
UC Irvine
ICS Technical Reports

Title
Condition graphs for high-quality behavioral synthesis

Permalink
https://escholarship.org/uc/item/6267187j

Authors
Juan, Hsiao-Ping
Chaiyakul, Viraphol
Gajski, Daniel D.

Publication Date
1994-08-03
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6267187j
https://escholarship.org
http://www.cdlib.org/


Notice: This Material

may be protected
by Copyright Law
(Title 17U.S.C.)

Condition Graphs for

High-Quality Behavioral Synthesis

Hsiao-Ping Juan
Viraphol Chaiyakul

Daniel D. Gajski

Technical Report ^94-Z2

August 3, 1994

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717-3425

(714) 856-7063

hjuan@ics.uci.edu

viraphol@ics.uci.edu

gajski@ics.uci.edu

Abstract

Identifying mutual exclusiveness between operators during behavioral synthesis is
important in order to reduce the required number of control steps or hardware re
sources. The quality of the synthesized design is strongly influenced by the number of
mutually exclusive operators that can be identified by synthesis algorithms. To improve
the quality of the design, we propose a representation, the Condition Graph, and an
algorithm for comprehensive identification of mutually exclusive operators. Previous

research efforts have concentrated on identifying mutual exclusiveness by examining
language constructs such as IF-THEN-ELSE statements. Thus, their results heavily

depend on the description styles. The proposed approach can produce results inde

pendent of description styles and identify more mutually exclusive operators than any

previous approaches. The Condition Graph and the proposed algorithm can be used

in any scheduling or binding algorithms. Experimental results on several benchmarks

have shown the efiBciency of the proposed representation and algorithm.

7L

^0. ff-jXj



(BI!'lin'f:-C')
pAcobAuQpi
iJjllApGblO^GCfGO

j/|OilCG;jjji8



Contents

1 Introduction

2 Overview of Our Approach

3 CG and Its Construction

3.1 Defining Usage Condition for an Operator

3.2 Constructing CGs

4 Identifying Mutual Exclusiveness

4.1 Rules for identifying mutual exclusiveness

4.2 Algorithm for Exclusiveness Detection . .

5 Experimental Results

6 Conclusion

7 References



List of Figures

1 An example of behavioral descriptions 4

2 The result of applying previous approaches to identify mutually exclusive

operators in Figure 1 ^

3 The ADD of the example description g

4 The CG of 7

5 The illustration for defining usage conditions 9

6 An example of ADD 4q

7 The construction of CGs for opi 12

8 Algorithm QueryMuEx j^g

9 A walk-through example to illustrate the algorithm 19

10 Experiment results using different approaches 20



1 Introduction

High-level synthesis is a process of producing a register-transfer-level design from a given

abstract behavioral description. In general, the major tasks of this process include schedul

ing the operators from the given behavioral description into control steps and binding the

scheduled operators to appropriate resources. For example, two operators in a behavioral

description may be scheduled into the same control step but performed by different re

sources, or they may be performed by the same resource but in different control steps.

However, if we can identify that the results of these two operators will never to

be used at the same time, that is, if they are mutually exclusive, then they can

be scheduled into the same control step and share the same resource. Conse

quently, the number ofcontrol steps or the hardware cost is reduced. For example, consider

the VHDL description shown in Figure 1(a). Assuming if we can not identify any mutu

ally exclusive operators, then using a simple List Scheduling [4] with a hardware resource

constraint of 1 adder and 1 comparator we will obtain a design of 6 control steps as shown

in Figure 1(b). However, if we can identify that -t-4 and -I-5 are mutually exclusive because

they are used in different conditional branches, we can schedule -(-4 and -f-5 to the same

control step. Thus, one control step is reduced as shown in Figure 1(c). The number of

control steps can be further reduced if we can identify more mutually exclusive operators

as shown in Figure 1(d) and (e).

Mutual exclusiveness between operators can be determined by analyzing the input de

scriptions. Sometimes mutual exclusive operators are obvious from the use of language

constructs (such as IF-THEN-ELSE), while others need a sophisticated data-flow analysis.

For instance, operators -I-4 and -fs in Figure 1 are mutually exclusive because they are in

different branches of the same IF-THEN-ELSE statement. Operators -fs and -t-g are also

mutually exclusive since their respective conditions, (Tl AX) and (TT AA), will never be

TRUE at the same time. Moreover, from a data flow analysis we can determine that the

result of operator +2 {T2) is not used when the condition T\ is TRUE and the result of

+3 (TS) is used only if Tl is TRUE. This means results of operators -t-2 and -I-3 wiU never

be used simultaneously, in other words, -I-2 and -fa are mutually exclusive. The mutual

exclusiveness between +4 and -fg can also be discovered from a similar data flow analysis.

All possible mutually exclusive operators of example Figure 1(a) is shown in the left most



©0 ©0 ©0 ©0

entity exp Is
poit(a, b. c. d, e: in Integer;

x: in bit;
y, 2: out integer);

end exp;

arctiitectureexp of exp is
begin
process

variable T1: bit;
variable T2, T3: integer;
begin

T1 := ((a •hb)<c);
T2 := d -(2 6;
T3 := c 1;
if T1 ttien

y <= T3 •!» d;
else if (not x) ttien

y<= T2-i5d;
end if;

if((not T1) and X) then
2 <=T2-iBe;

end if;
end process;

end exp;

© © © ©
(+53 (+4) (+6) (+6

m.e.operators: m.e.operators: m.e. operators-
none (+4, +5) ^5^M. +5)

(+4,+61
(+5, +6)

Figure 1. An example of behavioral descriptions.

m.e. operators:
(••4, +5)

column of Figure 2.

Two previous papers addressed the issue of identifying mutuaUy exclusive operators [ejp].
However, they identified mutuaUy exclusive operators that are obvious from the use of Ian-
guage constructs. BasicaUy, operators in different branches of the same IF or CASE are
identified. For example, Kim and Liu [6] proposed an algorithm to transform a data-flow
graph with conditional branches into adata-flow graph without conditional branches. This
transformation is done by exploring the possibility of conditional resource sharing among
the operations in conditional branches. Operators in different conditional blocks are as
sumed to be NOT mutually exclusive in this transformation. Thus, given the description
mFigure 1, their algorithm can only identify the mutual exclusiveness between operators
-f-4 and -t-5.

Wakabayashi and Yoshimura [7] used condition vectors to identify mutually exclusive
operations. The condition vector is a one-hot encoding for different branches in the same
conditional block. This approach can identify the mutual exclusiveness among operators in
conditional branches (eg. operators +4 and +5). Moreover, adata-flow analysis is performed
on each of the conditional branches. For instance, by applying adata-flow analysis on the
first if-then-else statement, this approach can actuaUy realize that -I-2 is not used when T1



is TRUE, and operators +2 and +4 are consequently found to be mutually exclusive. Same

analysis reveals that +3 and +5, and +3 and +6 are mutually exclusive.

Some other algorithms, such a.s the path-based scheduling algorithm [2], determine the

conditional usage of operators by analyzing every execution path in the control-flow graph.

For example, there are four execution paths in the description shown in Figure 1: operators

+1-+2-+3-+45 +1-+2-+3-+5) +r-+2-+3-+4-+6) ) and -|-i--l-2-+3"+5-+6- Operators -I-4 and

-(-5 are mutually exclusive since they do not appear in the same path. Moreover, by applying

false path analysis [1], it can be recognized that -|-i--t-2-+3-+4-+6 and 4-1-+2-+3-+5-+6 are

false paths, i.e., operators -t-4 and -f-e, and -f-5 and -fe are mutually exclusive. However,

path analysis can not identify mutual exclusiveness between -I-3 and 1-5,-1-3 and -be, -i-2 and

-1-4, and 1-2 and -I-3.

mutually
exclusive

operators

approaches

Kim's Wakabayashi's Path-based

/• : identified

Figure 2: The result of applying previous approaches to identify mutually exclusive opera
tors in Figure 1.

Figure 2 summarizes the result of applying previously known approaches to the example

in Figure 1. One simple solution to overcome the limitations in previous approaches is to

force the users to write descriptions using language constructs and description styles that

can be recognized by the mutual exclusiveness identification algorithm used in the synthesis

system. This solution is impractical because the users would need to acquire detailed

knowledge of the algorithms used in the system.



In this paper, we propose a new approach which can identify mutually exclusive oper
ators in a behavioral description without resorting to language constructs or styles. The
overview ofour approach is given in the next section. Section 3 outUnes the definition and

representation of the usage condition of an operator in a description. The algorithm for
determining whether two operators are mutually exclusive by evaluating their usage condi
tions is discussed in detail in Section 4. Finally we present the results of our approach on
some HLSW benchmarks and also conclusions.

2 Overview of Our Approach

The main objective of this work is to define operator usage conditions independent of
description styles and to identify mutual exclusiveness of operators by evaluating their
respective usage conditions.

Legend: • = Read node o =Operation node

= Write node
valuel value n

Assignment decision node

Figure 3: The ADD of the example description.

The first step in our approach is to convert the input behavioral description into an

Assignment Decision Diagram (ADD) representation [3]. Figure 3shows an example of the
ADD representation which is derived from the description in Figure 1. The fundamental
concept of the ADD is to represent a given description as a set of all possible conditional



assignments to each output port or internal storage unit. For example, a part of the ADD in

Figure 3 can be interpreted as "?/ will be assigned the value of ((c + l) + d) when (a + 6 < c)

is TRUE, or the value of (d + (d + e)) when {-'X A -1(0 + 6 < c)) is TRUE." If none

of the specified conditions evaluate to TRUE, then y will retain its value. The property

of assignment values and assignment conditions is represented as a triangular assignment

decision node (ADN) in the ADD graph. It is the unique property of the ADN that is of

interest to our work. Basically, the ADN guarantees that only one of its conditions can be

TRUE at a given time. Thus, the assignment values to an ADN are mutually exclusive

because their values wiU be used in conditions which are guaranteed NOT to be TRUE at

the same time.

nnrTimm

• —Read node

o = Operation node

Figure 4: The CG of +6-

The next step is to define and store the usage condition for each operator in the ADD.

The usage condition of an operator is defined as the condition under which the result of

the operator is to be used. Because the conditions for assignments are explicitly shown

in an ADD, the usage conditions of operators can be easily defined in terms of assignment

conditions. For example, in Figure 3, it is obvious that the result of operation +4 is assigned

to y only when {a + b < c) is TRUE. And since the result of +3 is only used by +4, its usage

condition is the same as the usage condition of +4. Similarly, the usage conditions of +5 and

+6 are (-ixA-i(a + 6 < c)) and (x A-'(a + 6 < c)) respectively. As for +2, it is realized by the

data dependencies that the result of +2 is needed when either +5 or +6 is to be executed;

therefore, the usage condition of +2 is ((""a: A-i(a + 6 < c)) V(x A-i(a + b < c))). The usage

conditions are represented and stored using a graph representation called Condition Graph

(CG). The CG representation is developed to minimize the space needed for storing the



usage conditions of operators and to facilitate the evaluation of usage conditions. Figure 4

shows an example of a CG which represents the usage condition of +6 in Figure 3. The

constituents and constructions of CGs for operators in an ADD will be discussed in greater

detail in the next section.

After the CGs for all the operators in the ADD are constructed, the mutual exclusivity of

any two operators can be determined by evaluating their CGs. Two operators are mutually

exclusive if their CGs never evaluate to TRUE simultaneously. For instance, +4 and +5 are

mutually exclusive because their CGs, which represent {a + b < c) and {-^x A-i(a + 6 < c))

respectively, would never evaluate to TRUE at the same time. Similarly, by evaluating the

CGs of +4 and +2^ which represent {a+ b < c) and ((-•xA-i(a + 6 < c))V(a;A-i(a + 6 < c))),

it can be identified that they are mutually exclusive.

The conversion from a behavioral description to an ADD representation has been dis

cussed in detail in [3]. In this paper, we shall focus on how to construct CGs for the operators

in an ADD and also how to identify that mutually exclusive operators by evaluating the

3 CG and Its Construction

In this section, we shall first explain how to define the usage condition for each operator

in an ADD. Afterwards, we shall present how to construct CGs to represent the usage

conditions of all the operators in an ADD.

3.1 Defining Usage Condition for an Operator

The usage condition for each operator in an ADD can be written as an arithmetic ex

pression, which always evaluates to either TRUE or FALSE. The variables in a usage

condition can be bit vectors or integers. The operators in a usage condition consist of

three types: (1) arithmetic operators such as {+, —,x}; (2) relational operators such as

{<, ==, >, <, >, and (3) Boolean operators such as {A,V, -1}.

Let UCi denote the usage condition of an operator opi and UCgi denote the usage

condition of an edge e,-. The usage condition of any operator in ADD can be defined by the

following ajcioms:

Axiom 1 Let {061,062, •••, oe„} be the set of output edges of an operator opi (Figure 5(a)),



oe 1// \oe n

oei// \0©n

Figure 5: The illustration for defining usage conditions.

UCi = UCoe, V UCoe, V •••V UCoe„.

c

The usage condition of an edge can be defined by either one of the following axioms

according to the types of its sink:

Axiom 2 If the sink of an edge e; is an operator opi (Figure 5(b)), then

UCe, = UCi.

Axiom 3 If the sink of an edge e,- is an ADN,

(1) if ei is an assignment condition edge of the ADN (Figure 5(c)), then

UCe, = TRUE;

(2) if e; is an assignment value edge of the ADN and its corresponding assignmentcondition

is ac, let {oei, oe2, •••, oe„} be the set of output edges of the ADN (Figure 5(d)), then

UCei =acA (UCoe, VUCoe^y •••y UCoeJ-



Axiom 4 If the sink of an edge e,- is a write node w (Figure 5(e)), then

UCe; = TRUE.

Figure 6: An example of ADD.

The usage condition of an operator can be obtained through a series of applications of

the above axioms. For example, consider the operator opi in the ADD shown in Figure 6.

According to Axiom I, UCi = UCe^ VUCgj • To obtain UCej, Axiom 3 and 4 can be applied

as foUows;

UCei — aciAUCet (AxiomS)
= ((A * 5 + C < 8) A[Cond == Cl)) ATRUE. (Axiom4)

Similarly, UCe^ can be derived as follows:

UCs

UCe,
ac3 A UCej
((16< A*S + C)A(Cond =

(Axiom2)
(Axioml)
(Axioms)

= Cl)) ATRUE. (Axiom4)

Therefore,

UCi = (((A * 5 + C < 8) A{Cond== Cl)) ATRUE) V(((16 < A * B + C) A{Cond== Cl)) ATRUE).



3.2 Constructing CGs

The CG is a graph used to represent a usage condition of an operator. A CO consists

of two types of nodes (read nodes and operation nodes) and directed edges connecting the

nodes. The read nodes represent the variables in the usage condition. The operation nodes

represent the types of operations that are performed to compute the usage condition. Thus,

a CG can be viewed as a circuit used to evaluate a usage condition and the output is the

result of the evaluation.

From the previous axioms, we observe that the usage condition of an operator is defined

based on the usage conditions of its output edges, which are further defined based on their

sink's usage conditions; therefore, operators on the same path tend to have common sub

expressions. For example, we know that

UCi = {{A*B + C <8)A (Cond == Cl)) ATRUE V (((16 <A*B + C)A {Cond == Cl)) ATRUE;

UCz = ((16 <A*B + C)A {Cond == Gl)) ATRUE.

Clearly, the usage condition of ops is a sub-expression of the usage condition of opi- If the

CG for each operator in an ADD is constructed individually, this would result in a large

number of nodes, and many of the nodes represent the same expressions. Therefore, during

the construction of CGs, we would like to share nodes as much as possible. An example of

sharing nodes between the CGs of op\ and opz is shown in Figure 7(c).

To achieve the sharing of common sub-graphs, the CG of an operator is constructed

by using the CGs of its output edges. Similarly, the CG of an edge is constructed by

using assignment conditions or the CG of its sink if it is an operator. To demonstrate the

construction, we shall walk through an example of constructing the CG for op\ in Figure 6.

According to the derivation shown in the previous section, the CGs of ex and 62 have

to be constructed first. The CG of e\ is constructed by copying the assignment condition

ac2 and 'A' ac2 with a TRUE node. Figure 7(a) shows the CG of ex. Furthermore, since

UCe^ = UC3 = UCe^, to construct the CG of €2 is equivalent to constructing the CG for

63. Similar to ex, the CG of es is constructed by making a sub-graph for aca first, then 'A'

it with the TRUE node. Note that ac^ and ac2 have a common sub-expression A* B C;

thus, acs should share the sub-graph A* B + C with ac2. Figure 7(b) shows the CGs of

ex and 62. Now since the CGs of ex and e2 have been constructed, the CG of opi can be



Cond TRUE

Cond 0 TRUE

Cond fi TRUE

UCi

@ : sub-graph shared
byUCeiand UCw

@ : sub-graph shared
by UCi and UC3

Figure 7: The construction of CGs for opi



constructed by 'V the CGs of ei and e^- Figure 7(c) shows the final result.

4 Identifying Mutual Exclusiveness

To identify that two operators, opi and op2, are mutually exclusive we have to show that

the two operators are never used at the same time. In other words, the corresponding usage

conditions, UCi and UC2, of the two operators will never evaluate to TRUE at the same

time. One simple approach to show that opi and op2 are mutually exclusive is to convert

UCi and f7C2, which could consist of arithmetic sub-expressions, into boolean equations,

then prove that UCi A UC2 will always evaluate to TRUE for all possible values of variables

in UCi and UC2 (ie. proving that UCi A UC2 is a, tautology). However, such an approach

is impractical since it requires exponential time and exponential space. This is because

converting arithmetic expressions that contain variables with significantly large bitwidths

(ie. 8 bits, 16 bits, etc.) to a boolean expression requires exponential space. In addition,

proving a tautology requires exponential time.

Thus, for practicality, we have constructed a set of lemmas and theorems for identifying

sets of mutually exclusive operators that are commonly found in a behavioral description. In

addition, we an algorithm to apply the lemmas and theorems to the usage conditions, which

are represented in CG, of any two given operators in order to determine whether or not

they are mutually exclusive. The algorithm has a O(n^) time and space complexity, where

n is the number of nodes in the CG. The main idea of the algorithm is to "pessimistically"

assume that the operators are NOT mutually exclusive UNLESS the mutual exclusion can

be proved by the lemmas or theorems. This "pessimistic" approach is essential for synthesis

optimization even if it can not tell the exact mutually exclusive relationship between the

operators. This is because by "pessimistically" identifying two operators as NOT mutually

exclusive, even if they are in fact mutually exclusive, the algorithm will only degrade the

optimization rather than producing an incorrect synthesized design.

4.1 Rules for identifying mutual exclusiveness

Given two operators opi and op2, and thier usage conditions UCi and UC2, opi is mutually

exclusive to op2 if and only if UCi® UC2 = TRUE, where "18)" represents the tautology

statement UCi A UC2 = TRUE. The results of (gi can be determined by the following:



Lemma 1 IfUCi andUC2 are assignment conditions of the same ADN, thenUC\®UC2 =

TRUE.

Proof: This is derived from a property of the ADN that says "only one of the assignment

conditions to the same ADN can evaluate to true at any given time."

Lemma 2 if UCi can he statically evaluated to FALSE then we can remove UCi and its

corresponding assignment value from the ADD.

Proof: If the usage condition is always FALSE then the action that is guarded by the

condition will never be executed. This is like a false execution/path in the description.

Thus, the condition and its corresponding action can be removed from the representation

without affecting the functionality of the design.

Lemma 3 If UC\ can be statically evaluated to TRUE and UC2 can not be statically

computed, then UCi ® UC2 = FALSE.

Proof: Since UC2 can not be statically computed, "pessimistically" we assume that UC2

could have value of TRUE. Thus, UCi ®UC2 = UCi AUC2 = YTTUC^ = FALSE, if UC2

evaluates to TRUE.

Lemma 4 UC\ = UC2 (equivalent) if and only if the CG sub-graph representing UCi is

identical (isomorphic) to the CG sub-graph representing UC2.

Proof: If the CG for UC\ is identical to the CG for UC2 then both CGs must be computing

the same function. In other words, for aU possible combinations of values used in the CGs,

UCi and UC2 would give the same value. Hence, UC\ and UC2 are equivalent.

In our application, isomorphism between two CG sub-graphs is identified in linear time

by a one-to-one comparison of the CG without any transformations.

Theorem 1 if UCi = UC2 then UCi ® UC2 = FALSE.



Proof: Following from Lemma 4, if UCi evaluates to TRUE than UC2 will be true, hence

UCi and UC2 can be true at the same time.

[

Theorem 2 if UCi = -^UC2 then UCi ® UC2 = TRUE.

Proof: If f/Ci is a negation of UC2 then UCi will be TRUE if and only if UC2 is FALSE,

and vice versa. Hence, UCi and UC2 will never be TRUE at the same time.

Theorem 3 Given UCi and UC2 that are results of relational operations such that,

UCi = UCn Ropi UC12,

UC2 = UC21 Rop2 UC221

where {Ropi, Rop2 € {<,<,==, >, >}},

if (UCn = UC21) and (UC12 = UC22) then UCi ® UC2 = TRUE if one of the following

conditions, which involve Rop\ and Rop2, is TRUE:

• Ropi is "<" and Rop2 is ">

• Ropi is "<" and Rop2 is ">

• Ropi is "<" and Rop2 is ">

• Ropi is "==" and Rop2 is

• Ropi is "==" and Rop2 is ">

• Ropx is "==" and R0P2 is V"-

Proof: This theorem is obtained from properties of the arithmetic relation. For example,

if UCi is a condition {x + y < z) and UC2 is &condition {x + y > z) (ie., UCn = x + y,

UC12 = 2, UC2\ = X y, UC22 = Ropi is < and Rop2 is >) then UCi and UC2 are

mutually exclusive.



Theorem 4 Given UC\ and UC2 that compute relational operations, as shown in Theo

rem 3, such that UC\\ = UC21 but UC12 7^ UC22- UUCu and UC22 can be evaluated to

constant values then UC\®UC2 = T RU E if one of the following conditions, which involves

Ropi, Rop2, UC12 and UC22, is TRUE:

• Ropi is "<", Rop2 is ">", and constants UC12 < UC22-

• if Rop\ is "<", Rop2 is ">", and constants UC\2 < UC22-

• if Ropi is "<", Rop2 is ">", and constants UCu < UC22-

• if Rop\ is "<", Rop2 is and constants UCu < UC22-

• if Ropx is "==", Rop2 is "<", and constants UCu > UC22-

• if Ropi is "==", Rop2 is "<", and constants UCu > UC22-

• if Ropi is Rop2 is ">", and constants UCu < UC22-

• if Ropi is Rop2 is ">", and constants UCu < UC22-

• if Ropi is "==", Rop2 is "7^", and constants UCu = = UC22-

• if Ropi is Rop2 is and constants UCu 7^ UC22-

:

For example, if UCi is a condition (x == 1) and UC2 is (x == 2) (ie., UCn = x,

UCu = 1, UC21 = X, UC22 = 2, Ropi = "==" and Rop2 = "=="), then UCx ® UC2 =

TRUE.

In the case where the usage conditions are complex boolean expressions, the mutual

exclusion of the conditions can be proven by decomposing the conditions into sub-conditions

and proving the exclusion on the decomposed sub-parts. The decomposition rules are as

follows:

Theorem 5 ifUCi = UCn A UCu, then

{UCn AUCu) ® UC2 = {UCn ® UC2) V{UCu ® UC2).



Proof:

iUCnAUCi2)®UC2 = (t/Cii A/7Ci2) A C/C2

(CT^VCT^) vIT^

iU^iVlW^)V (UC^yUC^)

{UCu/\UC2) V iUCi2 A UC2)

{UCn ® UC2) V{UC12 ® UC2).

Theorem 6 ifUCi = UCn V UCn, then

{UCn VUCn) ® UC2 = {UCn ® UC2) A{UCn ®

Proof:

(?7Cii VC/Ci2)®t/C2 = (C/Cii V tACi2) A C/C2

(TT^aF^) VCT^

(FcTT VFc;) A(cTc^ VFc7)

(C/Cii A UC2) A (;7Ci2 a UC2)

{UCn ® PC2) A{UCn ® ^7^2).

To demonstrate the use of these lemmas and theorems, consider the usage conditions of

op2 and ops from Figure 6:

UC2 = {Cond==C2)

UC3 = {A*B + C>W)A {Cond == C\)

Determining the mutual exclusion between op2 and op^ using the proposed lemmas and

theorems can be accomplished as follows:

C/C20PC3 = {Cond == C2) 0 ((A * 5 + C > 16) A{Cond == Cl))
{{Cond==C2)^ {A*B^C > 16)) V{{Cond== C2) 0 {Cond =
{{Cond == C2) 0 (A * 5 + C > 16)) V 1
1

= Cl)) (Theorems)
(Theorem4)

4.2 Algorithm for Exclusiveness Detection

Given two nodes from CGs, o, and Oj, each of which represents a usage condition of an

operator node, we can determine the mutual exclusiveness between the two conditions using

lemmas and theorems according to the QueryMuEx shown in Figure 8.



Algorithm QueryMuEx(o,•, Oj)

Inputs; Two nodes in the CGs.

Output; true if o,- and Oj are mutually exclusive; false otherwise.

begin Algorithm

if (ApplyLemmas{oi,0j) = unknown) then
return{Decompose(oj, o,));

end if;

return ApplyLemmas(oi, Oj);

end Algorithm

Algorithm Decompose(o,',0;)

Inputs; Two nodes from the CGs.

Output; irue if o,- and Oj are mutually exclusive; false otherwise,

begin Algorithm

if (oj = A) then
return (QueryMuEx(oj, LeftPred(oi)) VQueryMuEx(oj, RightPred(oi)))',

else if (oi = V) then
return (QueryMuEx(oj, LeftPred(oi)) AQueryMuEx(oj, RightPred(oi)))-,

else return(EALSE)]
end if

end Algorithm

Figure 8: Algorithm QueryMuEx.



Basically, QueryMuEx is a recursive procedure. Each time it is called, it checks whether

any of the lemmas can be used to determine the mutual exclusiveness of o,- and Oj. If none

of the lemmas is applicable, then QueryMuEx calls Decompose to decompose the o,- and/or

Oj and then recursively applies QueryMuEx to the decomposed sub-expression.

M 05 M

ac3\^y^2
(y) oi

ac4 aci

QueryMuEx(oi, 02)

true
decompose

QueryMuEx(03, 02) A QueryMuEx(04, 02)
true W\

——decompose /nm* \ Lemma 1trueZ V Lemma 1

QueryMuEx(0 5, 02) V QueryMuEx(06, 02)

falseTheorem 4

false true

Figure 9: A walk-through example to illustrate the algorithm.

To illustrate the execution of the QueryMuEx algorithm, let us consider a CG graph

shown in Figure 9. The mutual exclusiveness of usage conditions oi and 02 can be deter

mined by executing QueryMuEx(o\, 02)- Since ApplyLemmas{oi,02) returns unknown,

the algorithm decomposes oi into 03 and 04 and recursively applies lemmas to the sub-

conditions. The decomposition as shown in Figure 9 is further performed until the mutual

exclusiveness of the expressions can be determined. Then results from the last recursion is



returned to the previous level ,as shown in Figure 9 as dotted hues, until the top-most call.

5 Experimental Results

We have tested our algorithm on several benchmarks from the High-Level Synthesis

Workshop [5] and the previous publications. Results from a selected set of benchmarks,

Wakabayashi's example [7], Kim's example [6], AMD2901, and AMD2910, are shown in

Figure 10. For each benchmark we obtained three different VHDL behavioral descriptions.

Each of the descriptions differs in the use of language construct (eg. IF-THEN-ELSE, and

CASE statements) and description style (eg., grouping of conditional assignments). Eor

example, description 1, 2 and 3 are behavioral descriptions of AMD2901 written in different

styles.

Example # of operators totai # of
m.e. pairs

Description 1 6 12

Description 2 6 12

Description 3 6 12

Description 4 16 45

Description 5 16 45

Description 6 14 21

Description 7 25 140

Description S 25 140

Description 9 25 140

Description 10 27 338

Description 11 27 338

Description 12 25 286

100 %

0 %

50 %

100 %

26.7 %

100 %

100 %

0 %

100 %

100 %

0.9 %

100 %

% of m.e. pairs detected

Kim's path-based

100 % 100 %

0 % 100 %

50 % 100 %

100 % 100 %

26.7 % 100 %

76.2 % 76.2 %

100 % 100 %

0 % 100 %

68.5 % 68.5 %

100 % 100 %

0.9 % 100 %

85.3 % 85.3 %

Figure 10: Experiment results using different approaches.

For each description, we manually compute the number of operators and the total num

ber of pairs of operators that are mutually exclusive. These numbers are shown as the #



of operators and total # of m.e. pairs, respectively. It should be noted that even though

the total number of mutually exclusive operators are computed manually, the computation

process is NOT trivial and it is time consuming. For example it took approximately 6 hours

to manually compute these numbers for description 7.

Subsequently, we invoke different algorithms on each description to find all possible pairs

of operators that are mutually exclusive for that example. The result of this experiment

is reported in terms of the percentage of operator pairs that are found by the algorithm

as compared to the number found manually {total # of m.e. pairs). Figure 10 shows re

sults obtained using Kim's approach [6], Wakabayashi's approach [7], path-based scheduling

approach [2], and our approach.

The results show that our approach can completely identify aU possible pairs of mutually

exclusive operators. On the other hand, Kim's, Wakabayashi's and path-based approach

can identify all possible pairs only for certain description styles.

6 Conclusion

Identification of mutual exclusivity between operators in a behavioral description is an

essential issue in optimization of hardware resources and minimization of control steps. In

this paper, we have presented an approach that can identify mutually exclusive operators

in a description. The proposed approach utilizes the exclusivity between conditions under

which each operator is used as the basis of the identification process. Basically, operators are

mutually exclusive if, and only if, they are used in conditions that wiU never be true at the

same time. The paper presents a method of deriving operator usage-condition. Condition

Graph, a unique and efficient representation for usage conditions, and a set of lemmas,

theorems, and an algorithm for determining exclusivity of usage conditions.

Wedemonstrated efficiency of the proposed approach on several benchmarks of the High-

level Synthesis Workshop. The results show that the proposed approach can identify all

possible mutual exclusive operators in the benchmark, and out perform all previously known

approaches. In addition, unlike previous approaches, the proposed approach is independent

of language constructs and description styles used in the description.



7 References

[1] R.A. Bergamaschi, "The Effects of False Paths in High-Level Synthesis," Proc. ICCAD

91, 1991.

[2] R. Camposano, "Path-Based Scheduling for Synthesis," IEEE Trans. CAD, Vol.10,

no.l, Jan. 1991.

[3] V. Chaiyakul, D.D. Gajski and L. Ramachandran, "High-level Transformations for

Minimizing Syntactic Variances," Proc. 30th DAC, 1993.

[4] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip

and System Design, Kluwer Academic Publishers, 1992.

[5] Benchmarks for the Sixth International Workshop on High-Level Synthesis, 1992.

[6] T. Kim, J.W.S. Liu, and C.L. Liu, "A Scheduling Algorithm For Conditional Resource

Sharing," Proc. ICCAD 91, 1991.

[7] K. Wakabayashi and T. Yoshimura, "Global Scheduling Independent of Control Depen

dencies Based on Condition Vectors," Proc. 29th DAC, 1992.


