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Reflection occurs at an air–material interface. The development of antireflection schemes, which aims to

cancel such reflection, is important for a wide variety of applications including solar cells and photode-

tectors. Recently, it has been demonstrated that a periodic array of resonant subwavelength objects placed at

an air–material interface can significantly reduce reflection that otherwise would have occurred at such an

interface. Here, we introduce the theoretical condition for complete reflection cancellation in this resonant

antireflection scheme. Using both general theoretical arguments and analytical temporal coupled-mode

theory formalisms, we show that in order to achieve perfect resonant antireflection, the periodicity of

the array needs to be smaller than the free-space wavelength of the incident light for normal incidence,

and also the resonances in the subwavelength objects need to radiate into air and the dielectric material

in a balanced fashion. Our theory is validated using first-principles full-field electromagnetic simulations of

structures operating in the infrared wavelength ranges. For solar cell or photodetector applications,

resonant antireflection has the potential for providing a low-cost technique for antireflection that does

not require nanofabrication into the absorber materials, which may introduce detrimental effects such

as additional surface recombination. Our work here provides theoretical guidance for the practical design

of such resonant antireflection schemes. © 2014 Optical Society of America

OCIS codes: (260.5740) Resonance; (310.1210) Antireflection coatings; (230.5160) Photodetectors; (350.6050) Solar energy.

http://dx.doi.org/10.1364/OPTICA.1.000388

1. INTRODUCTION

Reflection occurs at the interface between air and a dielectric.
In many applications, for example, solar cells and photodetec-
tors, such a reflection is detrimental to system performance and
thus an effective antireflection strategy is required. A standard
approach includes single- or multi-layer interference [1–6],
and adiabatic optical impedance matching [7–16], frequently
at the nanoscale [17–23].

In recent years, a new approach for antireflection has been
proposed and widely adopted [24–33]. In this approach, one
places arrays of nanoparticles at or near the air–dielectric inter-
face (Fig. 1). These particles support Mie resonances [34,35].
The antireflection effect is associated with the excitation of the

Mie resonances. This approach has several unique potential
beneficial characteristics compared to other approaches
[36–40]. First, unlike the tapering geometry (for the adiabatic
impedance matching) that is commonly done by etching
into the active material, which may increase surface recombi-
nation, the resonant antireflection can be achieved by simply
coating the surface with nanoparticles without an etching
process [24,28,41]. Second, the optical resonances might in
addition provide light trapping functionalities [28,41–47],
might enhance the broadband antireflection performance
indirectly, for example, by influencing the material dispersion
[48], and might allow tunability of the spectral range of
antireflection [49].
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The experimental demonstration in Refs. [24–27] raised
important theoretical questions regarding the conditions for
complete antireflection from resonance. In Ref. [24], the anti-
reflection effect is attributed to the tendency of the resonance
to radiate dominantly into the dielectric. In this paper, we
present a theoretical analysis for complete antireflection.
Contrary to the claim in Ref. [24], here we show theoretically
that complete antireflection is possible only if the resonance
radiates to both the air side and the dielectric side in a balanced
manner. In addition, the periodicity of the structure needs to
be smaller than the free-space wavelength for normally inci-
dent light. We validate the theoretical results with numerical
simulations.

2. THEORY

We first provide a set of general arguments to support the main
conclusions of this paper, using the concepts that underly Fano
interference in optical resonator systems [50]. In the absence of
resonance, there is reflection and transmission at the air–
dielectric interface. Such a reflection and transmission process
consists of part of what we will refer to as the “direct pathway.”
When resonant particles are placed at the interface, the reflec-
tion and transmission processes can be modified in two ways.
First, there is in addition a “resonant pathway” for light
transport, through which the incident light first excites the res-
onance; the energy in the resonance then decays, thus also con-
tributing to the transmission or reflection amplitude. Second,
away from the resonances, the presence of the particles would
also contribute to the direct pathway since these particles, even
when away from resonance, would provide physical perturba-
tion to the air–dielectric interface. To achieve resonant antire-
flection, we would like the contributions to the reflection
amplitude from the direct and resonant pathways to cancel each
other. This immediately leads to two general considerations:

First, the resonance needs to radiate in a balanced fashion to
the air and the dielectric sides. The result can be argued from
reciprocity. If the resonances were to radiate completely into

the dielectric substrate, it follows immediately by reciprocity
that any incident light from the air side could not excite
the resonance. And hence in such a case the resonance cannot
play any role in the antireflection process. For the resonance to
play a significant role in the antireflection process, the reso-
nance needs to be excited significantly for light incident from
the air side, which in turn requires significant radiation of the
resonance to the air side.

Second, the periodicity of the array needs to be chosen such
that there is only zeroth-order diffraction on the air side. For
normally incident light from air, then, the periodicity of the
array needs to be smaller than the free-space wavelength:

a < λ: (1)

With Eq. (1) satisfied, complete antireflection would then be
achieved if the direct and resonant reflections destructively
interfere at the normal direction. On the other hand, if the
periodicity of the array is greater than the free-space wave-
length, there is more than one diffraction channel in the
air, and in general it would be far more difficult to achieve
complete cancellation on each of these channels.

Building upon the general arguments above, we now pro-
vide a theoretical description of the resonant antireflection
process. Since the structure is periodic, we consider only a sin-
gle unit cell containing a single resonant nanostructure as in
Fig. 2. For simplicity, we consider only normally incident light

Fig. 1. Nanostructure array at an air–dielectric interface for resonant
antireflection. The blue region represents a dielectric whose refractive
index is greater than that of air. The yellow regions represent subwave-
length structures that support optical resonances. Here, for concreteness,
we draw a square lattice; other lattices can be used as well. The lattice
constant or periodicity is a in all dimensions. Light is incident from top,
and the wavelength is λ.

Fig. 2. Resonance and channels in a unit cell of Fig. 1. The resonant
amplitude is denoted as u. At each channel, there are incoming and out-
going electromagnetic waves, as indicated by the red arrows. The incom-
ing/outgoing wave amplitude at channel i is denoted as si�. For i > 1, the
channel indices are chosen such that, in the absence of resonant scattering,
incoming light at channel i undergoes total internal reflection to outgoing
light at the same channel i if Eq. (1) is satisfied. For example, the input/
output port of channel 2 is in the opposite direction to the output/input
port of channel 3 (as opposed to the typical choice of the input and output
ports of the same channel being in opposite directions, which we adopt for
channels 0 and 1), and, as a result, the input/output light at channel i
reflects at the interface to be the output/input light at the channel with
the same index i since it cannot be directly coupled to the only channel
in air (channel 0) or any other channels in the dielectric.
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from the air side. We therefore apply the periodic boundary
condition at the edge of the cell. We further assume that
Eq. (1) is satisfied, and Fig. 2 reflects this property of the nano-
structure array. Let u ∈ C be the complex amplitude of the
resonance, and be so normalized that juj2 corresponds to
the electromagnetic energy stored in the resonance. The inputs
and outputs at the diffraction channels can be collectively writ-
ten as column vectors of complex wave amplitudes:
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where the indices label different channels. Channel 0 is the
zeroth-order diffraction channel in air, and as we argued above
the only diffraction channel on the air side. All other channels
are on the dielectric side, with channel 1 corresponding to the
zeroth diffraction order. N � 2⌊na∕λ⌋� 1 represents the
total number of diffraction channels on the dielectric side,
where n is the refractive index of the lossless dielectric and
⌊ · ⌋ is the floor function.

We describe the structure using the temporal coupled-mode
theory [51–53]. The dynamics of the resonance are given by

du

d t
�

�
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1

τ

�

u� d
T
s�; (3)

where j is the imaginary unit, ω0 ∈ R is the resonant
frequency, τ ∈ R is the total lifetime due to the decay of
the resonance to all channels, d ∈ CN�1 is the column vector
of coupling constants between the resonance and the channels,
and the superscript T stands for the matrix transpose. On the
other hand, light transport among the channels passes through
both the direct and the resonant pathways:

s
−
� Cs� � du; (4)

where C ∈ C�N�1�×�N�1� represents the scattering matrix for
the direct pathway. By energy conservation and reciprocity,
one can show that [50,52]

d
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τ
; (5)

Cd
� � −d: (6)

Next, we construct an explicit expression for the direct
scattering matrix C . We assume that the direct process only
involves channels 0 and 1 that correspond to normal propa-
gating light on the air and the dielectric sides, respectively.
We note that light at all other channels, which by construction
are higher-order diffraction channels on the dielectric side,
undergoes total internal reflection at the air–dielectric
interface as Eq. (1) is satisfied [53]. By choosing appropriate
reference planes for the incoming and outgoing waves, without
loss of generality, the direct scattering matrix C can be
written as
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where r; t;ϕ ∈ R satisfies r2 � t2 � 1. r and t are the ampli-
tude reflection and transmission coefficients, respectively,
between channels 0 and 1, and is the phase factor determined
by the choice of the reference planes [50,54].

We define the overall scattering matrix S ∈ C�N�1�×�N�1�

as follows:

s
−
≡ Ss�: (8)

The complex amplitude reflection coefficient for the normally
incident light in Fig. 1 is given by the first diagonal element in
S as defined by Eq. (8). Using Eqs. (3), (4), and (7), with a
harmonic input of frequency ω, the power reflection coeffi-
cient can then be written as
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where d 0, the first element of d, is the coupling constant of the
resonance to channel 0 in Fig. 2. One could express d 0 in
terms of r, ϕ, and the decay lifetimes using Eqs. (5)–(7):
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Substituting Eq. (10) into Eq. (9), we obtain
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In Eqs. (10) and (11), τi � 2∕jd ij
2 is the contribution to the

decay lifetime of the resonance from leakage to channel i for
any i � 0;…; N , and 1∕τ �

P

N
i�0 1∕τi. Equation (11) im-

plies that complete antireflection, i.e., R � 0, can only be
achieved if
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Then, complete antireflection occurs at the frequency
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Although the decay rates need to exactly satisfy Eq. (12) for
complete antireflection, the deviation from 100% transmission
depends quadratically on the difference between the two sides
of Eq. (12). For example, a 5% increase in τ0 would roughly
result in a 1% reduction from perfect transmission when
the resonant antireflection scheme is used for an air–silicon
interface.

Equations (1) and (12) together represent a sufficient con-
dition in order to achieve perfect resonant antireflection. It is
interesting to note that, if the periodicity is smaller than the
wavelength in the dielectric, i.e., there is only one channel in the
dielectric, Eq. (12) implies that complete antireflection is only
achievable when the resonance decays equally to the air and the
dielectric sides, in consistency with the conclusion in Ref. [54].

3. SIMULATION

In the following, we validate these theoretical results. The pro-
cedure of our numerical validation is to first construct a system
that indeed exhibits complete resonant antireflection, and
then show that, for such a system, its numerically simulated
spectrum is well explained by Eq. (11). For this purpose
and for simplicity without loss of generality, we therefore
simulate structures with geometries shown in Fig. 1 with a one-
dimensional instead of a full two-dimensional array, using
rigorous coupled wave analysis (RCWA) [55]. We vary the
parameters of the structures until complete resonant antireflec-
tion is achieved. For such a structure that exhibits complete
resonant antireflection, we then check its numerically obtained
reflection spectrum against Eq. (11). In Eq. (11), both the res-
onant frequency ω0 and various decay rates τi are extracted
from finite-difference time-domain (FDTD) simulations of
the same structure where we excite the resonance and then
study its decay in the time domain [56]. The direct reflection
coefficient r can be determined by stripping off the resonant
features and then fitting the background of the simulated
spectrum [57]. Since the conditions for complete resonant
antireflection, i.e., Eq. (12), are a direct exact consequence
of Eq. (11), a numerical validation of Eq. (11) therefore
confirms our main theoretical results about the conditions
of complete resonant antireflection.

We first consider a hypothetical structure in Fig. 3, where a
periodic array of infinitely long cylindrical rods with a radius of
390 nm and a periodicity of 1 μm is placed at a distance of
430 nm from an air–substrate interface. The nanorods are
made of a silicon-like lossless material with a dielectric constant
of 12, and the substrate is made of a silicon-nitride-like lossless
material with a refractive index of 2. Such a structure supports
high-Q resonances because the separation weakens the reso-
nant decay in the silicon into the silicon-nitride substrate,
which is assumed to be infinitely thick in the lower half space.
In practice, a spacer layer is required to mechanically support
the silicon rods, and, if a low-refractive-index dielectric such as
silicon dioxide were chosen as the spacer material, the physics
would be similar to this hypothetical scenario.

In Fig. 4(a), we show the simulated transmission spectrum
(red curve) of the structure in Fig. 3. Without the nanostruc-
ture, the direct transmission coefficient would be T �
1 − r2 � 1 − ��n − 1�∕�n� 1�	2 � 0.8889 (green dash-dot
line). We plot the steady state electric field intensity in the
absence of the nanostructure at λ � 1300 nm in Fig. 4(c).
The interference pattern in air indicates significant reflection
at this interface. With the nanorods, there exist a low-Q res-
onance (Q ∼ 100) at around λ � 1236 nm [Fig. 4(d)] with a
nearly unity power transmission T � 0.9985, and two high-Q
resonances (Q ∼ 102) at around λ � 1265 nm [Fig. 4(e)]
and λ � 1371 nm [Fig. 4(f)], with nearly unity power
transmission T � 0.9975 and T � 0.9959, respectively.
Each of the resonances decays to three channels in the dielec-
tric below, and the far-field intensity in air is nearly uniform
because most reflection is eliminated. The resonances therefore
indeed provide near-complete antireflection. Using the proce-
dures outlined in the previous paragraph, we calculate the
theory curve (blue dashed curve) using Eq. (11) in the vicinity
of each resonance. In Fig. 4(a), the direct transmission is taken

Fig. 3. High-Q resonant antireflection structure consisting of an array
of infinitely long cylindrical rods above an air–dielectric interface. The
blue regions represent a silicon-like lossless dielectric with a dielectric
constant of 12. The yellow region represents a silicon-nitride-like lossless
dielectric with a refractive index of 2, which is assumed to be infinitely
thick in the lower half space. The periodicity of the nanorod array is
1 μm. The radius of each rod is 390 nm. The distance between the bot-
tom of the silicon rods and the air–silicon-nitride interface is 430 nm.
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to be the background process in Fig. 4(c) (T � 0.8889, green
dash-dot line), and the coupled-mode theory result (blue
dashed curve) is generated using the decay rates from the
FDTD simulation of the low-Q resonance at λ � 1236 nm

[Fig. 4(d)]. In the vicinity of this low-Q resonance, the
coupled-mode theory and the RCWA simulation agree well.
Therefore, we can further regard this low-Q resonance as part
of the direct pathway to study light transport at the high-Q
resonances. In Fig. 4(b), the green dash-dot curve represents

this direct pathway, which is the numerical spectrum stripped
of its resonant features. The coupled-mode theory result (blue
dashed curve) in Fig. 4(b) is generated using the decay rates
from the FDTD simulations of the two high-Q resonances
at λ � 1265 nm [Fig. 4(e)] and 1371 nm [Fig. 4(f)]. The good
agreement with the RCWA simulation result in Fig. 4(b) pro-
vides a direct validation of our theory.

The theory above can be applied to antireflection in the
practically important air–silicon interface as well. We show
that with a relatively low-Q resonance, one can achieve anti-
reflection over a broader bandwidth, and moreover, the effect
of antireflection can still be reasonably well described by our
theory. We consider a practically significant structure in Fig. 5,
where a periodic array of infinitely long cylindrical rods with a
radius of 200 nm and a periodicity of 1 μm is placed on an air–
substrate interface. Both the nanorods, and the substrate,
which is assumed to be infinitely thick in the lower half space,
are made of a silicon-like lossless material identical to that used
in Fig. 3. Such a structure supports low-Q resonances because
the optical resonances supported by the silicon rods have rel-
atively efficient access to the high density of optical states in the
high-refractive-index silicon substrate.

In Fig. 6(a), we show the simulated transmission spectrum
(red curve) of the structure in Fig. 5. Without the nanostruc-
ture, the interface has a transmission of T � 1 − r2 �
1 − ��n − 1�∕�n� 1�	2 � 0.6953 (green dash-dot line). We
plot the steady state electric field intensity in the absence
of the nanostructure at λ � 1155 nm in Fig. 6(b). Again,
the interference pattern in air indicates significant reflection
at this interface. With the nanostructure, for a sizable
bandwidth, the transmission is improved compared to this
direct transmission. In particular, at the same wavelength of
λ � 1155 nm, the transmission is unity within numerical ac-
curacy: T � 0.99999. The steady state electric field intensity
is shown in Fig. 6(c), and reflection is essentially eliminated as
the field intensity in air is uniform. In contrast, there is another
resonant peak at λ � 1733 nm with a lower transmission
T � 0.8340. Figure 6(d) plots its steady state electric field in-
tensity, which shows interference patterns due to significant
reflections. To validate the theory, we calculate the theory

Fig. 4. Transmission spectrum and steady state electric field intensity
plots for the structure in Fig. 3 at normal incidence. (a),(b) Comparison
of transmission spectra by theory and by simulation. The theory data
(blue dashed curves) are computed using Eq. (11) with decay rates
obtained from FDTD simulations. The simulation data (red curves)
are obtained from a RCWA simulation. (a) The direct transmission
(green dash-dot line) is determined analytically as T � 1 − r2 �
1 − ��n − 1�∕�n� 1�	2 � 0.8889, which serves as the background proc-
ess in Eq. (11). (b) The background process is determined using a fit to
the low-Q resonance spectrum. The red simulation curve is identical to
that in Fig. 1. (c)–(f) Electric field intensity plots. The dashed white
curves are material boundaries. The colorbar is relative and log-scaled,
and red and blue colors correspond to high and low intensities, respec-
tively. (c) Steady state electric field intensity at λ � 1300 nm with the
direct transmission T � 0.8889. The nanorods are removed in this
simulation, and significant reflection is caused by the planar interface.
(d)–(f) Electric field intensity plots with the nanostructure. Each of the
resonances decays to three diffraction channels in the dielectric, and in
all cases, the field intensity is nearly uniform in air because of excellent
antireflection. (d) Steady state electric field intensity at λ � 1236 nmwith
transmission T � 0.9985. (e) Steady state electric field intensity at
λ � 1265 nm with transmission T � 0.9975. (f) Steady state electric
field intensity at λ � 1371 nm with transmission T � 0.9959.

Fig. 5. Low-Q resonant antireflection structure consisting of an array
of infinitely long cylindrical rods on an air–dielectric interface. The blue
regions represent a silicon-like lossless dielectric with a dielectric constant
of 12, and the substrate is assumed to be infinitely thick in the lower half
space. The periodicity of the nanorod array is 1 μm. The radius of each
rod is 200 nm.
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curve (blue dashed curve) using Eq. (11) for each resonance
with r � �n − 1�∕�n� 1�. The theory agrees reasonably well
with the simulation. In particular, for this system, Eq. (1) is
satisfied, and Eq. (12) is approximately satisfied by the decay
rates. Therefore, the theory provides adequately accurate guid-
ance for designing broadband resonant antireflection for large
refractive index mismatch.

4. DISCUSSION

We have applied the temporal coupled-mode theory to
study the resonant antireflection. The formalism developed,

moreover, is general and can be used to study other effects
associated with resonant particles at interfaces [58–60]. For
example, instead of conditions for antireflection, one can
derive conditions for enhanced or perfect reflection [61–65].
Finally, Eq. (1), which represents a sufficient condition for
complete antireflection, also represents an optimal condition
for light trapping [66,67]. Thus, our theory is useful for under-
standing the important synergy of simultaneous antireflection
and light trapping in these systems [15,28,41].

In comparison with other antireflection schemes, such as
the nanocone structure that provides adiabatic impedance
transformation [15,18,20,21,68–71], the resonant antireflec-
tion scheme tends to have narrower operating wavelength
and angular ranges, due to the nature of resonances. Nonethe-
less, this disadvantage can be mitigated to a certain degree by a
number of strategies. For example, in Fig. 4, we note that
a single structure can support multiple resonances, all of
which may approximately satisfy the condition for perfect anti-
reflection, and in Fig. 6, we show that the resonant linewidth
can be increased by placing the resonant structure close to the
high-refractive-index dielectric substrate, which possesses high
density of optical states. Finally, although the two numerical
examples in Section 3 operate in the infrared spectral range,
our theory applies to other spectral ranges such as visible
frequencies, and the simulated structure can be scaled to op-
erate in the visible wavelength using the same set of material
refractive index parameters.

5. CONCLUSION

We have presented a theoretical discussion of the condition of
complete antireflection when an array of resonant structures is
placed at the air–material interface. To achieve perfect antire-
flection, the resonant decay in the reflection and transmission
directions needs to be balanced, and for normally incident
light, the periodicity of the array of nanostructured resonators
should be smaller than the wavelength of the incident light in
air. The theoretical condition serves as a working guideline for
practical resonant antireflection design.
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