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Abstract: As a maintenance strategy to reduce unexpected failures and enable safe operation,
condition‑basedmaintenance (CBM) has beenwidely used in recent years. Themaintenance decision
criteria of CBM in the literature mostly originate from statistical failure data or degradation states,
few of which can directly and effectively reflect the current state and analyze condition monitoring
data, maintenance measures, and reliability together at the same time. In this paper, we introduce
the performance margin as a decision criterion of CBM. We propose a condition‑based maintenance
optimization method using performance margin. Considering a CBM optimization problem for a
degrading and periodically inspected component, a newly developed performance margin degra‑
dation model is established when three different maintenance measures become involved. Main‑
tenance measure effect factors, maintenance decision vectors, and maintenance measure threshold
vectors are developed to update the degradation model. And to build a maintenance optimization
model, both cost and loss related to maintenance decision problems and reliability obtained by per‑
formance margin have been taken into consideration. Finally, a numerical example is provided to
illustrate the proposed optimization method.

Keywords: maintenance optimization; performance margin; condition‑based maintenance; degra‑
dation model; belief reliability

MSC: 00A05; 46N30; 60G05

1. Introduction
With the ongoing development of technology and the requirements of products, the

complexity and cost of products are also increasing. Facing these advanced products, a
proper maintenance strategy is an important means to improve the efficiency of safe op‑
eration, extend the service life, and reduce or avoid the impact due to failure. Hence, a
condition‑based maintenance (CBM) strategy has gradually gained increasing application
value. CBM has been studied and applied to numerous areas, such as electronics [1,2], me‑
chanics [3,4], wind turbines [5,6], the aerospace industry [7], nuclear power [8], the railway
industry [9], seaports [10], etc.

Scientific, practical, and comprehensivemaintenance decision criteria are the basis for
CBM. Existing decision criteria ofmaintenance strategies can be categorized into two types:
failure‑related criteria and degradation‑related criteria. Failure‑related criteria originate
from statistical failure data, for example, failure rate [11], probability density function
(PDF) [12], mean time to failure (MTTF) and residual useful life (RUL) [13,14]. Such cri‑
teria are mostly the description of the product after failure and are not suitable for CBM
monitoring of current working conditions. Additionally, these criteria require sufficient
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failure data, but for high‑reliability and long‑life products, failure data is difficult to ob‑
tain. Therefore, the actual operation condition of the product cannot be accurately re‑
flected. Degradation‑related criteria, for instance, degradation states [15,16], degradation
levels [17], and deterioration rate [18], are widely used for CBM. They basically solved
the two problems of failure‑related criteria, but there are still some imperfections. On the
one hand, the degradation‑related criteria tend to focus on the condition‑monitoring data
(e.g., temperature, humidity, pressure, vibration, acoustic, etc.) and mostly neglect the
data for maintenance and other relative measures (e.g., installation, breakdown, overhaul,
minor repair, preventive maintenance, oil change, etc.). However, the data for mainte‑
nance and other relative measures are very important in CBM because to better assess
the products’ performance and condition, what happened and what was done during the
whole life cycle should be considered. On the other hand, when using the degradation‑
related criteria, the reliability of products is often assessed by the first hitting time (FHT)
or the remaining useful life (RUL)/ mean residual life (MRL) in terms of FHT. The deriva‑
tion processes of the distribution functions of FHT and RUL/MRL are mostly complex,
and sometimes the approximate method is used to find the solution. Under such circum‑
stances, the degradation‑related criteria seem to be insufficient to describe the conditions
of products.

Compared to CBM strategies using the above two types of criteria, a strategy based
on performance margin can be more effective. First of all, the performance margin can
reflect the current condition of the product. Performance margin is the margin that is re‑
served for performance parameters, and the conditions required for a product to perform
its required functions depend on its performance margin. Secondly, performance margin
can also determine and then be influenced by maintenance decisions and other relative
measures. The ability of a product to maintain or restore its required state depends on its
current performance margin, measures such as maintenance and replacement react to per‑
formance margin, as well. Thus, it is possible to analyze maintenance and condition mon‑
itoring data together by performance margin. Furthermore, performance margin can be
used in reliability analysismore conveniently. According to themargin‑based reliable prin‑
ciple of belief reliability [19], the performancemargin determines how reliable the object is.
Performance margin is essentially a certain distance between the performance parameter
and the performance threshold, it can be a direct bridge from the condition of products
to the reliability metric. Additionally, numerous factors, including the environment, the
inner structure, andmultiple failure mechanisms used in reliability analysis can be consid‑
eredwhen performancemargin is used to describe the condition of products [20,21]. These
all allow the CBM strategy based on performance margin to assess reliability effectively,
which is beneficial to control the risk.

Therefore, we introduce the performance margin into the degradation model in this
article to describe the monitored conditions. Taking performance margin as a criterion has
the following advantages:
• Proceed from the current states and conditions of products directly;
• Maintenance and other relative measures can be analyzed comprehensively with con‑

dition monitoring data;
• Be able to assess reliability more effectively.

In this paper, we develop a condition‑based maintenance optimization method using
performancemargin. The degradation and recovery of a single component aremodeled by
a multi‑stageWiener process. The component is assumed to undergo periodic inspections,
and conditions can only be totally be revealed at inspections. The performance margin de‑
tected at each inspection will determine the corresponding type of maintenance measures.
Different maintenance measures, including preventive maintenance, preventive replace‑
ment, and replacement after failure can only be taken at the inspections and can cause
different degrees of restoration of performance margin. After completion of maintenance
measures, the component resumes operation without changing the original drift of perfor‑
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mance margin degradation. The final purpose is to find the optimal inspection intervals
and make reasonable maintenance decisions to control the cost and ensure reliability.

The remainder of this article is organized as follows. In Section 2, we present the
establishment of the performance margin degradation model. In Section 3, we build an
optimization model of maintenance. Section 4 provides a numerical case, including a dis‑
cussion of the results. Conclusions are addressed in Section 5.2, Framework and Symbols.

2. Framework and Symbols
2.1. Framework

The framework of the condition‑based maintenance optimization method using per‑
formance margin is proposed in Figure 1. Firstly, the origin performance margin degra‑
dation model with uncertainty is established based on the Wiener process. Then, a multi‑
stage Wiener process is proposed to characterize the maintenance‑involved degradation
of the performance margin. To determine the initial value of the performance margin at
each stage, the maintenance measure threshold vector and maintenance measure decision
vector are employed and the transition of the performance margin is modeled based on
the effect of maintenance and replacement. Finally, the optimization model of the mainte‑
nance decision problem is constructed.
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2.2. Symbols
B(t): standard Wiener process at time t;
C: overall cost per time;
CDT : total loss in unplanned downtime after failure;
cDT : maximum loss of any kind of unplanned downtime, a constant;
CDT0 : the basic loss of any kind of unplanned downtime after failure;
CDTmax: the maximum allowable total loss in unplanned downtime after failure,

a constant;
CPdM: total cost of preventive maintenance;
cPdM: maximum cost of single preventive maintenance, a constant;
CPdR: total cost of preventive replacement;
CPT : total cost of inspections;
cPT : cost of a single inspection, a constant;
CRP: total cost of replacement after failure;
cRP: cost of a single replacement, a constant;
CZ: overall cost;
kPdM,C: cost coefficient of preventive maintenance, a constant;
kth,C: loss coefficient in unplanned downtime, a constant;
m0: initial value of performance margin at time t = 0;
mPdM: preventive maintenance threshold, a constant;
mPdR: preventive replacement threshold, a constant;
m(t): degradation function of performance margin;
mi(t): degradation function of performance margin at ith inspection;
mi′(t): degradation function of performance margin after maintenance at

ith inspection;
mi′(ti): the value of performancemargin after maintenance at the end of ith inspection

(time ti), which also means the initial value of performance margin at (i + 1)th inspection,
i = 1, 2, · · · , N;

N: total number of inspections, a constant;
ni: the number of maintenance procedures by the ith inspection (time ti);
p: degradation coefficient of maintenance effect factor, a constant;
r: maintenance effect factor;
R0: the minimum allowable reliability, a constant;
Ri: the reliability at ith inspection;
Ti: the interval between (i − 1)th inspection and ith inspection, Ti = ti − ti−1;
ti: time point at end of the ith inspection;
TZ: overall time;
λ: drift parameter, a constant;
µ: indicative function of preventive maintenance;
ν: indicative function of preventive replacement;
σ: diffusion parameter, a constant;
ω: indicative function of replacement after failure;

3. Performance Margin Degradation Model with Uncertainty
We consider a component whose performance margin is degrading and periodically

inspected, multiple types of maintenance measures will be conducted according to the
performancemargin. We divide the establishment of the performancemargin degradation
model into two steps: first, building an origin model to describe the degradation process
without any maintenance; and second, updating the degradation model when different
maintenance measures become involved.
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3.1. Origin Degradation Model with Uncertainty
The Wiener process is widely employed to describe degradation processes that are

characterized by a gradual drift of the mean value [22]. In this paper, the degradation
of performance margin is assumed to be an additive accumulation and expressed by the
Wiener process. Letm(t) be the degradation function of performancemargin function, and
degradation follows a linear drift Wiener process {m(t) : t ≥ 0}:

m(t) = m0 − [λt + σB(t)]. (1)

3.2. Maintenance‑Involved Degradation Model with Uncertainty
When maintenance measures are involved, the performance margin will be updated,

and the degradation of performance margin will be changed accordingly. Therefore, we
built a maintenance‑involved degradationmodel of performancemargin to better describe
this process, and Figure 2 illustrates this maintenance‑involved degradation process.

3.2.1. Multi‑Stage Wiener Process
Assuming that the component is inspected at the regular time ti (i = 1, 2, · · · , N), a

multi‑stage Wiener process is proposed to characterize the maintenance‑involved degra‑
dation of performancemargin. The initial value of performancemargin at stage i is also the
value after maintenance measure at stage i + 1. According to formula (1), the degradation
function of the performance margin at (i + 1)th inspection can be given as:

mi+1(t) = mi′(ti)− [λ(t − ti) + σB(t − ti)]. (2)

3.2.2. Maintenance Measure Decision Procedure
The choice of maintenance or replacement fundamentally depends on the condition

(represented by performance margin) before maintenance measures. To model the proce‑
dure for themaintenancemeasure decision, wedeveloped amaintenancemeasure decision
vector and a maintenance measure threshold vector. The relationship of the above vectors
is actually the decision procedure for the maintenance measure.

The maintenance measure decision vector is introduced as follows:

MDi = (µi, νi, ωi). (3)

The maintenance measure threshold vector is introduced as follows:

Mth = (mPdM, mPdR, 0), (4)

where mPdM > mPdR > 0.
A component is considered in need of preventive maintenance when its performance

margin decreases to mPdM. The indicative function of preventive maintenance can be ex‑
pressed as:

µi =

{
1, i f mPdM > E[mi(ti)] > mPdR
0, else

. (5)

A component is considered in need of preventive replacement when its performance
margin decreases to mPdR. The indicative function of preventive replacement can be ex‑
pressed as:

νi =

{
1, i f mPdR > E[mi(ti)] > 0
0, else

. (6)

A unit is considered failed and in need of replacement when its performance margin
decreases to 0, and the indicative function of replacement after failure can be expressed as:

ωi =

{
1, i f E[mi(ti)] ≤ 0
0, else

. (7)
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3.2.3. The Transition of Performance Margin with Maintenance and Replacement

In this article, the initial value of performance margin at (i + 1)th inspection is consid‑
ered to be concernedwith themaintenancemeasure that is used at the end of ith inspection
(time ti).
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Here, we introduce a maintenance effect factor, r, to better describe the restoration
effect of the performance margin after maintenance. The initial value of the performance
margin at the (i + 1)th inspection can be expressed as:

m′
i(ti) = ri · mPdM. (8)

This effect factor, r, represents the extent to which the performance margin can revert
back. In this paper, we consider the number of maintenance procedures, and assume that
the more maintenance procedures that are carried out, the worse the maintenance effects
are. Maintenance effect factor ri can be expressed as:

ri = 1 + p/ni. (9)

Since maintenance must play a role in recovery, we have:

m0 > m′
i(ti) > mi(ti) > mPdR. (10)

Thus, the number of maintenance procedures needs to satisfy the following equation:

ni >
p

m0
mPdM

− 1
. (11)

Also, the initial value of performance margin at (i + 1)th inspection is considered to
be concerned with replacement. If a preventive replacement or replacement after failure is
carried out, the initial value of performance margin at (i + 1)th inspection can be restored
to the initial value of the performance margin at time t = 0, which can be expressed as:

m′
i(ti) = m0. (12)

Therefore, the comprehensive expression of the updated initial value of performance
margin at (i + 1)th inspection with maintenance and replacement can be expressed as:

m′
i(ti) = µi · ri · mPdM + νi · m0 + ωi · m0 + (1 − µi) · (1 − νi) · (1 − ωi) · mi(ti). (13)

According to Section 3.2.2, when the maintenance measure is decided, the expression
of the updated initial value of performancemargin at (i + 1)th inspection can be simplified,
as follows:

When the component is considered to be in need of preventive maintenance, we have
MDi = (1, 0, 0). Then Equation (13) can be transferred into Equation (8).

When the component is considered to be in need of preventive replacement, we have
MDi = (0, 1, 0). Then Equation (13) can be transferred into Equation (12).

When the component is considered to be in need of replacement after failure, we have
MDi = (0, 0, 1). Then Equation (13) can be transferred into Equation (12).

When the component is considered to be in need of no maintenance measures, we
haveMDi = (0, 0, 0). Then Equation (13) can be transferred into mi(ti), which means that
the performance margin remains unchanged.

4. Optimization Model of the Maintenance Decision Problem
With the newly developed performance margin degradation model, we consider the

cost of the maintenance decision problem. In this section, we elaborate on the detailed
contents of the optimization model.
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4.1. Indexes
1. Overall cost:

The overall cost of the optimizationmodel consists of the cost of inspection, preventive
maintenance, preventive replacement, replacement after failure, and loss in unplanned
downtime after failure, and they can be expressed as followed.

(1) The total cost of inspections:

CPT = N · cPT , (14)

which is the product of the number of inspection times and the cost of a single inspection;

(2) The total cost of preventive maintenance;

The cost of preventive maintenance increases with the decrease of maintenance per‑
formance margin. When the performance margin is approaching the preventive mainte‑
nance threshold, the cost of preventive maintenance is approaching zero, which can be
expressed as:

CPdM =
N

∑
i=1

[(
1 − ln mPdM − ln E[mi(ti)]

mPdM − E[mi(ti)]
· E[mi(ti)]

)
· kPdM,C · µi

]
· cPdM. (15)

(3) The total cost of preventive replacement:

CPdR =
N

∑
i=1

νi · cRP, (16)

which is the product of the number of times of preventive replacement and the cost of a
single replacement;

(4) The total cost of replacement after failure:

CRP =
N

∑
i=1

ωi · cRP, (17)

which is the product of the number of times of replacement after failure and the cost of a
single replacement;

(5) Loss in unplanned downtime after failure:

When the performance margin decreases to less than zero, unplanned downtime is
generated. Once the unplanned downtime is generated, no matter how long it lasts, there
is a basic loss. Additionally, the longer the unplanned downtime lasts, the more the per‑
formance margin deviates from zero, and the greater the loss, which can be expressed as:

CDT =
N

∑
i=1

[
CDT0 +

|E[mi(ti)]|
kth,C

· cDT

]
· ωi. (18)

Therefore, the overall cost is expressed as:

CZ = CPT + CPdM + CPdR + CDT + CRP

= N · cPT +
N
∑

i=1

[(
1 − ln mPdM − ln E[mi(ti)]

mPdM − E[mi(ti)]
· E[mi(ti)]

)
· kPdM,C · µi

]
· cPdM

+
N
∑

i=1
νi · cRP +

N
∑

i=1
ωi · cRP +

N
∑

i=1

[
cDT0 +

|E[mi(ti)]|
kth,C

· cDT

]
· ωi.

(19)
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2. Reliability:

According to the margin‑based reliable principle of belief reliability [19], performance mar‑
gin, m, describes the distance between a performance parameter and its failure threshold. So, when
mi(t) > 0, the component can act normally, then the reliability at ith inspection can be expressed as:

Ri = Pr{mi(t) > 0}, (20)

which describes the probability that the component can act normally.

3. Overall time:

In this paper, we only consider the working time of components, and neglect the time of in‑
spection, preventive maintenance, preventive replacement, halt after failure, replacement after fail‑
ure, etc. Therefore, the intervals between inspections are the working time of components, and the
overall time can be expressed as:

TZ =
N

∑
i=1

Ti, (21)

which is the sum of all the intervals between inspections.

4. Overall cost per time:

The overall cost per time is the overall cost divided by the overall time, which can be expressed
as:

C =
CZ
TZ

, (22)

where CZ follows Equation (19) and TZ follows Equation (21).

4.2. Model
The overall cost per time is taken as the objective function, and the optimal inspection and

maintenance policy is solved by this model. The model should also meet the following constraints:
(1) the loss in unplanned downtime after failure should not exceed the maximum allowable value;
(2) the reliability should exceed the minimum allowable value; and (3) the inspection interval should
be non‑negative. Therefore, the optimization model can be expressed as:

min C =


N · cPT +

N
∑

i=1

[(
1 − lnmPdM − lnE[mi(ti)]

mPdM − E[mi(ti)]
· E[mi(ti)]

)
· kPdM,C · µi

]
· cPdM

+
N
∑

i=1
νi · cRP +

N
∑

i=1
ωi · cRP +

N
∑

i=1

[
cDT0 +

|E[mi(ti)]|
kth,C

· cDT

]
· ωi


TZ

s.t.
N
∑

i=1

[
CDT0 +

|E[mi(ti)]|
kth,C

· cDT

]
· ωi ≤ CDTmax

Ri = P{mi(t) > 0} ≥ R0
Ti ≥ 0

(23)

5. A Numerical Example
In this section, we use a numerical example to demonstrate the proposed optimization model;

this example follows all of the mentioned assumptions.

5.1. Optimal Results
For a product‑making maintenance decision based on condition monitoring, parameters are

provided in Table 1.
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Table 1. Parameters in the numerical example.

Parameters Value

λ 5 (mm/hours)
σ 1

m0 200 (mm)
mPdM 100 (mm)
mPdR 20 (mm)

N 100
cPT ￥100 (K)

cPdM ￥300 (K)
kPdM,C ￥100 (K)

cRP ￥800 (K)
cDT ￥1000 (K)

CDTo ￥2000 (K)
kth,C 5

p 0.5
R0 0.99

We simulate the model on MATLAB for 10,000 times; the optimal inspection interval is 26 h;
the minimal overall cost per time is 103.4813 K/h.

5.2. Analysis of the Optimal Results
As shown in Figure 3, the original degradation of performance margin decreases with the in‑

crease in time and soondecreases to belowzero. Without anymaintenancemeasure, the performance
of this component becomes too poor to continue working. However, with inspections, maintenance,
and replacement, restoration of the performance margin occurs. The inspection interval calculated
by the proposed optimization model reduces the occurrence of failure and ensures that the value of
the performance margin fluctuates in a reasonable range through reliability.
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Figure 3. Optimal maintenance process when inspection intervals are 25, 26 and 27.

The change in optimal overall cost per time when different inspection intervals are used is
shown in Figure 4. The total cost of preventive maintenance and the loss in unplanned downtime
after failure are twomain factors that influence the optimal overall cost per time. When inspection in‑
tervals are short, frequent preventivemaintenance is required; failure rarely happens. Therefore, the
cost of preventive maintenance is greater than the loss after failure. Additionally, when inspection
intervals are long, the poor state of the performance margin cannot be detected in time, which some‑
times leads to failure. In such situations, the total cost of replacement after failure is created. Limited
by fewer inspections, the replacement will not be made often, and the total cost of replacement after
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failure is not significant. If the failed component is left for a long time, the loss in unplanned down‑
time after failure increases rapidly and its influence on overall cost is soon greater than the cost of
preventive maintenance.
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Figure 4. The overall cost per time when different inspection intervals are used.

It is also noteworthy that the loss in unplanned downtime after failure increases linearly when
the inspection interval is over 50 h. This is caused by the following reasons. Firstly, according to
Equation (1) and the parameters in Table 1 (which also can be seen in Figure 3), the failure will occur
at around 40 h if there has been no prior maintenance or replacement. Then, since the failure occurs
before 50 h, the performance margin is below zero after 50 h. According to Equation (18), there
is a linear relationship between the loss in unplanned downtime after failure and the performance
margin. The later the failure is inspected and found, themore the performancemargin deviates from
zero and the higher the loss is. And this leads to a linear relationship between the loss in unplanned
downtime after failure and the inspection interval. Finally, when the inspection interval is more than
50 h, there is only one inspection to be taken. After the maintenance and replacement following this
inspection, the performance margin will not be updated again; the linear relationship between the
loss in unplanned downtime after failure and the inspection interval will not be changed. Thus, the
loss in unplanned downtime after failure increases linearly.

During the maintenance measure decision procedure, the expected value of the performance
margin is fixed. It guides us to make maintenance decisions based on the fixed expected value, and
the impact of dispersion and inconsistency on performance margin is ignored. If the performance
margin is very close to (but does not exceed) the maintenance measure threshold, no maintenance
measures will be taken. However, if there is a little deviation of the performance margin, the actual



Axioms 2023, 12, 168 12 of 15

value of it can fluctuate below the threshold. It can result in no measure to be taken when failure
occurs. This strategy puts decision‑makers at risk, so as a result, we introduce reliability obtained by
the performance margin (not the expected value) as a constraint.

The influence of reliability on optimal results is showed in Figure 5; the ‘x’ point is the optimal
result without the reliability constraint and the ‘o’ point is the optimal result with the reliability
constraint. With the constraint of reliability, the optimal inspection interval is shortened, and the
minimal overall cost per time increases. This suggests that the reliability constraint is effective, so
that we can control the risk while optimizing the cost.
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These performances are consistent with the assumed maintenance strategy, and therefore, op‑
timal inspection intervals can be obtained when minimizing the overall cost per time.

5.3. Effect of the Parameters
To investigate the effect of the parameters in the proposedmodel on optimal solution andmain‑

tenance strategy, we vary each of the parameter values and obtain the corresponding inspection
intervals T and overall cost per time C.

5.3.1. Effect of Parameters in Wiener Process
Table 2 summarizes the results of several alternative values for λ. As λ increases, the optimal

inspection interval decreases, and the overall cost per time changes accordingly. This simply shows
that the faster the performancemargin degrades, the sooner it reaches failure, and the earlier the loss
in unplanned downtime becomes the main factor that influences the overall cost per time.

Table 2. Optimal results for several alterative values for λ.

Value T −−−
C

λ = 2 51 1.0101
λ = 5 26 103.4813

λ = 10 19 45.4545
λ = 20 5 543.4563
λ = 50 2 648.9282
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5.3.2. Effect of Parameters for Performance Margin
Table 3 presents the corresponding results of different values for m0. As m0 increases, the in‑

spection intervals increase, as well. This demonstrates that the more the performance margin is set
aside at the beginning, the later a component can be inspected, and the less overall cost will be in‑
curred.

Table 3. Optimal results for different values of m0.

Value T −−−
C

m0 = 120 21 36.3636
m0 = 150 27 198.1986
m0 = 200 26 103.4813
m0 = 300 58 9.0909
m0 = 400 51 1.0101

Table 4 presents the corresponding results of different values for mPdM and mPdR. As mPdM and
mPdR increase, the optimal results show no obvious regular pattern. There is a problem to be pointed
out here. Whether to take the maintenance measures or not depends on the performance margin at
inspections and the maintenance measure threshold vector. However, the cost of several preventive
maintenance procedures is more than the cost of a few preventive replacements. Although the cost
of a single replacement is more than the cost of a single maintenance procedure, we can still find
out that the optimal result is obtained when just a few preventive maintenance procedures but no
preventive replacement is taken.

Table 4. Optimal results for different mPdM and mPdR.

Value T −−−
C Value T −−−

C

mPdM = 25 37 18.1818 mPdR = 5 2 351.7344
mPdM = 30 6 58.4820 mPdR = 10 2 352.5123
mPdM = 50 37 18.1818 mPdR = 20 26 103.4813
mPdM = 100 26 103.4813 mPdR = 30 35 18.1818
mPdM = 150 37 321.2121 mPdR = 40 34 18.1818
mPdM = 180 36 321.2121 mPdR = 60 34 18.1818
mPdM = 195 36 321.2121 mPdR = 90 34 18.1818

5.3.3. Effect of Parameters Related to Cost
Table 5 summarizes the optimal inspection intervals and cost for several values of cPT and cRP.

As cPT and cRP increase, the optimal T decreases first and then basically remains unchanged. The
optimal results of C generally increase because the total cost, including cPT and cRP, also increases.

Table 5. Optimal results for different values of cPT and cRP.

Value T −−−
C Value T −−−

C

cPT = 30 37 16.7677 cRP = 350 27 115.7845
cPT = 50 26 103.4407 cRP = 600 37 14.14

cPT = 100 26 103.4813 cRP = 800 26 103.4813
cPT = 200 27 124.5212 cRP = 1000 26 106.7394
cPT = 280 27 128.1622 cRP = 1200 27 124.9855

Tables 6 and 7 shows that the optimal results for different cPdM, kPdM,C, cDT , CDT0 and kth,C
values are all generally unchanged. That is because the optimal result is obtained when just a few
times of preventivemaintenance but no preventive replacement are performed, and these parameters
are not related to replacement.
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Table 6. Optimal results for different values of cPdM and kPdM,C.

Value T −−−
C Value T −−−

C

cPdM = 120 19 21.2121 kPdM,C = 20 27 33.3355
cPdM = 200 27 84.5315 kPdM,C = 50 27 65.9119
cPdM = 300 26 103.4813 kPdM,C = 100 26 103.4813
cPdM = 500 26 163.4051 kPdM,C = 200 26 198.7805
cPdM = 700 26 223.5657 kPdM,C = 500 26 472.9619

Table 7. Optimal results for different values of cDT , CDT0 and kth,C.

Value T −−−
C Value T −−−

C Value T −−−
C

cDT = 400 26 104.5661 CDT0 = 500 27 120.1648 kth,C = 1 37 18.1818
cDT = 600 37 18.1818 CDT0 = 1000 27 122.4718 kth,C = 2 26 103.8442
cDT = 1000 26 103.4813 CDT0 = 2000 26 103.4813 kth,C = 5 26 103.4813
cDT = 1400 37 18.1818 CDT0 = 3000 26 104.7385 kth,C = 10 27 122.3621
cDT = 2000 27 122.0350 CDT0 = 5000 37 18.1818 kth,C = 20 27 121.8045

6. Conclusions
In this paper, we provide a condition‑based maintenance optimization method using perfor‑

mance margin. A maintenance‑involved degradation model of performance margin is developed
and assumed to be expressed by a multi‑stage Wiener process. We introduce a maintenance mea‑
sure effect factor to better describe the restoration effect of performance margin after three kinds
of maintenance measures. We use maintenance measure decision vectors and maintenance mea‑
sure threshold vectors to make maintenance decisions and build relationships between the value of
the performance margin before and after the maintenance measures. An optimization model of the
maintenance decision problem is developed based on the degradation model we developed. Ad‑
ditionally, the reliability constraint based on the performance margin is proposed. The numerical
example shows that the results calculated by the proposed model are consistent with the assumed
maintenance strategy and improves the maintenance decision process.

However, there are still some imperfections. The proposedmaintenance‑involved degradation
model only considers the working time of products, and neglects the time of inspection, preventive
maintenance, preventive replacement, halt after failure, replacement after failure, etc. Additionally,
the effect of maintenance only reflects the extent to which the performance margin can revert. How‑
ever, in practice, maintenance can also influence the degradation trend, that is, the drift parameter, λ,
can be changed by maintenance. To build a more practical optimization model, these matters need
further studies. For example, the durations of replacement and maintenance can be introduced in
the proposed model, and the maintenance effect factor can act on the degradation rate. Also, further
research on the methods for determining the value of the maintenance effect factor is necessary. One
possible direction is to collect the data for the maintenance effect, and the maintenance effect factor
can be obtained by parameter estimation. Another feasible method is to apply expert evaluation for
different preventive maintenance actions to subjectively evaluate the maintenance effect factor. Fi‑
nally, a maintenance optimizationmodel based on the performancemargin for themulti‑component
system can be further studied.
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