
Delft Center for Systems and Control

Condition monitoring for track
circuits
A multiple-model approach

W.P. Verbeek

M
a
s
te

r
o
f

S
c
ie

n
c
e

T
h
e
s
is





Condition monitoring for track circuits
A multiple-model approach

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

W.P. Verbeek

September 28, 2015

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Source of the cover image: [30].

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled

Condition monitoring for track circuits

by

W.P. Verbeek

in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: September 28, 2015

Supervisor(s):
prof.dr.ir. B. De Schutter

ir. K.A.J. Verbert

Reader(s):
Dr.-Ing. S. Wahls

dr. A.A. Núñez Vicencio





Abstract

Preventive maintenance is a maintenance strategy where maintenance is performed prior to
failure. A promising preventive maintenance strategy is condition-based maintenance, which
schedules maintenance based on the current or predicted future condition of the assets. An
adequate implementation of this strategy avoids breakdowns and reduces maintenance costs.
Condition-based maintenance requires condition monitoring, which is the process of trans-
lating sensor data into information on the health state of the monitored objects. Condition
monitoring consists of two tasks: classifying what faults are present and predicting the re-
maining useful life of the monitored asset. Over the past few years, ProRail (the Dutch rail
infrastructure manager) has increased the amount of monitoring devices, but does not yet
use the collected data optimally for condition monitoring. In this thesis, we aim at closing
this gap and present a condition monitoring approach that effectively combines the available
sensor data with system knowledge.

In particular, we focus on condition monitoring for track circuits, which are devices used to
detect whether a train is present on a section of the track. To classify faults and to predict
the remaining useful life of track circuits, a multiple-model approach is used. A multiple-
model approach can be seen as a state estimation and prediction method for a specific class
of hybrid systems, where for each mode, the system can be described using a continuous linear
state space model. This modeling methodology is well suited to describe systems subject to
structural changes, such as faults. We show that the track circuit case fits into the multiple-
model framework and we develop models for each fault state of the track circuit based on
system knowledge and monitoring data. To predict the remaining useful life, a Monte Carlo
approach is used in order to take known uncertainties into account and to provide decision
makers with estimates of the prediction uncertainty.

In a simulation-based case study, the approach is able to correctly classify 99 % of the cases
and therewith outperforms a long short-term neural network developed for the same problem,
which is a state of the art condition monitoring method for track circuits. Furthermore, an
average prediction accuracy for the remaining useful life of 81 % is achieved. In addition,
the approach is able to quantify the uncertainty around these predictions and the underlying
factors causing the uncertainty.
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“I can live with doubt, and uncertainty, and not knowing. I think it’s much more
interesting to live not knowing than to have answers which might be wrong.”

— Richard Feynman [8]





Chapter 1

Introduction

On the 19th of February 2014, ProRail, the Dutch rail infrastructure manager, had to perform
emergency repairs on four switches [43]. In the evening, no train traffic was possible between
Rotterdam and the Hague, leading to large delays for a lot of passengers. These delays might
have been avoided, if ProRail would have used a better maintenance strategy. Condition-based
maintenance is such a maintenance strategy. The concept of condition-based maintenance
is to perform preventive maintenance based on the actual or predicted future condition of
physical assets. In this particular case, condition-based maintenance would have probably
lead to scheduled repairs for the four points at different times. This would have avoided the
disruption and the corresponding delays for the passengers.

In order to perform condition-based maintenance, condition monitoring is required. Condition
monitoring is the process of translating sensor data into information on the health state of the
monitored objects. Over the past few years, ProRail has increased the amount of monitoring
devices, but does not yet use the collected data optimally for condition monitoring. In this
thesis, we aim at closing this gap and present a condition monitoring approach for track
circuits that effectively combines the available sensor data with system knowledge.

1-1 Problem description

In this thesis, condition monitoring of track circuits is studied. A track circuit is a device to
detect whether a train is present on a section. The track circuit working principle is based
on a current flowing through the rails. When a train is present on a section, the axle of
the train leads to a short circuit. This is detected using a relay, which triggers a signal to
display that the section is occupied. Track circuits can fail due to various causes, such as
mechanical defects, rail contamination, or ballast degradation. Before a track circuit fails,
the track circuit is often already deteriorating, but still functioning. In that case, we say
that the track circuit suffers from a fault. The condition monitoring problem of track circuits
consists of two subproblems. The first subproblem is to detect whether a fault is present at
a track circuit and to classify this fault. This is called diagnostics. The second subproblem

Master of Science Thesis W.P. Verbeek



2 Introduction

is to predict at what time the detected fault will lead to a track circuit failure. This is called
prognostics.

1-2 Goal

In this project, we aim at developing a condition monitoring solution that addresses both the
diagnostic and the prognostic subproblem. Next to developing a theoretical solution, we also
aim at implementing the solution and validating the proposed approach using a simulation-
based case study. These considerations lead to the following project goal:

“The aim of the research is to develop and validate methods to classify faults,

predict the system degradation behavior, and predict the corresponding moment of

functional system failure of track circuits.”

1-3 Approach

To solve the track circuit condition monitoring problem, we propose a multiple-model ap-
proach. A multiple-model approach can be seen as a state estimation and prediction method
for a specific class of hybrid systems, where for each mode, the system can be described using
a (possibly different) continuous linear state space model. We choose this approach, since
faults can be seen as structural changes in the system, which are well-described using this
class of systems. In this thesis, we study how the multiple-model approach can be used for
condition monitoring and show how the track circuit case fits into this framework. In addi-
tion, we perform a case study and implement the proposed condition monitoring solution for
a small railway network with track circuits. We evaluate the performance of the condition
monitoring program using a simulation-based case study.

1-4 Relevance

The studied problem is highly relevant from both a practical and a scientific point of view.
The practical relevance stems, first of all, from the fact that the Human Environment and
Transport Inspectorate “is concerned about the inadequate availability of object information
and the poor view on the true state of maintenance, since this might lead to hidden defects”
[26]1. The goal of this thesis project is to provide accurate information about the true state
of maintenance for one specific type of objects: track circuits. Furthermore, in 2014 the
customer satisfaction level about the on-time performance of ProRail and Dutch Railways
(NS) was still below the targets set by the Dutch government [39]. Reducing the amount of
emergency repairs, will lead to an increased customer satisfaction level. Lastly, it was shown
in [48] that the availability of track circuits can be improved, compared to the current practice

1Translated from Dutch. Original text: “Ook is de inspectie bezorgd over de gebrekkige beschikbaarheid
van objectgegevens en het slechte zicht op de werkelijke staat van het onderhoud, omdat dit kans geeft op
verborgen gebreken.”
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1-5 Organization of this thesis 3

in Sweden, if a condition monitoring program is employed that can detect more than 60 % of
the faults.

From a scientific point of view, the study is relevant since condition monitoring for track
circuits is not widely studied. The existing studies focus on fault classification and do not
address prognostics [12, 13, 20, 45, 63]. Furthermore, often these diagnostic studies make use
of a sensor measuring the current flowing through the train axle [13, 20, 45], while we study
condition monitoring using the current flowing through the relay of the track circuit and
rain sensor data. Our approach is able to perform condition monitoring continuously, where
these methods require that a train with specialized measurement equipment runs over the
monitored section in order to update information on the current health state. Furthermore,
since measurements of the current flowing through the relay of the track circuit are already
available for a lot of track circuits and rain sensors can be are relatively inexpensive, our
approach leads to lower installation and monitoring costs.

1-5 Organization of this thesis

The rest of this thesis is organized as follows. We start in Chapter 2 with explaining the
track circuit working principle and introducing the concepts of condition-based maintenance
and condition monitoring. Furthermore, we give an overview of methods that can be used for
condition monitoring and motivate the choice for a multiple-model approach. In Chapter 3,
we discuss multiple-model state estimation and prediction and make choices with respect to
the techniques used. In Chapter 4, we show how the multiple-model approach can be applied
to track circuits. In Chapter 5, we test the proposed approach in a simulation-based case
study of a small railway network with track circuits and present and discuss the achieved
results. Furthermore, we compare the diagnostic performance of our solution with that of a
neural network developed for the same purpose [19]. In Chapter 6, we summarize our main
findings, discuss the limitations of our research and give recommendations for future work.

Master of Science Thesis W.P. Verbeek
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Chapter 2

Preliminaries

In this chapter, we give some background on track circuits (Section 2-1) and introduce the
concepts condition-based maintenance (Section 2-2) and condition monitoring (Section 2-3).
Furthermore, we give an overview of the most widely-used methods for condition monitoring
and discuss why a multiple-model method is well-suited to our problem in Section 2-4. Finally,
we give an overview of existing studies on condition monitoring for track circuits in Section 2-
5. The chapter is summarized in Section 2-6.

2-1 Track circuits

A track circuit is a simple device used to detect whether a train is present on a section. In
this section, we outline the track circuit working principle in Section 2-1-1 and faults that
can occur on track circuits in Section 2-1-2.

2-1-1 Working principle

The most simple track circuit is the direct current track circuit (Figure 2-1). The direct
current track circuit works as follows. Power is applied on one side of the section (the
transmitter in Figure 2-1). On the other side of the section, a relay is mounted (the receiver
in Figure 2-1). When no train is present, the current flows through the relay, which triggers a
signal to display that the section is clear (left in Figure 2-1). When a train is present on the
section, the axles of the train function as a shunt and short circuits the rails (right in Figure
2-1). Due to the internal resistance in the transmitter, little current flows through the relay,
which triggers the signal to display that the section is occupied. If the power supply fails,
a disconnection in the wiring is present or a short circuit occurs, this leads to a false train
detection, which is fail safe.

In the Netherlands, the rails are used to transport the return current for traction of trains.
Therefore alternating current track circuits have to be used, whereby the return current can
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No train Train

Insulated joint

Transmitter

Wheel-set

Receiver Transmitter Receiver

Figure 2-1: The track circuit working principle [19].

pass the joints by an impedance bond. This impedance bond blocks track circuit signals, but
permits return currents. In the Netherlands, a 110 V alternating current with a frequency of
75 Hz is applied to the track [68]. A B2 vane relay is used with a local alternating current
feed and a track circuit feed as inputs. The relay does only energize when the phase and
frequency of the local current and track circuit current match, to ensure the fail safe principle.
In modern railway systems, track circuits are connected to railway operating systems [70].
In that case, cables from the track circuit to a nearby railway operating system are used to
transport information on the state of the track circuit. Often, a binary signal representing the
operating mode of the track circuit (clear or occupied) is used, but sometimes measurements
of the current flowing through the relay of the track circuit are transmitted to the railway
operating system [55]. The binary signal is useful for railway operators, while the latter can
be used for condition monitoring.

In Figure 2-2, the relation between the current flowing through the receiver It and the signal
displayed to the train driver is shown. When the relay at the receiver is energized, the signal
indicates a clear section. The relay needs a minimum current of γ2 in order to switch from the
occupied indication to clear. When a train is present on the track, the signal should report
the section as occupied. The relay needs a current lower than γ1, in order to de-energize the
relay. When the relay is de-energized, the signal shows that the section is occupied. Track
circuits are designed to have a current on free sections above the threshold α2 and a current
below the threshold α1 when a train is present on the section. When α1 ≤ It ≤ γ1 and a
train is present at the section, the system still correctly reports the section as occupied. In
this case a fault is present, but there is no failure. Likewise, if the current γ2 ≤ It ≤ α2 when
no train is present on the section, we talk about a fault.

When the current It is above γ1 when a train is present or below γ2 when the section is free,
this is considered a failure of the track circuit. Two types of failures can be distinguished for
track circuits: false positive failures and false negative failures. False positive failures take
place when no train is present at the section, but due to problems the current flowing through
the relay is below γ2. In that case, the signal indicates the section as occupied, while it is
actually free. When a train is present on the section, but due to a problem the current flowing
through the relay is above γ1, a false negative failure is present and the section is accidentally
reported as free. False negative failures are the most dangerous type of failures.

W.P. Verbeek Master of Science Thesis



2-1 Track circuits 7

®1

low

ok

ok

high

Section clear Section occupied

Section might be 
reported as clear

Section might be
reported as occupied

It
®2

°1

°2

Figure 2-2: Relation between the current It flowing through the relay and the system state [79].

Table 2-1: Fault characteristics [79].

Fault (θ) Problem Cause Potential Current Spatial Degradation
future failure influence behavior

0 - Healthy state - ok - -

1
Train shunt imperfection

Rail contamination False negative high D1 ∨ D2 ∨ D4 -
2 Lightweight train False negative high D3 -

3
Insulation imperfection

Insulated joint defect False positive low D1 L ∨ E
4 Conductive object False positive low D1 A

5
Rail conductance impairment

Mechanical defect False positive low D1 E
6 Electrical disturbance False positive low D2 I

7
Ballast condition

Ballast degradation False positive low D1 ∨ D2 L ∨ E
8 Ballast variation False positive low ∨ ok ∨ high D4 A∨ L ∨ E ∨ I

2-1-2 Faults

Track circuits can suffer from various faults [79]. In this thesis, we constrain us to the faults
as listed in Table 2-1. For adequate fault diagnosis/prognosis, we have to understand how
the different faults are reflected in the current flowing through the relay at the receiver. To
distinguish between the different faults, we particularly consider how the fault

• directly affects its own current signal (column ‘Current’ in Table 2-1),
• evolves over time (column ‘Degradation behavior’ in Table 2-1),
• affects nearby track circuits (column ‘Spatial influence’ in Table 2-1).

Faults may lead to a higher or lower current than prescribed, depending on the type of the
fault. In general, faults that could lead to a false negative failure, obey a higher current
than prescribed on an occupied section. In contrast, faults that might lead to a false positive
failure cause a lower than prescribed clear-section current.

In addition, we follow [19] and adopt the notion of fault intensity1. The fault intensity is
defined as the percentage of current change. If the fault has no effect on the measured

1In [19] this is called fault severity.

Master of Science Thesis W.P. Verbeek



8 Preliminaries

current, its intensity is 0 %. When the decrease in current is so large that it causes a failure
(It = γ2) we say the fault intensity is 100 %. Degradation behavior is defined as how the
fault intensity evolves from 0 % to 100 % over time. Track circuit faults obey four different
types of degradation behavior [79]:

• A: Abrupt degradation behavior; the fault suddenly occurs and the fault intensity does
not increase any further.

• L: Linear degradation behavior; the fault intensity increases approximately linearly over
time.

• E: Exponential degradation behavior; the fault intensity increases more than linearly
by time.

• I: Intermittent degradation behavior; the fault suddenly appears sometimes and later
suddenly disappears.

Some of the faults that can be present at a track circuit may influence track circuits at other
sections as well. The following types of spatial influence are defined for track circuit faults
[79]:

• D1: The fault influences one specific section
• D2: The fault influences track circuits on the same track
• D3: The fault influences track circuits along the path of a specific train
• D4: The fault influences all nearby sections

When no fault is present, the system is healthy and we denote this with θ = 0. Two types of
faults could lead to a false negative failure. Both faults can be seen as train shunt imperfection
problems. Train shunt imperfection leads to a higher current flowing through the relay,
since the short circuit is partly obstructed due to the train shunt imperfection. Train shunt
imperfection problems might be caused by rail contamination (θ = 1), for example leaves on
the rails, or by lightweight trains (θ = 2). Rail contamination might be caused by factors
that are present on all nearby sections, on one track, or only on one section. The exact form
of degradation behavior is unknown. Lightweight trains do not have enough mass to press
the wheels on the rails in order to make a good shunt. Lightweight train faults are present
on track sections located on the path of the train.

Insulation imperfection problems might eventually lead to false positive failures. Insulation
imperfection can be caused by insulated joint defects (θ = 3) or conductive objects placed
over the joints (θ = 4). Insulated joint defects allow the current to flow to adjacent track
circuits. Fortunately, track circuits are designed to be fail safe and insulated joint defects do
not lead to a false negative on adjacent track circuits, since phases of adjacent sections are
reversed and the relays can only be energized using in-phase currents. Insulated joint defect
may develop linearly or exponentially over time. Conductive objects placed over the joints
are another cause of insulation imperfection. Conductive objects cause an abrupt fault that
only affects one specific section.

Rail conductance impairment might be caused by mechanical defects (θ = 5) or electrical
disturbances (θ = 6). These faults lead to a lower clear-section current. Mechanical defects
may cause rail conductance impairment. The severity of these type of faults increases expo-
nentially over time and only affects one section. Electrical disturbances might be caused by
high traction currents, which influence all sections on the same track and are assumed to be
present intermittently or abruptly.
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The ballast condition might influence the track circuit working as well. Ballast is the foun-
dation between the rails. The condition of the ballast might decrease, which could lead to
a lower resistance between the rails and consequently a lower current flowing through the
receiving relay. When the condition of the ballast is structurally decreasing, we talk about
ballast degradation (θ = 7). When the ballast resistance varies over time due to environ-
mental circumstances, we talk about ballast variation (θ = 8). Ballast degradation might be
present on all sections on a track or only on one specific section and the degradation behavior
might be linear or exponential. The behavior of ballast variation can take various forms, but
it is assumed that environmental influences affect all nearby sections.

2-2 Condition-based maintenance

Condition-based maintenance and time-based maintenance are two maintenance strategies
that have gained a lot of attention in the literature [87]. Condition-based maintenance is
defined as [31] “a decision making strategy where the decision to perform maintenance is
reached by observing the ‘condition’ of the system and/or its components. The condition
of a system is quantified by parameters that are continuously monitored and are system or
application specific.”

The alternative to condition-based maintenance is time-based maintenance, whereby preven-
tive maintenance is carried out periodically. In that case, decisions are made based on failure
time data or used-based data [2]. In time-based maintenance it is assumed that the failure
characteristics are known and that the system degrades under normal usage [52].

There are two main advantages of condition-based maintenance over time-based maintenance.
First of all, condition-based maintenance reduces the number of unnecessary maintenance
operations, since action is only taken when evidence exists of abnormal behavior [52]. This
can lead to significant maintenance cost reduction [27]. Second, condition-based maintenance
leads to a substantially lower number of unexpected breakdowns, since problems can be
detected long before the end of the designed life and the resulting failures can be avoided
[46]. Of course, disadvantages exist as well, such as the high investment costs associated
with condition-based maintenance and the additional skills that might be required in order
to effectively implement such a policy [46].

2-3 Condition monitoring

To perform condition-based maintenance, information is required on the condition of the
physical assets. The process of obtaining this information is called condition monitoring.
Condition monitoring is a concept dating back to the development of the first machines, where
human senses where used to monitor the state of the machinery [18]. Nowadays, sensors are
used to measure degradation behavior. Condition monitoring consists of two tasks. One task
is to detect whether a fault is present and to classify that fault; we call this diagnostics.
The second task is to predict at what time the detected fault will lead to failure; this is
called prognostics [9]. Essentially, one could see diagnostics as a state estimation problem
and prognostics as a prediction problem.
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Figure 2-3: Concept of prognostics.

For diagnostics, condition monitoring data is used to determine the state of the system. In
its simplest form, a diagnostic method monitors a condition monitoring signal and triggers
an alarm when the signal crosses a threshold. The aim of prognostics is to predict at what
time the fault that is present will lead to a failure. In general, this is done by predicting the
time a degradation signal will cross a failure threshold [86]. When the failure threshold is
directly related to a physical failure, this is called a hard threshold. When the threshold is an
arbitrary value denoting the time maintenance action should be undertaken, this is called a
soft threshold [14]. A degradation signal is an indicator of the health state of the system. In
some cases, the degradation signal is observed directly and in other cases only measurements
related to the degradation signal are available. In the first case, we talk about direct condition
monitoring; the latter case is called indirect condition monitoring [65].

The concept of prognostics is shown in Figure 2-3. With t we denote the time step. In the
figure, we see a degradation signal up till t = 50 days (the blue dash-dotted line). At t = 50
days, the time the signal will cross the failure threshold is predicted based on the degradation
signal up till time t = 50 days. The time that is left until the degradation signal crosses the
threshold, is called the remaining useful life. Predictions for the remaining useful life can
be made using many different techniques, ranging from expert systems [6] to gamma process
models [75]. In Section 2-4, we discuss the most important methods. For some degradation
models no closed-form expressions for the remaining useful life distribution are available [35].
In those cases, one has to resort to an approximation of the remaining useful life distribution
(for example using a Monte Carlo approach) or a point prediction of the remaining useful life.

2-4 Diagnostic and prognostic methods

Due to increasing system complexity and a higher demand of system reliability, the interest
in condition monitoring has increased during the last two decades [34]. Most research was
focused on diagnostics, which has found widespread application, from process industry [76,
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Figure 2-4: Diagnostic and prognostic methods.

77, 78] to rotating machinery [50]. Prognostics is a relatively new area [21]. The literature
on prognostics is very application-specific, but in [52] and [66] an overview has been given of
the most well-known methodologies.

Diagnostic and prognostic methods are often categorized into two classes (see Figure 2-4):
model-based and data-driven approaches. Next to these two main classes, combining model-
based techniques with data-driven practices is increasingly popular [52]. These approaches are
called hybrid approaches. The model-based approaches can be based on quantitative knowl-
edge of the process (physical modeling approaches) or on qualitative knowledge (knowledge-
based methods). Data-driven methods can be divided into statistical methods and approaches
using artificial neural networks.

2-4-1 Model-based methods

In physical modeling approaches, it is assumed that mathematical models can be build based
on first principles [52]. Residual generation is at “the heart” of those physical modeling
approaches [31]. Residuals are the differences between the physical model, based on first
principles, and sensor measurements. For diagnostics, the idea is that under normal circum-
stances these residuals are small and that a fault leads to large residuals. Faults can be
detected using statistical techniques (in its simplest form thresholding). The use of physical
modeling approaches is discussed in [49]. In this study, special attention is given to robust-
ness. With robustness it is meant that the physical modeling approach should be sensitive to
faults, but insensitive to uncertainty. In addition, cases studies are presented in this paper
where a diagnostic physical modeling approach is applied to a jet engine, a pumping system
and an AC-drive system. Sometimes the physical deterioration process is known and can be
used for prognostics. However, often this information is not completely available. In those
cases, often physical modeling is combined with statistical techniques. A good example is
[10]. In this study, on-line parameter estimation was performed for a model of flight control
actuators. As fault features the researchers use the difference between the estimated param-
eters and the baseline (healthy) model parameters. For prognostics, the researchers relied on
a statistical trending method called double exponential smoothing.

Accurate mathematical models are often very difficult to build, due to a lack of quantitative
knowledge. When qualitative knowledge is available, a knowledge-based approach can be
used. The two most common knowledge-based systems are expert systems and fuzzy logic
systems. According to [66], expert systems simulate the performance of human experts. An
expert system consists of a knowledge base, filled with experiences of experts, and a set of
precise if-then rules to apply the knowledge to problems at hand. The main difficulty with
expert systems is that it is in general difficult to convert the knowledge of the experts to
crisp if-then rules and that an expert system is not able to handle situations that are not
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explicitly contained in the system [52]. Most expert systems are used for diagnostics only
(probably due to the fact that this is the main task of most experts), but it is possible to
use an expert system for prognostics as well. In [6] such a system is developed for energy
conversion processes. The system is tested on real co-generation plant and did, in addition to
diagnostics and prognostics, also provide the plant operator with suggestions on the course
of action.

When domain knowledge cannot be fit into crisp if-then rules, but is rather vague or imprecise,
a fuzzy logic system might be applicable. Fuzzy logic systems are modeled using fuzzy sets,
instead of discrete values. Fuzzy logic allows the use of boolean logic and if-then rules on
imprecise information. Fuzzy logic can be used as a stand alone condition monitoring solution,
see e.g. [40], but is most often used in combination with other systems, for example with neural
networks leading to neuro-fuzzy systems [85].

2-4-2 Data-driven methods

When quantitative or qualitative knowledge about the system is not available, but monitoring
data is, statistical techniques can be used. A lot of statistical techniques are available for
condition monitoring. The diagnostic problem can be seen as a statistical pattern recognition
problem [27], while the prognostic problem is a prediction problem. This does lead to different
techniques for both problems. For diagnostics, often basic techniques like cluster analysis [22]
or statistical hypothesis tests [67] are used. An overview of the available statistical prognostic
techniques is given in [65]. The most-used techniques for direct condition monitoring are
regression techniques [35], Wiener process models [51], and gamma process models [75]. When
the degradation signal is not observed, hazard models can be used, where instead of the
degradation signal, the statistical distribution of the time of failure is modeled [34]. In these
models, monitored signals are related to the instantaneous probability of failure conditional
on having survived up till the current time t.

All these statistical methods assume that the patterns in the data can be described by a
known model. When the patterns in the data are unknown and complex, artificial neural
networks can be used, since these methods are able to describe complex structures. Neural
networks can be used for both diagnostics [62] and prognostics [82]. The advantage of neural
networks is that generic methods can be used for very specific circumstances. Unfortunately,
an artificial neural network often remains a black box: it is unknown why an artificial neural
network gives a certain output and it is found difficult to incorporate knowledge about the
system in a neural network [52].

2-4-3 Hybrid methods

In hybrid methods, data-driven and model-based techniques are combined, in order to over-
come problems associated with either data-driven or model-based techniques. The two most
often used hybrid techniques in condition monitoring are neuro-fuzzy systems and stochastic
filtering-based approaches. The most common form of neuro-fuzzy systems are fuzzy systems
where the fuzzy rules are learned by a neural network. A good example can be found in [85],
where a neuro-fuzzy model is used to predict bearing health. The fuzzy inference structure
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is determined by expertise and the membership function are trained using a neural network.
It turned out that this approach outperformed a radial basis function network.

Stochastic filtering-based approaches are methods to estimate the state of a system, e.g. the
health state, using noisy observations. In these methods, data from the observed system is
combined with models of the system under consideration. Stochastic filtering-based tech-
niques can be seen as hybrid methods, but some scientists see these techniques as either
model-based [3, 36, 69] or statistical [27, 52, 65]. Stochastic filtering-based approaches re-
quire a state space model of the system. In a state space model, it is assumed that future
states of the system do not depend on the past, given the present state of the system (the
Markov property). When the system is diagnosed using a stochastic filtering-based approach,
the state space model might be used to predict future fault behavior and the remaining useful
life by propagating the state space model forward in time. The main advantage of such an
approach is that only one model has to be build for both diagnostics and prognostics. Three
types of state space models are distinguished. This distinction is based on the states used in
the model: if all states are continuous, we talk about a continuous state space model, if all
states are discrete, we use the term hidden Markov model. If some states are discrete and
some are continuous, the state space model is called hybrid.

The most well-known form of stochastic filtering for models with continuous states, is the
celebrated Kalman filter [28]. The Kalman filter provides simple analytical expressions for
the estimated state when the dynamical system is linear. The Kalman filter is often used
in condition monitoring [5, 15]. For hidden Markov models, often the forward-backward
algorithm [61] or Viterbi algorithm [80] is employed to obtain state probabilities or the most
likely sequence of states, respectively. Using hidden Markov models for condition monitoring
is extensively discussed in [4]. For hybrid models, inference is complicated in general. Most
methods are computationally costly and use rigorous approximations. Filtering using generic
hybrid models is not often used in condition monitoring. However, there is one specific type
of hybrid systems, for which the filtering problem is extensively studied: jump Markov linear
systems [17]. In models of Markov jump linear systems it is assumed that for each mode, the
system can be described using a continuous-state linear state space model. It is assumed that
the mode of the system evolves according to a discrete Markov chain which is independent of
the continuous states.

When models of Markov jump linear systems are used in condition monitoring, we often talk
about multiple-model approaches, since multiple continuous models are used: for each fault
mode of the system there exists a model. Various algorithms exist for approximate multiple-
model filtering. Probably, due to the possibility to accurately describe abrupt changes,
multiple-model approaches are nowadays widely used for diagnostics [72, 81, 83, 84] and
prognostics [37, 53, 56, 69].

2-4-4 Our preferred method

Our problem is characterized by the fact that we have monitoring data and knowledge of the
system. Choosing either a model-based or a data-driven approach would exploit only one
source of information: either knowledge of the system or patterns in the data. This would
be inefficient use of information. Similarly, in [21] it is stated, in favor of hybrid methods,
that “more complete information allows for more accurate recognition of the fault state”.
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Furthermore, [79] states that both model-based and data-driven approaches for fault detection
and diagnosis of track circuits face difficulties: “The difficulty with model-based approaches is
that detailed system models are required, which are not easy to obtain because of the system
complexity and uncertain environmental influences. The difficulty with data-based approaches
is that a large and representative amount of labeled historical data is required.” Hybrid
approaches, might overcome weaknesses of a model-based or data-driven approach with the
strengths of the other. For these reasons, we focus on methods combining both information
sources: the hybrid methods. In general, neuro-fuzzy systems still require a comprehensive
dataset in order to be able to generalize [57]. Since, for the track circuit condition monitoring
problem little historical failure data is available, we focus on the stochastic filtering-based
approaches.

We propose to use a multiple-model approach for the track circuit condition monitoring
problem. This is motivated as follows. First of all, we prefer to use a state space model
with both discrete an continuous states: a hybrid state space model (not to be confused
with a hybrid method). We think faults in track circuits are best described using a hybrid
state space model, since the track circuit case requires a combination of discrete states and
continuous states. Our system can not be modeled using a single set of state equations where
the state evolves continuously: for example conductive objects lead to a sudden change in
system behavior, which can not be described by a continuous state space system. This is in
agreement with [84], were it is argued that for diagnostic problems a stochastic hybrid system
is more appropriate. Multiple-model filtering is a specific form of a stochastic filtering-based
method that uses a hybrid state space model.

Second, a multiple-approach can be used for both diagnostics and prognostics. A multiple-
model approach avoids developing two separate systems, which saves time and yields an
integrated solution.

Third, filtering of hybrid systems is complicated in general, but for multiple-model filtering
various algorithms exist for state estimation.

Lastly, a multiple-model approach allows for straightforward incorporation of information on
degradation behavior and spatial influences. This prior knowledge can be incorporated in the
state space models for the different fault modes. For example, if one knows that degradation
behavior is exponential, a model for this degradation behavior can be developed and used in
the approach. Often, grey box models are developed, where part of the model is determined
by prior knowledge and part of the model is determined using system identification techniques.
Prior knowledge on the transitions between modes can be incorporated as well by specifying
which transitions are allowed and their probability in the transition probability matrix. The
incorporation of prior knowledge has a large effect on the diagnostic performance [72] and the
incorporated information is directly used for both diagnostics and prognostics.

2-5 Condition monitoring for track circuits

The literature on condition monitoring for track circuits is mainly focused on diagnostics. The
literature on prognostics is scarce. For diagnostics, often neuro-fuzzy systems are used. In [63],
an audio-frequency track circuit was simulated. Using a neuro-fuzzy network it was possible
to detect different types of faults in the track circuits. In [12], a neuro-fuzzy system was used
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as well, but the researchers tested the approach on a real track circuit in their lab, instead
of on a simulation-based case study. The researchers showed that a neuro-fuzzy approach
outperformed a polynomial model. In contrast to what is often encountered in practice, the
researchers had eight signals available per track circuit for their diagnostic approach.

However, some studies are directed to situations where a limited amount of sensor information
is available. A conceptual method for condition monitoring in networks was proposed by
[79]. In this paper, the use of spatial and temporal dependencies for fault detection and
diagnosis in networks is emphasized. A railway network with track circuits is used to illustrate
the proposed approach. A diagnostic method for track circuits using neural networks was
developed by [19]. It was shown in a simulation-based case study that excellent classification
accuracy can be achieved without the use of prior knowledge. In addition, the researcher
trained a neural network to estimate the intensity of the fault. The problem considered in
the referred thesis, is comparable with our problem.

Not all research directed to diagnosing track circuits is based on measurements of the current
flowing through track circuit relays. In [13, 20] and [45], the detection of trimming capacitor
defects was studied. Those trimming capacitors (placed between the rails) can be malfunction-
ing. In contrast to our case, where measurements at the track side are used, the researchers
used the current flowing trough the shunt of the vehicle, the short-circuit current, instead.
In [20], a partial least squares regression was used to determine trimming capacitor defects.
These lead to a higher resistance, which can be detected from the track circuit pattern. The
signal of the short-circuit current was characterized by 17 variables, which were used as input
for the partial least squares regression in order to estimate the resistance. The researchers
showed that this approach works, but that a better performance is achieved using a neural
network. However, the partial least squares approach is less computationally intensive and the
partial least squares regression coefficients can be used as initial values for the neural network.
A neural network is used in [45] as well, but in this study the neural network is combined
with Dempster-Shafer classifier fusion and decision tree classifiers. This approach resulted
in a correct detection rate over 99 %. The two above mentioned approaches require labeled
data, which is often difficult to obtain. To overcome this problem, in [13] experts were used to
classify the short-circuit current patterns, whereby the experts also reported their confidence
about the classification. An independent factor analysis was performed on the data and the
soft classification of the experts. When the outputs, according to the independent factor
analysis for each of the four experts were combined, this resulted in a classification accuracy
of 98.5 %.

When inspecting the above mentioned studies, it seems that research directed towards con-
dition monitoring of track circuits is somewhat limited and still in its first stage. This is
regrettable, since it is shown in [48] that the potential benefits of condition monitoring of
track circuits are large. In [48] an availability analysis of track circuits was performed, where
the researchers developed a Petri-net for track circuits and simulated different maintenance
policies. The researchers showed that the availability of track circuits can be improved, com-
pared to the current practice in Sweden, if a condition monitoring approach is employed that
can detect more than 60 % of the faults.
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2-6 Summary

In this chapter, the track circuit working principle and the eight track circuit faults that are
distinguished in [79] were discussed. Track circuit faults obey different types of degradation
behavior and some faults influence multiple track circuits. In addition, we have explained
that condition-based maintenance is often advantageous over time-based maintenance, since
breakdowns are avoided and maintenance costs are reduced. Condition-based maintenance
requires condition monitoring, which consists of diagnostics and prognostics. Diagnostics is
concerned with the classification of faults and prognostics is focused on predicting when an
identified fault will lead to a failure. Furthermore, we have touched upon diagnostic and
prognostic methods and we have explained why we prefer a multiple-model method. Our
main reasons were: the fact that in this method monitoring data is combined with system
knowledge, the ability to handle abruptly changing systems and the fact that diagnostics and
prognostics are integrated. Lastly, an overview was given of existing literature for condition
monitoring of track circuits and it was concluded that the literature on prognostics for track
circuits is scarce.
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Chapter 3

Multiple-model state estimation and
prediction

In the previous chapter we have motivated the choice for a multiple-model approach. In this
chapter, we discuss the multiple-model methodology and make choices with respect to the
techniques used for state estimation and prediction. We start by defining the underlying
Markov jump linear system that is assumed in a multiple-model approach in Section 3-1.
Next, we outline the different views that exist on Markov jump linear systems in Section 3-2.
Furthermore, we explain the differences between the three types of multiple-model approaches
that exist and select the best suited one (Section 3-3). Next, we outline state estimation in a
multiple-model approach and evaluate the available approximate state estimation algorithms
(Section 3-4). Lastly, we report how predictions for the remaining useful life can be made
(Section 3-5). In Section 3-6, we summarize the contents of this chapter.

3-1 Markov jump linear systems

In a multiple-model approach it is assumed that for each mode, the system can be described
using a (possibly different) continuous linear state space model. In general, it is assumed
that the mode follows a discrete Markov chain. Such a system is called a Markov jump linear
system. In a Markov jump linear system, it is assumed that the system can be described
according to:

xt+1 = A(θt)xt + B(θt)ut + vt (3-1)

yt = C(θt)xt + D(θt)ut + wt, (3-2)

where

E[vtv
T
t ] = Q(θt) (3-3)

E[wtw
T
t ] = R(θt) (3-4)
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and θt follows a discrete Markov chain. Here xt denotes the state, ut the input, wt is process
noise, vt measurement noise and A, B, C, D, Q, R are matrices that are dependent on the
discrete mode of the system θt. With t we denote the current time step. From the above
formulation it becomes clear that when the mode is known, the system is described using
a linear discrete-time continuous-state state space model. In condition monitoring, Markov
jump linear systems are used to describe a system under different fault modes. For each
possible value of θ, the system operates according to a different model, i.e. different matrices
A, B, C, D, Q and R.

3-2 Views

Two important views exist on Markov jump linear systems [17]: the multiple-model point of
view and the analytical point of view. Below, we briefly explain the difference between the
two views:

• In the multiple-model point of view, the focus is laid on determining the actual mode
of the system and filtering and predicting using the model for that mode [24]. For
example, a model is developed for healthy system behavior and another model is made
to describe the behavior when a system suffers from an actuator fault. Multiple-model
filters estimate what model is currently active. This is done by inspecting what model
explains the data best: if the model of an actuator fault explains the data very well,
while the model for healthy behavior does not, one expects that the section currently
suffers from a faulty actuator. To find what model explains the data best, an observer
is used for each fault mode, which returns estimates of the continuous states and the
likelihood of the data given the model. Using the likelihood of the data given each mode,
the active mode of the system can be estimated by applying Bayes rule. A multiple-
model approach thus requires a model (matrices A, B, C, D, Q and R) for each mode.
In the condition monitoring community often the multiple-model point of view is taken
[24, 37, 72]. Possibly, this originates from the fact that diagnostics is often concerned
with hypothesis testing. Determining which model explains the data best can be seen
as a likelihood ratio test, which is a traditional hypothesis testing technique.

• In the analytical point of view, the systems are approached as ordinary state space
systems with augmented states {xt, θt}, where xt are the continuous states and θt is the
discrete state representing the mode [17]. Determining the correct model is not more
important than estimating the continuous states. From an analytical point of view,
there do not exist multiple models: there exists only one model, which has a hybrid
state.

These different point of views lead to different approaches. Most methods are derived based
one of the two point of views and cannot be easily explained with the other. In this thesis,
we adopt the multiple-model point of view, since it is suited to condition monitoring and
we think it is the most intuitive interpretation. This facilitates the incorporation of prior
knowledge into our approach. However, when discussing state-estimation algorithms, we
sometimes adopt the analytical point of view, in order to explain approaches based on that
point of view.
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3-3 Three types of multiple-model approaches

Three types of multiple-model approaches exist [58]: static multiple-model approaches (the
first generation) [38], dynamic fixed structure multiple-model approaches (second generation)
[1, 7, 11] and dynamic variable structure multiple-model approaches (third generation) [33].
We first outline the difference between the static and dynamic approaches and then discuss
the difference between the fixed structure and variable structure dynamic multiple-model
approaches.

3-3-1 Static versus dynamic multiple-model approaches

The first distinction is between static and dynamic multiple-model approaches. In a static
multiple-model approach it is assumed that the observers that are used to detect what model
explains the data best, run in parallel without interaction. In such an approach, it is assumed
that only one model is active the entire time the system is observed: the system cannot switch
between modes (θt is constant for the entire sequence, but unknown). In dynamic multiple-
model approaches it is assumed that the system can switch between modes: the section can
be healthy up to time t and suffer from a faulty actuator afterwards. Switching between
modes is modeled using a Markov chain. Where static multiple-model approaches are aimed
at determining an unknown structure or parameter, dynamic multiple-model approaches are
aimed at the detecting sudden changes.

We propose to use a dynamic multiple-model approach, since a fault is a structural change
of the system. If we would use a static multiple-model approach, we would implicitly test
whether according to the data a fault has always been present or has never been present, while
in a dynamic multiple-model approach we test whether a change occurred in the system. This
describes our situation best: track circuits can be healthy first and later suffer from a fault.
We want to detect whether such a switch has occurred.

3-3-2 Fixed versus variable structure dynamic multiple-model approaches

Within the dynamic multiple-model approaches, two forms are distinguished: fixed structure
approaches (second generation) and variable structure approaches (third generation). In the
fixed structure approaches, a fixed set of models is used for filtering, where it is assumed that
the set of models is constant over the entire time the system is observed. These approaches
experience substantial difficulties when a large number of models is required to describe the
system. First of all, using more models increases the computational burden. Second, it might
also lead to worse filtering performance, due to competition from unnecessary models. To
solve these problems, a variable-structure approach can be used. In such an approach the
model set is not constant over time and the models that are included in the set are based
on on-line information [33]. In practice, only models are included that are possible given the
current mode of the system. This means that the model set depends on the current state of
the system and therefore can be varying.

For our problem, the number of modes that has to be distinguished is relatively small. There-
fore, the expected gains of using a variable structure are small. Furthermore, the most im-
portant diagnostic task for our approach is to detect a change from the healthy mode to one
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of the faulty modes. This means that when the system currently exhibits healthy behavior,
switches to all fault modes are possible and models for these fault modes should therefore be
included in the model set, i.e. a fixed model set for the majority of the time. In this perspec-
tive, the gains of a variable structure multiple-model approach are small as well. We therefore
prefer a fixed structure. To summarize, we select a dynamic fixed-structure approach, also
known as a second generation approach.

3-4 State estimation

In this section, we discuss state estimation in a multiple-model approach, which is used for
diagnostics. State estimation is used to estimate the mode (the discrete health state θt) of
the system. In this section, we describe why exact state estimation is intractable in general
and what approximations can be used to overcome this problem in Section 3-4-1. Thereafter,
we discuss the interacting multiple-model approach in somewhat more detail in Section 3-4-2.

3-4-1 Algorithms

In a multiple-model approach, we determine what model explains the data best using an
observer for each fault mode. These observers return estimates of the continuous states xt

and the likelihood of the data given the model for that mode p (yt|θt = j). Using the likelihood
of the data given each mode, the active mode of the system can be estimated by applying
Bayes rule. Since the models for each mode are linear state space models, Kalman filters
are used. In general, it is intractable to calculate the optimal state estimate for a dynamic
multiple-model configuration. This intractability is caused by the fact that the number of
hypotheses that has to be considered in every filtering step increases exponentially with time.

We illustrate this with an example. Assume that there exist two modes: mode A and mode
B. We want to estimate the state of the system at t = 1, 2, where t is defined as the time step.
We know that at t = 0 the system is in mode A. At t = 1 two hypotheses exist: the hypothesis
that the system stayed in A and the hypothesis that the system switched at t = 1 to B. At
t = 2 we have four hypotheses: the system stayed in mode A at t = 1 and stayed in mode A
at t = 2 as well, the system stayed in mode A at t = 1 and switched to mode B at t = 2, the
system stayed in mode A at t = 1 and switched to mode B at t = 2, the system switched to
mode B at t = 1 and stayed in mode B at t = 2 and lastly the hypothesis that the system
switched to mode B at t = 1 and switched back to mode A at t = 2. In all exact solution that
are known to date, all these hypotheses have to be considered. For multiple linear models
with additive Gaussian white noise, this leads to continuous-state estimates that consist of a
mixture of M t Gaussians [1]. Here M is the number of models and t is the current time step.
We have illustrated this in Figure 3-1a. The cyan circles represent a Gaussian and the blue
boxes represent the filters running in parallel at each time-step.

To make estimation feasible, one has to use an approximation. Various approximation algo-
rithms have been developed for multiple-model filtering. From a multiple-model viewpoint
two types of approximations can be distinguished: pruning strategies and merging strategies
[24]. Pruning strategies reduce the number of hypotheses by cutting off unlikely branches.
Merging strategies do not cut off certain hypotheses, but merge hypotheses that are similar.
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(c) Interacting multiple-model algorithm.

Figure 3-1: Filtering using a multiple-model approach with M = 2 models [42].
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Next to approximations derived from a multiple-model point of view, there exist algorithms
that are derived from an analytical point of view. We have summarized the most important
methods below.

• Pruning strategies

– In the N best strategy, originally called “detection-estimation scheme”, only the B

most likely sequences are kept. At each time step, filtering is performed for each
model using state estimates of all the N most likely hypotheses [73]. This results
in MN new state estimates. Only the N hypotheses with the highest likelihood
are contained, the rest is pruned. The number of best models to retain N can be
constant over time, but can also be time-varying [58].

– With the Viterbi strategy [58], for each of the M models the most likely sequence
leading to that model is maintained. The rest is pruned. This means that for each
time step, a hypothesis exist whereby the system is now in one of the M modes.
This ensures that the best model for each filter is always maintained. However,
often not the M most likely hypotheses are maintained, since, for example, the
second best hypothesis ending at model 1 might be more likely than the most
likely hypothesis ending at model 2.

• Merging strategies

– With the generalized pseudo Bayes k algorithm, Gaussian hypotheses are collapsed
that had a different history k or more time steps ago, but have the same history
after k time steps ago [1, 11]1. Due to this merging, the generalized pseudo Bayes
algorithm requires Mk continuous-time filters running in parallel. The generalized
pseudo Bayes k algorithm is shown for k = 2, M = 2 in Figure 3-1b.

– In the interacting multiple-model algorithm, the obtained hypotheses are mixed
before processing the continuous-state filters, whereas in the generalized pseudo
Bayes algorithm hypotheses are merged after processing of the continuous-state
filters [7]. This allows the interacting multiple-model algorithm to use only M

filters in parallel. The interacting multiple-model algorithm is shown for M = 2 in
Figure 3-1c.

• Methods derived from an analytical point of view

– The linear minimum mean square error estimator estimates a constructed state
zt = (1⊤

θt=i, xt1
⊤

θt=i)
⊤ where xt is the continuous state, θt is the mode and 1 stands

for the Dirac measure [16]. An optimal linear estimate of zt is obtained and this is
used to calculate estimates of xt and 1θt=i. The filter reduces to the Kalman filter
when only one mode is considered.

For all algorithms, little is known about their theoretical performance. Only for the linear
minimum mean square estimator we know that this estimator is the optimal linear estimator,
but it remains unknown whether the optimal linear estimator is close to the optimal estimator.

1In [11] it is stated that the generalized pseudo Bayes 2 estimator is optimal, but the algorithm is suboptimal
as is shown in [74].
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Therefore, for the choice of the algorithm, we have to rely on simulation-based case studies
and known characteristics, such as the computational complexity of the algorithm.

Different views exist on whether merging or pruning strategies are better for multiple-model
filtering. In [24], it is stated that with merging “all discrete information of the history is
lost” and that therefore “merging is less useful for fault detection and isolation than prun-
ing.” On the other hand, it is stated in [58] that “merging outperforms pruning and selection
particularly when the true model differs significantly from those assumed.” We think the first
argument is not applicable, since we are not interested in past health states under considera-
tion, but only in the current health state. The argument made in [58] is more relevant, since
in most condition monitoring applications the exact form of degradation behavior is unknown
and the models used are approximations that deviate from the ‘true’ model. Therefore we
prefer a merging strategy over a pruning strategy.

In [7], the generalized pseudo Bayes 1 and 2 algorithm and the interacting multiple-model al-
gorithm are compared. The authors conclude that “the interacting multiple-model algorithm
performs almost as well as the generalized pseudo Bayes 2 algorithm, while its computational
load is about that of generalized pseudo Bayes 1.” Due to this nice trade-off between accu-
racy and computational complexity, the interacting multiple-model algorithm is widely used
nowadays [24].

In [16], the interacting multiple-model algorithm was compared with the linear minimum mean
square error estimator for additive noise using 15 simulation-based cases. In ten cases the
filtering performance was about equal, in five cases the interacting multiple-model algorithm
outperformed the linear minimum mean squared error estimator. However, in these cases the
difference was very small.

We propose to use the interacting multiple-model algorithm, since its outperforms the gen-
eralized pseudo Bayes 2 algorithm in terms of computational complexity. Furthermore, in
contrast to the linear minimum mean square error estimator, the interacting multiple-model
algorithm is widely used for condition monitoring and MATLAB implementations of the
algorithm are available [25].

3-4-2 The interacting multiple-model algorithm

To explain the working principle of the interacting multiple-model algorithm, we use the
schematic overview presented in Figure 3-2. We assume that the outputs of the system yt

are observed. Observing the inputs ut is optional and only required when the models used
incorporate inputs. The goal is to determine

• the probability that each mode is active µi
t = p (θt = i|y1:t)

• the continuous state estimates x̄i
t according to each model i with covariance P i

t

• the overall continuous state estimates x̄t with covariance Pt

With the superscript + we denote the mixed state estimate as input for a Kalman filter. With
πij we denote the transition probability from mode i to mode j.

From this figure we can see that one iteration of the interacting multiple-model algorithm
consists of a number of steps. The steps for the iteration at t are:
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24 Multiple-model state estimation and prediction

1. First the previous obtained state estimates for all filters i = 1, ..., M are mixed based
on the assumption that a particular mode j is now active, leading to mixed estimates of
the previous state which are used as inputs for the Kalman filters. The mixed estimates
are calculated using the mixing probabilities µ

i,j
t , which denote the probability that the

system was in mode i in time step t − 1 and is now in mode j. The mixing probabilities
are calculated as

c̄j =
M
∑

i=1

πijµi
t−1, (3-5)

µ
i,j
t =

1

c̄j
πijµi

t−1. (3-6)

Using these mixing probabilities, the mixed estimates and covariance of the previous
time step for filter j are determined:

x̄
j+
t−1 =

M
∑

i=1

µ
i,j
t x̄i

t−1, (3-7)

P
j+
t−1 =

M
∑

i=1

µ
i,j
t

(

P i−
t−1 +

(

x̄i
t−1 − x̄

j+
t−1

) (

x̄i
t−1 − x̄

j+
t−1

)⊤
)

. (3-8)

This is denoted with ‘interacting/mixing’ in Figure 3-2.

2. Based on the mixed estimates of the previous state x̄
j+
t−1 with covariance P

j+
t−1 and

optionally the system inputs ut, filtering is performed using each Kalman filter j, which
leads to estimates of the current state x̄

j
t with covariance P

j
t (the blue boxes denoted

with ‘Kalman filter’ in Figure 3-2). Next to the state estimates, the likelihood of the
measurement yt given the model j is calculated. We denote this with L

j
t = p (yt|θt = j).

3. Next, the probability that a mode is currently active is updated, based on the probability
prior to filtering of being in mode j, denoted with c̄j , and the likelihood of the new

observation L
j
t according to model j:

c =
M
∑

i=1

Li
tc̄i, (3-9)

µ
j
t =

1

c
L

j
t c̄j . (3-10)

Calculation of these mode probabilities is done in the cyan box denoted with ‘mode
probability update and mixing probability calculation’ in Figure 3-2.

4. Using the probabilities of a particular fault being active µ
j
t , a decision can be taken on

the course of action. In the figure this is denoted with ‘fault decision’.

5. Furthermore, an overall estimate of the continuous state can be obtained, using:

x̄t =
M
∑

i=1

µi
tx̄

i
t, (3-11)

Pt =
M
∑

i=1

µi
t

(

P i
t +

(

x̄i
t − x̄t

) (

x̄i
t − x̄t

)⊤
)

. (3-12)
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Figure 3-2: The interacting multiple-model concept [81].

This is denoted with ‘estimate combination’ in Figure 3-2.

6. At the end of each time step, the cycle start again. However, now the obtained estimates
at time step t have become t − 1 in the figure. We have denoted this with the delay in
Figure 3-2.

3-5 Predicting the remaining useful life

Once the active fault mode θt is determined and the continuous states {x̄
j
t , P

j
t } of each

model are obtained, one can make a prediction for the remaining useful life. To estimate
the remaining useful life, the time the degradation signal crosses the failure threshold has to
be predicted (see Section 2-3). The most straight forward way of predicting the remaining
useful life is by propagating the state space model of the detected fault forward in time, see
e.g. [56].

The main problem with this approach is that uncertainty in classification, state estimation,
future inputs and process and measurement noise is not taken into account. These uncertain-
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26 Multiple-model state estimation and prediction

ties will not only lead to uncertainty around the point prediction for the remaining useful life,
but might influence the point prediction itself as well. This can be illustrated by an example.
Assume that in mode A the system has an expected remaining useful life of two years and
in mode B the expected remaining useful life is a week. The probability of mode A is 55 %
and the probability of mode B is 45 % according to the state estimation algorithm. When
only the most likely mode is taken into account, the expected remaining useful life will be
two years. In contrast, if uncertainty around the mode is considered and both modes with
their respective probability are taken into account, the expected remaining useful life will
be shorter than two years. Next to the fact that uncertainty influences point predictions,
information on the uncertainty of the prediction is important for the decision maker as well:
he has to decide whether the object has to be replaced.

In order to take uncertainty into account, one could choose a Monte Carlo approach [36].
In a Monte Carlo approach, instead of one prediction, multiple predictions, called runs, are
performed. For each run, different initial conditions and noise realizations are used. By
inspecting the spread in the calculated remaining useful life of all runs, one can determine
the uncertainty in the prediction. Based on all the runs, the probability density function and
cumulative density function can be estimated using a histogram or kernel density estimation
[47, 60]. In practice, for each run a model is drawn according to the estimated probabilities
that each model is active, e.g. if the probability of model A is 90 % and the probability of
model B is 10 %, one draws on average model A nine out of ten times and model B once out
of ten. Afterwards, for each run a state is drawn from a Gaussian distribution with as mean
the estimated state x̄

j
t for the drawn model j and as covariance the estimated covariance P

j
t

according to that model. Next, future model inputs ut+1, ..., uT are drawn based on historical
data and random process noise wt+1, ..., wT and measurement noise vt+1, ..., vT is generated.
Using all these randomly drawn quantities, a prediction is made and the time until failure is
recorded. Based on the remaining useful life predictions of all runs, the remaining useful life
distribution is estimated and a point prediction can be obtained.

It is possible to validate the uncertainty around the predictions made by the Monte Carlo
approach by comparing the number of observations falling in the confidence interval and the
number of observations that should fall in the confidence interval. Sometimes, a discrepancy
exists between the nominal value of the confidence interval (for example 95 %) and the true
value exist (for example 92 % of the observations falls within the 95 % confidence interval). By
changing the amount of process and measurement noise, it is possible to tune the predictions
so that the true value of the confidence interval approaches the nominal value. In condition
monitoring applications, sometimes an outer-correction loop is used for this purpose, whereby
the process and measurement noise matrices Q and R are adapted on-line, based on short-term
forecasting errors [44, 69].

In a Monte Carlo approach, only known uncertainties are taken into account. This gives a
better estimate of the remaining useful life than making a single prediction without taking
uncertainty into account at all. Predictions get closer to reality if more effects are taken
into account. However, it is possible that unmodeled uncertainties or incorrectly modeled
uncertainties have a large effect on the remaining useful life. A Monte Carlo approach does
not give information on these effects, which has as disadvantage that information on the
modeled uncertainty can be mistaken for information about the true uncertainty. Therefore,
outcomes of Monte Carlo approaches should always be handled with care.
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Another difficulty with a Monte Carlo approach is that enough runs have to be generated to
obtain a good approximation of the probability density function. To test whether enoughs
runs are used, one can perform a Monte Carlo approach using more runs. Once adding more
runs does not have a (large) effect on the outcomes, it is assumed that the Monte Carlo
method has converged. We have performed such an analysis for our simulation-based case
study in Section 2 of Appendix B.

We believe that giving information about the uncertainty of the predicted remaining useful
life is very important for the decision maker. Providing an approximation of the uncertainty
around the predictions is better than providing no uncertainty information at all. For example,
if the estimated remaining useful life of a track circuit is one year, an uncertainty of one year
around this estimates leads to other decisions than an uncertainty of one week around the
estimate. In the first situation, often the component would be replaced immediately, while
in the latter case maintenance can be scheduled for a few months ahead. Furthermore,
uncertainty in classification, state estimation, future inputs and process and measurement
noise might affect the point prediction of the remaining useful life. Therefore we think these
uncertainties should be taken into account when making predictions. For these two reasons,
we select a Monte Carlo approach for prognostics.

3-6 Summary

In this chapter, we have studied the multiple-model methodology. We have discussed the dif-
ference between static and dynamic approaches and the difference between fixed and variable
structure dynamic multiple-model approaches. A fixed structure dynamic multiple-model
approach was selected. Furthermore, we have discussed how state estimation is performed
in a multiple-model setting and outlined the most important algorithms that are available.
The interacting multiple-model algorithm is preferred, because of its excellent performance
in combination with a low computational cost. For predicting the remaining useful life, two
options were considered: point predictions and a Monte Carlo approach. A Monte Carlo
approach was chosen, since using this method known uncertainties can be taken into account.
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Chapter 4

A multiple-model approach applied to
track circuits

In the previous chapter, we have studied multiple-model state estimation and prediction. In
this chapter, we discuss how a multiple-model approach can be used for track circuit condition
monitoring. After analyzing the track circuit condition monitoring problem in Section 4-1,
we describe how the measurements can be preprocessed to make them suitable for condition
monitoring in Section 4-2. Next, we derive models for each health state of the system and
describe what transitions between health states are allowed (Section 4-3). Lastly, we describe
which practical problems are encountered when using a multiple-model approach for track
circuit condition monitoring and propose solutions in Section 4-4. The main conclusions of
this chapter our outlined in Section 4-5.

4-1 Problem analysis

The condition monitoring approach has to determine the health state of the track circuit and
to predict the remaining useful life. In [79], eight faults are distinguished, which are pre-
sented in Table 2-1. We deviate slightly from the presented classification and do not consider
lightweight trains (θ = 2) and ballast variation (θ = 8) as faults, since these influences are
not related to condition of the track circuit itself. However, it is still required to incorporate
their influence into our condition monitoring approach, e.g. ballast variation should not be
confused with ballast degradation. Furthermore in order to limit the scope of this thesis, we
focus on faults that could lead to a false positive train detection. Fortunately, the presented
solution can be easily applied to distinguish between healthy behavior and rail contamination,
which is the only fault that could lead to a false clear-section signal. Since currently no infor-
mation is available about the interaction between faults, we focus in this thesis on the effect
of one fault at the same time. In theory, the proposed approach could be extended in the
future to situations where multiple faults are present. In that case, each possible combination
of health states should be seen as a distinct health state and models should be developed for
each health state combination.
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Figure 4-1: Schematic overview of the signals used.

We propose a condition monitoring approach that monitors a single track circuit. Monitoring
multiple track circuits using one system would lead to a combinatorial explosion of the number
of health states distinguished in the system. For example, we would end up with health states
like ‘track circuit 1 suffers from a mechanical defect and track circuit 2 suffers from ballast
degradation.’ Therefore, we choose to build a system that monitors one track circuit. However,
we still incorporate information of other track circuits in our approach, but we only diagnose
one track circuit and make predictions for that track circuit only. We denote the track circuit
that we want to monitor with a 1 in Figure 4-1. For our condition monitoring approach,
we use two types of monitoring data: track circuit measurements Ij,t for each section j and
rain sensor data ut. The track circuit measurements are measurements of the current flowing
through the relay of the track circuit (see Section 2-1). The rain sensor outputs a signal that
is proportional to the amount of rainfall. The use of these signals is advantageous, since for a
lot of track circuits, measurements of the current flowing through the relays is already stored
and available for condition monitoring. Furthermore, industrial rain sensors are relatively
cheap (< e 500) and can be easily installed. Therefore, the proposed approach leads to low
installation costs. We have depicted the signals used schematically in Figure 4-1. We assume
that a rain sensor is located in each region of ±2 km2.

In order to distinguish between faults, it is suggested to make use of the spatial dependencies
in the railway network [79]. Using these dependencies, it is possible to distinguish between
faults that influence only one section and faults influencing all track circuits on the same
track. Furthermore, it allows us to distinguish between ballast degradation and ballast vari-
ation. Next to current measurements of the monitored track circuit I1,t, we therefore use
measurements of nearby track circuits as well. We make a distinction between current mea-
surements of other track circuits on the same track I2,t, I4,t, ... and of nearby track circuits
on other tracks I3,t, I5,t, .... We only use clear-section measurements, since we focus on faults
that could lead to a false positive train detection and those can be detected on a clear section
only. The signal is sampled 50 times a day equidistantly. When the section is occupied at the
time of sampling, we suggest that a measurement just before the section got occupied is used
instead, e.g. a measurement of 40 seconds earlier. When a fault occurs, the current will be
lower than expected (I1,t < α2). A fault leads to a failure when I1,t < γ2 (see Section 2-1-2).

The measurements of nearby track circuits cannot be used directly for condition monitor-
ing. Developing models that relate all track circuit measurements directly, would lead to a
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combinatorial explosion of the number of models, since we need to create a model for each
possible combination of health states. For example, we would end up with a model specific for
a situation where track circuit 1 suffers from a mechanical defect, track circuit 2 suffers from
ballast degradation, track circuit 3 is healthy and track circuit 4 suffers from a conductive
object. This would lead to an enormous amount of models, which would make our condition
monitoring approach slow and might even deteriorate the filtering performance [33].

To overcome this problem, we aim at developing models where the relation between the inputs
ut and outputs yt can be accurately described given the health state of the monitored track
circuit θ1,t only. This means the active model mt describing the relation between ut and yt

may not depend on θ2,t, ..., θJ,t given θ1,t, i.e. mt = f(θ1,t). This constrains the number of
distinguished modes to the number of possible discrete values of θ1,t. To accurately describe
the relation between the inputs ut and yt using these models, it is required that, given the
health state of the monitored track circuit θ1,t, the signals ut and yt do not depend on
θ2,t, θ3,t..., either.

The signals ut consist of rain sensor measurements, which do not depend on any health state.
Therefore no preprocessing is required for ut. However, the measured currents Ij,t do depend
on the health states θj,t. Therefore some transformations are required before these signals
can be used for multiple-model filtering. The information that is required for accurate fault
diagnosis and prognosis is:

• the relation between the current of the monitored track circuit and currents of nearby
track circuits on the same track

• the relation between the current of the monitored track circuit and currents of nearby
track circuits located at other tracks

We propose to use three signals to capture these relations:

• y1,t - the current flowing through the monitored track circuit
• y2,t - the current of nearby track circuits on the same track
• y3,t - the current of nearby track circuits on other track

4-2 Preprocessing

The signals y2,t and y3,t have to be constructed from I2,t, I4,t.... and I3,t, I5,t, ..., respectively,
i.e.

y2,t = f(I2,t, I4,t....) (4-1)

y3,t = f(I3,t, I5,t....). (4-2)

We call this the preprocessing stage. In this stage the main goal is to create signals y2,t

and y3,t that are not affected by faults influencing a single nearby track circuit, as described
earlier. We propose two techniques to achieve this.

First of all, we suggest to exclude measurements of track circuits suffering from a fault that
influences only that particular track circuit. If a fault influencing a single section is detected
at track circuit 2 in time step t−1, we do not use that measurement for condition monitoring
of track circuit 1 (the track circuit to monitor) in time step t. This is possible since, in
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practice, condition monitoring will be performed for multiple track circuits and therefore the
health state of nearby track circuits at the previous time step is known. If a measurement is
excluded, the signal y2,t or y3,t will be based on the other track circuit measurements. This
is possible, since the prescribed currents of all track circuits are equal1 [54]. When almost all
measurements to calculate y2,t or y3,t have to be excluded (since all nearby track circuits suffer
from a fault influencing a single track circuit), we suggest to extend the range of considered
track circuits to ensure that a minimum amount of measurements is used to calculate y2,t or
y3,t.

Second, to make the system resistant to faults that are not (yet) detected, we propose to
use the median to combine the measurements, instead of the widely-used mean. The median
is very resistant to outliers and therefore the influence of an undetected fault, which is an
outlier, is minimized. We have also considered the weighted median as an option, whereby
measurements of nearby track circuits get more weight than track circuits far away. According
to [71], weighting is a bad idea for nonlinear combination schemes. In general, the errors
introduced by estimating the weights nullify the performance increase gained by using weights.

The optimal number of nearby track circuits to take into account is situation-specific: in some
situations, the number of track circuits located close to the monitored one is large, while in
other situations measurements are only available for one nearby track circuit. In general,
increasing the number of track circuits considered leads to an increased robustness against
undetected faults. On the other hand, environmental influences are local and using measure-
ments of track circuits far away from the track circuit to be diagnosed, might deteriorate
the monitoring performance. Finding the optimal number of track circuits requires extensive
simulation work. To limit the scope of this thesis, we do not focus on finding this optimum.

As a result of our preprocessing phase, we use four signals in our multiple-model approach:

• ut - rain sensor measurements
• y1,t - the current flowing through the relay of the track circuit to monitor
• y2,t - median of currents flowing through relays of nearby track circuits on the same

track
• y3,t - median of currents flowing through relays of nearby track circuits on different

tracks

We see y1,t, y2,t and y3,t as outputs and ut as inputs for the models used in the multiple-
model approach, since the amount of rainfall causes a change in the observed current. With
this notation there exists a clear distinction between raw track circuit measurements It and
preprocessed track circuit measurements used for multiple-model filtering yt.

4-3 Modeling

The basis of our condition monitoring program is the multiple-model framework, as described
in Chapter 3. For this multiple-model framework, linear state space models for each mode of
the system have to be developed and one has to specify which transitions between modes are
allowed. In this section, we define these models and specify the allowed transitions.

1Except a few located near Best.
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Figure 4-2: Structure of the state space models.

We split the development of the state space models into two stages, whereby we follow [19]
and assume faults have an additive effect on the normal operating behavior. This means
we develop a model for track circuit measurements in general and a set of fault models (see
Figure 4-2). The general model is common for all modes of the system, while the fault model
is mode-specific. The general model has to be combined with the appropriate fault model
leading to one model for every mode of the system. The linear state space models have to
relate the inputs ut to the outputs yt.

We start by defining a model for track circuit measurements in general in Section 4-3-1 and
describe how to model each type of fault in Section 4-3-2. Lastly, we describe the transitions
between the modes in Section 4-3-3.

4-3-1 A general model for track circuit measurements

In [19], the characteristics of track circuit measurements are studied. We build further on
this work as basis for deriving our models.

For clear sections, in a fault free situation, we observe a high current Ij,t flowing through
the relay. The nominal current slightly differs for each track circuit2 and therefore for each
output ys,t. We denote the nominal current of each output with µs.

The track circuit currents vary over time. The amount of variation is different for each signal
ys,t. Part of the variation is caused by the wetness of the ballast, another part depends on
the time of the day, and yet another part of the variation is caused by unknown factors.

In [19], the wetness of the ballast βt of all sections in the region is described using a first-order
autoregressive process:

βt+1 = gβt + ut + ζt. (4-3)

Here ut + ζt represents the rain at time t. The autoregressive coefficient is denoted with g,
where 0 ≤ g < 1 to ensure a diminishing effect of rainfall. The part ut is the amount of rain
that is measured by a rain sensor. Furthermore, ζt represents the part of the rain which is not
measured by the sensor. We model ζt as independent identically distributed Gaussian noise
with mean zero and variance σ2

ζ . The mean and variance of the distribution are identified
using system identification. The influence of wetness of the ballast on a particular output ys,t

is denoted with the coefficient as.

2The nominal current level prescribed in the installation manual is equal for all track circuits (except track
circuits located near Best), but due to manual tuning and location-specific circumstances the actual nominal
current differs a little bit [54].
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34 A multiple-model approach applied to track circuits

The current flowing through the relays also depends on the time of the day. A deterministic
sinusoidal signal with a period of 24 hours can approximate this behavior well. We denote it
with λt and denote the influence of periodic effects on the output ys,t with bs. We denote the
frequency of the periodic effects with ω.

Other unknown causes of short-term variation are denoted with ηs,t and ǫt. Here ηs,t includes
unknown causes of short-term variation influencing either measurements of nearby track cir-
cuits on the same track y2,t, nearby track circuits on other tracks y3,t or the track circuit to
monitor y1,t. The term ǫt represents unknown causes of short-term variation that influence all
outputs ys,t. Both sources are modeled as independent and identically distributed Gaussian
noise with mean zero and variance σ2

η,s and σ2
ǫ respectively. We denote the influence of ǫt on

each output ys,t with cs.

Next to short-term variation, we also observe long-term variation. Probably, this is for a large
part caused by seasonal influences [19]. We model both output-specific long-term variation
causes χs,t and long-term causes affecting all outputs ξt as random walk processes:

χs,t+1 = χs,t + νs,t (4-4)

ξt+1 = ξt + κt. (4-5)

Here, νs,t and κt are modeled as independent and identically distributed Gaussian noise. The
influence of ξt on a specific output s is modeled with ds.

The output, subject to all the described influences, can be described using:

ys,t = µs + asβt + bsλt + ηs,t + csǫt + χs,t + dsξt. (4-6)

These descriptions can be put into discrete-time state space form. The relations result in a
linear system and can therefore be described using a discrete-time linear state space system:

xt+1 = Axt + But + vt (4-7)

yt = Cxt + Dut + wt. (4-8)

We formulate the state transition equation as:

xt+1 = Axt + But + vt = (4-9)
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Here τ denotes the sampling time. The relation between the observations and the states of
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the system can be described as:

yt = Cxt + wt =







y1

y2

y3







t

=







a1 1 0 0 d1 µ1 b1 0
a2 0 1 0 d2 µ2 b2 0
a3 0 0 1 d3 µ3 b3 0
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. (4-10)

The noise covariance matrices are defined as follows:
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0 0 0 0 0 0 0 0





























(4-11)

E
[

wtw
⊤

t

]

= R =
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1σ2
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c2c1σ2
ǫ σ2
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ǫ σ2
η,3 + c2

3σ2
ǫ






. (4-12)

Here, σ2
ζ , σ2

ν,s, σ2
κ, σ2

η,s, σ2
ǫ denote the variance of ζt, νs,t, κt, ηs,t and ǫt, respectively.

4-3-2 Models for track circuit faults

After a model for track circuit measurements has been derived, we continue with models
describing faults. In some cases, multiple spatial influences and types of degradation behavior
are linked to one fault mode. In those cases, we see each possible combination of spatial
dependencies and degradation behavior as a separate mode of the system. This leads to the
modes distinguished in Table 4-1. Since the characteristics described in [79] are not based on
actual data, it might be that the described characteristics are inaccurate in practice. If this
is the case, other models have to be used, but the same methodology can be applied.

We build discrete-time state space models for all described faults. Similar to the general
model, linear time-invariant state space models can be used, as presented in Eq. (4-7). All
faults are unrelated to rain sensor measurements. Therefore, in the fault models the terms
But and Dut disappear. This leads to the following model:

xt+1 = Axt + vt (4-13)

yt = Cxt + wt. (4-14)

In general, degradation behavior is incorporated in the state-transition matrix A. Spatial
influences are related to the observation matrix C, this matrix describes what outputs are
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36 A multiple-model approach applied to track circuits

Table 4-1: Modes distinguished in the multiple-model approach.

Mode (θ) Problem Spatial Degradation
influence behavior

0 Healthy state - -

3a
Insulated joint defect

D1 L
3b D1 E

4 Conductive objects D1 A

5 Mechanical defect D1 E

6 Electrical disturbances D2 I

7a

Ballast degradation

D1 L
7b D1 E
7c D2 L
7d D2 E

influenced by the fault states. In this section we use two states: the state x1,t represents the
absolute fault intensity and x2,t represents the degradation rate (the derivative of the absolute
fault intensity with respect to time).

The occurrence of a fault with linear degradation behavior (L) can be seen as a step in the
degradation rate: the degradation rate suddenly changes from 0 (for healthy behavior) to a
positive value. In [24], it is described that such step functions can be described using two
models. One model is used to describe a step using a large amount of process noise vt and
another is used to describe linear degradation behavior where the degradation rate remains
constant. The system may transition from the healthy model (θhealthy) to the step model
(θstep) with probability πstep and then transition to the model where the degradation rate
remains constant with probability 1 in the next time step. When the fault occurs, this is
modeled using a system with a large amount of process noise on the degradation rate:

x2,t+1 = x2,t + vt for t = tstep, (4-15)

where E[vtv
⊤
t ] = Q is very large. Directly after this large step, the system is described using

a model for linear degradation behavior without any process noise

[

x1

x2

]

t+1

=

[

1 τ

0 1

] [

x1

x2

]

t

for t > tstep. (4-16)

For exponential degradation behavior (E), we use a model of an unstable linear system:

[

x1

x2

]

t+1

=

[

1 τ

0 fθ

] [

x1

x2

]

t

+ vt. (4-17)

Here, fθ is a parameter denoting the pole location of the exponential degradation behavior.
The parameter fθ is larger than 1 (since the system is unstable) and is different for each type
of fault θ.
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Abrupt faults (A) can be described using two models [24]. One model is used to describe
a step using a large amount of process noise vt and another is used to describe degradation
behavior where the fault intensity remains constant. Similar to linear fault development,
the system may transition from the healthy model (θhealthy) to the step model (θstep) with
probability πstep and then transition to the model where the fault intensity remains constant
with probability 1 in the next time step. When the fault occurs, this is modeled using a
system with a large amount of process noise:

x1,t+1 = x1,t + vt for t = tstep, (4-18)

where E[vtv
⊤
t ] = Q is very large. Directly after this large step, the system is described using

a model without any process noise

x1,t+1 = x1,t for t > tstep. (4-19)

Intermittent faults (I) appear as spikes in the data. A common method of modeling such
sudden outliers in a multiple-model approach is using a model with a large amount of mea-
surement noise [24]:

yt = wt =







w1,t

w2,t

w3,t






. (4-20)

where E[w1,tw
⊤
1,t] = r1, E[w2,tw

⊤
2,t] = r2 and E[w1,tw

⊤
2,t] = E[w2,tw

⊤
1,t] = r1,2 are very large.

If a spike occurs, the model with large amount of measurement noise is able to explain those
spikes, while the healthy model cannot. In order to incorporate the intermittent property,
transitions from an intermittent fault to the healthy state are allowed, as well as that the
system remains in the fault mode (the mode with the large amount of measurement noise).
In fact, the period between spikes can be described using the model of healthy behavior.

Now we have derived state transition equations for all types of degradation behavior, we relate
the states to the observed outputs, by means of the C matrix. For faults that do affect only
the track circuit to monitor, the following observation equation can be used:







y1

y2

y3







t

= Cxt + wt =







1 0
0 0 . . .

0 0







[

x1
...

]

t

+ wt. (4-21)

For faults that are present at all sections on the same track, one could use






y1

y2

y3







t

= Cxt + wt =







1 0
1 0 . . .

0 0







[

x1
...

]

t

+ wt. (4-22)

Here the state representing the fault intensity x1,t is additive to all track circuits on the same
track.

4-3-3 Transitions between modes

Next to specifying a linear state space model for each mode, we also need to specify the
transitions that are allowed between models: the mode transition matrix. Except in the case

Master of Science Thesis W.P. Verbeek



38 A multiple-model approach applied to track circuits

of intermittent faults, we only allow transitions from healthy behavior to faulty behavior and
do not allow transitions from a fault mode to the healthy mode. The assumption of prohibiting
transitions from a faulty mode to an healthy mode seems reasonable, since without repairs
faults do not disappear. In practice, after a repair, condition monitoring can be reset. If we
do assume that faults do not disappear by themselves, transitions between faults should be
ruled out as well, since this would imply one fault that disappears while another appears.

We have visualized the transitions between the models in Figure 4-3. In total 13 models are
used. One model describing healthy behavior, nine models describing a particular form of
faulty behavior and three auxiliary models. These auxiliary models describe a sudden change
in the measured current (related to a step in the fault intensity) or in the derivative of the
current (related to a step in the degradation rate), as described in the previous section. In
the figure, the allowed transitions are shown as well, which are assumed to have the Markov
property. The transition probabilities from mode to mode can be calibrated using data from
past cases.

4-4 Practical problems and solutions

Some practical problems are encountered when one wants to implement the presented ap-
proach in practice. In this section, we describe the problems and propose solutions.

First of all, the model for linear ballast degradation affecting only one section (θ = 7a) and
the model for insulated joint defects with linear degradation behavior (θ = 3a) are equal.
This makes it impossible to distinguish between these fault modes using the multiple-model
approach. However, insulated joint defects have a shorter time from incipient of the fault to
failure than ballast degradation has. It is possible to distinguish between the two faults using
an additional classifier. We use a Bayes classifier3 with only one feature: the derivative of the
current with respect to time. The absolute value of the derivative of the current will be larger
for an insulated joint defect than for linear ballast degradation, since the degradation rate
of linear ballast degradation is much slower than that of insulated joint defects. The Bayes
classifier assigns a probability to the model according to Bayes rule. Hereby, we assume that
the derivative of the current comes from a normal distribution where the mean and variance
for insulated joint defects is different from those of linear ballast degradation.

Second, the models derived in Section 4-3-1 and Section 4-3-2 are unobservable and some
parameters are unidentifiable. Therefore these models cannot be used directly. We propose
to use other realizations of the derived models that are observable, where all parameters
are identifiable, and that obey the same system dynamics as the derived modes. We have
derived the new realizations in Appendix A. The parameters in these models can be identified
using grey-box identification. Some parameters are dependent on the actual case, such as the
nominal currents of the outputs µs,t. These parameters can be identified during the learning
period of the system: a short time after installation of a new track circuit where the system
is still healthy. Other parameters, such as parameters used to describe fault progression, can
be estimated using data from previous cases where faults were present.

3Various classifiers could be used for this very simple classification task, but we are most familiar with the
Bayesian classifier.
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Healthy (µ=0)

Small step in current derivative

Step in current

Insulated joint defect
(µ=3a,D1,L) /

Ballast degradation
(µ=7a,D1,L)

Ballast degradation
(µ=7b,D1,E) 

Ballast degradation
(µ=7c,D2,L) 

Ballast degradation
(µ=7d,D2,E) 

Electrical disturbance 
(µ=6)

Conductive object 
(µ=4)

Large step in current derivative

Fast mechanical defect
(µ=5) 

Insulated joint defect
(µ=3a,D1,E) 

Slow mechanical defect
(µ=5) 

Figure 4-3: Models and allowed transitions used for track circuit condition monitoring.
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Figure 4-4: Probability assigned to a fault based on
the estimated current derivative.

Lastly, for healthy behavior, the system
might be described using other models as
well. In fact, the model of healthy behav-
ior is nested in the model of, for example,
linear ballast degradation. When the fault
intensity x1,t and degradation rate x2,t are
zero, this model reduces to the model for the
healthy state. This has an intuitive explana-
tion: healthy behavior can be seen as a fault
with linear degradation behavior, where the
fault intensity is zero and remains this for
the entire sequence, i.e. the degradation rate
(derivative of the fault intensity with respect
to time) is zero as well. In fact, healthy be-
havior is just a special case of a system ex-
periencing linear degradation behavior. In
general, the system will stay in the healthy mode (θ = 0) if there is no evidence in favor of
another model, but sometimes the multiple-model filter assigns a higher likelihood to linear
ballast degradation. This is caused by the fact that as time progresses, the effect of the fact
that the system was initially healthy on the estimated current mode diminishes. To reduce
the number of false alarms due to this effect, we can assign zero probability to faulty models
when the current is constant or increasing. Only when the current is decreasing, we assume
a fault is present. Instead of making a hard decision, we assign a probability to whether
there is a fault present. We call this soft thresholding and we have illustrated the concept in
Figure 4-4. We use a Gaussian cumulative density function to assign a probability to a fault.
When the derivative of the current with respect to time is zero, the probability of a fault is
very small and the probability of healthy behavior is almost 100 % and vice versa.

4-5 Conclusions

In this chapter, it was discussed how a multiple-model approach can be applied to the track
circuit case. We have started by analyzing the problem and the signals we suggest to use.
It was proposed to combine nearby track circuit measurements in order to let the system
be described using the discrete health states of the monitored track circuit only. We have
proposed to use the median since it is resistant to outliers. After having described the
preprocessing stage, we have derived models for the track circuit case. The development of
these models was split into the development of a model describing track circuit measurements
in general and a model describing the faults. Next, we have determined the allowed transitions
and decided to only allow transitions from healthy to faulty modes, except for intermittent
faults. In addition, three practical problems were discussed and solutions were proposed.
First of all, models for some fault modes are equal, which makes it impossible to distinguish
between these fault modes using our approach. Therefore, we have proposed to use a Bayesian
classifier to make the distinction based on the degradation rate. Second, the derived models
are unobservable and we have indicated that this can be addressed by transforming the models
to observable realizations. Lastly, we have described how the number of false alarms can be
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reduced in cases where the estimated fault intensity is decreasing. A soft threshold was used
for this purpose.

One small topic for future work arises from this chapter. In Section 4-1, we have described
that the current flowing through the relays of the track circuits is sampled 50 times a day
equidistantly. When the section is occupied at the time of sampling, we have suggested to
use a measurement of the current just before the section became occupied. Another solution
would be to not use the measurement for that time step for condition monitoring. It can be
investigated whether this yields a better performance.
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Chapter 5

Case study: a small railway network

In Chapter 4, we have shown how to apply a multiple-model approach to track circuit condi-
tion monitoring. In this chapter, we test this approach in a small case study. In Section 5-1,
we describe the case we use. Next, we describe how we implement our proposed solution in
Section 5-2. We evaluate the fault classification performance based on 1000 simulated cases
in Section 5-3 and in Section 5-4 we compare the performance with that of a neural network
that has been developed for the same problem. The predictive performance of our approach is
evaluated in Section 5-5. In Section 5-6, we show the fault classification and prediction output
for a typical case. Afterwards, we analyze what factors cause uncertainty in the remaining
useful life prediction in Section 5-7. In Section 5-8, the main conclusions of this chapter are
outlined.

5-1 Case description

In this case study, we consider a small railway network with track circuits to test our approach.
For large networks, weather influences cannot be seen as homogeneous over the network, while
for small networks they can. Testing the approach on a larger network would thus require
accurate modeling of weather influences (including their spatial dependencies) to make the
analysis sensible. Due to time constraints, we were not able to build a simulation where all
spatial dependencies of weather influences were accurately incorporated. Therefore, we test
the approach on a small network. The network we use is depicted in Figure 5-1. Our aim is
to detect whether a fault is present at section 1. For this we have the following information:

• Measurements I1,t, I2,t, I3,t of the current flowing through the relays of the three track
circuits.

• Measurements ut of a rain sensor located in between the considered sections.

• The fact that no faults are present at track circuits 2 and 3 that do not influence section
1 as well. This means section 2 and 3 may suffer from electrical disturbances and ballast
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1

2

3
ut

I1,t

I2,t

I3,t

Figure 5-1: The railway network considered in the case study.

degradation, since these influence may influence track circuit 1 as well, but do not suffer
from insulated joint defects, conductive objects, or mechanical defects.

• The fact that a track circuit can only suffer from one fault.

To generate data for the development and validation of our condition monitoring program,
we use the simulation described in [19]. The simulation has been developed on a stand-alone
basis and does not use the models we have developed for our multiple-model approach. The
simulation is based on the observed characteristics of real track circuit measurements of three
neighboring sections and the characteristics of faults described in [79]. In the simulation we
simulate a period of two years. It is assumed that faults start between the 73th day (10 %
of the simulated two years) and the 219th day (30 % of the two-year period) and the track
circuits are fault-free before this point.

5-2 Implementation of our approach

We implement the proposed approach in MATLAB. For diagnostics, we make use of the
interacting multiple-model filter contained in the extended Kalman filter/unscented Kalman
filter toolbox [25]. We perform system identification on the system during the first 73 days
after installation, where the system is (assumed to be) still healthy1. For prognostics for each
case, we use 1000 runs2 in our Monte Carlo approach to estimate the remaining useful life3.
We use kernel density estimation to obtain estimates of the probability density function and
the cumulative density function of the remaining useful life [47, 60]. For this purpose, we have
used the MATLAB function ksdensity(T) where we used a Gaussian kernel and automated
bandwidth selection. Based on the estimates of the probability density function, the 95 %
confidence interval is obtained.

1We call this the learning period.
2The word ‘run’ is used to denote one prediction used in the Monte Carlo approach and not to denote the

simulation of the data for a case in this case study.
3We have tested the effect of increasing the number of runs used in our Monte Carlo approach. This

analysis can be found in Section 2 of Appendix B. It turns out that with 1000 runs a reasonable performance
was obtained at a medium computational cost.
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u1 u2 u3 ... ut

u1 u2u3 u5 ut

Past sequence u1  ,...,ut  

Sequence used for ut+1  ,...,uT 
in Monte Carlo run (example)

... u3 ...

Figure 5-2: Circular shifted input sequence.

For each run in our Monte Carlo approach, we take into account the uncertainty in the
estimates of the current state, uncertainty in the diagnostic classification, uncertain future
inputs, uncertainty in the model parameters and uncertainty in future process and measure-
ment noise. In each run, we draw these quantities randomly from the distributions describing
these uncertainties. The model is drawn randomly from the discrete distribution of models
used for diagnostic classification, where each model gets a weight equal to the probability
of being active according to the implemented diagnostic approach. This means that when
the interacting multiple-model filter assigns a 90 % probability to ballast degradation and a
10 % probability to mechanical defects, we pick the ballast degradation model roughly nine
out of the ten runs and the mechanical defect model only once in ten runs. The interacting
multiple-model filter estimates, next to the active model, also the continuous states of all
models and their covariance. For each run, we draw the states used for each run randomly
from a Gaussian with as mean the estimated states x̄t and as covariance the covariance ma-
trix Pt according to the Kalman filter for that specific model. Input uncertainty from the
weather is handled by drawing a randomly circular shifted version of past weather measure-
ments u1, ..., ut and using this new sequence as future inputs ut+1, ..., uT . We have illustrated
this shifting process in Figure 5-2. We repeat the shifted sequences up to time T . The num-
ber of time steps the input sequence is shifted is based on a random integer between 1 and
t (inclusive). We use circular shifting to maintain the serial correlation present in the in-
put sequence. Parameter uncertainty is taken into account by drawing identified parameters
randomly from a normal distribution with the mean and variance according to the system
identification estimates for each run. Lastly, input and process noise is drawn based on the
process and measurement covariance matrices Q′ and R of the model used in this run. We
use the measurement covariance matrix R that is identified during the learning phase. The
process noise covariance matrix Q′ is proportional to the process noise covariance matrix Q

identified during the learning phase, i.e. Q′ = δQ. The scalar δ is calibrated using data from
previous cases. Using δ, it is possible to account for small modeling errors. When adequately
calibrated, this will improve the accuracy of the uncertainty approximation. Correcting the
process noise matrix is common practice in condition monitoring, see e.g. [44, 69].

5-3 Fault classification performance

We test our proposed solution on 1000 simulated cases. For each case, a fault is selected and
two years of data is simulated. Since we distinguish 6 health states (healthy behavior and 5
faults), this leads to 166 or 167 simulated cases per health state. Our implemented condition
monitoring approach has to identify the health state of the system. When the fault intensity
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Table 5-1: Fault classification performance based on 1000 simulated cases in total.

Fault type Mean logarithmic loss likelihood Accuracy

Healthy 0.01 99.8 %
Insulated joint defect 0.00 100.0 %
Conductive object 0.04 99.4 %
Mechanical defect 0.27 98.2 %
Electrical disturbance 0.06 99.1 %
Ballast degradation 0.10 97.8 %

Overall 0.08 99.1 %

in our simulation is between 15 % and 100 % (failure), we evaluate the classification of the
fault according to two criteria4. As a first criterion, we use the logarithmic loss likelihood.
The logarithmic loss likelihood is formulated as follows:

L = − log p (θt) , (5-1)

where p (θt) is the probability assigned to the correct mode θt. Furthermore, we obtain
hard classification labels by selecting the most likely mode and calculate the classification
accuracy, which is the fraction of correctly classified observations. Where the classification
accuracy metric does not take the confidence of the prediction into account, the logarithmic
loss likelihood does and ‘punishes’ overconfident predictions relatively severe. Therefore this
combination of metrics supports the evaluation of the overall performance. Both metrics are
used in [19] as well, which facilitates the comparison of our results with those found in [19].

In Table 5-1, the mean logarithmic loss likelihood and the classification accuracy are presented.
From the table we can conclude that, in general, the classification performance is very good:
in 99.1 % of the cases the system correctly diagnoses the track circuit. The implemented
condition monitoring approach achieves the lowest logarithmic loss likelihood, and therefore
the best performance, for classifying healthy sequences. The approach has most difficulty
with detecting mechanical defects: the worst logarithmic loss likelihood and relative accuracy
is obtained for this class of faults. The reason that the logarithmic loss likelihood is very high
for this class is that for one in the 167 cases where the track circuit suffered from a mechanical
defect, almost zero probability was assigned to the correct mechanical defect class. In fact the
approach was very confident about its classification, but was wrong. This case has a mean
logarithmic loss likelihood of 30, which has a large influence on the presented statistics. To
reduce the effect of mistakes due to overconfidence, one could implement a lower bound on
the model probability of each model. This would maximize the amount of likelihood that can
be lost.

5-4 Fault classification performance compared with that of a neural
network

In order to put the performance of our diagnostic approach in perspective, we compare it
with an approach where neural networks are used. This diagnostic approach is described in

4For healthy sequences we calculate these two criteria over the entire simulation time of two years.
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Figure 5-3: Fault classification performance compared with a neural network.

[19] and makes use of the long short-term neural network architecture. The neural network
is trained using 2700 cases. We use the same criteria for evaluation as in the previous sec-
tion: the logarithmic loss likelihood and classification accuracy over the area where the fault
intensity is above 15 % and the fault has not yet caused a failure. The neural network op-
erates at a sampling frequency of 25 samples per day, while the implemented multiple-model
approach operates using 50 samples per day5. Therefore, we use subsampling and decimate
the simulation output with a factor 2 before they are fed into the neural network. In fact
this is preprocessing. Since the neural network diagnoses the track circuit 25 times a day,
while the multiple-model filter outputs a diagnostic classification 50 times a day, we perform
subsampling of the classification output of the multiple-model filter (decimation with a factor
2). In fact this postprocessing. This allows us to compare the classification output of both
methods with a frequency of 25 samples a day. A graphical representation of this set-up can
be found in Appendix C. We test the fault classification performance on a validation data set
with 300 cases (50 cases for each health state).

The results are shown in Figure 5-3. From the figure, we can conclude that our multiple-
model filtering approach outperforms the neural network developed for the same purpose.
In terms of fault classification accuracy, the difference is the largest for mechanical defects
and smallest for the detection of healthy behavior. For the mean logarithmic loss likelihood,
the same picture emerges. We have not compared the computational performance of both
methods, since both methods are implemented on a different platform: the multiple-model
approach runs on MATLAB, while the neural network is implemented using Torch, which is
a specialized library for neural networks with an underlying C implementation.

From the comparison we may conclude that in this particular case a multiple-model approach
outperformed that of a neural network. It is important to note that this may not only be

5We have also tested a neural network operating at 50 samples a day, but it turned out that the performance
was much worse than a neural network operating at 25 samples a day.
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caused by the method itself, but that the actual implementation of both methods may explain
a part of this difference. For example, the number of neurons used and the form of the activa-
tion functions in the neural network might be suboptimal. Furthermore, it would be possible
to train the neural network with more data. This might lead to an improved performance
of the neural network. In contrast, the effect of using more data on the performance of the
multiple-model approach will be much smaller, since only a small part of the models used
is estimated from data. The main difference between the neural network approach and the
multiple-model approach is that the first does not use prior knowledge, while the latter does.
If new prior knowledge becomes available, this might be used to improve the multiple-model
approach, while it will not effect the performance of the neural network. The presented re-
sults suggest that the incorporation of prior knowledge might be beneficial for track circuit
condition monitoring.

5-5 Prognostic performance

When our condition monitoring approach has detected a fault, predictions for the remaining
useful life can be made. In this case study, we only make predictions for faults that evolve
gradually over time, i.e. insulated joint defects, mechanical defects and ballast degradation.
Our prognostic approach is able to make a prediction every time step6, but to limit the
computation time, we evaluate predictions only each time the current level of the monitored
track circuit has decreased with7 0.03 A. In practice, this means roughly 6 predictions are
made for each simulated case. In total, 3165 predictions are used for performance evaluation.

We evaluate the prognostic performance using the point prediction accuracy, relative accuracy
and the convergence of the 95 % confidence interval [64]. First of all, we use the point
prediction accuracy, which is the difference between the predicted remaining useful life T̂ and

the actual remaining useful life T . Next to the absolute prediction error
∣

∣

∣T − T̂
∣

∣

∣, we evaluate

the relative accuracy of the point prediction:

A =

∣

∣

∣T − T̂
∣

∣

∣

T
. (5-2)

We make a prediction of the remaining useful life by calculating the median of the estimated
remaining useful life distribution. We choose the median, since the performance of the point
predictions is evaluated using an absolute loss function. It can be shown that under absolute
loss, the median of the predicted distribution is the optimal estimator [23].

As has been pointed out in [64], convergence of the predictions is important for prognostics. To
test whether the predictions converge over time, we inspect the width of the 95 % confidence
interval for the first prediction and the last prediction made before failure. The latter should
be much smaller than the first.

The main performance characteristics for the predictions are shown in Table 5-2. From
Table 5-2a we conclude that the absolute error of the point predictions averaged over all

6The time required for a prediction is about 10 seconds. This is much shorter than the sampling interval,
which is about 29 minutes.

7This offers a fairer evaluation than using a fixed amount of time between predictions, since some faults
evolve much faster over time.
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Table 5-2: Prognostic performance based on 3156 predictions for the remaining useful life in
total.

(a) Absolute prediction error.

Fault type Absolute predic-
tion error (days)

Absolute predic-
tion error first
prediction (days)

Absolute predic-
tion error last
prediction (days)

Insulated joint defect 3.22 10.73 1.19
Mechanical defect 1.70 9.80 0.15
Ballast degradation 15.92 43.97 6.81

Overall 6.92 21.43 2.71

(b) Prediction accuracy and width 95 % confidence interval.

Fault type Prediction accu-
racy

Width 95 % con-
fidence interval
first prediction
(days)

Width 95 % con-
fidence interval
last prediction
(days)

Insulated joint defect 82 % 63.59 5.06
Mechanical defect 81 % 66.17 0.46
Ballast degradation 80 % 184.27 46.39

Overall 81 % 104.43 17.22

predictions is 6.92 days. Furthermore, we see that the prediction error decreases over time:
when getting closer to the moment of actual failure, the prediction error decreases. In Ta-
ble 5-2b it can be seen that the predictions have an average accuracy of 81 %. Furthermore,
the confidence interval shrinks over time: the first prediction for each case has an average
uncertainty of more than three months, but just before failure, the confidence interval shrinks
to only two weeks. In general, we see that predictions for ballast degradation are less ac-
curate than predictions for other fault modes. Probably this is due to the fact that ballast
degradation occurs over a long period of time (roughly a year), while insulated joint defects
and mechanical defects evolve much faster.

We have tested the validity of the 95 % confidence interval of the predicted remaining useful
life. The actual remaining useful life falls within the confidence interval in 94.89 % of the cases.
This is close enough to the nominal value of 95 % for all practical purposes. We have also
tested the Monte Carlo method with the identified process noise covariance matrix Q, instead
of its scaled variant Q′ = δQ, i.e. δ = 1. When using this process noise covariance matrix, in
93.9 % of the cases the actual remaining useful life falls within the 95 % confidence interval
of the prediction. The predictions and prognostic performance using Q are almost identical
to the results obtained using Q′. This means that the effect of the prediction correction is
small in this case study. The prognostic results obtained using Q can be found in Section 3
of Appendix B.
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5-6 Fault classification and prediction output for a typical case

In this section, we illustrate the results of the case study by inspecting the condition moni-
toring output for one of the 1000 simulated cases. In this example case, ballast degradation
is present. The example is representative for the rest of the cases.

We start with diagnostics, where the probability that a certain fault mode is active is assigned
at each time step. The diagnostic output for the example case is shown in Figure 5-4. In the
upper three graphs, the measured current is shown (solid blue line) and the failure threshold
is drawn (dashed purple line). In the bottom graph, the output of the diagnostic system
is shown. At each time step, the model probability is plotted. Models with a very low
probability assigned (p(θt) < 0.02 for all t) are omitted for clarity. From the figure, we can
see that the program first assigns the highest probability to healthy system behavior. Later,
when the current level of the monitored track circuit start to decrease, the probability of
healthy behavior decreases and the probability of ballast degradation increases. During the
time the fault intensity is above 15 %, the assigned probability to this fault mode remains
slightly less than 100 %. This is the desired behavior.

When ballast degradation is detected, predictions are made for the remaining useful life.
An example of such a prediction for our example case is shown in Figure 5-5. In the top
graph the measured current of the track circuit to monitor and the predictions of the future
current are shown. In the middle plot, the probability density function is given of the time
to failure. In the lower plot, the cumulative density function of the remaining useful life
is shown. From the figure, we can see that the prediction is quite uncertain, but that the
95 % confidence interval includes the moment of actual failure. Furthermore, we see that the
distribution of the estimated remaining useful life is highly non-symmetric. This supports the
use of the Monte-Carlo approach: using the Monte-Carlo approach it is possible to obtain
such non-symmetric distributions.

In Figure 5-6a we see an example of the predictions for the remaining useful life over time. The
solid blue line represents the actual remaining useful life (at time of failure, the remaining
useful life is zero). The solid purple marks with corresponding 95 % confidence interval
represent the predictions that are made for the remaining useful life at each time-instant.
From the figure, we can see that in general, the actual remaining useful life is included in
the 95 % confidence interval and that the predictions become more accurate over time (the
confidence interval shrinks).

In Figure 5-6b, the absolute error of the median prediction for our example case is shown.
We see that the absolute prediction error decreases over time. Only at the end there exists a
small increase in the absolute prediction error. In Figure 5-6c, the evolution of the width of
the 95 % confidence interval over time is shown. From the dashed blue line, we conclude that
the width of the confidence interval decreases over time, as we expect. In Figure 5-6d, the
likelihood of failure at T over time is shown. The likelihood is the height of the probability
density interval evaluated at the actual time of failure T . This likelihood is a measure of
accuracy as well: when the confidence interval is wide the probability density function is low
everywhere; when the confidence bands are small, the likelihood is high within that region,
but very low outside it. We see that the likelihood (shown with the dashed blue line) increases
over time. From the plots, we conclude that the predictions converge for this example case.
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Figure 5-4: Soft classification over time for the example case.
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Figure 5-5: Remaining useful life prediction for the example case.

W.P. Verbeek Master of Science Thesis



5-6 Fault classification and prediction output for a typical case 53

01/10/2016 01/11/2016 01/12/2016

Time

0

50

100

150

200

R
em

ai
n
in
g
u
se
fu
l
li
fe

(d
ay
s)

Actual remaing useful life
Predicted remaining useful life
(with 95% confidence interval)

(a) Predictions over time.

01/10/2016 01/11/2016 01/12/2016

Time

0

5

10

15

20

25

A
b
so
lu
te

p
re
d
ic
ti
o
n
er
ro
r
(d
ay
s)

Absolute prediction error

Actual failure

(b) Absolute error over time.

01/10/2016 01/11/2016 01/12/2016

Time

0

50

100

150

200

W
id
th

of
95

%
co
n
fi
d
en
ce

in
te
rv
al

(d
ay

s)

Width of the 95 % confidence interval

Actual failure

(c) Width of the 95 % confidence interval over time.
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Figure 5-6: Prediction characteristics over time for the example case.
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Figure 5-7: Effect of uncertainty sources on the 95% confidence interval of the remaining useful
life prediction for the example case.

5-7 Factors causing prediction uncertainty

In Figure 5-5, a typical prediction of the remaining useful life and the corresponding un-
certainty is shown. In this section, we are interested in what factors cause the uncertainty
in the prediction. To analyze the factors, we study the effect of each uncertainty source
on the 95 % confidence interval of the predicted remaining useful life. We distinguish five
sources contributing to uncertainty: uncertainty in the estimated parameters in the models,
uncertainty caused by doubt about the correct fault mode, state estimation uncertainty, un-
certainty related to future process and measurement noise, i.e. the realizations of wt+1, ..., wT

and vt+1, ...vT , and uncertainty about future inputs ut+1, ..., uT (in our case future rain). We
set all except one uncertainty sources to zero and generate predictions using the only non-zero
source of uncertainty. We perform this analysis for all described uncertainty sources. In Fig-
ure 5-7a the effect of the factors on the 95 % confidence interval of the remaining useful life
prediction for the example case are shown. From the plot, we conclude that in this example
case the influence of classification uncertainty is relatively small; we see that in most cases.
Probably, this is due to the fact that our diagnostic approach is often quite confident about
its classification: if a probability of more than 97.5 % is assigned to one particular fault mode,
it is likely that the 95 % confidence interval is not significantly affected, since predictions for
other fault modes belong to the upper or lower 2.5 % of the estimated remaining useful life
distribution.

It is interesting to see that some uncertainties have a significant effect on the point prediction.
For example, future noise uncertainty leads to a point prediction where the remaining useful
life is shorter than without taking future uncertainty into account. This is in line with our
motivation in Section 3-5, where we stated that uncertainty should be taken into account since
it might influence not only the uncertainty around the prediction, but the point prediction
as well. This effect can be explained as follows. The track circuit fails the first time the
current reaches the failure threshold. When the current behaves erratically due to noise,
more spikes exist which might exceed this failure threshold leading to an early failure. We
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Figure 5-8: Illustration of the effect of incorporating future noise on the predicted remaining
useful life.

have illustrated this in Figure 5-8, where we show a prediction for the current of a track circuit
with and without taking future noise into account. From the figure, it is clear that the signal
where future noise is taken into account crosses the failure threshold multiple times before
the signal without noise crosses the failure threshold. This shows that, in general, taking
noise uncertainty into account leads to a shorter predicted remaining useful life, which is in
line with the results found.

We have also investigated how the factors evolve over time. A typical plot of how the width
of the 95 % confidence interval evolves over time for each uncertainty source is shown in
Figure 5-7b. Again, this plot is made for the example case, but representative for the rest
of the cases. From the plot, we conclude that in order to improve predictions made a long
time before failure, we have to reduce the amount of classification uncertainty and parameter
uncertainty, since these factors have the largest influence on predictions more than a month
before failure. In the figure, we see that the classification uncertainty suddenly decreases.
This is due to the fact that when a probability of more than 97.5 % is assigned to one fault
mode, other fault modes do often not effect the 95 % confidence interval, since they belong
to the lower or upper 2.5 % of the probability density function of the remaining useful life.
When the probability assigned to a fault mode is below 97.5 %, the 95 % confidence interval
is affected by other fault modes as well, since these predictions fall inside the middle 95 %.
The moment the probability assigned to a signal fault crosses the 97.5 % threshold, this
causes an abrupt decrease in the classification uncertainty, which is visible in the figure. In
this example case, the large amount of classification uncertainty around early predictions, is
caused by diagnostics, which assigned a significant probability to healthy behavior. Since the
remaining useful life of healthy behavior is unknown, the resulting classification uncertainty
is large.

The absolute influence of weather uncertainty on the predicted remaining useful life is con-
stant over time, but the relative importance increases over time. If we want to improve the
prediction quality for predictions a few days before the end of the track circuit life, we have
to incorporate information on weather forecasts into our Monte Carlo predictions.

This analysis reveals an important advantage of the multiple-model approach: the quan-
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tification of factors underlying the prediction accuracy. Using these results, we know what
factors lead to uncertainty in the predicted remaining useful life and how we can improve
these predictions.

5-8 Conclusions

In this chapter we have shown how the proposed multiple-model approach performed in a
simulation-based case study. The multiple-model approach is able to classify 99.1 % of the
faults correctly. Furthermore, the fault classification performance of the multiple-model ap-
proach is better than that of a neural network developed for the same purpose. This suggests
that the incorporation of prior knowledge might be beneficial for track circuit condition mon-
itoring. Moreover, the multiple-model approach is able to make predictions for the remaining
useful life with an average relative accuracy of 81 % and the uncertainty around those pre-
dictions decreases when the remaining useful life approaches zero. Lastly, we have analyzed
what uncertainty sources had the largest influence on the prediction uncertainty. Using this
analysis, we have found out how we can improve our predictions. It turned out that for pre-
diction weeks or months before failure, parameter uncertainty and classification uncertainty
have the largest influence. For predictions a few days before failure, uncertainty about future
weather is the most important source. Furthermore, using the prediction uncertainty analysis
we have shown that taking into account uncertainty has an influence on point predictions of
the remaining useful life. This supports the use of a Monte Carlo approach.

The results in this chapter lead to two small topics for future work. First of all, we have seen
in Section 5-3 that a single case with an overconfident prediction has a large on the mean
logarithmic loss likelihood. Therefore, we suggest to introduce a lower bound on all model
probabilities. Second, from Section 5-7 it followed that the largest uncertainty source for
predictions a few days before failure is future weather uncertainty. We suggest to incorporate
information on weather forecasts into our approach and to test whether test whether this
indeed improves our predictions a few days ahead.
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Chapter 6

Conclusions and future work

In this chapter, we critically reflect on the results found in this thesis. We start by presenting
the main findings in Section 6-1. Next, we elaborate on the limitations of our research in
Section 6-2. Based on these limitations, we make suggestions for future work in Section 6-3.

6-1 Main findings

In this thesis, we have presented a condition monitoring approach for track circuits based on
the multiple-model methodology. Main advantages of the multiple-model approach are: the
incorporation of prior knowledge, the fact that diagnostics and prognostics are integrated, and
the capability of modeling sudden changes and shocks. We have shown that track circuits,
including their faults, can be modeled as Markov jump linear systems. Using the efficient state
estimation algorithms for Markov jump linear systems, the health state of the system can be
determined and faults can be diagnosed. To make predictions for the remaining useful life,
a Monte Carlo approach is proposed. By making multiple predictions using different initial
conditions and noise realizations, the uncertainty in predictions for the remaining useful life
can be quantified, which is useful information for decision making.

When the proposed approach was tested in a simulation-based case study, it turned out
that the performance was remarkable. The implemented approach correctly diagnosed the
system in 99.1 % of the cases and outperformed a neural network developed for the same
purpose. Furthermore, the approach was able to generate predictions for the remaining
useful life with a relative accuracy of 81 %. We have shown that our approach was able to
quantify the uncertainty in the prediction of the remaining useful life. In addition, the method
was able to quantify the effect of uncertainty sources on the remaining useful life prediction
uncertainty. It turned out that for predictions months before the moment of functional
system failure, parameter uncertainty and classification uncertainty are the most important
factors. For predictions less than a week before failure, uncertainty about the weather is the
most important source. We conclude that a multiple-model approach, combined with Monte
Carlo-based predictions, is well suited to the track circuit condition monitoring problem.
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In the future, this thesis together with [19] and [79] can be used to select a technique for
track circuit condition monitoring. However, it will require a considerable amount of work
before condition monitoring for track circuits is implemented, since the results of this thesis
and [19, 79] have to be tested on real data. We believe that this thesis can be seen as one of
the first steps towards achieving considerable less emergency repairs and breakdowns in 2030.

6-2 Limitations

There are some limitations to our research. Most of these limitations stem from the limited
amount of data available.

First of all, we did not test the approach on a large railway network with track circuits.
Although our framework is derived for large large networks with track circuits, due to time
restrictions, in our case study we have used a smaller network. Testing the proposed approach
on a larger network requires the simulation to be extended with realistic weather influences
where spatial and temporal relations (especially of rain fall) are incorporated.

Second, in this thesis we have assumed that a track circuit can only suffer from one fault at
a time. In practice, it might happen that two faults are present at the same time.

Third, we had to rely on prior knowledge of unknown reliability. The presented prior knowl-
edge might be wrong or too simplistic for the real situation. Since no formal guarantees are
derived in this thesis, it is not completely clear what the effect is of incorrect prior knowledge
on the condition monitoring performance. It is also possible that new prior knowledge be-
comes available. This can be incorporated in a similar fashion as the prior knowledge used in
this thesis. However, we do not know what the exact effect is of other prior knowledge on the
condition monitoring performance. This means simulations and tests have to be performed
using the newly developed system.

Lastly, we did not have measurements of track circuits suffering from a fault available. We
only had measurements of three healthy track circuits. Therefore, we had to test our approach
using a simulation-based case study. The general problem with simulation-based case studies
is that only known characteristics are incorporated in the simulation and unknown phenomena
or not. A simulation is always a simplification of reality and unmodeled phenomena might
have a significant impact on the condition monitoring performance in practice. Therefore, it
remains unknown how the proposed approach performs in reality.

6-3 Future work

In the previous section, we have pointed out some limitations of this study. In this section,
we propose topics for future research, partly inspired by these limitations. First of all, we
do suggestions for improvements and additional research based on the approach proposed in
this thesis. These suggestions could be implemented in the short term (approximately three
months). Second, we do suggestions for research topics related to our study that can be
exercised in the mid term (approximately one year). Third, we suggest research directions for
condition monitoring of track circuits in general, related to the long term. Lastly, we look at
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a broader perspective and think about the applicability of the results presented in this thesis
to other fields.

On the short term, we think our multiple-model approach could be improved using some minor
modifications. We used the interacting multiple-model algorithm because of its excellent
trade-off between computational complexity and state estimation performance. However, we
are able to filter two years of data in 2 minutes per monitored track circuit, which is much
faster than real-time. Therefore, choosing an algorithm that requires more computation time,
but achieves a better performance might be a better choice. For example, filtering can be
performed using the generalized pseudo Bayes 2, generalized pseudo Bayes 3, or generalized
pseudo Bayes 4 algorithm [1, 11]. Furthermore, a numerically robust algorithm could be used.
The implemented algorithm we used in our case study was based on the extended Kalman
filter/unscented Kalman filter toolbox for MATLAB [25] and suffered from some numerical
problems. The solutions proposed in [59] are a good starting point if one wants to develop
such an algorithm themselves.

Next to these small topics for further research, substantial more research is required to test
the applicability of the proposed approach to larger networks. Such a study requires a realistic
simulation where the spatial properties of environmental influences are accurately modeled.
Furthermore, this could also shed a light on the optimal number of nearby track circuits to
use for condition monitoring. Furthermore, it is important to test the proposed approach
on real data, instead of on simulated data. Unmodeled effects in the simulation or incorrect
prior knowledge might have a large effect on the condition monitoring performance.

In the long term, we think research should be directed towards the influence of multiple
faults on a single track circuit. We suggest performing field experiments for this purpose,
since we expect that the amount of data available of track circuits suffering from multiple
faults is much smaller than the amount of data available for track circuits suffering from a
single fault. When information on the spatial influences and degradation behavior of these
fault combinations is available, our multiple-model approach can be extended with models
of fault combinations. Furthermore, we think a better condition monitoring solution can
be achieved when multiple solutions are combined. Although our approach outperformed
a neural network, combining the two might lead to a higher classification accuracy than
that is achieved by the multiple-model approach alone. In practice, often combinations of
classifiers outperform the single best classifier [29]. Therefore, we propose to combine the
classification output of our multiple-model approach and the output of the neural network.
Another suggestion might be to combine different estimation algorithms. In Chapter 3, we
have concluded that the filtering performance of the interacting multiple models algorithm and
the linear minimum mean square error estimator is comparable and that pruning strategies
can be used as well. Combining the algorithms might increase the fault classification accuracy
further. In turn, this might lead to better predictions, since the predictions for the remaining
useful life are based on the outcomes of the fault classification stage.

The results of this thesis are not only applicable to the track circuit case, but can be ap-
plied to other areas as well. The application of track circuits was characterized by spatial
dependencies. In this thesis we have proposed an approach whereby these dependencies are
incorporated, while condition monitoring is performed for each track circuit separately, lead-
ing to a limited number of modes in the multiple-model approach. This technique might be
applicable to other applications where spatial dependencies are important. One could think
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of, for example, diagnosing water or gas networks. Next to applications in an engineering
context, one could also think of economic applications. Markov switching models are often
used for business cycle analysis (dating and predicting recessions and expansions), but often
the business cycle is analyzed for one country or one continent without taking relations with
others into account [32, 41]. Since the economies of countries get more and more entangled
due to globalization, business cycle analysis might be improved using the techniques presented
in this thesis.
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Appendix A

Observable model realizations

In Section 4-3 we derived linear discrete-time state space systems for all modes of the system.
As pointed out in Section 4-4, the described systems are not observable and not all parameters
can identified. Therefore we have to transform our models to observable realizations. In this
appendix we highlight how we form these observable realizations where all parameters are
identifiable.

In Section A-1, we describe how to make the general model for track circuit measurements
observable and all parameters identifiable. In Section A-2, we describe how we add the fault
models to this model in order to create observable fault models.

A-1 An observable realization of the general model

We have the following state transition equations as defined in Section 4-3-1:

xt+1 = Axt + But + vt = (A-1)
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With the following observation equations:

yt = Cxt + wt =
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. (A-2)

The noise covariance matrices are defined as follows:

E
[

vtv
⊤

t

]

=





























σ2
ζ 0 0 0 0 0 0 0

0 σ2
ν,1 0 0 0 0 0 0

0 0 σ2
ν,2 0 0 0 0 0

0 0 0 σ2
ν,3 0 0 0 0

0 0 0 0 σ2
κ 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0





























(A-3)

E
[

wtw
⊤

t

]

=







σ2
η,1 + c2

1σ2
ǫ c1c2σ2

ǫ c1c3σ2
ǫ

c2c1σ2
ǫ σ2

η,2 + c2
2σ2

ǫ c2c3σ2
ǫ

c3c1σ2
ǫ c3c2σ2

ǫ σ2
η,3 + c2

3σ2
ǫ






. (A-4)

This model is not identifiable and unobservable. Therefore we rewrite the model into a
form which is identifiable and observable. The constant µs can be included in the long-term
variation state χs,t. We can express the long-term variation of output 2 (median current of
nearby track circuits on the same track) as the long-term variation of output 1 plus a term
accounting for the difference between the long-term variation in output 2 and track circuit 1.
Similarly we can do this for track circuit 3 (median of current of nearby track circuits located
on a different track). This gives:

y1,t = χ1,t + ... (A-5)

y2,t = χ1,t + χ2,t + ... (A-6)

y3,t = χ1,t + χ3,t + ... (A-7)

Furthermore we can fix the value of a1 to 1, since we could multiply the state βt with 1
a1

.
Similarly, we can set b1 to 1.

This gives us the following state transition equations

xt+1 = Axt + But + vt =
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With the following observation equations:

yt = Cxt + wt =
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. (A-9)

The noise covariance matrices are defined with the following coefficients:
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We observe that the model for healthy system behavior consists of six states.

A-2 Adding a fault model to the general model

Our fault models have two states in general. For example:
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+ vt. (A-12)

Here, x1,t represent the absolute fault intensity and x2,t is the degradation rate (the gradient
of the fault intensity). If we would combine our models by adding the state x1,t to the output
yt, this would make the model unobservable, since the long-term current level χs,t cannot
be distinguished from the fault x1,t. We model the degradation rate x2,t as an effect on the
long-term current level χs,t. This leads to the following state transition equations:

xt+1 = Axt + But + vt =
























β

χ1

χ2

χ3

λ

λ̇

x2

























t

=

























g 0 0 0 0 0 0
0 1 0 0 0 0 1
0 0 1 0 0 0 h

0 0 0 1 0 0 −1

0 0 0 0 cos (ωτ) sin(ωτ)
ω

0
0 0 0 0 −ω sin (ωτ) cos (ωτ) 0
0 0 0 0 0 0 l

















































β

χ1

χ2

χ3

λ

λ̇

x2

























t

+

























1
0
0
0
0
0
0

























ut + vt (A-13)

Master of Science Thesis W.P. Verbeek



64 Observable model realizations

The observation equations are defined by:

yt = Cxt + wt =
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. (A-14)

The value of h depends on the spatial dependencies of the fault (based on the C matrices
derived in Section 4-3-2). When the fault only influences one track circuit (D1) h = −1, while
when the fault influences all track circuits on the same track (D2) h = 0. The value of l

depends on the type of degradation behavior: l is 0 for constant degradation behavior (after
a shock due to abrupt faults), 1 for linear degradation behavior (L) and f for exponential
degradation behavior (E).
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Appendix B

Additional analyses

B-1 Computational complexity

We have analyzed the computational complexity, by testing the computation time required
to run the multiple-model filter using a certain number of models. We have tested the
performance for multiple model filtering using one up till 13 models. In Figure B-1 we
see that a small quadratic trend is visible: doubling the number, leads to slightly more than
double the computation time. This means the computational complexity is O(M2) in terms
of the number of models used.

B-2 The influence of the number of runs used in the Monte Carlo

approach on the prediction

We analyzed how many runs should be used for our Monte Carlo predictions. We made
predictions using different number of runs and compared the confidence intervals. In Figure B-
2 we have presented the results. We see that the 95 % confidence interval is very erratic
when less then 102 = 100 runs are used. With more than 102 runs the confidence interval
is stabilized. We select 1000 runs as a compromise between accuracy and the amount of
computation time required.

B-3 Prognostic performance with Q instead of Q′

We have made predictions using a process noise matrix that was a scaled version of the original
process noise matrix Q. We have also tested the prognostic performance when the original
matrix Q would have been used. These results are presented in Table B-1.
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Figure B-1: The influence of adding extra models on the required computation time.
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Figure B-2: The influence of the number of runs on the prediction.
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Table B-1: Prognostic performance based on 3156 predictions for the remaining useful life in
total.

(a) Absolute prediction error.

Fault type Absolute predic-
tion error (days)

Absolute predic-
tion error first
prediction (days)

Absolute predic-
tion error last
prediction (days)

Insulated joint defect 3.21 10.79 1.19
Mechanical defect 1.71 9.99 0.15
Ballast degradation 16.06 44.27 6.88

Overall 6.97 21.62 2.73

(b) Prediction accuracy and width 95 % confidence interval.

Fault type Prediction accu-
racy

Width 95 % con-
fidence interval
first prediction
(days)

Width 95 % con-
fidence interval
last prediction
(days)

Insulated joint defect 82 % 62.00 4.75
Mechanical defect 82 % 66.65 0.46
Ballast degradation 80 % 161.52 39.37

Overall 81 % 69.53 14.79
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Appendix C

Fault classification comparison set-up

Neural network

Multiple-model filter

Preprocessing

Postprocessing

Simulation Comparison
50 samples
a day

25 samples 
a day

50 samples
a day

25 samples 
a day

Figure C-1: Fault classification comparison set-up including sampling frequencies.
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Glossary

List of Symbols

α1 Maximum current of a healthy system when the section is occupied (A)

α2 Minimum current of a healthy system when the section is clear (A)

βt Wetness of the ballast (V)

χs,t Output-specific causes of long-term variation (A)

δ Process noise scaling factor for predictions

ǫt Unknown common causes of variation in the measured currents

ηs,t Unknown output-specific causes of variation in the measured current (A)

γ1 Maximum current required to switch signal from clear to occupied (A)

γ2 Minimum current required to switch signal from occupied to clear (A)

κt Innovation of long-term variation affecting all outputs

λt Periodic effects

µs Nominal current (A)

νs,t Output-specific long-term variation innovation

π Transition probability

πij Transition probability from mode i to mode j

σ2 Variance

τ Sampling time

θ Active mode of the system

ξt Causes of long-term variation affecting all outputs

ζt Measurement noise on the rain sensor (V)

T̂ Predicted remaining useful life

A Relative accuracy

L Logarithmic loss likelihood

A State transition matrix of a state-space system

as Coefficient denoting the influence of wetness of the ballast on the measured
current (A/V)
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80 Glossary

B Input matrix of a state-space system

bs Coefficient denoting the influence of periodic effects on the measured current
(A)

C Output matrix of a state-space system

cs Coefficient denoting the influence of common causes of variation on the output
ys,t (A)

D Feedthrough matrix of a state-space system

ds Coefficient denoting the influence of common long-term variation causes on the
measured current ys,t (A)

fθ Pole location of exponential degradation behavior for fault mode θ

h Parameter used in observable realization which depends on the degradation be-
havior of the fault

It Current flowing through the relay of the track circuit (A)

Ii,t Track circuit measurement for track circuit i (A)

k Number of time steps ago for which hypotheses having a different history are
merged in the generalized pseudo Bayes algorithm

l Parameter used in observable realization which depends on the spatial depen-
dencies of the fault

M The number of models

N Number of hypotheses contained in the N best strategy

Q Process noise variance-covariance matrix

R Measurement noise variance-covariance matrix

T Actual remaining useful life

t Time step

ut System input / rain sensor measurements (V)

vt Vector with process noise in a state-space system

wt Vector with measurement noise in a state-space system

xt Vector with states in a state-space system

xi,t State i in a state-space system

yt Vector with outputs / preprocessed track circuit current measurements (A)

ys,t System output s (A)

A Abrupt degradation behavior

D1 The fault influences one specific section.

D2 The fault influences track circuits on the same track.

D3 The fault influences track circuits along the path of a specific train

D4 The fault influences all nearby sections

E Exponential degradation behavior

I Intermittent degradation behavior

L Linear degradation behavior

ǫ Subscript denoting unknown output-specific variation

η Subscript denoting unknown short-term variation affecting all outputs
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κ Subscript denoting the innovation for long-term variation affecting all outputs

ν Subscript denoting the innovation for output-specific long-term variation

degradation Subscript denoting a model describing degradation behavior

healthy Subscript denoting the healthy model

step Subscript denoting a model describing a step in one of the states

ζ Subscript denoting measurement noise on the rain sensor

s Subscript denoting the output index

t Subscript denoting the time index

+ Superscript denoting the mixed state estimate used as input for Kalman filter
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