
Condition Monitoring of Bearing Damage in Electromechanical Drive 

Systems by Using Motor Current Signals of Electric Motors: A 

Benchmark Data Set for Data-Driven Classification 

 
Christian Lessmeier

1
, James Kuria Kimotho

2
, Detmar Zimmer

3
 and Walter Sextro

4
 

1,3
 Chair of Design and Drive Technology, Faculty of Mechanical Engineering,  

Paderborn University, Pohlweg 47 – 49, 33098 Paderborn, Germany 

christian.lessmeier@uni-paderborn.de 

detmar.zimmer@uni-paderborn.de 

2,4
 Chair of Mechatronics and Dynamics, Faculty of Mechanical Engineering,  

Paderborn University, Pohlweg 47 – 49, 33098 Paderborn, Germany 

james.kuria.kimotho@uni-paderborn.de  

walter.sextro@uni-paderborn.de 

 
ABSTRACT 

This paper presents a benchmark data set for condition 

monitoring of rolling bearings in combination with an 

extensive description of the corresponding bearing damage, 

the data set generation by experiments and results of data-

driven classifications used as a diagnostic method. The 

diagnostic method uses the motor current signal of an 

electromechanical drive system for bearing diagnostic. The 

advantage of this approach in general is that no additional 

sensors are required, as current measurements can be 

performed in existing frequency inverters. This will help to 

reduce the cost of future condition monitoring systems. A 

particular novelty of the present approach is the monitoring 

of damage in external bearings which are installed in the 

drive system but outside the electric motor. Nevertheless, 

the motor current signal is used as input for the detection of 

the damage. Moreover, a wide distribution of bearing 

damage is considered for the benchmark data set. The 

results of the classifications show that the motor current 

signal can be used to identify and classify bearing damage 

within the drive system. However, the classification 

accuracy is still low compared to classifications based on 

vibration signals. Further, dependency on properties of those 

bearing damage that were used for the generation of training 

data are observed, because training with data of artificially 

generated and real bearing damages lead to different 

accuracies. Altogether a verified and systematically 

generated data set is presented and published online for 

further research. 

1. INTRODUCTION 

According to statistics, 40-70% of electro-mechanic drive 

systems and motor failures are caused by rolling bearing 

damages, which can lead to high costs in applications 

because of downtimes (Bonnett & Yung, 2008; Djeddi, 

Granjon, & Leprettre, 2007). Thus, high-risk applications or 

those with high maintenance costs are continuously 

monitored. Detection of bearing damage is typically 

monitored by vibration analysis using acceleration sensors. 

These additional acceleration sensors are widely utilized, 

especially in large applications such as wind power turbines 

or cement mills. In industrial applications which use a great 

number of inexpensive small electric motors with an 

approximate power consumption of around 1 kW or less, the 

cost for additional sensors is financially not feasible. For 

this reason, several research projects focus on detecting 

bearing damage by using existing signals such as motor 

currents, which can be measured by the already existing 

frequency inverters. Researchers prefer data-driven 

classification methods that are based on machine learning 

algorithms to detect damage states by using the motor 

current signals (MCS). These methods are often examined 

in case studies of special applications and damages such as 

broken rotor bars or bearing damages. The condition 

monitoring (CM) methods based on MCS are still being 

investigated and not yet prevalent in industrial applications 

as they continue to have restrictions. (Bellini, Filippetti, 

Tassoni, & Capolino, 2008; Herold, Piantsop Mbo’o, & 
Hameyer, 2013; Paschke et al., 2013; Picot et al., 2014; 

Stack, Habetler, & Harley, 2003) 
Christian Lessmeier et al. This is an open-access article distributed under 

the terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

2 

For MCS-based methods, it has to be distinguished between 

bearing damage in the motor itself (internal bearings) and 

bearings in the remaining drive train (external bearings).  

Damage of the internal motor bearings or other faults in the 

motor itself, as for example broken rotor bars or rotor 

eccentricity, directly influence the airgap of the motor and 

induce vibrations at characteristic frequencies in the motor 

current. Detection of damage in external bearings is more 

complex as the damage signature has to be transmitted 

indirectly through torque variations along the drive train. 

Therefore, it is damped and superimposed with disturbances 

from the powered process, leading to noisy and hard 

detectable signals. (Blödt, Granjon, Raison, & Rostaing, 

2008; Herold et al., 2013; Schoen, Habetler, Kamran, & 

Bartfield, 1995).  

Schön et al. (1995) discuss both situations, damage in 

internal and external bearings, and derive formulas for the 

theoretically expected frequencies and sidebands in each 

situation. However, these frequencies can only be detected 

reliably in special cases because they are influenced by 

operating conditions, machine design, external noise etc. 

and have usually only been investigated for large scale 

damages. (Bellini et al., 2008; Mbo'o, Herold, & Hameyer, 

2004). Hence, additional investigations are required. 

It is assumed that good results for diagnostics can be 

achieved with data-driven classification methods using 

machine learning (ML) (Bellini et al., 2008; Kankar, 

Sharma, & Harsha, 2011; Paschke et al., 2013). The low 

availability of training and testing data with the MCS of 

external bearing for ML procedures limits further research, 

so that there is insufficient knowledge about the capability 

of industrial usage. To overcome this limitation, research 

has to address the systematic generation of training data 

with mechanical bearing damage. (Nectoux et al., 2012; 

Stack et al., 2003; Zarei & Poshtan, 2009) 

This results in two subjects of activity, which should be 

considered in more detail for the generation of training data: 

a systematic generation of the bearing damages themselves 

and their systematic specification.  

In the industry, a wide variety of bearing damages occur. 

Especially the development of fatigue damages or damages 

caused by solid particles is randomly influenced; in 

addition, the appearance of damages can change over time. 

In the literature, six main damage modes and more than 20 

different damage symptoms in bearings are treated. (ISO 

15243, 2010; Bartz, 1985; Schaeffler Technologies AG & 

Co. KG, 2015) Recent research studies on CM address only 

some of these damages. Furthermore, many of the available 

research papers focus only on artificial bearing damages 

because these are easy to generate. (Pacas, Villwock, & 

Dietrich, 2009) Publications show that in most cases only 

single point damages are used for research, which inhibits 

the development of reliable CM systems based on MCS. 

(Bellini et al., 2008; Stack et al., 2003). 

Thus, it is no surprise that some authors report a high 

discrepancy between the proposed methods in science and 

their application in industry. Stack assumes that one reason 

for this discrepancy is the use of the simple artificial defects 

in the form of single point damages in research. For a more 

detailed consideration, bearing damage is nowadays 

separated into single point and distributed damage. (Nandi, 

Toliyat, & Li, 2005; Stack et al., 2003; Tandon & 

Choudhury, 1999)  

Single point damages are characterized by their small 

extend at a localized position, for example a crack or a small 

pit. When the rolling elements run across these defects, 

shock pulses stimulate vibrations at the characteristic 

bearing frequencies (Randall, 2011). Distributed damages, 

also called generalized roughness (Stack et al., 2003) or 

extended faults (Randall, 2011), induce broadband 

vibrations which are often not easy to separate from the 

noise of the signal. In general, these damages are caused by 

wear, corrosion or plastic deformation, but also by extensive 

pitting (fatigue) damages (Nandi et al., 2005). The authors 

of the present paper also observed the combination of 

different damage types in one bearing, which leads to 

superimposed signals for CM. 

While the bearing damage signature of vibrations is well 

known, there is little experience with the MCS of external 

bearing damage and the correlation of the artificial damages 

used in research with real damages in the industry (Bellini et 

al., 2008). Especially for MCS-based condition monitoring, 

the authors of this paper think a more detailed description of 

damage is required as the separation into single point and 

distributed damage is not sufficient. Moreover, a precise 

description of specific test damages and test bearing 

specifications for experimental examinations are needed. 

Therefore, a systematic methodology is necessary to 

characterize the appearance of damage for CM, as existing 

methodologies are not very specific. Given the need for 

further research the present paper focuses on the systematic 

generation of training data for ML classification algorithms 

based on MCS.  

To create a systematic data set, first a method for the 

systematic description of the rolling bearing damage is 

described (section 2). Afterwards, the generation of artificial 

and real bearing damages to be used for training data 

generation in the experiments (section 3) and the 

experimental set-up itself (section 4) are explained. Section 

5 gives details on the database and their availability for 

further research.  

To validate the data set and as a proof of concept for the 

general method, the paper points out some damage detection 

results as well. In section 6 the established method of 

envelope analysis is used to prove the proper data 
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acquisition and to allow an initial evaluation of the bearing 

damages. Section 7 shows that machine learning 

classification algorithms are able to identify the damaged 

bearings in industrial drive trains using MSC, but require 

sophisticated training data, as classification accuracies differ 

depending on the training data sets. Therefore, the 

dependency of the classification results on different damage 

types and manifestations of damage is examined. 

2. CATEGORIZATION OF BEARING DAMAGE 

For systematic approaches of the examination of bearing 

damages, a comprehensive methodology for categorizing 

bearings and their specific damages is needed. The proper 

description and categorization of bearing damages and their 

cause is not an easy task as bearing damages occur as an 

interaction of different causes and conditions. Moreover, the 

patterns of damages may vary widely and often occur in 

combinations. Bearing damages can have different 

development states and not all of them lead to a sudden 

failure. 

ISO 15243 gives a methodology for the classification of 

bearing damage and failures. The damages are categorized 

into six main damage modes and their sub-modes. The six 

main damage modes are: fatigue, wear, corrosion, electrical 

erosion, plastic deformation, and fracture and cracking. 

This existing methodology of categorization is helpful to 

describe damages and to figure out their causes. 

Nevertheless, it only considers the damage modes in general 

and does not describe the detailed physiognomy of the 

damage. 

The authors do not know of any extensive and established 

method to describe the physiognomy of bearing damages in 

detail. Therefore, a method for general categorization and 

detailed specification was developed. It focuses on the 

detailed description of the damage as well as on the 

corresponding bearing and its application. Description 

criteria were gathered using brainstorming methods and 

sorting them into a hierarchic structure of categories. The 

categories and criteria are shown in Table 1.  

The criteria were grouped into four main categories, the first 

three giving information about the bearing and the fourth 

providing detailed information about the damage. According 

to these criteria, a detailed profile (or fact sheet) can be 

created for any damaged bearing.  

The criteria of the first group “general info” name the 
bearing type and the standardized code according to the 

standards of each bearing series.  

The criteria in the second group “manufacturer specific 

information” give information about the internal geometry 

and parameters of the bearing as these are not standardized. 

Consequently, these parameters differ from manufacturer to 

manufacturer. Especially for CM, these parameters may be 

important when model based approaches are used and, for 

example, the geometry is needed to calculate the 

characteristic frequencies.  

Criteria in the third category “application specific 

information” list the specific information of the individual 

bearing in the form of distinct identification codes and 

information concerning the place of operation and the 

corresponding operating conditions. This information is 

especially valuable to help figure out the damage causes in 

industry applications. Further on in this paper the four-digit 

code for each specific bearing is used for identification. It 

consists of two letters and two numbers, e.g. KA01, KB23.  

The damage itself in the fourth group is described by its 

type and subtype according to ISO 15243 (2010), its 

Table 1. Categorization of bearing damage. 

Category and sub-category Criterion Example 

General info  

(bearing) 

Bearing Type ball bearing 

Bearing designation 

(dimension series, bore 

code) 

6203 

Suffix n/a 

Manufacturer 

 specific 

 information 

about bearing 

Geometry 

Diameter of inner raceway 24.0 mm 

Diameter of outer raceway 33.1 mm 

Pitch circle diameter 28.55 mm 

Number of rolling elements 8 pc. 

Rolling element diameter 6.75 mm 

Length of rolling element 6.75 mm 

Nominal pressure angle 0° N 

Parameters 

Static load rating 4750 N 

Dynamic load rating 9500 N 

Speed limit 12000 rpm 

 Manufacturer FAG 

Application 

 specific 

 information 

Identification 

Bearing code (used for 

datasets)  
KB24 

Sample number 12-01 

Place of  

operation 

Installation site 01 

Installation type (system 

type) 

KAt - lifetime 

test rig 

Operator KAt 

Operation  

conditions 

Number of load cycles 2769500 

Lifetime 15:01 h:min 

Load 3800 N 

Dynamic equivalent load  3800 N 

Rotational speed 2900 rpm 

Load direction 0 ° 

Comment n/a 

Damage 

Type of  

Damage 

Mode  fatigue 

Sub-mode  n/a 

Symptom  pitting 

Damage 

location 

Component  outer ring 

Position of damage raceway 

Damage combination multiple 

Arrangement of the 

repetitive and multiple 

damages 

no repetition 

Geometry 

Length 9.4 mm 

Extent of damage 3 

Width total raceway 

Depth n/a 

Characteristic of damage distributed 

Damage  

occurrence 

Damage method 
acc. lifetime 

test 

Cause of damage (category) 
operating 

conditions 

Cause of damage (detailed) load, lubricant 

 

http://www.dict.cc/englisch-deutsch/pitch+circle+diameter.html
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location, geometry, and occurrence. If there is more than a 

single damage to one bearing, the criteria of the last group 

are repeated to get a detailed and full description of all 

occurring damages.  

As this paper focuses on CM of bearing damages, some of 

the most important criteria concerning the description of 

bearing damages for CM are explained in detail. For a better 

understanding, an example is given in the last column of 

Table 1. 

Damage combination: This criterion characterizes the 

occurrence of combined or repetitive damage based on the 

damage symptoms. This is important for real damages 

which are not plain single point damages. It is described by 

the following three options: 

 Single damage: One single component of the rolling 

bearing is affected by a single damage, for example a 

single pitting on the inner ring. 

 Repetitive damage: Identical damage symptoms are 

repeated at several places on the same bearing 

component, for example several, non-continuous 

pittings on the inner ring raceway. 

 Multiple damage: Different damage symptoms occur in 

the bearing or identical damage symptoms occur on 

different bearing components. This option can include 

repetitive damages.  

Arrangement of the repetitive and multiple damages: This 

criterion characterizes the arrangement of the damage 

symptoms on each component (e.g., the inner ring) for the 

repetitive and multiple damages (see above). This criterion 

is described by the following options: 

 Regular: The damage symptoms recur in a regular 

pattern on the component. 

 Random: Random distribution of the local damage 

symptoms. 

 No repetition: The damage occurs only once and this 

criterion does not apply.  

Geometrical size: The geometrical size of the damage is 

described by the length, width, and depth of the damage, 

according to the directions quoted in VDI 3832 (2013) and 

depicted in Figure 1.  

 

Figure 1. Parameters for describing the  

geometry of bearing damages. 

Extent of damage: The extent of the damage describes the 

size of the damage in normalized levels, which are 

independent of the bearing size. The levels are based on the 

length of the damage, as this is a determining factor for the 

signal output in CM and the intensity of the damage from 

the point of view of a machine operator. For this the 

percentage of length relative to pitch circumference is 

calculated and then assigned to five levels according to 

Table 2. 

Table 2. Damage levels to determine the extent of damage. 

Damage 

level 

Assigned 

percentage 

values  

Limits for bearing 

6203 

1 0-2 % ≤ 2 mm 

2 2-5 % >2 mm 

3 5-15 % >4.5 mm 

4 15-35 % >13.5 mm 

5 >35% >31.5 mm 

 

Characteristic of damage: The characteristic of damage 

assigns the damages into the already mentioned groups of 

single point and distributed damages. For a clear and easy 

division between these groups the dividing value is set to 

the diameter of the rolling elements, to which the damage 

length is compared. This guarantees that for the single point 

defects only one rolling element has contact to the damage 

in all cases and the extent of the damage is small in 

comparison to the bearing size. 

It should be noted that the appearance of the damages can 

have a simultaneous influence on several of the critera. 

Therefore the criteria are not independent. The dependency 

is tolerated in order to gain a detailed description of 

damages, due to the facts, that the damage diversity is high 

and the real phenomena intermix. 

Altogether, this method of categorizing gives a very detailed 

description of the regarded bearings and their damages. The 

difficulty is to collect all the information and parameters, as 

some of them are not obvious and hard to obtain. The 

method was developed using a wide approach and can thus 

be used to investigate the damage causes or other bearing 

damage related issues as well. 

3. GENERATION OF BEARING DAMAGE  

A main focus of this research paper is to generate systematic 

data of measurement signals for condition monitoring with a 

broad variety of bearing damage. As an intermediate step, 

the bearing damages had to be generated, requiring a special 

damage preparation for the bearings.  

To keep the amount of experiments manageable, research 

was limited to ball bearings of type 6203. The types of 

damage were processed and selected respecting the 

technical possibilities of their manufacturing and their 

length

w
id

th

damage depth

position of rolling element rolling element

rolling direction
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representation of bearing damage in industrial applications. 

Two groups of damages in ball bearings were used in the 

experiments: artificial and real damages. Both types of 

damage exist at the inner and outer ring of the ball bearing 

6203. For this paper bearings of the manufacturers FAG, 

MTK and IBU/IBB are used. All these bearings have eight 

rolling elements and the geometrical sizes are nearly 

identical, so that the characteristic kinematic frequencies do 

not vary more than 1-2%.   

The artificial damages were introduced manually using 

machining tools (see 3.1). For the generation of the real 

bearing damages an apparatus for accelerated lifetime tests 

was used (see 3.2). 

3.1. Artificial Damage 

The use of artificial damages to develop CM methods is 

very common, as reported in several research papers. Often 

rather extensive bearing damages such as holes in the outer 

race of the bearing are used. (Blödt et al., 2008; Nandi et al., 

2005; Zarei & Poshtan, 2009) 

Some researchers use only outer ring damages, even though 

inner ring damages are more likely to occur because of the 

higher Hertzian stress. Furthermore, inner ring damage is 

not as easy to detect as outer ring damage because in most 

situations, the signal is disguised by a modulation because 

of the rotation of the inner ring. (Obaid, Habetler, & Stack, 

2003; Pacas et al., 2009) 

Most commonly used methods for artificial damage 

preparation are:  

 Trenches generated by electrical discharge machining 

(EDM). (Niknam, Thomas, Hines, & Sawhney, 2013), 

(Villwock, 2007; Yang, Mathew, & Ma, 2005; Zoubek, 

Villwock, & Pacas, 2008), (Niknam et al., 2013; Patil, 

Mathew, Rajendrakumar, & Desai, 2010) 

 Drilling holes into the rings: The bore diameter, the 

orientation, and the position depend on the bearing type 

and size. (Amirat, Choqueuse, & Benbouzid, 2013; 

Blödt et al., 2008; Djeddi et al., 2007; Silva & Cardoso, 

2005; Zarei & Poshtan, 2009) 

The artificial damages used in this paper were caused by 

three different methods:  

1. electric discharge machining (trench of 0.25 mm length 

in rolling direction and depth of 1-2 mm), 

2. drilling (diameter: 0.9 mm, 2 mm, 3 mm), and  

3. manual electric engraving (damage length from  

1-4 mm).  

Table 3 shows three examples of damages caused by each of 

the three methods. The first two methods are very precise 

and easy to reproduce. Therefore, these artificial damages 

are appropriate for comparing research results with other 

studies. A lack of correlation to real bearing damage is 

assumed though, because a very abrupt and sharp transition 

between the damage and the undamaged raceway areas is 

apparent. To examine this correlation, the third type of 

artificial damage caused by a manual electric engraver is 

prepared, which has an irregular surface structure and lower 

depth, thus resembling real pitting damage. 

Table 3. Artificial bearing damage. 

   
Sharp trench by EDM 

- KA01 
Drilling - KA09 

Artificial pitting by 

electric engraver - KA03 

 

Details about the size and a categorization of the available 

test bearings according to the developed criteria (see 

section 2) are listed in Table 4.  

Table 4. Test bearings with artificial damage. 
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(l
ev

el
) 

D
a

m
a

g
e 

M
et

h
o

d
 

KA01 OR 1 EDM 

KA03 OR 2 electric engraver 

KA05 OR 1 electric engraver 

KA06 OR 2 electric engraver 

KA07 OR 1 drilling 

KA08 OR 2 drilling 

KA09 OR 2 drilling 

KI01 IR 1 EDM 

KI03 IR 1 electric engraver 

KI05 IR 1 electric engraver 

KI07 IR 2 electric engraver 

KI08 IR 2 electric engraver 

OR: outer ring;   IR: inner ring; 

 

It has to be mentioned that all the artificial damages are 

single point damages without a repetition or combination 

with other damages (compare section 2 - Categorization of 

Bearing Damage) 

3.2. Generating Real Bearing Damage Samples by 

Accelerated Lifetime Tests  

There are two options to test and develop CM methods with 

measurement data of real bearing damages: to measure 

bearing damages in real or in scientific test rigs. 

The successful use of data from industry applications is 

quite difficult, as it is complicated to receive systematical 

and comparable training data for different damages. This is 

because of the long lifetime of most bearings and, if damage 

is recognized, bearings are replaced before failure, so that 
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defect states are seldom. Therefore, often only a small 

number of damage states are available. Moreover, there are 

many different bearing types, sizes and machine types, and 

the operating conditions may change irregularly as they 

depend on the application. Therefore, measurements are 

expected to be influenced by various factors. This is helpful 

at later development stages to increase the robustness, but 

distracting for the development of the basic methods. To 

reduce the external influences, scientific test rigs are used, 

which enable the generation of realistic bearing damages by 

accelerated lifetime tests. Furthermore, damages for the 

needed bearing types and geometries can be systematically 

generated at reproducible conditions. The main 

disadvantage is that this consumes a lot of time and 

resources. (Nectoux et al., 2012; Qiu, Lee, Lin, & Yu, 2006) 

For the present research paper, ball bearings with real 

damages were obtained from an accelerated life time test. 

The accelerated life time test rig consists of a bearing 

housing and an electric motor, which powers a shaft with 

four test bearings of type 6203 in the housing (Figure 2). 

The test bearings rotate under a radial load which is applied 

by a spring-screw mechanism. The applied radial force is 

higher than in usual bearing applications to accelerate the 

appearance of fatigue damages, but still low enough to not 

exceed the static load capacity of the bearing. Moreover, 

low viscosity oil was used, which leads to improper 

lubrication conditions and favors the appearance of 

damages.  

 

Figure 2. Apparatus for accelerated life time test. 

Several damaged bearings were obtained by the lifetime test 

and categorized according to the developed criteria (see 

section 2). 33 damages were recognized in 18 bearings out 

of a test amount of 108 bearings used in the lifetime test. 

Around 70 % of the occurred damages were fatigue 

damages, which arise in the form of pittings. The rest of the 

bearings, except for one fracture, were damaged by plastic 

deformation, i.e. in the form of indentations caused by 

debris. Pitting damages occurred both on the inner and outer 

ring of the bearings. Indentations were found at the outer 

ring only. Damage at the rolling elements was not observed. 

The extent of the damage was categorized by the length of 

the damaged surface in rolling direction into the levels 1 to 

3 (compare Table 2 and Table 5). Multiple damages were 

characterized according to the damage with the highest 

extent. 

Table 5. Test bearings with real damages caused by 

accelerated lifetime test. 
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KA04 fatigue: pitting OR S 
no 

repetition 
1 

single 
point 

KA15 
Plastic deform.: 

Indentations 
OR S 

no 

repetition 
1 

single 

point 

KA16 fatigue: pitting OR R random 2 
single 
point 

KA22 fatigue: pitting OR S 
no 

repetition 
1 

single 

point 

KA30 
Plastic deform.: 

Indentations 
OR R random 1 distributed 

KB23 fatigue: pitting 
IR 

(+OR) 
M random 2 

single 

point 

KB24 fatigue: pitting 
IR 

(+OR) 
M 

no 

repetition 
3 distributed 

KB27 
Plastic deform.: 

Indentations 

OR + 

IR 
M random 1 distributed 

KI04 fatigue: pitting IR M 
no 

repetition 
1 

single 

point 

KI14 fatigue: pitting IR M 
no 

repetition 
1 

single 

point 

KI16 fatigue: pitting IR S 
no 

repetition 
3 

single 

point 

KI17 fatigue: pitting IR R random 1 
single 

point 

KI18 fatigue: pitting IR S 
no 

repetition 
2 

single 

point 

KI21 fatigue: pitting IR S 
no 

repetition 
1 

single 

point 

OR: outer ring;   IR: inner ring;     

S: single damage;    R: repetitive damage;    M: multiple damage 

 

Figure 3 shows two examples of bearing damages generated 

in the accelerated lifetime test.  

 

 

Figure 3. Indentation at the raceway of the outer ring (left); 

small pitting at the raceway of the inner ring (right). 

Bearing KB27 (left) shows indentations from debris 

particles at the outer ring. As the damage is repeated along 

the raceway only some of them are shown. Bearing KI14 

(right) has a very small pitting at an early stage (level 1) at 

inner ring  

outer ring  

outer ring  

inner ring  
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the inner ring. For the experiments, representative samples 

with different properties were selected (see Table 5). 

4. EXPERIMENTAL SET-UP 

To generate the experimental data for the development of 

CM methods of damaged bearings by using motor current 

signals, a specific test rig was designed and operated at the 

Chair of Design and Drive Technology, Paderborn 

University. The test rig is a modular system to ensure 

flexible use of different defects in an electrical driven 

mechanical drive train. Defects in mechanical components, 

as they occur in gearboxes or electrical machines, are 

experimentally reproduced to generate failure data using the 

test rig. For the generation of the measurement data, the 

current signals of the electric motor are recorded. 

Additionally, the vibration signal of the housing of the test 

bearings are measured as reference. 

4.1. Test Rig 

The test rig consists of several modules: an electric motor 

(1), a torque-measurement shaft (2), a rolling bearing test 

module (3), a flywheel (4) and a load motor (5), see  

Figure 4. The ball bearings with different types of damage 

are mounted in the bearing test module to generate the 

experimental data.  

The rolling bearing module provides the possibility of using 

a test bearing under a constant radial load, which can be 

continuously adjusted up to 10 kN before each experiment. 

An adapter gives the possibility to measure the vibration of 

the inner housing, which holds the test bearing in the main 

direction of the load. The precise design of the bearing 

module and additional features, such as the possibility to 

simulate tilting faults or the use of roller bearings, are 

described by Lessmeier, Enge-Rosenblatt, Bayer, & 

Zimmer, 2014. 

Figure 4. Modular test rig.  

The motor (1) is a 425 W Permanent Magnet Synchronous 

Motor (PMSM) with a nominal torque of T = 1.35 Nm, a 

nominal speed of n = 3,000 rpm, a nominal current of 

I = 2.3 A and a pole pair number p = 4 (Type SD4CDu8S-

009, Hanning Elektro-Werke GmbH & Co. KG). It is 

operated by a frequency inverter (KEB Combivert 07F5E 

1D-2B0A) with a switching frequency of 16 kHz. This 

standard industrial inverter is used to provide conditions 

similar to motors used in the industry because the current 

signals show significant noise due to the pulse-width 

modulation of the inverter. (Lessmeier, Piantsop Mbo'o, 

Coenen, Zimmer, & Hameyer, 2012)  

Figure 5 shows the schema of the measurement procedure 

and the recorded measurands. The motor phase currents are 

measured by a current transducer of the type LEM CKSR 

15-NP with an accuracy of 0.8 % of IPN = 15 A. The MCS 

are then filtered by a 25 kHz low-pass filter and converted 

from an analogue to a digital signal with a sampling rate of 

64 kHz. The current transducers are used instead of the 

internal ammeters of the inverter because of their easy 

signal access as the currents can be measured externally 

between motor and inverter.  

 
Figure 5. Schema of measurement procedure. 

At this scientific level of development, a high sampling rate 

and accuracy are additional advantages of this setup. 

Nevertheless, the used transducers are similar to the ones 

commonly used in industry applications, so that few 

difficulties are expected transferring the research outcomes 

to industrial CM systems.  

The acceleration of the bearing housing is measured at the 

adapter at the top end of the rolling bearing module using a 

piezoelectric accelerometer (Model No. 336C04, PCB 

Piezotronics, Inc.) and a charge amplifier (Type 5015A, 

Kistler Group) with a low-pass filter at 30 kHz. The signal 

is digitalized and saved synchronously to the MCS with a 

sampling rate of 64 kHz. 

The flywheel and the load machine simulate inertia and load 

of the driven equipment, respectively. The load motor is a 

PMSM with a nominal torque of 6 Nm (power of 1.7 kW).  

To record the operating conditions the following additional 

parameters are measured synchronously to the motor 

currents and vibration signal but with lower sampling rates: 

the radial force on the bearings (Compression and Tension 

Force Sensor Type K11, Lorenz, 10 kN), the load torque at 

the torque-measuring shaft, the rotational speed (Torque 

Transducer Model 305, Magtrol, 2 Nm) and the oil 

temperature in the bearing module.  

4.2. Experiments 

The test rig was operated under different operating 

conditions to analyze the influence of operation parameters 

motor
measuring 

shaft
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load motor

current 

transducer 

frequency 
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and to ensure the robustness of the CM methods at different 

operating conditions.  

The rotational speed of the drive system, the radial force 

onto the test bearing and the load torque in the drive train 

are the main operation parameters. To ensure comparability 

of the experiments, fixed levels were defined for each 

parameter (Table 6). All three parameters were kept 

constant for the time of each measurement. At the basic 

setup (Set no. 0) of the operation parameters, the test rig 

runs at n = 1,500 rpm with a load torque of M = 0.7 Nm and 

a radial force on the bearing of F = 1,000 N. Three 

additional settings are used by reducing the parameters one 

by one to n = 900 rpm, M = 0.1 Nm and F = 400 N (set No. 

1-3), respectively. For each of the settings, 20 measurements 

of 4 seconds each were recorded. Another parameter is the 

temperature, which was kept roughly at 45-50 °C during all 

experiments. 

In total, experiments with 32 different bearings were 

performed: 12 bearings with artificial damages and 14 

bearings with damages from accelerated lifetime tests (see  

Table 4 and Table 5). Moreover, experiments with 6 healthy 

bearings and a different time of operation were performed as 

reference states as shown in Table 7. 

5. DATABASE  

Nowadays, a huge amount of data is collected in industry 

and science for different purposes; some of it is made public 

in repositories or on websites. But obtaining the appropriate 

data in the needed quality and quantity for specialized 

research often is still challenging, especially, if a wide range 

of different types of damages or the yet rarely used MCS are 

the target of interest. This also applies to training data for 

bearing diagnostics employing ML-algorithms.  

Some diagnostic data sets for bearing damages are publicly 

available; the most popular and comprehensive ones are 

listed below:  

 CWRU: Bearing Data Center/ Seeded Fault Test Data
1
 

 FEMTO Bearing Data Set
2
 

 MFPT Fault Data Sets
3
 

 Bearing Data Set IMS
4
 

These data sets focus on different aspects. Some use 

artificial damages (CWRU, MFPT), others use real damages 

(FEMTO, IMS). CWRU and FEMTO use different 

operating conditions by varying load and speed; others use 

only different load situations (MFPT) or just one condition 

(IMS). The FEMTO data set provides run-to-failure data 

with measurements over a long period, but does not give 

any information about the properties of the damages. 

Altogether, the data sets mentioned use the classical 

vibration signals for bearing diagnostics. To the best 

knowledge of the authors of the present paper, no publicly 

available data set providing data for diagnostics of external 

bearing damages based on MCS is known.  

Therefore, the focus was to systematically create a high 

quality data set which takes into account several operating 

conditions and a wide distribution of artificial as well as 

realistic bearing damages. 

Smith and Randall demand some properties for benchmark 

data sets which are based on their experience with different 

diagnostic methods used on a vibration-based CM data set 

for bearings. They list three requirements (Smith & Randall, 

2015), which can be applied accordingly to MCS data sets: 

 Systematic and comprehensive documentation. 

 High sampling rates (>40 kHz). 

 Data verification with established methods before 

publication of the data.  

The first two issues are already addressed in this paper by 

the characterization of damage and the extensive 

documentation of the experiments, including a high 

sampling rate for the two main signals (64 kHz).  

                                                           
1

Case Western Reserve University (CWRU), Cleveland, Ohio, USA  

http://csegroups.case.edu/bearingdatacenter/home  
2

FEMTO-ST Institute, Besançon, France; http://www.femto-

st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-

2012-Data-challenge.php 
3 

Mechanical Failures Prevention Group (MFPT) Society (a Division of the 

Vibration Institute), Oak Brook, IL, USA, 
http://www.mfpt.org/FaultData/FaultData.htm  
4
 J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services, NSF 

I/UCR Center for Intelligent Maintenance Systems, Milwaukee, WI, USA: 
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/  

Table 6. Operating parameters. 

No. 

Rotational 

speed 

[rpm] 

Load 

Torque 

[Nm] 

Radial 

force 

[N] 

Name of 

Setting 

0 1500 0.7 1000 N15_M07_F10 

1 900 0.7 1000 N09_M07_F10 

2 1500 0.1 1000 N15_M01_F10 

3 1500 0.7 400 N15_M07_F04 

 
Table 7. Operating parameter of healthy (undamaged) 

bearings during run-in period. 

Bearing  

Code 

Run-in Period  

[h] 

Radial Load  

[N] 

Speed  

[min
-1

] 

K001 >50 1000-3000 1500-2000 

K002 19 3000 2900 

K003 1 3000 3000 

K004 5 3000 3000 

K005 10 3000 3000 

K006 16 3000 2900 

http://csegroups.case.edu/bearingdatacenter/home
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php
http://www.mfpt.org/FaultData/FaultData.htm
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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The examination of the data with established methods will 

be addressed in the next chapter, so that the provided data 

set and the corresponding documentation fulfill the 

requirements. Therefore, it is assumed that the data is 

beneficial to further research.  

To enable and encourage collaboration in the field of 

bearing condition monitoring and to allow researchers to use 

the generated data as benchmark data sets for further 

research, the data is published online. The data is licensed 

under the Creative Commons Attribution-NonCommercial 

4.0 International License.
5 
Noncommercial academic use of 

the data is explicitly allowed, but a citation of the origin is 

required and expected.
6 
For commercial use, please contact 

the author. The download page is available at the KAt-

DataCenter website of the Chair of Design and Drive 

Technology, Paderborn University, Germany:  

http://mb.uni-paderborn.de/kat/datacenter  

The data consists of measurements from 32 different 

bearing experiments. The bearings belong to three main 

groups:  

 Undamaged (healthy) bearings (6x), see Table 6. 

 Artificially damaged bearings (12x), see Table 4. 

 Bearings with real damages caused by accelerated 

lifetime tests, (14x) see Table 5. 

The specifications of the bearings are listed in the tables 

above.  

In summary, the main characteristic of the data set are:  

 Synchronously measured motor currents and vibration 

signals with high resolution and sampling rate of 26 

damaged bearing states and 6 undamaged (healthy) 

states for reference.  

 Supportive measurement of speed, torque, radial load, 

and temperature. 

 Four different operating conditions (Table 6). 

 20 measurements of 4 seconds each for each setting, 

saved as a matlab file with a name consisting of the 

code of the operating condition and the four-digit 

bearing code (e.g. N15_M07_F10_KA01_1.mat).  

 Systematic description of the bearing damage by 

uniform fact sheets (according to the categorization in 

section 2 - Categorization of Bearing Damage). 

                                                           
5 To view a copy of this license, visit 

http://creativecommons.org/licenses/by-nc/4.0/  
6 Please cite this paper and give name of the author, institute and link to the 

Kat-DataCenter: Christian Lessmeier et al., KAt-DataCenter: http://mb.uni-

paderborn.de/kat/datacenter, Chair of Design and Drive Technology, 
University Paderborn. 

6. ENVELOPE ANALYSIS FOR VIBRATION SIGNALS  

First of all, the bearing damage diagnostic is performed with 

the envelope analysis based on the vibration, as this is a 

well-known and established procedure. The objective of this 

examination is to verify the data and check the execution of 

experiments for mistakes and errors. Moreover, the 

detection of the damages provides a first estimate of the 

attitude of signals and corresponding damages to the 

authors.  

It can be demonstrated that the results of the envelope 

analysis correspond to the description in literature. The 

bearing damages cause typical characteristic kinematic 

frequencies that can be observed in the signals. These 

frequencies can be calculated for localized damages when 

the position of the damage (e.g. outer or inner ring) and the 

geometrical parameters of the bearing are known. (Randall, 

2011)  

Two single point damages, one at the inner ring (KA04) and 

one at the outer ring (KI18) are considered exemplarily. The 

envelope spectra in Figure 6 clearly shows the ballpass 

frequency of the outer raceway (fo) and their harmonics. The 

envelope spectra of the damage at the inner raceway in 

Figure 7 shows the fundamental rotation frequency of the 

shaft and its harmonics (fn), the ballpass frequency of the 

inner race (fi), and its sidebands as well as its corresponding 

harmonics.  

 

Figure 6. Envelope spectra of vibration signal  

for bearing damage at the outer ring. 

 
Figure 7. Envelope spectra of vibration signal  

for bearing damage at the inner ring.  

7. CLASSIFICATION ALGORITHM AND RESULTS 

The most common analysis for bearing damages involving 

MCS is to convert the time domain signals into the 

frequency domain and check for the bearing characteristic 
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frequencies (Blödt et al., 2008). However, in most cases the 

raw signals are masked by external noise, what makes this 

method very difficult to apply. Figure 8 shows exemplary 

plots of the power spectral density of a healthy bearing, a 

bearing with outer ring damage, and a bearing with inner 

ring damage. From Figure 8, only the electrical supply 

frequency (𝑓𝑒) and its harmonics are easily observable. This 

is mainly due to the masking of bearing characteristic 

frequencies by external noise and also the presence of 

distributed damages which are difficult to detect using 

characteristic frequency approaches (Yang, Merrild, Runge, 

Pedersen, & Hakon Børsting, 2009). 

However, by extracting features from the raw MCS, it is 

possible to observe the clustering of various damage classes 

of the bearing through a feature plot as seen in Figure 9. 

This shows that machine learning (ML) algorithms can be 

trained to identify various damages on the bearings from 

extracted features.  

Figure 10 shows the workflow of the application of machine 

learning for the classification of various bearing damages. 

The machine learning algorithm learns to map the input 

features to the corresponding target which consists of a class 

label representing the type of damage. A classification 

model is obtained which can be used to predict the type of 

damage for a given set of input features. In this work, the 

bearings were categorized in three classes as either healthy,  

having inner ring damage, or having outer ring damage. 

Seven state of the art algorithms and an ensemble of the 

algorithms using majority voting were implemented. These 

algorithms include: classification and regression trees 

(CART), random forests (RF), Boosted Trees (BT), neural 

networks (NN), support vector machines with parameters 

optimally tuned using particle swarm optimization (SVM-

PSO), extreme learning machine (ELM), and k-nearest 

neighbors (kNN). 

Target
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Figure 10. Application of machine learning (ML) for fault diagnosis. 

 

 

Figure 8. Frequency spectrum from MCS for (a) healthy bearing, (b) outer ring damage and (c) inner ring damage. 

 

Figure 9. Clustering of bearing health states for (a) features 

from MCS and (b) vibration signals. 
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7.1 Feature Extraction and Selection  

Feature extraction involves deriving time-, frequency,- and 

time-frequency-domain features from the raw signals. 

Signals acquired from machinery components such as faulty 

bearings are normally considered non-stationary, meaning 

that frequency components of the signal vary over time. 

Therefore, the extraction of time-frequency features is 

necessary. In this work, wavelet packet decomposition 

(WPD) is employed for the extraction of the time-frequency 

features. The raw signal is decomposed up to 3 levels. The 

detailed coefficients and approximate coefficients of level 1 

to 3 are obtained and from which the wavelet energy is 

computed. Fast Fourier Transform (FFT) and power spectral 

density (PSD) are used to extract the frequency domain 

features. A total of 23 features are extracted from each 

signal. A list of the extracted features can be found in 

(Kimotho & Sextro, 2014). Since not all features are 

suitable for fault classification, it is necessary to select 

features that contain most information on the health status of 

a component to avoid over-fitting and to improve accuracy. 

Suitable features for fault or health state classification 

should provide a good separation between different classes. 

In this study, a feature selection method based on maximum 

separation distance between different health states was 

employed. 

Given a feature set of 𝑗 =  1, 2, . . . 𝑄  features in 𝑐 = 1, 2, . . . 𝑁𝑐  classes or health states, the feature selection is 

performed as follows: 

1. Normalize the features between 0 and 1. 

2. Compute the mean (𝑚𝑗𝑐) of each feature 𝑗 within 

class 𝑐 as follows 𝑚𝑗𝑐 = 1𝑛 ∑ 𝑥𝑖𝑗𝑐𝑛𝑖=1 , 

where 𝑥  is the feature and 𝑛  is the number of 

samples. 

3. Compute the mean of the squared Euclidean 

distance (𝑑𝑗) between each feature data point 𝑖 and 

the mean of the same feature in each class 𝑑𝑗 = 1𝑛𝑁𝑐2 ∑ ∑ ∑ (𝑥𝑖𝑗𝑘 − 𝑚𝑗𝑐)2𝑛𝑖=1𝑁𝑐𝑐=1𝑁𝑐𝑘=1 . 

4. Normalize the separation distance with the 

maximum feature separation distance to produce a 

performance evaluation criteria �̅�𝑗 = 𝑑𝑗max (𝑑). 
5. Select the distance with a performance greater than 

a predetermined threshold. The threshold can be 

defined by evaluating the classification accuracy 

for each combined set of features. 

In the current study, a selection criterion of �̅�𝑗 ≥ 0.7 was 

found to yield the best results. In this case, 9 out of 23 

features are selected from each of the two MCS per sample 

and 15 features from the vibration signals. 

7.2 Training with Data from Bearings with 

Artificially Induced Damages 

At first, the algorithms were trained with features extracted 

from measurements with artificially induced bearing 

damages (see Table 8). The objective was to use a 

combination of healthy bearings and artificial damaged 

bearings to identify bearings with real damages and classify 

them as either healthy, inner ring damage or outer ring 

damage (3-class approach). In the testing part, features 

extracted from data with real damages (Table 8) were used 

as the input to the classification model. The output was the 

class label.  

Table 9 shows the classification accuracy of the machine 

learning algorithms used with features extracted from MCS 

and vibration signals under operating conditions in setting 0 

(see Table 6), which was found to produce better 

performance. Features from vibration signals result in a 

better classification accuracy than those from MCS. 

Table 8. List of data sets used for training and 

 testing the machine learning algorithms. 

Class  Training Testing 

1 Healthy K002 K001 

2 OR Damage 

 KA22 

KA01 KA04 

KA05 KA15 

KA07 KA30 

 KA16 

3 IR Damage 

 KI14 

KI01 KI21 

KI05 KI17 

KI07 KI18 

 KI16 

 

Table 9. Performance of various algorithms trained with 

features of bearings with artificially induced damages and 

tested with features of bearings with real damages. 

Algorithm Classification Accuracy [%] 

MCS Vibration Signals 

CART 26.8 65.9 

RF 45.0 64.1 

BT 38.6 62.3 

NN 45.5 65.5 

SVM-PSO 60.9 65.5 

ELM 45.5 65.9 

kNN 45.5 63.2 

Ensemble 45.9 75.0 
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Using features extracted from MCS, the support vector 

machine approach with parameters optimally tuned by using 

particle swarm optimization (SVM-PSO) shows the best 

performance of all algorithms with 60.9% classification 

accuracy. Figure 11 depicts the confusion matrix for SVM-

PSO. On the confusion matrix, the rows correspond to the 

predicted class and the columns to the true class. The 

diagonal cells represent the correctly predicted class, while 

the off-diagonal cells show misclassifications. The left 

column displays the false positives (healthy samples 

classified as damaged) and the upper row the false negatives 

(samples with damages classified as healthy). The bottom 

row indicate the accuracy and misclassification rate for each 

true class while the right column shows the accuracy and 

misclassification rate of each predicted class. The cell in the 

bottom right gives the overall accuracy. Bearings with inner 

ring damages (class 3) record the highest misclassification 

rate, with the majority of the cases being classified as 

having outer ring damages (class 2). 
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Figure 11. Confusion matrix for SVM-PSO trained with  

features extracted from MCS of bearings with artificially 

induced damages and tested with MCS features of bearings 

with real damages. 

Using features extracted from vibration signals, the 

ensemble algorithms with majority voting shows the best 

performance of all algorithms with 75% classification 

accuracy and no false positives or false negatives (Figure 

12). However, bearings with outer ring damages have the 

highest misclassification rate, with the majority of samples 

being classified as having inner ring damages. 
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Figure 12. Confusion matrix for ensemble of all  

algorithms trained with features extracted from vibration 

signals of bearings with artificially induced damages and 

tested with features of bearings with real damages. 

7.3 Training with Data of Bearings with Real 

Damages 

The data sets in Table 10 of healthy bearings and those with 

real damages were used for training and testing in a 5-fold 

cross-validation manner. For each combination, three data 

sets from each class were used for training and the other two 

for testing, resulting in 10 combinations. 

Table 10. Categorization of data sets for healthy  

bearings and bearings with real damages. 

Healthy 

(Class 1) 

Outer ring damage 

(Class 2) 

Inner ring damage 

(Class 3) 

K001 KA04 KI04 

K002 KA15 KI14 

K003 KA16 KI16 

K004 KA22 KI18 

K005 KA30 KI21 

 

Similarly, features from both MCS and vibration signals 

were used separately. The mean classification accuracy for 

the 10 combinations was computed and is presented in 

Table 11. Random Forest and the ensemble algorithm have 

the highest classification rates of 93.3% using the MCS data 

while CART, RF, and ensemble have the highest 

classification rate of 98.5% using the vibration data. 

However, the overall performance of other algorithms 

remains relatively the same regardless of the sensor data 

used.  

Figure 13 is the confusion matrix of the ensemble 

predictions using features from MCS. There are no false 

positives or negatives. However, the highest 

misclassification rate is recorded with the outer ring damage 

(class 2), as is the case with the ML methods trained with 

data of bearings with artificially induced damages. A closer 

look at the results indicates that the misclassified samples 

belong to the data sets KA04 and KA22 which have 

damages of level 1 (see Table 5). 
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Table 11. Performance of various algorithms trained and 

tested with features of bearings with real damages. 

Algorithm Classification Accuracy [%] 

MCS Vibration Signals 

CART 66.7 98.3 

RF 83.3 98.3 

BT 81.7 83.3 

NN 65.8 44.2 

SVM-PSO 56.7 75.8 

ELM 69.2 60.8 

kNN 68.3 62.5 

Ensemble 93.3 98.3 

 

Figure 14 is the confusion matrix of the ensemble of 

algorithms using features from vibration signals.  A few 

misclassification instances are observed in samples with 

outer ring (KA04) and inner ring (KI21) damages also with 

damages of level 1.  
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Figure 13. Confusion matrix for ensemble of  

algorithms trained and tested with MCS features  

of bearings with real damages. 
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Figure 14. Confusion matrix for ensemble of  

algorithms trained and tested with vibration features  

of bearings with real damages. 

7.4 Training with Data of Bearings with Multiple 

Damages  

Further tests were carried out by including data sets from 

bearings with multiple damages at both raceways, at inner 

and outer ring (KB23, KB24 and KB27). According to the 

dominant damage type KB23 and KB24 were assigned to 

the inner ring damage (class 3), while KB27 was assigned to  

the outer ring damage (class 2). 

Training and testing was done in a 5-fold cross validation 

manner based on the KAxx and KIxx data sets as described 

in section 7.3. In addition, KB23 and KB24 were used 

interchangeably for training and testing in a way that when 

one was used for training, the other was used for testing. 

KB27 was only used for testing since it is the only data set 

where the outer ring damage is dominant. Table 13 shows 

the average performance of the algorithms for this case. For 

the neural networks, parameters such as the number of 

hidden layers and neurons were not tuned and this explains 

the poor performance. 

Table 13. Performance of various algorithms trained and 

tested with features of bearings with real damages. 

Algorithm 
Classification Accuracy [%] 

MCS Vibration Signals 

CART 86.3 91.3 

RF 68.1 91.3 

BT 63.7 79.4 

NN 66.3 33.2 

SVM-PSO 80.6 70.8 

ELM 81.9 71.9 

kNN 61.3 70.0 

Ensemble 86.3 91.3 

 

Figures 15 and 16 are the confusion matrices for the 

ensemble of algorithms with the inclusion of the data sets of 

bearings with multiple damages. The inclusion of these data 

sets reduces classification accuracy, with the highest 

misclassification rate falling within the KB27 and with most 

of the samples being classified as having inner ring 

damages. 
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Figure 15. Confusion matrix for ensemble of  

algorithms with the inclusion of data sets with multiple 

damages (features extracted from MCS). 
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Figure 16. Confusion matrix for ensemble of  

algorithms with the inclusion of data sets with multiple 

damages (features extracted from vibration signals). 

7.5 Summary of Classification Results 

The following conclusions can be drawn from the results 

above:  

 Classifications based on vibration signals achieve 

higher classification accuracy than MCS-based 

classifications in all cases. 

 Training with artificial damage (7.2) and testing with 

real damages achieve quite low accuracies. 

 Training and testing with real damages (7.3) from 

accelerated lifetime test yield a lot better results.  

 Conclusion: For a realistic application of classification 

methods in CM systems the use of training data with 

artificial damages is apparently not sufficient. 

 Training and testing with an additional focus on 

multiple damages (7.4) yield even lower accuracies, as 

an example for different damage behavior according to 

the categorization of possible industrial damages. 

The discrepancy in the classification results of some of the 

machine learning algorithms could be attributed to 

overfitting. Therefore, further investigations should be done 

to improve their generalization, for instance through 

selection of suitable kernel functions or optimal parameter 

tuning. 

Conclusion for application: real industry applications with 

different electromechanical systems will lead to lower rates, 

therefore the development and selection of robust 

algorithms is important. Data sets of the benchmark data 

will support researchers in developing these algorithms.  

8. CONCLUSION  

Application of data-driven classification algorithms for 

vibration-based diagnosis of damages in rolling element 

bearings has been researched widely and appears to be a 

mature approach. From the present results, it is evident that 

MCS also have a great potential for fault diagnosis of 

external rolling element bearings in electromechanical drive 

systems. The advantage of this approach in general is that 

no additional sensors are required, consequently reducing 

the cost of the condition monitoring system.  

The particular novelties of the present research include the 

consideration of damage in external bearings (positioned 

outside the electric motor) and using the MCS as input for 

the detection of the damage. Moreover, a wide variety of 

bearing damage is considered. 

This paper presents important steps in the development of 

condition monitoring methods for electromechanical drive 

systems. The main features of this study can be summarized 

as: 

 Development of a systematic categorization method to 

describe specific bearing damages in detail. 

 Generation of artificial and realistic bearing damages.  

 Synchronous acquisition of vibration and motor current 

signals with a modular experimental setup to gather 

data sets for the development and testing of 

classification algorithms. 

 Verification of measurement data by using the 

established method of envelope analysis based on the 

vibration signals. It proves the proper data acquisition 

and compares it with the state of the art approaches 

proposed in literature. 

 Application of ML classification algorithms show that 

they are able to identify the damaged bearings using 

MCS, but require sophisticated training data. 

The results show that the MCS can be used together with 

machine learning algorithms to identify and classify bearing 

damages within the external drive systems. However, the 

classification accuracy of the machine learning algorithms 

with the MCS is still low in comparison to vibration signal 

approaches. Especially the use of signals from artificially 

induced damages to identify real damages in the drive 

systems needs to be further investigated as the damage 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

15 

recognition rate is quite low. Moreover, significant 

differences are observed using different groups of real 

damage (single and repetitive damages in comparison to 

multiple damages). 

Therefore, more research should be conducted on improving 

bearing damage detection from MCS in order to have low 

cost and accurate condition monitoring system for 

electromechanical drive systems. To promote further 

research, the experimental raw data is published alongside 

with this publication as a benchmark to develop and test 

data-driven classifiers or other condition monitoring 

methods. More detailed examinations concerning the 

behavior of different damages as e.g. with different damage 

levels can be carried out with the provided data and the 

associated damage description. As only a few aspects of the 

classification behavior could be examined in this 

publication, the examination of CM methods should be 

intensified using the data sets. 

Moreover, some open questions remain, which could be 

examined using future data sets. Industrial application 

requires the detection of damages under variable operating 

conditions. In addition, other mechanical faults in the drive 

train and other bearing damages should be investigated 

since this work covers only two main modes of damages out 

of a possible six.  Finally, the implementation into industry 

applications and related issues have to be discussed and 

tested. 
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