
Transportation Safety and Environment , 2023, 5 : tdac048 

DOI: 10.1093/tse/tdac048 
Advance access publication date: 22 December 2022 

Research Article 

Condition monitoring and fault diagnosis str a tegy of 

rail w ay point machines using vibration signals 

Yongkui Sun 

1 , Yuan Cao 1 , Haitao Liu 

2 , Weifeng Yang 2 , * and Shuai Su 

3 

1 National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong University, Beijing 100044, China; 
2 CRRC Zhuzhou Institute Co Ltd, Zhuzhou 412001, Hunan, China; 
3 Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing 100044, China. 
∗Corresponding author. E-mail: yangwf@csrzic.com 

Abstract 

Condition monitoring of rail w ay point machines is important for train operation safety and effecti v eness. Referring to the fields of 
mechanical equipment fault detection, this paper proposes a fault detection and identification str ate gy of r ail w ay point machines via 
vibration signals. A compr ehensi v e featur e distilling appr oach by combining v ariational mode decomposition (VMD) energy entropy 
and time- and frequency-domain statistical features is presented, which is more effective than single type of feature. The optimal set 
of features was selected with ReliefF, which helps impr ov e the diagnosis accuracy. Support vector machine (SVM), which is suita b le 
for a small sample, is adopted to realize diagnosis. The diagnosis accuracy of the proposed method reaches 100%, and its effec- 
ti v eness is verified by experiment comparisons. In this paper, vibration signals are creatively adopted for fault diagnosis of railway 
point machines. The presented method can help guide field maintenance staff and also pr ovide r efer ence for fault diagnosis of other 
equipment. 

Ke yw or ds: r ail w ay point machines, condition monitoring, variational mode decomposition (VMD) energy entropy, statistical features 

1. Introduction 

Railway has been developing rapidly in recent years [ 1–3 ]. Health 

state monitoring for vital devices and equipment has become in- 
cr easingl y popular around various fields [ 4–9 ]. Especially, railways 
such as heavy haul r ail way and high-speed r ail way in China have 
been de v eloping r a pidl y, and hav e become the main force of car go 
and passenger transportation [ 10–15 ]. The railway system is a crit- 
ical and complex system to k ee p transportation tasks safe and 

efficient. To r eac h the goal, condition monitoring for core devices 
has become a hot issue [ 16–20 ]. Now, maintenance for r ail way sig- 
nalling devices mainly means regular maintenance (time-based 

maintenance), which costs a lot of human resources . T herefore , it 
is necessary to use intelligent technology to realize fault diagnosis 
of k e y r ail way signalling equipment. 

Rail way point mac hines ar e one of the principal r ail way sig- 
nalling devices to provide a required route for the train. Owing to 
se v er e outdoor circumstances, failures of railway point machines 
account for over 40% of all failures of railway signalling systems 
[ 21 ,22 ]. Railway point machines have a significant influence on 

the operation safety and efficiency of the r ail way system. If the 
turnout is not switched in place or is unlocked when the train 

passes , there ma y be a major thr eat for tr ain oper ation. Besides, it 
will also influence the transportation efficiency. Thus it is neces- 
sary to exploit an intelligent and effective fault diagnosis method 

for r ail way point mac hines. 
At present, most fault detection and condition monitoring 

strategies for railway point machines are developed by analysing 
curr ent curv es . T hese methods are listed as follows: 

1) Thr eshold-based method: de viation detection is a com- 
monly used measure to detect whether the system fails. Eu- 
clidean distance is usually utilized to e v aluate data de via- 
tion [ 23 ]. Ho w e v er, since the time of switc hing pr ocess may 
be different, the data length of curr ent curv es may be differ- 
ent, meaning Euclidean distance cannot be used dir ectl y. Dy- 
namic time warping can evaluate the similarity between two 
samples with different lengths . T hus dynamic time warp- 
ing has been used to realize fault detection for r ail way point 
machines [ 24 ,25 ]. Ho w ever, fault sour ces location cannot be 
realized using dynamic time warping. 

2) Expert system: this enables the computer to diagnose faults 
by inputting expert knowledge and reasoning rules to it [ 26 ]. 
It was applied to the condition monitoring of the railway 
point machine [ 27 ]. Though it has some intelligence, its ap- 
plication is limited because a lot of expert experience is 
needed. 

3) Model-based method: the main idea is to de v elop a math- 
ematical model for the r ail way point machine according to 
its switc hing mec hanism. Then, the par ameter estimation 

[ 28 ,29 ] method can be applied to realize fault detection and 

diagnosis . T here are only a few model-based studies about 
r ail way point machines [ 30 ]. Howe v er, the r ail way point ma- 
chine is a very complex electromechanical system, so its 
switc hing pr ocess is hard to describe . Besides , model param- 
eters are difficult to acquire. 

4) Signal processing-based method: at present, the approach 

used most for fault detection and condition monitoring of 
r ail way point mac hines is signal anal ysis, suc h as curr ent 
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Fig. 1. Experiment setup: (a) data collection platform; (b) sensor installation. 

signal [ 31–33 ]. Especially, sound signal has been applied 

in the fault detection and condition monitoring of r ail way 
point machines [ 34 ,35 ], which is a new idea. Though it is a 
contactless fault diagnosis method, it is easily affected by 
en vironmental noises . 

Vibr ation signals wer e extensiv el y a pplied in fault detection 

and idetification fields, such as wind turbine [ 36 ], gear [ 37 ] and 

motor [ 38 ]. Inspired by the application of sound signals in r ail way 
point machines and the application of vibration signals in other 
fields, this paper adopts vibration signals to realize the fault detec- 
tion and identification of r ail way point mac hines. The adv anta ge 
of vibration signals is that they are not easily disturbed by envi- 
ronmental noise . Besides , developed signal processing technology 
can provide technical support. 

Though vibration signals have not been applied in the fault di- 
a gnosis of r ail way point mac hines, studies of other fields can pro- 
vide r efer ences, for instance statistic featur es of time-domain [ 39 ], 
statistic features of frequency-domain [ 40 ] and features of time- 
frequency domain [ 41 ]. The mechanical vibration signal is usu- 
ally nonlinear and non-stationary. For the convenience of analy- 
sis, it is usually necessary to be stabilized. The commonly used 

method is empirical mode decomposition (EMD), which can de- 
compose the raw complex signal into se v er al intrinsic mode func- 
tions [ 42 ]. Ho w e v er, mode mixing exists in EMD. Some impr ov ed 

versions (ensemble EMD [ 43 ] and complementary ensemble EMD 

[ 44 ]) ar e pr oposed to addr ess this pr oblem. Though EMD, including 
its e volutionary v ersions, is extensiv el y utilized in various fields, it 
is not strictly based on mathematical derivation. It is worth noting 
that variational mode decomposition (VMD), proposed in 2014, is 
a pr efer able tool for pr ocessing nonlinear and non-stationary sig- 
nals, and has a complete mathematical foundation [ 45 ]. 

For featur e extr action, ener gy information is widel y used as the 
fault featur e, whic h is often combined with entr opy, suc h as EMD 

ener gy entr op y [ 46 ] or w av elet entr opy [ 47 ]. Besides, time-domain 

statistical featur es, suc h as peak-peak v alue or mean v alue, and 

frequency-domain statistical features, such as gravity frequency 
or standard deviation frequency, have also been widely used due 
to their simplicity and high extraction efficiency [ 48 ,49 ]. Howe v er, 
a single type of feature cannot completely reflect the fault fea- 
tur es, whic h may result in failure for achieving the best diagnos- 
tic results . T hus , this pa per aims to integr ate differ ent types of 
features to realize high-accuracy fault diagnosis. 

Feature selection is also a principal part of fault diagnosis be- 
cause high-dimensional features usually contain lots of redun- 
dant information, which can reduce the fault diagnosis accuracy. 
The feature selection approaches are mainly of two types: filter 

and wr a pper. The filter featur e selection method is suitable for 
fast fault location due to its high efficiency. The wr a pper featur e 
selection method is time-consuming due to the iter ativ e pr ocess. 
Considering the real-time requirement of fault diagnosis of rail- 
way point machines, the filter method is used in this paper. As 
one of the pr efer able filter feature selection methods, ReliefF has 
been widely used in feature selection and obtains good effects [ 50 ]. 
Ther efor e, ReliefF is adopted in this paper. 

Re vie wing the abov e-mentioned liter atur e, this pa per pr oposes 
a vibration signal-based fault detection and condition monitor- 
ing strategy of railway point machines. Firstly, VMD is utilized to 
pr epr ocess the r aw vibr ation signal, and a series of modes can be 
obtained. Secondl y, VMD ener gy entr opy and time- and fr equency- 
domain statistical features are distilled, which can more com- 
pr ehensiv el y c har acterize the fault featur es compar ed with sin- 
gle type of feature . T hen, ReliefF is applied to reduce the fea- 
ture dimension and elect the optimal features by reducing the 
redundant information among the feature points. Finally, a sup- 
port vector machine is applied for fault identification, which is 
optimized using particle swarm optimization. Experiment com- 
parison shows the superiority of the presented fault detection ap- 
pr oac h. 

The fr ame work of the pa per is as follows: Section 2 shows the 
setup and vibration signal description. Section 3 presents the de- 
veloped fault detection strategy. Section 4 shows the results and 

analysis. Section 5 gives the conclusions. 

2. Setup and vibr a tion signal description 

This section introduces the experiment setup and collected vi- 
bration signals under different fault conditions . T he vibration sig- 
nals wer e acquir ed fr om a labor atory in Xi’an Railway Signal Co., 
Ltd. The r esearc h object is a ZDJ9 r ail way point mac hine, whic h is 
widel y a pplied in r ail way infr astructur e , in China. T he accelerom- 
eter sensor PCB 356A16 K with sampling frequency of 5.12 kHz 
was installed on the thr ow r od. The experimental device is shown 

in Fig. 1 . 
The vibration signals of eight conditions were collected us- 

ing an accelerometer sensor. Their time-domain waveforms and 

working condition descriptions ar e giv en in Fig. 2 (the y -axis rep- 
r esents the vibr ation acceler ation amplitude with a unit of gravi- 
tational acceleration) and Table 1 , respectively. 

The collected fault types are commonly faults . T he s witching 
resistance may be caused by untimel y maintenance, suc h as a 
shortage of lubricant on the slide plate, which will increase the 
switc hing r esistance. When ther e ar e obstacles between the stoc k 
rail and the blade, the blade cannot closel y attac h to the stock 
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Fig. 2. Waveforms of vibration signals of different conditions: (a) 
condition-a; (b) condition-b; (c) condition-c; (d) condition-d; (e) 
condition-e; (f) condition-f; (g) condition-g; (h) condition-h. 

Table 1. Vibration signal description. 

Condition Description Length range/s 

a The load is smaller than nominal load (3 kN) 6.84–8.20 
b Nominal load (4 kN) 6.75–7.29 
c The load is larger than nominal load due to 

switc hing r esistance (I) (5 kN) 
6.84–8.20 

d The load is m uc h lar ger than nominal load 
due to switching resistance (II) (6 kN) 

6.95–9.18 

e The r ail way point machine slips due to 
obstacles 

3.91–7.85 

f Indication circuit cannot be connected due 
to improper gap 

6.64–7.13 

g No load (broken throw rod) 7.28–7.81 
h The r ail way point machine slips due to 

insufficient friction of frictional clutch 
5.19–8.79 

r ail, leading to r ail way point mac hine slipping. The thr ow r od is 
utilized to transmit the conversion force to the blade. When the 
thr ow r od is br oken due to train impact, the blade cannot be 
s witched. T he friction of the frictional clutch should be adjusted 

pr operl y so that the switching process can be finished smoothly. 
If the friction is insufficient, the output conversion force cannot 
drive the moving blade. 

It can be intuitiv el y seen that the waveforms of the last four 
conditions ar e ob viousl y differ ent fr om those of other conditions, 
while the waveforms of the first four conditions are very similar. 
T hus , to exploit effective fault detection, an identification strategy 
to ac hie v e accur ate fault r ecognition is essential. 

3. Proposed fault diagnosis method 

This section presents the given identification method for the rail- 
wa y point machine . Some basic theory and methods are intro- 
duced. Then, the fr ame w ork and flo w of the de v eloped fault de- 
tection strategy are shown. 

3.1 VMD energy entropy 

Dr a gomir etskiy et al. [ 45 ] proposed a completely non-recursive 
VMD in 2014, which can extract the decomposed modes at the 
same time . T he algorithm searches a set of modes and the corre- 
sponding centre frequencies, so that these modes can reconstruct 
the input signal together. Besides, each mode becomes smooth af- 
ter it is demodulated to the corresponding baseband. The essence 
of the algorithm is to extend the classical Wiener filter to multiple 
ada ptiv e bands, whic h pr ovides a solid theoretical foundation and 

is easy to be understood. To effectiv el y optimize the variational 
model, the alternating direction multiplier method is adopted, 
which makes the model more robust to sampling noise. VMD can 

decompose the original signal into k modes with different centre 
frequency bandwidth, and take the minimum sum of all modes’ 
estimation bandwidth as the optimization object. The optimiza- 
tion object is 

min { 
K ∑ 

k =1 

|| ∂ t [( δ( t) + 

j 
πt 

) ∗u k (t)] e −j w k t || 2 2 } 

s.t . 
K ∑ 

k =1 

u k = f (t ) (1) 

where, f ( t ) is the raw signal, u k represent the modes, w k represent 
the corr esponding centr e fr equencies of u k , and δ( t ) is the Dirac 
distribution function. 

Then, the augmented La gr ange function is a pplied to the 
above-mentioned optimal problem, as 

lL ({ u k } , { w k } , λ) = || f (t) −
K ∑ 

k =1 

u k (t) || 2 2 + 

α

K ∑ 

k =1 

|| δ( t)[( δ( t) + 

j 
πt 

) ∗u k (t)] e −j w k t || 2 2 + 

〈 
λ( t) , f ( t) −

K ∑ 

k =1 

u k (t) 

〉 
(2) 

wher e, α pr esents the quadratic penalty factor and λ represents 
the La gr ange m ultiplier. 

The alternating direction multiplier approach is introduced and 

applied to handle the optimal issue, as 

� 

u 
n +1 

k (w ) = 

� 

f (w ) + 

∑ 

i � = k 

� 

u i 
n 
(w ) + 

� 

λ
n 
(w ) 
2 

1 + 2 α(w − w k 
n ) 2 

w 

n +1 
k = 

∞ ∫ 
0 

w | � 

u 
n +1 

k (w ) | 2 d w 

∞ ∫ 
0 
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u 
n +1 

k (w ) | 2 d w 

� 

λ
n +1 

(w ) = 

� 

λ
n 
(w ) + τ ( 

� 

f (w ) −
K ∑ 

k =1 

� 

u 
n +1 

k (w ) ) (3) 

where, 
� 

f (w ) , 
� 

u 
n 

k (w ) , 
� 

u i 
n 
(w ) and 

� 

λ
n 
(w ) are the Fourier transform of 

f ( t ), u n k (t) , u n i (t) and λn ( t ), r espectiv el y. 
Finall y, the r aw signal is decomposed as 

f (t) = 

K ∑ 

k =1 

u k (t) (4) 

The pr ocedur es of VMD ener gy entr opy ar e giv en as 
follows: 
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Table 2 Time- and frequency-domain statistical features. 

Feature Equation 

Mean x = 

[ ∑ N 
i =1 

∣∣x (i ) ∣∣] /N 

Standard deviation (STD) x std = 

√ [ ∑ N 
i =1 ( x ( i ) − x ) 2 

] 
/N 

Skewness x ske = 

[ ∑ N 
i =1 ( x ( i ) − x ) 3 

] 
/ 
[
( N − 1 ) x 3 std 

]
Kurtosis x kur = 

[ ∑ N 
i =1 ( x ( i ) − x ) 4 

] 
/ 
[
( N − 1 ) x 4 std 

]
Peak x p = max 

∣∣x (i ) ∣∣
Root mean square (RMS) x rms = 

√ [ ∑ N 
i =1 x 2 (i ) 

] 
/ N 

Crest factor (CF) x cf = x p /x rms 

Shape factor (SF) x sf = x rms / 
[ 
( 1 /N ) 

∑ N 
i =1 

∣∣x (i ) ∣∣] 
Impulse factor (IF) x if = x p / 

[ 
( 1 /N ) 

∑ N 
i =1 

∣∣x (i ) ∣∣] 
Margin factor (MF) x mf = x p / 

[ 
( 1 /N 

∑ N 
i =1 

√ ∣∣x ( i ) ∣∣) 2 ] 
F requenc y center (FC) x fc = 

[ ∑ K 
i =1 f ( i ) s ( i ) 

] 
/K 

Root mean square F requenc y (RMSE) x rmsf = 

√ [ ∑ K 
i =1 f 2 ( i ) s ( i ) 

] 
/ 
∑ K 

i =1 s (i ) 

Standard deviation frequency (SDF) x sdf = 

√ [ ∑ K 
i =1 ( f ( i ) − x fc ) 

2 s (i ) 
] 
/ 
∑ K 

i =1 s (i ) 

Note: s ( i ) is frequency spectrum amplitude, f ( i ) presents the corresponding frequency of s ( i ) and M represents the spectrum line number. 

First, calculate the energy information of each mode u k ( t ) as 

E k = || u k (t) || 2 2 (5) 

Then, the total energy is calculated as 

E = 

K ∑ 

k =1 

E k (6) 

Finall y, the VMD ener gy entr opy can be acquired via the defini- 
tion of Shannon entropy 

e n k = −p k log ( p k ) , p k = 

E k 
E 

(7) 

3.2 Time- and frequency-domain features 

Time- and frequency-domain statistical features’ and parame- 
ters’ distilling is efficient and simple, and has been extensiv el y 
used in mechanical equipment fault diagnosis fields. Taking sig- 
nal with length of N as an example, the commonly used statistical 
featur es ar e giv en in Table 2 . 

In order to r emov e the effect of dimensions, the obtained time- 
and frequency-domain features are standardized by 

u = 

u − mean (u ) 
var (u ) 

(8) 

wher e, mean (u ) and v ar (u ) r epr esent the mean and variance of 
vector u . 

3.3 ReliefF 

Feature selection has a great impact on diagnosis accuracy. The 
basic idea of ReliefF algorithm is that it is using the capability of 
features to discriminate close-distance samples. First, a sample 
R is r andoml y selected fr om the tr aining set D . Then, the q near- 
est samples H (called Near Hit) and M (called Near Miss) are de- 
termined from the same class of R and the other classes, respec- 
tiv el y. Then, the weight update rules of each feature are stated as: 
if the distance of a feature between R and Near Hit is smaller than 

that between R and Near Miss, the corresponding feature is con- 
ducive to identify the nearest and easily confused samples of the 

same condition and different conditions, whose weight will be in- 
creased. If not, the weight of the corresponding feature will be re- 
duced. After repeating m times, the av er a ge weight of each feature 
is finally obtained. The greater the feature weight, the stronger 
the feature identification ability. Otherwise, the weaker the clas- 
sification ability of the feature . T his approach is very efficient. The 
weights update rule is 

W(A ) = W(A ) −
q ∑ 

b=1 

dif (A, D i , H b ) / (mq ) + 

∑ 

d / ∈ class ( D i ) 

[ 
p(d) 

1 − p( class ( D i )) 

q ∑ 

b=1 

dif ( A, D i , M b ( d)) ] / (mq ) (9) 

wher e, p ( d ) r epr esents the prior pr obability of class d , m pr esents 
iteration times and M b ( d ) is the b th sample with smallest distance 
which belongs to class d . The operator dif ( ·) is 

dif (A, D i , H b ) = 

⎧ ⎨ 

⎩ 

0 , D i [ A ] = H b [ A ] 

1 , D i [ A ] � = H b [ A ] 
(10) 

where, D i [ A ] is feature A in D i , and H b [ A ] is feature A in H b . 

3.4 SVM 

SVM is a po w erful means which is widely utilized to address pat- 
tern and fault recognition with good effect. It is based on mathe- 
matical deriv ation, whic h takes the structur al risk minimization 

as the optimization function. By introducing the kernel function, 
SVM can address the nonlinear classification issue, where the ra- 
dial basis function is the pr efer able kernel function. Due to its ap- 
plicability to small sample data, SVM is utilized in this paper. The 
hyper par ameters of SVM ar e optimized by particle swarm opti- 
mization, which is presented in our study [ 16 ]. 

3.5 Proposed method 

Integr ating the abov e-mentioned methods, an intelligent fault de- 
tection and identification strategy of r ail way point mac hines is 
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F ig. 3. Flo wchart of the presented diagnosis strategy. 

pr esented. The flowc hart of the presented diagnosis strategy is 
given in Fig. 3 . 

During feature extraction, two types of feature are extracted: 
ener gy entr opy and statistical featur es, whic h constitute the r aw 

feature set. Then, ReliefF is applied to elect the optimal feature 
set. Finall y, tr aining samples are utilized to train the SVM classifi- 
cation model. Test samples are utilized to verify the effect of the 
presented fault detection strategy. 

4. Results and analysis 

4.1 Fea ture extr action 

To extract the VMD energy entropy, VMD is utilized to disintegrate 
the original vibration signals during the switching of r ail way point 
machine . T he time-domain waveforms of the obtained modes of 
a sample of condition-a are given in Fig. 4 . 

Fig. 4 shows the first 14 modes of a sample of condition- 
a. The first se v er al modes contain high-frequency information, 
which will characterize the characteristics of the original vibra- 
tion signal to a great extent. In this paper, the first 12 modes 
are selected to extract VMD energy entropy. T hus , a vector with 

12 entropy features can be obtained for each sample . T hen, 
13-dimensional time- and frequency-domain statistical param- 
eters and features are acquired and standardized from original 
vibration signals. By integrating VMD energy entropy and sta- 
tistical featur es, a v ector with 25 featur es for eac h sample is 
obtained. 

4.2 Feature selection 

In this paper, 436 samples are separated into two parts: 261 train- 
ing samples and 175 test samples . T he detailed data separation 

situation is given in Table 3 . 
Not all the 25 features are beneficial for fault identification. To 

abandon the ineffective features and reserve the optimal features, 
ReliefF is adopted to realize feature selection. The weights of the 
25 features using ReliefF are given in Fig. 5 . Besides, 25 features 

Fig. 4. VMD results of a sample of condition-a: (a) mode1; (b) mode2; (c) 
mode3; (d) mode4; (e) mode5; (f) mode6; (g) mode7; (h) mode8; (i) mode9; 
(j) mode10; (k) mode11; (l) mode12; (m) mode13; (n) mode14. 

Table 3. Detailed data separation description. 

Condition a b c d e f g h Total 

Training samples 36 34 36 23 24 36 36 36 261 
Test samples 24 23 24 16 16 24 24 24 175 

combining EMD energy entropy and statistical features are also 
processed using ReliefF. The corresponding weights are given in 

Fig. 6 . 
It can be concluded that the weights of VMD ener gy entr opy ar e 

m uc h lar ger than those of EMD ener gy entr opy, indicating that 
the discrimination ability of VMD energy entropy is better than 

that of EMD energy entropy. Besides, the discrimination ability 
of VMD ener gy entr opy (the first 12 features) is better than the 
statistical features (the last 13 features). To further verify the va- 
lidity of the presented feature extraction methods, the following 
part will give the sort results using SVM. In this paper, the fea- 
tures whose weights are larger than 0 are selected as the optimal 
features. 
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Fig. 5. Weights of the 25 features (VMD energy entropy and statistical 
features). 

Fig. 6. Weights of the 25 features (EMD energy entropy and statistical 
features). 

4.3 Comparison 

To validate the advantages of the presented fault detection and 

identification strategy based on the integr ated featur e extr action 

method (combining VMD ener gy entr opy and statistical featur es) 

and ReliefF, some fault diagnosis methods are given as compar- 
isons . T her e ar e method1: fault detection str ategy using VMD en- 
er gy entr opy and statistical featur es; method2: fault detection 

str ategy using EMD ener gy entr opy and statistical features and 

ReliefF; method3: fault detection strategy using VMD energy en- 
tropy and ReliefF; and method4: fault detection strategy using sta- 
tistical features and ReliefF. The fault diagnosis results are given 

in Table 4 and Fig. 7 . 
The conclusion can be drawn that the diagnosis effect of con- 

ditions f – h is good using all these methods because the distinc- 
tion c har acteristics among them ar e ob vious, whic h can be intu- 
itiv el y r eflected fr om their time-domain wav eforms (see Fig. 2 ). 
The diagnosis effect of the first five conditions using method1 
to method4 is not very satisfying because the first five condi- 
tions are similar. Especially, method2 and method4 perform the 
worst, indicating that EMD energy entropy is not effective for 
diagnosing faults of railway point machines . T he single statisti- 
cal feature is also not very effective for fault diagnosis using vi- 
bration signals. If all extracted features are used (method1), the 
dia gnosis accur acy is 96.57%, whic h is not v ery satisfying due 
to redundant information among these features. Method3 per- 
forms m uc h better, demonstr ating the effectiv eness of VMD en- 
er gy entr opy featur es. By combining statistical featur es, the dia g- 
nosis accuracy can be further impr ov ed (pr oposed method). Ov er- 
all, the proposed method has the best effect in the fault detec- 
tion and identification of r ail way point machines via vibration 

signals. 

4.4 Discussion 

This paper presents a vibration signal-based fault diagnosis strat- 
egy for r ail way point mac hines via integr ated featur es, ReliefF 
and SVM. Different from the existing motor current signal-based 

methods, this a ppr oac h is based on vibration signal analysis, 
which is learnt from the studies and works of other fault detection 

r esearc h fields. To impr ov e dia gnosis accur acy, the integr ated fea- 
tur e distilling a ppr oac h combining VMD ener gy entr opy and time- 
and frequency-domain statistical features is developed, which is 
verified as a more po w erful tool for distinguishing similar condi- 
tions by combining with ReliefF and SVM. The proposed approach 

ma y pro vide new ideas and wa ys for fault detection and identifica- 
tion of r ail way point mac hines, whic h can also pr ovide r efer ence 
to other fault diagnosis fields. 

Besides, the presented method in this paper is based on vibra- 
tion signals of a complete switching process. Vibration signals of a 
complete switching process are necessary for fault detection and 

diagnosis using the proposed method. In the future, we will aim 

Table 4. Dia gnosis r esults using differ ent fault dia gnosis methods. 

Condition 
Test 

sample 
Correctly detected sample 

method1 method2 method3 method4 Proposed method 

a 24 24 16 24 8 24 
b 23 22 7 23 13 23 
c 24 24 19 24 19 24 
d 16 16 8 16 11 16 
e 16 11 11 15 10 16 
f 24 24 24 24 24 24 
g 24 24 24 24 24 24 
h 24 24 24 24 24 24 

Accuracy 96.57% 76% 99.43% 76% 100% 
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Fig. 7. Confusion matrix of different methods: (a) method 1; (b) method 
2; (c) method 3; (d) method 4; (e) proposed method. 

to r esearc h the fault dia gnosis method for r ail way point mac hines 
using dynamic data, which can detect faults in a more timely 
manner. Besides, the vibration signals may be affected by the ad- 
jacent train passing. In the future, we will collect more field vibra- 
tion signals to do further studies, making the proposed method 

more suitable for field maintenance. 

5. Conclusions 

A nov el vibr ation signals-based fault detection and identification 

str ategy of r ail way point mac hines is pr esented. The integr ated 

feature distilling approach using VMD energy entropy and time- 
and frequency-domain features is developed. The efficient feature 
selection method ReliefF is introduced and adopted to cut down 

the dimension of features. SVM is used to realize fault identifi- 
cation. The fault dia gnosis accur acy via the presented fault de- 
tection str ategy r eac hes 100%. The fault dia gnosis effect and ad- 
v anta ges of the presented fault detection strategy are also vali- 
dated through comparisons . T his paper creatively uses vibration 

signals as fault detection means, which can offer assistance for 
field maintenance staff. 
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