25, these lattice solids at fractional filling factor exist
in some low-tunneling region of the μ vs J phase diagram.
Interestingly, it was found that a supersolid phase can be

stabilized in a broad range of parameters by doping the
checkerboard and star Mott solids with either vacancies

Figure 25. (a) Sketch of the phase diagram of the Bose−Hubbard
model at T = 0 in the plane μ/U vs J/U. The regions MI denote Mott
insulator phases, with an integer average onsite density n. (Adapted
from ref 34. Copyright 2009 IOP Publishing.)

Figure 26. (a) Phase diagram of the microscopic extended Bose−
Hubbard Hamiltonian (eq 89) at T = 0. Lobes: Mott solids (densities
indicated): SS, supersolid phase; SF, superfluid phase; DS, devil’s
staircase. Panels b−d: sketches of the ground state configuration for
the Mott solids in panel a, with densities n = 1/2,

1/3, and
1/4,

respectively. (Image adapted from ref 183. Copyright 2010 American
Physical Society.)
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(removing particles) or interstitials (adding extra particles), in
accordance with Andreev−Lifshitz’s scenario of defect-induced
supersolidity.200 For example, a vacancy SS is present for
densities 0.5 > n ≳ 0.43, roughly independent of the interaction
strength. In contrast to, e.g., case (iii) above, the long-range
interactions prevent phase separation from occurring below
filling n = 1/2 in this microscopic model. This offers interesting
prospects for the first observation of this exotic phase using
polar molecules.
Both the solid/supersolid and supersolid/superfluid quantum

phase transitions are second-order. By increasing T, the SS
melts into a featureless normal fluid via a two-step transition,
with the intermediate phase being a normal fluid with finite
density modulations, similar to a liquid crystal.183

Devil’s Staircase and Metastable Many-Body States. The
large Mott lobes with n = 1/2,

1/3, and
1/4 are robust in the

presence of a confining harmonic potential and moderately
finite T/J ∼ 1, and thus, they are relevant to experiments.
Interestingly, for small-enough hopping J/V ≪ 0.1, the low-
energy phase is found to be incompressible (∂n/∂μ = 0) for
most values of μ. This parameter region is labeled as DS in
Figure 26, and it corresponds to a finite-J version of the classical
Devil’s staircase. First discussed in the context of atomic
monolayers adsorbed on solids,201 the latter consists of a
succession of incompressible ground states, dense in the
interval 0 < n < 1, with a spatial structure commensurate with
the lattice for all rational fillings.201,202 This behavior, which has
no analogue for shorter range interactions, is shown in Figure
27a,b, where the particle density n is plotted as a function of the

chemical potential μ. In the figure, a continuous increase of n as
a function of μ signals a compressible phase, while a solid phase
is characterized by a constant n. The main plateaux in panel a
corresponds to the Mott lobes of Figure 26, while the other
steps are incompressible phases, with a fixed, integer, number of
particles, indicating the Devil’s-like staircase. We will come back
to this point in the discussion of one-dimensional models.
Determining the exact ground state geometry and periodicity

of the solid for a given set of Hamiltonian parameters in the DS
region is however a computationally daunting task, since (i) for
many rational fillings (e.g., n = 7/24 in Figure 28a) it would
require consideration of system sizes much larger than those
accessible with reasonable numerical resources, and (ii) the
long-range interactions determine the presence of numerous
low-energy metastable states,203 which for finite T can result in
the presence of defects or in disordered structures. The stability

of low-energy metastable states has been thoroughly studied in
refs 203 and 204, where it is found that, especially in larger
lattices, two metastable configurations might differ by the
occupation of just a few lattice sites. Thus, because of the
presence of these metastable states, in an experiment, it will be
very difficult to reach the ground state or a given metastable
configuration. This is directly reflected in the numerics: Figure
28 shows snapshots of the spatial density distribution in the
lattice in the presence of a realistic harmonic confinement
(shown is a single quadrant). Each circle corresponds to a
different site, and its radius is proportional to the local density.
In panels a and b, μ is chosen such that particles at the trap
center are in the CB phase, with very small T. The density
profile shows a wedding-cake structure, with concentric Mott-
lobes with density n = 1/2 and

1/4, analogous to the shells with
contact interactions.205,206 However, while the system param-
eters are the same in both figures, panel a shows regular CB and
star patterns, while in panel b extended defects are present in
the CB phase and the star is barely visible. This is due to the
different preparation of the states in panels a and b. In fact, in
panel a temperature annealing of the system prior to taking the
snapshot was performed in order to eliminate defects, while this
was not done in panel b. Defects in panel b reflect the existence
of a large number of low-energy metastable states, which are a
direct consequence of the long-range nature of the interactions.

Additional Exotic Phases. Interestingly, the possibilities
offered by polarized dipoles in a 2D are not exhausted by the
phases above. In ref 191, the first numerical evidence has been
proposed for a bosonic lattice version of the “microemulsion”
phase163 introduced in section 6.1, for a system of polarized
hard-core dipoles on a triangular lattice. This is shown in Figure
29, where an emulsion phase is indicated as separating the Mott
lobe at n = 1/3 from a low-density superfluid, suggesting a
qualitative difference between the behavior of this complex

Figure 27. n vs μ: (a) Solids and SS for a system with linear size L =
12 and J/V = 0.05. Some n are indicated. (b) Superfluid and vacancy-
SS for L = 16 and J/V = 0.1. (Image adapted from ref 183. Copyright
2010 American Physical Society.)

Figure 28. Spatial density profile in 2D for N ≃ 1000 particles in a
harmonic potential. Phases are indicated (CB, SR, and ST stand for
checkerboard, star, and stripe solids, respectively). (a−b) V/J = 15, μ/J
= 55, Ω/J = 0.05, and T/J = 0.0377, with temperature annealing
performed in panel a; (c) V/J = 5, μ/J = 19, Ω/J = 0.01, and T/J = 0.1;
(d) V/J = 20, μ/J = 51, Ω/J = 0.04 and T/J = 0.25. (Adapted from ref
183.)
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strongly interacting system above and below the Mott lobe. In
view of future experiments with ultracold atomic gases with
comparatively large magnetic dipolar moments, such as Cr, Dy,
and Er atoms, it is an exciting prospect to investigate how finite
on-site interactions, which usually favor supefluid and super-
solid behavior, will modify this picture.
Fermi Gases. A conclusive determination of the phase

diagram of 2D fermionic dipoles has been so-far hampered by
the lack of exact theoretical tools for the study of the strongly
interacting regime. The experiments with dipolar gases have
motivated several theoretical works, which use different
approximate, often complementary, techniques. In analogy
with Coulomb systems, for dipolar gases polarized perpendic-
ular to the 2D plane (e.g., with isotropic in-plane interactions as
discussed before), the existence of both crystal-like207−209 and
quantum liquid crystal phases210,211 (with interactions cutoff at
NNN) has been recently discussed. In particular, using a mean-
field-theory approach, ref 207 has focused on determining the
complex structure of phases and phase-transitions of charge-
density waves with different lattice unit cells. References 212
and 213 have discussed quantum liquid crystal phases, which
may be obtained for anisotropic interactions. Analogous to the
case of classical liquid crystals,214 these phases are classified as
being nematic and smectic according to their symmetry breaking
associated with the deformation of the Fermi surface as
compared to the isotropic case. In the nematic phase, the
rotational symmetry is broken so the typical Fermi surface has a
cigar-like shape; that is, it is stretched in one direction and
shrunk in other directions. In the smectic phase, the system is
effectively in a reduced dimension; accordingly, the Fermi
surface is divided into disconnected pieces. Experiments with
atomic and molecular dipoles will offer an enticing opportunity
to test these predictions.
6.2.2. Polarized Dipoles on a Bilayer Optical Lattice.

As discussed in section 3, polarized dipoles trapped in a bilayer
configuration can form a paired superfluid phase (PSF), which
originates from the interlayer attraction due to dipole−dipole
interactions, when tunneling between the two layers is
suppressed. The addition of an in-plane optical lattice in the
two layers makes this situation even more rich from a physical
point of view: in ref 215, it was shown that the presence of

strong enough intralayer repulsion and interlayer attraction for
bosonic particles allows for the realization of a novel phase,
named a pair-supersolid phase (PSS), which is defined as a
supersolid phase of composite particles. Using a model
Hamiltonian with finite on-site intralayer interactions U and
NN intralayer interactions and within a mean-field analysis, it
was shown that the existence of the PSS phase relies on second
order tunneling of (composite) dipoles in parameter regimes
close to insulating Mott phases of (composite) dipoles, similar
to the discussion of section 6.2.1. One example is given in
Figure 30. The existence of this exotic phase had been

previously discussed for anisotropic t−J models,192 but no
evidence was found. It remains an open question whether exact
(e.g., QMC) calculations will confirm this prediction for
realistic models with long-range interactions and, e.g., onsite
hard-core constraint.

6.3. Advanced Hamiltonian Design with Polar Molecules

The quantum phases of section 6.2.1 are based on interactions
of the dipole−dipole type (see eq 1) and are thus present for
any dipolar gas. For polar molecules, the techniques described
in section 2.2 for modifying the shape of interaction potentials
allow for an advanced engineering of microscopic Hamilto-
nians. This offers new opportunities to explore exotic many-
body phases in these systems. In the following we review recent
progress by discussing situations where pure three-body effective
interactions can dominate the dynamics (section 6.3.1), and the
use of internal degrees of freedom for each molecule in addition
to rotational ones can provide toolboxes for the simulation of
condensed matter models of interest, including exotic lattice
spin models (section 6.3.2).

6.3.1. Three-Body Interactions. In section 2.2, techniques
were introduced for the modification of the shape of the
effective interaction potentials using external dc electric and ac
microwave fields coupling rotational excitations of the
molecules. In particular, for a circularly polarized ac field, the
attractive time-averaged interaction due to the rotating dipole
moments of the molecules has been shown to allow a strong

Figure 29. Ground state phase diagram for the Hamiltionian eq 89 on
a triangular lattice in 2D, around n = 1/3. The phases are a superfluid
“SF”, a supersolid “SS”, and a commensurate solid at density n = 1/3. A
transition region of the Spivak−Kivelson bubble type (emulsions) is
indicated with the double line, gradually going over to a region of
incommensurate, floating solids with increasing interaction strength.
For large interaction strength, and starting around half filling, the
supersolid phase is suppressed by emerging solid ordering (stripes at
half filling and incommensurate; floating solids at other fillings).
(Adapted from ref 191. Copyright 2010 American Physical Society.)

Figure 30. Phase diagram of the effective Hamiltonian of ref 215
describing bosonic dipoles trapped in a 2D two-layer configuration.
The model Hamiltonian has an extended Bose−Hubbard form with
Ui,i+1

σσ = 0.025Uii
σσ, Ui,i+1

σσ′ = −0.95Uii
σσ. Here, σ and σ′ label the two layers.

The black full lines are semianalytic solutions indicating the
boundaries of the insulating lobes for the checkerboard (n = 1/2)
and the doubly occupied checkerboard (n = 1). The shaded area is the
PSS phase predicted within a Gutzwiller mean-field approach. PSS
indicates a pair-supersolid-phase, and PSF a pair-superfluid-phase see
text. (Adapted from ref 215. Copyright 2009 American Physical
Society.)
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reduction, and even a cancellation, of the total dipole−dipole
interaction. In a dense ensemble of molecules, this can lead to
the realization of systems where the effective three-body
interaction W3D(ri,rj,rk) of eq 5 dominates over the two-body
term V3D(ri − rj) and determines the properties of the system
in the ground state. We note that, as always, direct particle−
particle interaction involve two particles only, while few-body
interactions emerge as an effective low-energy interaction after
the high-energy degrees of freedom are traced out.
Model Hamiltonians with strong three-body and many-body

interactions are strong candidates for exhibiting exotic ground
state properties. This is exemplified by the fractional quantum
Hall states described by Pfaffian wave functions which appear as
ground states of a Hamiltonian with three-body interac-
tions.216−218 These topological phases support anionic
excitations with nonabelian braiding statistics. The possibility
of realizing a Hamiltonian where the two-body interaction can
be manipulated independently of the three-body term has been
studied in ref 219. There, it is shown that a stable system of
particles interacting via purely repulsive three-body potentials
can be realized by combining the setup above with a tight
optical confinement provided by an optical lattice. The latter
ensures collisional stability of the setup and defines a
characteristic length scale (the lattice spacing) where an exact
cancellation of the two-body term can occur. The resulting
extended Hubbard-like Hamiltonian has the form

∑ ∑ ∑= − + +
⟨ ⟩

†

≠ ≠ ≠

H J b b
U

n n
W

n n n
2 6

ij

i j

i j

ij

i j

i j k

ijk

i j k
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where Wijkninjnk is an offsite three-body term. The latter is
tunable independently of the two-body term Uijninj, to the
extent that it can be made to dominate the dynamics and
determine the properties of the system in the ground state. This
is in contrast to the common approach to derive effective
many-body terms from Hubbard models involving two-body
interactions, which are obtained in the J≪ U perturbation limit
and are thus necessarily small.221

The phase diagram for bosonic particles on a 2D lattice with
three-body interactions has been recently investigated in ref
220 (see Figure 31), where a rich variety of superfluid, solid,
supersolid, and phase separated phases have been found. In
particular, several solid phases at fractional filling factor are
found to evolve upon doping into supersolid phases with
complex spatial structures. For example, the checkerboard
supersolid at filling factor 1/2, which is unstable for hardcore
bosons with nearest neighbor two-body interaction, is found to
be again stable in a wide range of tunneling parameters, similar
to the case of pure dipolar interactions discussed above.
The phase diagram for bosonic particles on a 1D lattice has

been studied in ref 222. with the corresponding phases being
discussed in section 7.

6.3.2. Lattice Spin Models and Quantum Magnetism.
Lattice spin models are ubiquitous in condensed matter physics,
where they are used to describe the characteristic behavior of
complicated interacting physical systems. Recent works have
focused on realizing an effective spin Hamiltonian for the
simulation of lattice spin models of fundamental interest in
condensed-matter, obtained by considering several internal
states of each molecule.
Reference 223 has shown that cold gases of polar molecules

can be used to construct in a natural way a complete toolbox for
any permutation symmetric two spin-1/2 (qubit) interaction,
based on techniques of interaction engineering which are
extensions of those discussed in section 2.2. The main
ingredient of this (and related) proposal is the dipole−dipole
interaction: it couples strongly the rotational motion of the
molecules, it can be designed by means of microwave fields, and
it can be made spin-dependent, exploiting the spin-rotation
splitting of the molecular rotational levels.
The basic building block in ref 223 is a system of two polar

molecules strongly trapped at given sites of an optical lattice,
where the spin-1/2 (or qubit) is represented by a single
unpaired electron outside a closed shell of a 2∑1/2

heteronuclear molecule in its rotational ground state, as

Figure 31. Central plot: phase diagram of the minimal model obtained within the semiclassical approach as a function of the chemical potential μ
and the nearest-neighbor hopping amplitude J. Gray (white) regions are superfluid (phase separated), and light (dark) blue denotes supersolids
(solids). Surrounding plots: schematic representation of the nature of some of the solid and supersolid phases. The gray scale of the circles represents
the filling (white = empty, black = full), while the length and the direction of the red arrows denote the amplitude and the phase of the superfluid
component. The blue lines highlight the unit cell of the different structures. (Adapted from ref 220. Copyright 2008 American Physical Society.)
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provided, e.g., by alkaline-earth monohalogenides. Rotational
excitations are described by the Hamiltonian

γ= + ·H BN N Sm
2

(91)

with N the rotational angular momentum of the nuclei, and S
the dimensionless electronic spin (assumed to be S = 1/2 in the
following). Here B denotes the rotational constant and γ is the
spin-rotation coupling constant. The typical values of B are a
few tens of GHz, and γ is usually in the hundred MHz regime.
The interaction describing the internal degrees of freedom is
Hin = Vdd + ∑i=1

2 Hm
i , where Hdd is the dipole−dipole

interaction.
The molecules are assumed to be trapped in the optical

lattice with a separation Δ ∼ zrγ ≡ (2d2/γ)1/3, where the dipole
dipole interaction is d2/rγ

3 = γ/2 (Figure 32). In this regime the
rotation of the molecules is strongly coupled to the spin and
the excited states are described by Hunds case (c) states in
analogy to the dipole−dipole coupled excited electronic states
of two atoms with fine-structure. Thus, while the two-particle
ground states are essentially spin independent, effective spin-
dependent interactions in the ground states can be obtained by
dynamically mixing dipole−dipole coupled excited states into
the ground states using a microwave field E(x,t) with properly
chosen polarization, frequency ωF and Rabi-frequency Ω, which
is tuned near resonance with the N = 0 → N = 1 transition.
The effective interactions in the lowest-energy states are

obtained by diagonalizing the HBO = Hm − ∑i=1,2 diE potential,
as described in section 2.2. In second-order perturbation
theory, they read
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where {|gi⟩,|gf⟩} are ground states for two molecules with N1 =
N2 = 0 and {|λ(r)⟩} are excited eigenstates of Hin with N1 + N2

= 1 and with excitation energies {E(λ(r))}. The reduced
interaction in the subspace of the spin degrees of freedom is
then obtained by tracing over the motional degrees of freedom.
For molecules trapped in the ground motional states of
isotropic harmonic wells with rms width z0, the wave function is
separable in the center of mass and relative coordinates, and the
effective spin−spin Hamiltonian is Hspin = ⟨Heff(r)⟩rel.
The effective Hamiltonian eq 92 can in general be rewritten

as223
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where {σα}α = 0
3 ≡ {1,σx,σy,σz} and A is a real symmetric tensor.

Equation 93 describes a generic permutation symmetric two
qubit Hamiltonian. The components A0,s describe a pseudo-
magnetic field which acts locally on each spin, and the
components As,t describe two qubit coupling.
For a given field polarization, tuning the frequency near an

excited state induces a particular spin pattern on the ground
states. These patterns change as the frequency is tuned though
multiple resonances at a fixed intermolecular separation. For
example, the anisotropic spin model HXYZ = λxσ

xσx + λyσ
yσy +

λzσ
zσz can be simulated using three fields: one polarized along z ̂

tuned to 0u
+(3/2), one polarized along y ̂ tuned to 0g

−(3/2), and
one polarized along y ̂ tuned to 0g

+(1/2). The strengths λj can be
tuned by adjusting the Rabi frequencies and detunings of the
three fields.

Of particular interest is the possibility of realizing highly
anisotropic spin models such as the following one
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−

+ +H J( cos )
i j

i j
z

i j
z

i j
x

i j
x

spin
(I)

1

1

1

1

, , 1 , 1,

(94)

which was first introduced by Douco̧t et al.224 in the context of
Josephson junction arrays. This model (for ζ ≠ ±π/2) admits a
2-fold degenerate ground subspace that is immune to local
noise up to -th order and, hence, is a good candidate for

Figure 32. (a) Potentials for a pair of molecules as a function of their
separation r. The symmetries |Y|σ

± of the excited manifolds are
indicated, as are the asymptotic manifolds (Ni,Ji;Nj,Jj). Here the
quantum numbers are the following: Y = MN + MS, where MN = MN1 +
MN2 and MS = MS1 + MS2 are the total rotational and spin projections
along the intermolecular axis; parity eigenvalues σ = ±1 are denoted as
g (u) for gerade (ungerade); reflection symmetry R = ± of all
electronic and rotational coordinates through a plane containing the
intermolecular axis. (b) Example anisotropic spin models that can be
simulated with polar molecules trapped in optical lattices: Square
lattice in 2D with nearest neighbor orientation dependent Ising
interactions along x ̂ and z.̂ Effective interactions between the spins S1
and S2 of the molecules in their rovibrational ground states are
generated with a microwave field E(t) inducing dipole−dipole
interactions between the molecules with dipole moments d1 and d2,
respectively. (Adapted from ref 223.)
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storing a topologically protected qubit for applications in
quantum computing. Other Hamiltonians that can be realized
include the famous Kitaev model.
References 225−227 have recently focused on the realization

of tunable Heisenberg-type models for unit filling of the optical
lattice. Effective spin degrees of freedom are encoded in
internal, e.g. rotational, states of the molecules, and molecular
interactions are tuned by a combination of dc and ac fields,
using techniques similar to those of section 2.2. In refs 226 and
227 it is found that doping the lattice with vacancies (that is,
removing particles from a few sites) leads to a tunable
generalization of the so-called t−J model, which is relevant in
the context of high-temperature superconductivity.228 Typical
Hamiltonian terms which are found in addition to eq 87 are of
the form

∑= + +
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where the operators Sj
z = (nj,σ − njσ′)/2, Sj

+ = cjσ
† cjσ′, and Sj

− =
(Sj

+)† are spin-1/2 angular momentum operators on site j
describing a two-level dressed rotor degree of freedom σ (e.g.,
the lowest two Nz = 0 states of the molecule in the presence of
a dc electric field along z)̂ and satisfying [Sj

z,Sj
±] = ±Sj

± . By
intuitively thinking of the ground state as a (classical) dipole μ0
= μ0z ̂ oriented along the dc field (i.e., μ0 > 0) and of the excited
state as a dipole μ1 = μ1z ̂ oriented against the dc electric field
(i.e., μ1 < 0), the terms Jz = (μ0 − μ1)

2, V = (μ0 + μ1)
2/4, andW

= (μ0
2 − μ1

2)/2 derive from rewriting the direct dipole−dipole
interaction, while the term J⊥ = 2 μ01

2 comes from the transition
dipole moment μ01, describing the exchange of a microwave
excitation between the molecules. One difference with the
derivation of the effective spin models of ref 223 described
above is that the dipole−dipole interactions in eq 95 are used in
first order, rather than second order, which can allow for
stronger interactions.
We note that the design of extended Hamiltonians with

terms as in eq 95 is in fact a hot topic of research in atomic and
molecular systems: for example, refs 229 and 230 have
discussed the derivation of similar terms for trapped neutral
atoms and molecules at unit filling, while refs 231 and 232 have
focused on ionic particles. The Jz = 0 case is also studied in the
context of molecules in ref 233. In ref 234, a similar
Hamiltonian describes the dynamics of exciton-like interactions
with impurities in gases of polar molecules. There, the authors
considered first a clean system with one particle per site, subject
to a very deep optical lattice potential in order to prevent
particle tunneling: in this regime, dipole−dipole interactions
induce collective excitonic modes, in sharp contrast with
individual rotational excitations of short-range interacting
atoms. After substituting a small number of initial components
with a different kind of molecule still strongly confined by the
optical potential, the system displays an exciton−impurity
interaction between the original excitonic modes and the new
particles, which may be treated as effective impurities, leading
to a disordered background potential with both diagonal and
off-diagonal contributions. Such a setup represents an ideal
platform to investigate the effect of disorder and interaction
induced localization in excitonic gases in 1, 2, and 3D.
Reference 235 has considered an ensemble of 2Σ molecules

in the rotationally ground state trapped on an optical lattice and

has shown that collective spin excitations can be controlled
using external electric and magnetic fields, in the context of the
formation of Frenkel excitons.236,237 This system may be used
for the quantum simulation of spin excitation transfer in many-
body crystals without phonons. In ref 238 a similar
Hamiltonian has been studied in the context of molecular
self-assembled crystals for quantum memory applications.
The inclusion of more internal states for the particles, such as

hyperfine levels, offers extensions to spin systems with larger
spin.225−227,239 For example, the design of a large class of spin-1
interactions for polar molecules has been shown in ref 239,
which allows, e.g., for the realization of a generalized Haldane
model in 1D, using a strategy of interaction-engineering similar
to those described above. Recent work in ref 225 has started
exploring the nonequilibrium dynamics of molecules trapped in
optical lattices in the presence of several internal states,
including, e.g., the rich hyperfine structure often present in the
ground state rotational manifolds. In particular, it was shown
that the number of effective degrees of freedom participating to
the dynamics may be indeed dynamically changed for each
molecule using external electric and magnetic fields, similar to
the discussion above. This raises interesting prospects for the
study of nonequilibrium dynamics in these complex systems. In
section 7, we discuss some of the intriguing scenarios opened
up in the many-body context by the accurate fine-tuning of
interactions presented here, for the particular case of polar
molecules trapped in 1D.

6.3.3. Hubbard Models in Self-Assembled Dipolar
Lattices. In Hubbard models with cold atoms or molecules in
optical lattices, there are no phonon degrees of freedom
corresponding to an intrinsic dynamics of the lattice, since the
back action on the optical potentials is typically negligible.
Thus, the simulation of polaronic materials240 where the
presence of crystal phonons affects strongly the Hubbard-like
dynamics of particles remains largely a challenge. References
241 and 242 have shown that a self-assembled floating lattice of
molecules as discussed in section 6.1 can provide a periodic
trapping potential for extra atoms or molecules, whose
dynamics can be described in terms of a Hubbard model
with phonons, the latter corresponding to vibrations of the
dipolar lattice.
The Hamiltonian for extra atoms or molecules in a self-

assembled dipolar lattice is

∑ ∑

∑ ∑ω

= − +

+ ℏ + +

† † †

† · †
−
†

H J c c V c c c c

a a M e c c a a

1

2

( )

i j

i j

i j

ij i j j i

q

q q q

q j

q
iq R

j j q q

, ,

,

j
0

(96)

Here, the first and second terms define a Hubbard-like
Hamiltonian for the extra-particles of the form of eq 87,
where the operators ci (ci

†) are destruction (creation) operators
of the extra-particles. However, the third and fourth terms
describe the acoustic phonons of the crystal [aq destroys a
phonon of quansimomentum q in the mode λ] and the
coupling of the extra-particles to the crystal phonons,
respectively. Tracing over these phonon degrees of freedom
in a strong coupling limit provides effective Hubbard models
for the extra-particles dressed by the crystal phonons

∑ ∑̃ = − ̃ + ̃† † †H J c c V c c c c
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The hopping of a dressed extra-particle between the minima
of the periodic potential occurs at a rate J,̃ which is
exponentially suppressed due to the copropagation of the
lattice distortion, while offsite particle−particle interactions Ṽi,j

are now a combination of direct particle−particle interactions
and interactions mediated by the coupling to phonons, as given
by polaronic dynamics.243 Figure 33 shows two implementa-

tions of this idea in two- and quasi-one-dimensional
configurations (panels a and b−c, respectively). The distin-
guishing features of this realization of lattice models are the
tunability of interactions among crystal dipoles and of the
particle−phonon couplings. In addition, the lattice spacings are
tunable with external control fields, ranging from a micrometer
down to the hundred nanometer regime, i.e. potentially smaller
than for optical lattices. Compared with optical lattices, for
example, a small scale lattice yields significantly enhanced
hopping amplitudes, which set the relevant energy scale for the
Hubbard model, and thus also the temperature requirements
for realizing strongly correlated quantum phases. Phonon-
mediated interactions can be quite long-ranged, decaying with
distance as 1/r2 in 1D.

7. DIPOLAR GASES IN ONE- AND
QUASI-ONE-DIMENSIONAL GEOMETRIES

In reduced dimensionality, the effects of quantum fluctuations
are so relevant that the standard Fermi-liquid picture breaks
down due to the emergence of several strongly correlated states
of matter. The addition of interaction with a long-range,
anisotropic tail such as the dipolar one leads to the stabilization
of a very rich phase diagrams in both purely 1D systems and
coupled ones such as ladders and planar arrays. In the
following, we will first review the basic physics of the single
tube configuration and then illustrate recent results on two-leg
and multileg ladders.

7.1. Dipolar Gases in a Single Tube

We now consider a system of dipolar particles confined in a
one-dimensional (1D) geometry by a sufficiently deep optical
lattice with frequency ω⊥, so that their dynamics is purely 1D.
In order to ensure collisional stability, we will consider all
dipole moments aligned perpendicularly to the wire direction
by an external field in such a way that the interparticle
interaction is always repulsive. Defining m the mass of the
particles and C3 the strength of the dipolar interaction, a proper
description for, e.g., a gas of polar molecules in the long-

distance regime (see section 2) is encoded in the following
model Hamiltonian:
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where ψ(x), ψ†(x) are annihilation/creation operators with
bosonic or fermionic statistics. For a polar molecule gas, C3 =
d2/ε0, where ε0 is the vacuum permeability and d the dipole
moment induced by a dc electric field. After a proper rescaling
of all quantities, the only relevant parameters are the ration
between the dipolar length R3

−1 = 2πℏ2/(mC3) and the linear
density ρ0 and, as such, we expect all thermodynamic properties
to depend only on ρ0R3. While statistical properties are
expected not to play a major role in this setup since bosons are
subject to an effective hard-core condition due to the infinite
short-distance repulsion, some properties of the system are still
affected by statistics; thus, we will at first consider a bosonic gas
and then comment on the fermionic case at the end of the
section. Qualitative features of eq 98 are obtained using the
bosonization technique, which allows mapping the original
interacting problem into a free one via the following
identities:244−247
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Here, the field φ and ϑ represent density and phase fluctuations
of the original field, and satisfy bosonic commutation relations
[∂xϑ(x), φ(y)] = iπδ(x − y). As long as the long-range tail of
the interaction potential decays faster than Coulomb-like
interactions,248,249 1/|x − x′|, as in the dipolar case, the
Hamiltonian in eq 98 is mapped into the so-called Tomonaga−
Luttinger liquid (TLL):244

∫
π

φ=
ℏ

∂ ϑ + ∂H
v

x x K K x
2

d [( ( )) / ( ( )) ]x x
2 2

(101)

which is a purely quadratic Hamiltonian with a linear dispersion
relation at small momenta, ω(k) ≃ vk; the excitations in the
system are sound waves of the density with correspondent
sound velocity v, whereas the factor K, known as the
Tomonaga−Luttinger liquid parameter, is related to the
compressibility of the system via K = vπ , and in Galilean
invariant systems satisfies K = vF/v, vF = ℏρ0π/m. The TLL
picture (Figure 34) captures the entire low-energy physics of
the original model and represents the substitute of the
Landau−Fermi liquid scenario in 1D; analogously, the
parameters v, K play a similar role to the Landau parameters
in higher dimensions. In addition, the long-distance decay of
correlation functions is completely captured by K, so that after
the bosonization mapping one gets

Figure 33. Floating lattices of dipoles: A self-assembled crystal of polar
molecules with dipole moment dc provides a 2D periodic honeycomb
lattice Vcp (darker shading corresponds to deeper potentials) for extra
molecules with dipole dp ≪ dc giving rise to a lattice model with
hopping J ̃ and long-range interactions Ṽi,j.
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for the one-body density matrix, also known as the superf luid
(SF) correlation, and
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for the correlated part of the density−density, or charge−
density−wave (CDW), correlation function. The possibility of
qualitatively describing the asymptotic decay of correlations is
remarkable. Since spontaneous symmetry breaking is not
allowed in many 1D models because of the Mermin−
Wagner−Hohenberg theorem,250,251 correlation functions
encode the necessary information to distinguish between
different phases in low dimensional geometries; the slowest
decaying correlation is usually referred to as dominant order,
corresponding to the more diverging susceptibility in the
system.246,245 From eqs 102 and 103, we thus expect a
transition from dominant SF correlations to CDW ones at a
precise value of the TLL parameter, K = 1/2, where the two
decay exponents coincide.
While, in principle, all information regarding the quantum

phases in 1D is encoded in the LL parameters, the bosonization
techniques sketched above do not allow, in general, establish-
ment of a relation between the microscopic quantities in eq 98
and K, as the latter has to be regarded as a phenomenological
parameter to be determined by comparisons with experiments
or numerical results. Before discussing the general case, let us
comment on some relevant situations. In the weakly interacting
limit, ρ0R3 ≪ 1, the dipolar interaction is relevant only at very
short distances, and thus, the system behaves very similarly to a
Tonks−Girardeau gas,252,253 for which KTG = 1; as such, we
expect K(wc) ≃ 1 in the weakly interacting regime. In the
strongly interacting case, ρ0R3 ≫ 1, it has been noticed in refs
254 and 255 that, approximating the system as a classical crystal
where particles are quasi-localized at equally spaced distances,
one has an energy per particle e0 = ζ(3)[ρ0R3/(2m)] (where ζ
is the Riemann ζ function), and deriving from it the

compressibility , the resulting TLL parameter in the strong
coupling regime reads as follows:

ρ ρ≫ = −K R R( 1) (0.73 )0 3 0 3
1/2

(104)

Away from these two limits, the mapping of K into the
microscopic parameters of eq 98 has to be performed using
nonperturbative techniques. Numerical QMC simulations
based on reptation, diffusion, and Worm algorithm have been
performed,254,256,257 allowing estimation of the TLL parameter
from the so-called static structure factor

∫= ⟨ ⟩−S k x e n x n( ) d ( ) (0)
L

ikx

0 (105)

and from the long-distance decay of B(x) (see Figure 34).
Moreover, QMC also allows quantitative estimation of the
momentum distribution

∫=n k
L

x B x e( )
1

d ( )
L

ikx

0 (106)

which is directly measurable in experiments and, according to
TLL theory, displays a clear signature of the SF/CDW
transition, as the typical peak of quasi-condensation at k = 0
disappears just across from the phase boundary between the SF
and CDW phases. Typical QMC results for n(k) are shown in
Figure 35 just across the phase boundary, as can be argued from

the sharp decrease of n(0) when the interaction is increased.
Moreover, analytical results obtained through approximate
methods lead to the following expression:258

ζ

π
ρ= +

−⎛

⎝
⎜

⎞

⎠
⎟K R1

6 (3)
2 0 3

1/2

(107)

which compares favorably with numerical simulations, as can be
seen in Figure 34, and recovers the limit in eq 104 at strong
coupling.
Let us briefly discuss the relationship between a dipolar

interacting gas and a bosonic one with a contact repulsive
interaction, the Lieb−Liniger model.259 Besides sharing the
same low-energy universality class (TLL), which allows a
description of the thermodynamical properties of both systems

Figure 34. Panel a: TLL parameter K in a dipolar wire as a function of
the dimensionless interaction strength ρ0R3 (here, ρ0 ≡ n). The blue
line is eq 107, while red points and black squares are QMC results
from refs 257 and 254, respectively. The inset shows a similar
prediction with inverse-square interaction (blue line) compared with
the exact result (red dashed line). Panel b: sound velocity to Fermi
velocity ratio v/vF (v0 ≡ vF) as a function of ρ0R3; the blue line and red
points are analytical and QMC results from refs 258 and 254,
respectively. Image taken from ref 258.

Figure 35. Momentum distribution as a function of the interaction
strength in a single tube as obtained from QMC simulation;257 the
quasi-condensation peak at k = 0 smoothens out with increasing
repulsion according to TLL theory. Here, n = ρ0, r0 = R3 fix the
notations, and l is the system size. Image taken from ref 257.
Copyright 2010 IOP Publishing.
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on the same footing, there are quantitative and qualitative
differences between the two cases. The former is related to the
very different domain spanned by the TLL parameter, that is, 0
< K < 1 for dipoles but K ≥ 1 for contact interactions. In
addition to the momentum distribution, such a feature can, in
principle, be detected by investigating the so-called breathing
mode, which, as shown in ref 260 displays a remarkably
different behavior. Qualitative differences are not only captured
by the fact that nonlocal interactions allow crossing the SF-
CDW transition; another very important feature is the response
to a periodic potential, which changes qualitatively when
considering nonlocal repulsion, as we will see in the next
section. As a final remark, we resume the main differences
between bosonic and fermionic dipolar wires: while the TLL
picture remains quantitatively the same between the two, single
particle correlation functions are slightly different from eq 102,
and since no superfluid instability may occur, the dominant
correlation in the fermionic case is always a CDW.
7.1.1. Bosonic and Fermionic Gases in an Shallow

Optical Lattice. The effects of dipolar interactions become
even more relevant in the presence of external perturbations
such as an underlying periodic potential, as realized, e.g., by an
optical lattice along the direction of the tube.3 In this
configuration, long-range interactions compete with both
kinetic energy and the periodic lattice potential, which in 1D
has the following form:261

∫ ψ π λ ψ= †H U x x x xd ( ) sin (2 / ) ( )OL
2

(108)

where λ is the laser wavelength, UL = U/ER the dimensionless
depth of the lattice potential, and ER = h2/(2mλ2) the recoil
energy. In the limit of a very shallow lattice, UL ≪ 1, the
periodic potential may be considered as a perturbation on the
TLL Hamiltonian, eq 101, and its effects may be investigated
using a sine−Gordon description.246,258,261 The phase diagram,
and thus the influence of the underlying potential, sharply
depends on the ratio between the mean interparticle distance
1/ρ0 and the lattice spacing λ/2; when such a ratio is an integer,
2/(λρ0) = p ∈ , and for large enough interactions, the system
undergoes a Berezinskii−Kosterlitz−Thouless (BKT) transi-
tion116,117 from a gapless (e.g., SF or CDW) to a crystalline
phase, characterized by a gap in the excitation spectrum and
broken translational symmetry with one particle pinned every p
lattice sites. On the contrary, if 2/(λρ0) ∉ , the system is
always gapless regardless of the dipolar interaction strength.
This remarkable behavior suggests the following argument:
when there is an allowed configuration where particles can, at
the same time, sit on the minima of the underlying potential
and maintain a constant interparticle distance, the dipolar
interactions and the lattice potential can pin the gas, as both
lattice and dipolar potential energy contributions may be
minimized by the crystalline configuration. In the opposite case,
the frustration between the long-range repulsion, which tries to
keep interparticle distance constant, and the periodic potential
does not allow for any stabilization of crystalline structure.
The sine−Gordon model, combined with eq 107, allows

quantitative predictions on the BKT transition in the regime of
a shallow lattice potential where lattice bands are formed
(which usually corresponds to U/ER ≲ 2).246 Typical phase
diagrams for bosonic gases are plotted in Figure 36; the
fermionic case is obtained by substituting the superfluid phase
with a CDW. A Luttinger staircase, that is, a series of insulating

states with commensurate density satisfying 2/(λρ0) = p ∈ ,
appears as a function of the interaction strength at a fixed UL.

258

7.1.2. Bosonic Gases in a Deep Optical Lattice:
Extended Bose−Hubbard Models. As discussed in the
previous section, when all energy scales involved in the system
dynamics are much smaller than the lattice bandwidth, both
bosonic and fermionic gases are properly described in the
context of Hubbard-like models. In the bosonic, single species
case, the resulting extended Bose Hubbard Hamiltonian
(EBHH)
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contains kinetic energy (J), local (U), and dipolar (V)
interaction terms. The corresponding phase diagram has been
studied in the grand-canonical ensemble in ref 262, where a
Devil’s staircase structure has been shown to appear in both the
hard-core (e.g., infinitely large U) and soft-core (e.g., finite U)
limits. Moreover, close to rational fillings, supersolid behavior
has been suggested via both numerical and analytical methods,
in particular close to the half-filled case, for both nearest-
neighbor263,264 and dipolar interactions,265 whereas low and
incommensurate filling fraction are still described by TLLs with
both CDW and SF dominant orders.266

Hidden Order. In the special case of unit filling, that is, when
the number of particles is equal to the number of lattice sites,
an additional instability may occur. When dipolar and local
interactions are much larger than the hopping rate J≪ U,V, the
competition between U and V gives rise to two different states
of matter: a Mott insulator phase when U ≳ 2V, where double
occupancies are suppressed, and a density wave (DW) when
2VU ≳ U, where particles rearrange in a periodic structure in
order to minimize the nonlocal repulsion (see Figure 37).
While these phases are separated by a first order phase
transition line at strong coupling, in the intermediate

Figure 36. Panel a: commensurate phase diagram for bosons with
dipolar interactions in a shallow lattice with depth UL = 0.1. Physical
configurations correspond to commensurate fillings ρ0λ/2 ≡ 1/p, with
p ∈  (horizontal lines are guides to the eye for p ≤ 10). Quantum
phase transitions from a TLL to an insulating Mott insulator (MI)
occur for each 1/p at the position of the dots on the continuous line,
while red and blue dots on dashed lines indicate crossovers. MI1 and
MI2 indicate MI with different low-energy spectra (see ref 258 for
further details). Panel b: phase diagram at commensurate filling 1/p =
1/3 in the UL vs ρR3 plane. Continuous line: quantum phase transition
between a TLL and a MI. The phase diagram for fermions is identical
to the one for bosons, except the TLL is always a CDW. In both
panels, n ≡ ρ0; image taken from ref 258. Copyright 2010 American
Physical Society.
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interaction regime, it has been shown that an additional state of
matter, the so-called Haldane insulator (HI), can emerge
between the two.267 The HI is gapped and characterized in real
space by a nonregular density pattern, where doubly occupied
and empty sites are spatially separated by strings of singly
occupied sites of uneven length (see the corresponding cartoon
in Figure 37). The occurrence of such magnetic-like order
(between two doubly occupied sites there is always one and
only one empty site) together with positional disorder (the
length of the strings is not constant) is encoded into a string
order parameter:

∑δ π δ δ− = ⟨ ⟩
< <

j k n i n n( ) exp[ ]string j

j l k

l k

(110)

which approaches a constant value at large distances, |i − j| ≫
1; here δnj ≡ nj − 1. In addition, the density wave order
parameter, DW(j−k) = ⟨δnjδnk⟩, which is constant in the DW
phase, decays exponentially in the HI. Numerical simulations
based on the density-matrix-renormalization-group
(DMRG)268,269 algorithm have quantitatively determined how
this phase persists up to relatively large values of the interaction
strength U ≃ 8 close to the U ≃ 2V line.267 In such a regime,
where local occupations with nj ≥ 3 are strongly suppressed, the
bosonic Hamiltonian can be mapped into a spin-1 problem
where the spin component along the z-direction satisfies Sj

z = 1
− ni, and the J-, V-, and U-terms play the role of spin-exchange,
dipolar interaction along the z-axis, and on-site anisotropy
(Figure 37). The system thus resembles the so-called
Heisenberg model with single ion-anisotropy, or λ − D
model, the only qualitative difference being the presence of a
full dipolar tail instead of nearest-neighbor interaction,
establishing a strong connection between the HI and the
Haldane phase extensively studied in the context of magnetic
systems.270,271 An exact correspondence between the bosonic
and spin problem can be obtained in the case of strong three-
body losses,272 where the on-site Hilbert space is truncated up
to doubly occupied states and the HI phase appears at smaller
values of the dipolar interaction.273 The existence of such HI
has been established even at higher integer fillings by mapping
the problem to integer spin chains with spin s > 1.274

Three-Body Interactions. Additional interesting states of
matter can be found in the 1D version of Hamiltonians already

treated in 2D in the previous section. As an example, it has
been shown hot to engineer three-body interactions with polar
molecules, leading to the effective Hamiltonian in eq 90. In 1D,
the three-body term is responsible for the stabilization of an
insulating phase at filling 2/3, which is driven by the fact that,
above a certain ratio of W/J, particles will minimize their
potential energy by sitting in a periodic patter at the expenses
of the kinetic one. Such a phase transition belongs to the same
universality class of the pinning one described in the shallow
lattice case, and the critical value of the TLL parameter Kc =

2/9
at the tip of the lobe is obtained from general considerations.222

The addition of a weak nearest neighbor repulsion V/J ≃ 1 can
also stabilize an insulating state at filling 1/2 when W/J ≫ 1;
remarkably, the further addition of a next-nearest neighbor
repulsion induces a competition between density wave and
bond order wave, as the BOW phase broadens thanks to the
three-body repulsion with respect to the W = 0 case.275

7.2. Two-Species Mixtures

The high degree of control over internal states of ultracold
dipolar gases276 has opened the way toward the theoretical
investigation of multispecies Hubbard-like models with addi-
tional dipolar interactions. While such specific models were not
considered in standard condensed matter literature, Hamil-
tonians with nearest-neighbor interactions (which are, in many
respects, similar to a dipolar one close to half-filling) such as the
extended Hubbard model245 have been shown to present a richer
plethora of phases with respect to systems with contact
interactions only. The theoretical advantage of multispecies 1D
systems with long-range interactions stems from the fact that
one can understand their basic physical properties employing
the same low-energy formalism used for models with contact
interactions only.245,246 In the following, we will present an
overview of theoretical results on two-species models with
dipolar interactions, with both Fermi and Fermi−Bose
statistics.

7.2.1. Fermi−Fermi Mixtures. Contrary to their two-
dimensional counterparts, fermionic dipolar mixtures in 1D
may be theoretically investigated with the same accuracy as
bosonic ones. Defining as ci,σ

† , ci,σ the creation/annihilation
operators at the site i of the species σ (we take here σ = ↑,↓),
Fermi−Fermi mixtures in a deep optical lattice are usually
described by the following Hamiltonian:

Figure 37. Left panel (Image taken from ref 267. Copyright 2006
American Physical Society.): numerical phase diagram of dipolar
bosons at unit filling: the Haldane insulator is stable close to the U ≃
2V line up to relatively strong magnitude of U. Inset: string (solid line)
and density wave (dashed line) correlation functions in the HI phase
as a function of i − j. Right panels: cartoons of the magnetic phases at
filling one, in both bosonic and spin-1 representations.

Figure 38. Phase diagram of hard-core bosons with three-body
interactions in the grand canonical ensemble. In the insulating phase at
J/W ≲ 0.3, CDW and bond order coexist. Image taken from ref 222.
Copyright 2009 American Physical Society.
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where the first two terms are hopping and on-site interaction,
the third one is a species-dependent chemical potential, and the
last one represents the dipolar contribution. When dealing with
strong onsite two-body losses, the effective Hamiltonian has to
be projected onto a constrained Hilbert space without double
occupancies:

=H Heff
FF

( )
(112)

where = Πi(1 − ni,↑ni,↓). Such a picture, which reduces the on-
site Hilbert space to just three states, is connected with the
spin-1 chains (once Si

z = ci,↓
† ci,↓ − ci,↓

† ci,↑ is defined) already
discussed in the context of the Haldane insulator phase for
single species dipolar bosons; however, differently with respect
to spin models, the key conserved quantity is∑i(Si

z)2, as can be
inferred by performing a rigorous spin mapping.277 The phase
diagram of eq 112 has been investigated at the mean field level
and via numerical simulations based on the infinite time-
evolving block decimation (iTEBD)278 algorithm in ref 277
considering equal chemical potentials and intraspecies inter-
actions, μ↑ = μ↓,V↑↑ = V↓↓ = V, and varying the interspecies one
V↑↓ = −V cos(χ). This setup can be realized by, e.g., applying a
pair of ac microwave fields close to the resonance of both
internal states.277 In the repulsive case, V > 0, the ground state
is expected to show a dilute antiferromagnetic order of the form
...↑000↓00↑↓00↑..., where, between molecules of the same
species, there is always one and only one molecule of the other
species, in addition to two strings of empty sites. Such
configurations display long-range order in the string correlation
function
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k l j

l
z
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and can be distinguished into two different cases: when V
cos(χ) > t − μ/2, all sites are occupied, and the ground state is
an antiferromagnetic insulator (AFM); otherwise, the string
order is dilute, the ground state is compressible, and the so-
called Haldane liquid (HL) phase is stabilized. The mean field
phase diagram presenting such competition is shown in Figure
39 and has been supported by numerical iTEBD results, which
show how, while both the AFM and the HL have long-range

order in string
z , other quantities such as standard spin−spin

correlation functions have remarkably different behaviors,277

and in the HL phase may be qualitatively described by mapping
the low-energy physics to a spinless TLL.
Using a combination of both dc and microwave external

fields, as discussed in section 8, it is also possible to engineer a
t−J-like Hamiltonian with dipolar spin-exchange interactions, as
described by the t−J−V−W Hamiltonian:
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where Si
z = (ni,↑ − ni,↓) and Si

+ = ci,↑
† ci,↓. A complete investigation

of the phase diagram of eq 114 is still lacking; nevertheless, the
special case with V = W = Jz = 0, one of the simplest
experimental realizations, has been numerically investigated in
ref 227 by means of DMRG calculations; in this case, the main
difference with respect to the standard t−J model resides in the
long-range nature of the spin-exchange interactions, which are
limited to nearest-neighbor in the t−J itself. At small values of J,
the ground state is a spin-density wave (SDW) at all densities,
resembling the ground state physics of the strongly repulsive
Hubbard model.245 Then, increasing J, one enters first a region
of singlet superfluidity (SS) with a finite spin gap (SG) and,
finally, phase separation. In the SS region, interparticle
attraction is encoded into the TLL parameter of the density
(or charge245) sector Kρ > 1. The main difference with the
phase diagram of the t−J model, which is reported in the upper
panel of Figure 40, is the presence of a larger gapped region;

Figure 39. Mean field phase diagram for eq 112 with μ↑ = μ↓ and V↑↑

= V↓↓ = V = −V↑↓/cos (χ). Image taken from ref 277. Copyright 2011
American Physical Society.

Figure 40. DMRG phase diagrams of the t−J (upper panel) and tJVW
(for V = W = Jz = 0, lower panel) models: blue dashed line denotes Kρ

= 1, and green thick line separates spin gapped (SS + SG) and gapless
(SDW or SS/TS) regions. In the lower panel, the blue shaded region
displays a charge Luttinger parameter Kρ = 1 ± 0.15 within numerical
accuracy and, as such, may contain a gapless superfluid phase TS/SS.
Image taken from ref 227. Copyright 2011 American Physical Society.
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besides, the absence of a superfluid region with no spin gap
(denoted as TS/SS) cannot be completely ruled out, as the
broad blue region may indeed present such instability.
The realization of the tJVW model with polar molecules

presents two main advantages for the purpose of exploring the
physics of the t−J model with ultracold gases: first, the
accessible regions are not limited to small exchange couplings J
≪ t, and second, the spin gap in the superfluid region is twice
larger, making such a phase more stable against thermal
fluctuations.227

7.2.2. Bose−Fermi Mixtures. Multispecies gases with
different statistics, that is Bose−Fermi (BF) mixtures, have
been the subject of numerous theoretical and experimental
efforts in the field of cold atoms, and they are currently being
investigated even in the presence of dipolar interactions. In 1D,
the effective Hamiltonian of such systems when confined in a
deep optical lattice is as follows:
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where ai,σ
† are creation operators obeying bosonic/fermionic

statistics with σ = B/F, respectively, the first line contains both
hopping and chemical potential terms, and the last two lines
contain on-site and off-site interactions. The insulating
instabilities of this Hamiltonian occurring close to half filling
have been investigated in ref 279 by means of numerical
simulations based on the iTEBD algorithm by truncating the
dipolar interactions up to nearest-neighbors and considering
several combinations in the broad parameter space of
{Jσ,Uσδ,Vσδ}. In addition to gapless liquid and density-wave
phases (a BF liquid, Figure 41a, and a BF density wave, Figure
41e), BF Mott phases with and without density oscillations are

present (a BF Mott insulator, Figure 41b, and a BF Mott
density wave, Figure 41d). Finally, in the special case of half
filling for both species, a BF solid, an incompressible phase with
an alternating density pattern (Figure 41c and f), is also stable
in the strongly interacting regime Uσδ ≫ Jσ. Such a phase
displays true-long-range order and, differently from the Neél
antiferromagnetic case realized with purely contact interactions,
is stable even when considering equal tunneling rates JB = JF;
moreover, it displays very different melting processes as the
interactions are increased depending on the relative value of
VBB/VFF.

279

7.3. Quasi-1D Physics: Coupling between Tubes

The long-range nature of dipolar interactions is well suited to
create hybrid systems with purely 1D dynamics but 2D
interactions, such as arrays of coupled tubes divided by very
deep optical lattices preventing intertube tunneling together
with a proper tuning of the external dc electric fields in order to
manipulate the intertube interaction, as seen in section 2. Such
systems establish a deep connection between the physics of
several condensed matter systems, such as, e.g., spin
compounds245 and ultracold dipolar gases which cannot be
explored with contact interactions only. In the following, we
first present recent results on the two-tube case, or two-leg
ladder, and then consider the 2D limit where a large number of
tubes, a planar array, is taken into account.

7.3.1. Two-Leg Ladders. Dipolar ladders allow inves-
tigation of rich physical phenomena by matching the
advantages of reduced loss rates typical of 1D confinement
with the possibility of considering multispecies physics, where
the physical species index is represented by the wire one. (The
case of multispecies gases confined in quasi-1D geometries,
which allows treatment of problems with even more degrees of
freedom, has attracted little attention so far.) In this respect, the
special case of two-coupled tubes has been widely investigated.
The effective Hamiltonian of such systems, in case an optical
lattice in the tube direction is applied, is very similar to the case
of a two-species gas,

Figure 41. Density distribution nB (triangles), nF (filled circles), and nB + nF (squares) for various phases as realized with dipolar Bose−Fermi
mixtures: (a) BF liquid; (b) BF Mott insulator; (c and f) BF solids with different bosonic fillings; (d) density-wave BF Mott; (e) density-wave BF
liquid. Results have been obtained by means of numerical iTEBD simulations. Image taken from ref 279. Copyright 2010 American Physical Society.
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with the remarkable difference that here the anisotropic nature
of the dipole−dipole interaction plays a prominent role. Here,
α = 1, 2 is the wire-index, and the specific shape of αβ(r)
depends on both the interwire distance g and the angle between
the dipole moments and the plane the ladder lies on. Moreover,
for bosonic particles, an additional term Σi,αUni,α(ni,α − 1)/2
denotes the on-site interaction.
Bosonic Ladders. As a first step, it is worth considering if

and how phases typical of 1D setups such as Mott insulators,
superfluids, and Haldane insulators are changed in ladder
geometries. In the case of interwire attraction, both MI and SF
phases appear in the limit of small (J/U ≪ 1)and large (J/U ≫
1) intrawire tunneling, respectively, and a pair superfluid phase
(PSF), that is, a superfluid ground state of composite particles
made of one boson on each tube, is stabilized at intermediate
values of U/J.280 The Mott lobes close to the PSF phase have
remarkably different excitations, that is, particle−hole are
substituted by creation/annihilation of composite particles,
further increasing the re-entrant shape of the Mott lobes, as can
be seen in Figure 42. The evolution of the HI phase in ladder

setups is indeed more tantalizing, as in the case of spin-1 chains,
it has been shown that the string order of the Haldane phase is
unstable toward weak antiferromagnetic interchain exchange
perturbations.281 In the case of bosonics coupled tubes,
combining TLL theory with renormalization group arguments,
it has been shown282 that, while a small intertube repulsion

12(0)/J ≪ 1 changes only quantitatively the shape of the
phase diagram, interchain tunneling terms of the type

∑= +⊥ ⊥
†H J c c h c( . . )

i

i i,1 ,2
(117)

open an additional gapless, superfluid phase between the two: a
schematic view of such changes is presented in Figure 43 and
has been confirmed numerically via DMRG simulations.282,283

Fermionic Ladders. Fermionic ladders present more
instabilities with respect to the single tube, single species
case. In the absence of a lattice, the weak-coupling phase

diagram has been investigated using the bosonization formal-
ism247,246 in various setups.284,285 In the case of short-range
interwire repulsion, the interplay between the longitudinal
confinement length R, the interwire distance d, and the angle θ
(see Figure 2) is responsible for the stabilization of three main
phases. In the case of intrawire attraction, θ ≲ 0.3π, pairing on
the single wire is favored, giving rise to a triplet superf luid phase
(TS); in the opposite case of intrawire repulsion, θ ≳ 0.3π, a
spin density wave with alternating order (SDWz) appears,
while, in the intermediate regime θ ≃ 0.3π, the dominant order
is an in-plane spin-density wave (SDWx,y).

284 In the case of a
deep lattice, eq 116 becomes an extension of the so-called
anisotropic extended Hubbard model (AEHM)286 with both
large anisotropy and long-range, dipolar terms; while all the
previous phases are expected to appear in the low-density limit,
the possibility of tuning independently inter- and intrawire
repulsion, making the former stronger than the latter, leads to a
spontaneous breaking of the 2 symmetry associated with the
ladder geometry, stabilizing a fully polarized ground state where
all particles stay on the same tube to minimize the intertube
repulsion. Moreover, the addition of interwire tunneling terms
(eq 117) may stabilize additional phases.284

When interwire interactions are turned attractive, a different
physical picture arises depending on the population ratio
between the wires, n1/n2. When n1 = n2, pairing between the
tubes is always favored, and the system behaves like a quantum
liquid of composite bosonic particles made of one boson per
wire; such a liquid can be both a superfluid (that is, a PSF) and
a CDW depending on both the interwire distance and dipole
strength.285 If a shallow optical lattice commensurate with the
particle density is introduced along the tube direction, that is its
lattice wavelength λ satisfies 2/n1λ ∈ , the system can undergo
a BKT transition to a composite crystal as a function of the
lattice depth, in analogy with what happens in the single tube
bosonic case (see section 7.1.1): in a grand canonical ensemble,

Figure 42. Numerical phase diagram of bosonic two-leg ladders with
interwire nearest-neighbor attraction 12(0)/U = −0.75: white, gray,
and black regions represent SF, PSF, and MI phases, respectively.
Image taken from ref 280. Copyright 2007 American Physical Society.

Figure 43. Qualitative changes in the phase diagram of two-coupled
bosonic chains at unit filling and fixed U/J close to the HI phase.
Upper panel: at finite interchain tunneling and no interchain
interaction, a superfluid phase appears between the DW and the HI.
Lower panel: at finite interchain interaction and no interchain
tunneling, the phase diagram changes only quantitatively. Here, V⊥
= 12(0), t = J and t⊥ = J⊥ fix the notations with respect to ref 282,
from which this image has been taken. Copyright 2008 American
Physical Society.
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this picture evolves, establishing a Luttinger staircase of dimer
crystals.285 In the deep lattice case, these predictions have been
checked by means of DMRG simulations.
Imbalanced Ladders. A completely different phenomenon

occurs in the presence of a density imbalance between the tubes
(Figure 44). For interwire distances g larger than the inverse

particle density, the long-range nature of the dipolar interaction
creates an effective fixed range interwire attraction, thus
favoring pairing not only between two, but also between
many, particles. In the special case of commensurate densities
between the wires, n1/n2 = p/q ∈ , a gas of composite
particles, or multimers, composed by p(q) particles in the first
(second) wire, respectively, can be stabilized for sufficiently low
densities.285 Such a multimer liquid picture has a description in
terms of low-energy field theory287 and allows study of the
generalized pairing mechanism beyond two-particle ones. In the
special case of p = 1, q = 2, the stability of trimer liquids has
been confirmed numerically for sufficiently large tunneling and
dipole imbalance between the tubes. When a trapping potential
and a nonideal population ratio are also considered, such trimer
liquids (which are not stable in homogeneous setups with
unmatched densities) appear in the center of the system and
are surrounded by both dimer liquids or single species ones,
depending on the population ration, forming a pancake-like
structure of composite liquids (see Figure 45) as shown in
recent DMRG simulations.285

The possibility of further tuning the numerous parameters of
the ladder Hamiltonian (eq 116) may indeed allow
identification of an additional exotic state of matter, as the
complete phase diagram of these system is still largely
unexplored. Moreover, before turning our attention to systems
composed by a large number of tubes, it is worth noticing that
ladder systems with more than two tubes and mixtures in quasi-
1D geometries are in principle good candidates to study new
model Hamiltonians in connection to many-body problems
with many degrees of freedom.
7.3.2. Planar Array of Tubes. Planar arrays of tubes of

dipolar gases constitute a hybrid setup where one can
investigate 2D states of matter with physical properties typical

of 1D systems such as, e.g., the quasi long-range order of the
correlation functions. Even in this case, the effective
Hamiltonian
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has many controllable parameters: here, ψα
†,ψα are the creation/

annihilation operators on the tube α (sums over Greek indices
denote sums over the tube index, while Latin indices denote
particles along each tube), ρα = ψα

†ψα, the first term represents
the kinetic energy over each tube, and the second one the
dipolar interactions, which depend on both strength and
orientation of the dipole moments. In the the zero-density
limit, where only one bosonic particle per wire is considered
and interwire interactions are attractive, a quantum rough chain
forms with the off-diagonal long-range order in the M-body
correlation function, where M is the number of wires.288

In the finite density regime, the many-body physics displays
very different effects. In the bosonic case with intrawire dipolar
repulsion, the competition between local interactions and long-
range ones is encoded into a dimensionless parameter γ =
4V0K/(ua

2), where u and K are the sound velocity and the TLL
parameter of a single tube, V0 is the strength of the dipolar
interactions, and a is the intertube spacing. By varying both K
and γ, one can span a broad parameter region with respect to
the dipolar interaction, the density of particles, and the s-wave
scattering length a1D.

289 In addition to a series of density wave
states driven by the strong dipolar repulsion, which may lead to
both a stripe and checkerboard order depending on the relative
strength between inter- and intratube repulsion, a gapless phase
(denoted as (i) in Figure 46) with dominant superfluid
correlations along the tubes is present for large values of K
(that is, for weak intratube interactions).289 Such a phase, which
despite being effectively two-dimensional still preserves an
algebraic decay of correlation functions typical of the quasi-
long-range order of 1D systems, is known as sliding Luttinger

Figure 44. Panels a and b: phase diagram of fermionic two-leg ladders
with interwire nearest-neighbor attraction repulsion as a function of
the interwire distance-to-wire width ratio d/R and the angle θ (see
Figure 2); kFR = 0.1, 0.2 in the left and right panels, respectively, where
kF is the Fermi momentum of the single tube. Panels c, d, and e:
cartoons of the SDWz, TS, and SDWx,y phases discussed in the text;
horizontal ellipses denote pairing between particles in the same tube,
while intertube correlation is indicated by vertical ellipses. Image taken
from ref 284. Copyright 2008 American Physical Society.

Figure 45. Panel a: typical configuration of two-leg ladder with
attractive short-distance interaction between the wires. Panels b−d:
cartoons of a dimer crystal (b), a dimer liquid (or PSF; c), and a trimer
liquid (d). Panels e and f: typical density distribution of strongly
imbalanced wires with 2n1 ≲ n2 (see ref 285 for technical details). In
both cases, the density match n2 = 2n1 in the central part of the system
indicates the presence of a trimer liquid. Image taken from ref 285.
Copyright 2011 American Physical Society.
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liquid (SLL) and has been investigated even in several
fermionic models related to stripe physics and high-Tc

superconductivity.290 Moreover, the SLL phase may also have
dominant density−density correlation along the tube in a tiny
region at intermediate γ (denoted as (ii)). In the strongly
interacting regime, a collapsed regime takes place, whose
precise shape depends on the sign of the intertube interactions.
The complete phase diagram for a fixed value of the angle θ is
shown in Figure 46.
The planar array of fermionic dipoles displays a different

phase diagram; albeit, some features such as the density wave
patterns emerge independently on the statistics. The phase
diagram of this system as a function of the angles θ and ϕ (see
Figure 2) has been derived in the framework of a generalized
TLL theory291 by comparing the long-distance decay of several
correlation functions, as reported in Figure 47. When both

inter- and intratube interactions are strongly repulsive, the
ground state exhibits CDW (checkerboard) order, similarly to
the bosonic case. Close to the magic angle θ = θc = 0.3π, where
the intrawire interaction turns from repulsive to attractive, an
intertube superfluid (s-SF) phase together with a density wave
with broken particle number conservation along the tubes (or
gauge-phase density wave, GPDW) are present. Finally, for
attractive intratube interactions, a p-wave superfluid (p-SF) is
the precursor of an unstable phase toward intratube collapse.

8. CONCLUSIONS AND OUTLOOK

The many-body systems discussed in this review are examples
of the variety of physical properties which originate from the
anisotropy and long-range character of dipole−dipole inter-
actions, in combination with their tunability with external fields.
In many physical situations, quantum dipolar gases behave
qualitatively differently when compared to atomic gases with
short-range van der Waals interactions, and they provide us
with a large number of novel quantum systems with unique
physical properties. Understanding the many-body behavior of
these systems is a very interesting and challenging problem with
several potentially significant consequences for fundamental
science and practical applications.
In the present review we have focused on dipolar quantum

gases represented by polar molecules in the rovibrational
ground state. An alternative realization of a dipolar quantum
gas, although in a completely different regime, is a gas of laser
excited Rydberg atoms292 or molecules.293,294 Highly excited
Rydberg atoms and molecules interact via remarkably strong
electric dipole moments or van der Waals interactions. This
leads to the phenomenon of a dipole blockade and formation of
superatoms where within a given blockade radius only a single
Rydberg atom can be excited and, for example, crystals of these
superatoms can be formed.292 In view of the finite lifetime of
Rydberg states, these many body phases will only exist for a
comparatively short time in the so-called f rozen gas regime
where there is no atomic motion. However, as discussed in ref
150, the large Rydberg dipoles can also be admixed weakly to
the ground state by off-resonant laser excitation, which provides
a situation loosely reminiscent of the polar molecule case,
although decoherence due to spontaneous emission remains
always an issue.
Finally, we remark that the tools for manipulating

interactions in dipolar systems, as described in the present
review, also provide promising ingredients for controlled
entanglement between polar molecules, and thus possible
new scenarios for quantum computing.295−297 Loading exactly
one atom or molecule per lattice site via a Mott insulator
transition in an optical lattice provides us with an array of
qubits. In the case of polar molecules, the qubits can he
represented by long-lived rotational or spin degrees of freedom.
Single site addressing, as developed in refs 6 and 7 for atoms,
allows both manipulation of as well as reading of the single
qubit. Entanglement of qubits can be achieved via the strong
and long-range dipolar interactions between molecules295−297

or, in the atomic case, via dipolar Rydberg interactions.292
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Figure 46. Phase diagram of a planar array of dipolar bosons as a
function of the single wire Luttinger parameter K and the ration
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(a2U) (see text). Here, the angle θ (α according to notations in ref
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Figure 47. Left panel: schematic phase diagram of a planar array of
fermionic dipolar tubes as a function of the angles θ and ϕ; all phases
are discussed in the text, and their cartoons are presented in the right
panel, where solid ellipses denote (intra- or intertube) pairing and
shaded ones indicate intertube coherence. Image taken from ref 291.
Copyright 2008 American Physical Society.

Chemical Reviews Review

dx.doi.org/10.1021/cr2003568 | Chem. Rev. 2012, 112, 5012−50615056

mailto:Peter.Zoller@uibk.ac.at
http://pubs.acs.org/action/showImage?doi=10.1021/cr2003568&iName=master.img-046.jpg&w=239&h=199
http://pubs.acs.org/action/showImage?doi=10.1021/cr2003568&iName=master.img-047.jpg&w=239&h=141


Biographies

Mikhail Baranov is a senior researcher at the Austrian Academy of

Sciences in Innsbruck. He received his M.S. in Theoretical Physics in

1984 from the Moscow Institute of Engineering and Physics, Russia,

and his Ph.D. in Physics and Mathematics in 1987 at the same

institute. In 2008 he joined Prof. Zoller’s group at Innsbruck. His

scientific interests are many-body systems, strongly correlated states,

and ultracold atomic and molecular gases.

Marcello Dalmonte is Junior Scientist at the Austrian Academy of

Sciences in Innsbruck. He received both his M.S. (2007) and Ph.D.

(April 2011) from the Department of Physics of the University of

Bologna (Italy), working under the supervision of Dr. Elisa Ercolessi.

During his studies, he spent several months as a visiting student at the

Institute for Theoretical Physics in Innsbruck. His main research

interests include different aspects of many-body theories in one-

dimensional geometries, with particular focus on quantum phenomena

and strong correlations in ultracold atomic and molecular gases.

Guido Pupillo is professor at the University of Strasbourg and director
of the Laboratory of Quantum Physics at the Institut de Science
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(64) Büchler, H. P.; Demler, E.; Lukin, M.; Micheli, a.; Prokof’ev, N.;
Pupillo, G.; Zoller, P. Phys. Rev. Lett. 2007, 98, 60404.
(65) Zilio, S. C.; Marcassa, L.; Muniz, S.; Horowicz, R.; Bagnato, V.;
Napolitano, R.; Weiner, J.; Julienne, P. S. Phys. Rev. Lett. 1996, 76,
2033−2036.
(66) Napolitano, R.; Weiner, J.; Julienne, P. S. Phys. Rev. A 1997, 55,
1191−1207.
(67) Weiner, J.; Bagnato, V. S.; Zilio, S.; Julienne, P. S. Rev. Mod.
Phys. 1999, 71, 1−85.
(68) Gorshkov, A. V.; Rabl, P.; Pupillo, G.; Micheli, A.; Zoller, P.;
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