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Abstract 

Natural and synthetic ester insulating oils have higher fire points and excellent biodegradable 

characteristics. Therefore, in order to reduce the adverse environmental impact and to improve the 

fire safety of transformers, there is an increasing demand for natural and synthetic ester insulating 

liquids as a transformer insulating oil. However, present understanding on ageing behaviour of ester 

oil-paper composite insulation system and knowledge on application of existing condition 

monitoring tools for ester based insulation systems are inadequate. This impedes the cost effective 

and reliable field applications of ester insulating oils, particularly application of natural esters. To 

reduce this knowledge gap, series of controlled ageing experiments are performed in this research 

project to provide a better and comprehensive understanding on ageing behaviour of ester oil-paper 

insulation systems. Furthermore, applicability of existing chemical and electrical based condition 

monitoring techniques for ester oil-paper insulation systems is systematically investigated in this 

research project. 

In this thesis, ageing behaviour of dry pressboard insulation in mineral and three different ester 

insulating oils under simulated transformer operating environment is investigated. Moreover, the 

ageing behaviour of natural ester-pressboard composite insulation in moisture rich environment is 

also compared with that of mineral oil-pressboard system. Degree of polymerisation of pressboard 

samples measured at different ageing interval is used in this research to determine the ageing 

condition of pressboard. Moreover, applicability of oil related diagnostic parameters such as 

concentration of dissolved furanic compounds, acidity value, Dielectric Dissipation Factor (DDF), 

viscosity and colour to assess the degree of degradation of both ester and mineral insulating oils is 

thoroughly investigated in this research project. The potential of FTIR (Fourier Transform Infrared 

spectroscopy) techniques for characterising the degree of degradation of paper insulation is also 

discussed in this thesis. In addition, this thesis concentrates on characterisation of the charge 

dynamic in insulating oil through modelling of their dielectric responses. 

The comparison of gassing behaviour of ester and mineral insulating oils under two different low 

temperature faults and low energy electric discharge condition is also presented in this thesis. 

Dissolved Gas Analysis (DGA) results presented in this thesis depicts that faults gases detected in 

ester and mineral oil samples subjected to a similar fault are akin in type but quantitatively 

different. The quantity of fault gases produced in two different natural ester oils is also dissimilar. 

For example, soy-based natural ester produces a large quantity of ethane (C2H6) under low 

temperature overheating condition than sunflower oil based natural ester. Therefore, this research 

project investigates the applicability of well-established DGA interpretation schemes namely Duval 
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triangle, IEC gas ratio and IEEE key gas method on ester based insulation systems in order to 

identify the possible faults based on DGA data. 

Investigation of impact of moisture, temperature and ageing on dielectric response of ester 

impregnated pressboard insulation by Frequency Domain Spectroscopy (FDS) and Polarisation 

Depolarisation Current (PDC) is a major contribution in this thesis. In order to study that, dielectric 

responses of well-controlled pressboard insulation samples which are impregnated with four 

different insulating liquids have been critically investigated. These measurements have been 

performed with two natural esters, one synthetic ester and one type of mineral oil under varying 

moisture (0.3%-8.7 %) and different temperature levels (35, 55, 75ºC). In addition, the effect of 

ageing on dielectric response of natural ester impregnated pressboard insulation has been compared 

to that of mineral oil impregnated pressboard insulation.  

In this thesis, low frequency conductivity based model is proposed to determine the moisture 

content in transformer solid insulation based on FDS data of unaged pressboard insulation. 

Furthermore, the effect of ageing and temperature on the proposed model is quantitatively analysed. 

In order to interpret the FDS data of pressboard insulation in frequency range 10-4-10-3 Hz, a 

hierarchical equivalent circuit is derived based on Dissado-Hill’s cluster theory. The equivalent 

circuit model parameters are then used to explain the influence of diverse oil properties and 

moisture on microscopic level charge transport and polarisation phenomena in oil impregnated 

pressboard insulation. Furthermore, this research has used activation energy to characterise the 

temperature dependent dielectric response of pressboard insulation impregnated in mineral and ester 

insulating oils. The applicability of commercially available FDS based moisture diagnostic tool on 

ester based insulation system is also systematically investigated in this research project. 
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Introduction 
 Overview 

Transformers are expensive, indispensable and strategically important pieces of equipment of any 

electric power system. The insulation system is the most imperative part of a transformer because 

the lifetime and reliable operation of the transformer are almost solely determined by the condition 

of its insulation system. There are three main types of transformers namely, oil filled, dry type and 

gas insulated. However, almost all the load bearing transformers in power delivery systems around 

the world are oil filled [1]. Electrical grade paper and pressboard are the primary insulation in oil 

filled transformers. The major composition of paper and pressboard insulation is cellulose which is 

a homopolymer of D-anhydroglucose units (AGU) bonded together via C1-C4 glycosidic oxygen 

linkage [2]. Mechanical strength of cellulose insulation materials is often characterised by degree of 

polymerisation (DP), which is the average number of glucose rings in a polymeric chain. 

Mineral oils are still the preferred choice for insulation and cooling purposes in liquid filled 

transformers due to their low cost, excellent dielectric properties and better compatibility with 

cellulose materials [3]. A low fire point is a major disadvantage associated with typical mineral 

insulating oils, which increases the risk of subsequent fire in the case of a transformer failure. 

Moreover, a high fire risk associated with mineral oil results in increasing the lifetime cost of 

transformers mainly due to additional works required for fire mitigation. As a consequence, less 

flammable insulating oils such as high molecular weight hydrocarbons (HMWH) and silicon fluids 

were introduced in the early 80’s as an alternative to the typical mineral oils for improving the fire 

safety of transformers used in fire sensitive areas and applications. Today, several thousands of 

transformers filled with silicon and HMWH insulating oils are in service. However, these insulating 

liquids including typical mineral and less flammable insulating oils create environmental problems 

mainly due to their poor biodegradable characteristics. New environmental regulations and large 

costs associated with cleaning up an oil spill from faulty transformers forced utilities to use 

environmental friendly insulating fluids with high fire safety characteristics. As a result, synthetic 

based polyol ester with improved biodegradable properties was introduced in 1984. The high cost 
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associated with synthetic esters compared to other less flammable fluids hampered their wide 

application and limited their use for traction and mobile transformers and speciality applications. 

Therefore, in the early 90’s interest was evoked among utilities in using edible vegetable oils 

(natural ester) as an environmental friendly insulating liquid. Natural Esters (NE) are not only 

readily biodegradable, but they also have excellent fire safety and dielectric properties. Moreover, 

NEs are far more hygroscopic than mineral oils due to the ester linkages present in their molecular 

structure, such that moisture solubility of NEs is around 20 times greater than that of mineral oil at 

room temperature. These properties are desirable factors for the long-term safe operation of 

transformers. After a preliminary investigation of essential insulation properties of NEs, several 

types of NE-based insulating oils such as FR3 and BIOTEMP were commercialised by the late 90’s 

and their application for new transformers and retrofilling of existing mineral oil filled units has 

grown substantially over the last two decades. However, current experience in the use of these 

liquids is inadequate for cost effective and reliable field applications. 

During the course of operation, transformer insulation is subjected to irreversible ageing. The 

ageing of paper insulation is accomplished by rupturing of covalent and hydrogen bonds within and 

between cellulose polymer chains under combined influences of heat, moisture and oxygen, which 

are all present in an operating transformer [4-8]. As a result of a large number laboratory and field 

investigations, the influence of temperature, moisture and oxygen on ageing of cellulose paper 

insulation in mineral insulating oil has been well understood. It is generally accepted that the ageing 

rate of cellulose paper doubles for every increase of 6-8oC in temperature [9] and an increase in 

moisture content by 0.5 % has a similar influence on the ageing rate. Emsley et al [10] have 

reported that a decrease in dissolved oxygen content in mineral oil in a transformer from 30,000 

ppm to 300 ppm leads to reducing the ageing by a factor of 16. In the last 15 years, several 

laboratory investigations have been performed to understand the ageing behaviour of typical 

cellulose insulation materials in ester based insulating oil [11-14]. The main outcome of these 

studies is that ester oils show a higher resistance to degradation of paper insulation than mineral oil. 

This advantage of ester oils is mainly caused by their hygroscopic nature. However, the number of 

studies have been conducted to understand the ageing performance of ester insulating oils are 

inadequate to improve the confidence of utilities to use ester insulation oil as an alternative to 

mineral oil. Therefore, one of the main objectives of this thesis is to provide a comprehensive 

understanding on ageing of cellulose insulation in ester insulating oils. 

Oxidation is the main degradation mechanism of both mineral and ester insulating oils. 

Temperature, the presence of dissolved oxygen and metal catalyst are the most evident factors 

which govern the rate of oxidative degradation of oil [15-19]. Oxidative degradation rates of 
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different insulating oils in decreasing order are NE > Mineral oil > Synthetic ester. The basic steps 

of oxidation reaction in both mineral and ester oils are similar. Ageing by-products and change of 

physicochemical properties of mineral insulating oils have been well characterised such that the 

changing of oil properties has been correlated with degradation of their insulation quality and 

standardised in IEEE Std. C57.152-2013. BS EN 61203-1994 is a similar British standard 

developed for synthetic ester insulating oils. However, a different chemical composition of NE 

insulating oils makes their oxidative degradation process more complicated, particularly 

degradation of intermediate oxidative by products [18]. Moreover, understanding thermo-oxidative 

degradation of NE insulating oils is still inadequate to produce a complete international standard for 

correlating the change of their physicochemical properties to degree of deterioration of insulation 

and cooling characteristics. To reduce this gap, the main work presented in this thesis has been done 

to measure the properties of two different types of commercially available NE insulating oils and 

compared their ageing behaviour with conventional mineral oil. 

Ageing of the insulation system reduces both the mechanical and dielectric withstand strengths of 

the transformer. Statistical data related to transformer failures indicates that winding failure due to 

defects in the insulation system presents the significant percentage of failure statistics [20, 21]. 

Mechanical strength of conductor paper insulation reduces with ageing and ultimately it becomes 

brittle which cannot sustain the huge mechanical forces generated by power system faults. As a 

result turn to turn dielectric failure can occur. Subsequent loosening of clamping pressure causes to 

reduce the short circuit withstand capability of winding structure leading to a complete transformer 

failure. Ageing of insulating oil is detrimental to paper insulation in two ways, low molecular acids 

produced by oil ageing and hotspots produced by depositing of sludge in the cooling ducts 

accelerate the ageing of paper insulation. Moreover, ageing increases the partial discharge (PD) 

activities and reduces the breakdown strength of oil. Ultimately, ageing of insulating oil could also 

lead to a complete insulation failure.  

Insulation related transformer failures are often catastrophic and result in significant direct and 

indirect costs including repair or replacement costs and revenue losses due to unscheduled outages. 

Therefore, adequate maintenance is required to ensure the good condition of the transformer 

insulation system. Competitive and liberated energy market forces utilities to change their 

maintenance strategies from time based to a condition and reliability based where maintenance 

decisions are no longer driven by the operational time. In such a situation, assessing of a 

transformer insulation system with reliable methods is a basic requirement of modern power system 

operation in order to minimise the risk of failures and to avoid forced outages of strategically 

important units.  
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Over the past decades, several chemical, physical and electrical based techniques have been well 

established for determining the condition of mineral-paper insulation systems. Measurements of 

acidity value, viscosity, colour, interfacial tension, Dielectric Dissipation Factor (DDF) and 

breakdown voltage are the most common methods that have been used to assess the quality of 

mineral insulating oil in service. Furfural analysis and Dissolved Gas Analysis (DGA) are also oil 

related condition monitoring techniques which respectively are utilised to determine degradation of 

paper insulation and to identify the incipient faults in oil-paper insulation systems of transformers. 

Measurement of tensile strength, DP value, molecular weight (MW) and moisture determination by 

Karl-Fischer Titration (KFT) are the typical methods used for analysing the condition of paper 

insulation. However, practical implementation of these methods to determine the condition of paper 

insulation is hampered by the difficulty in taking a paper sample from an operating transformer. 

Ester insulating liquids possess a completely different chemical structure compared to mineral 

insulating oil. This leads to a quantitatively different gas generation behaviour for ester insulating 

oils, but fortunately gas composition is the same for all types of oils. Different types of chemical 

bonds in ester oils such as C=O, C=C and C-H allylic bonds give this quantitative difference [22]. 

Both natural and synthetic esters are subjected to hydrolysis degradation and yield acids. Synthetic 

esters mainly produce short chain acids and they are more reactive and harmful. NEs produce long 

chain fatty acids which are not as reactive as the acids produced in synthetic esters. The results of 

several simulated ageing experiments have confirmed that dissolved 2-Furfural aldehyde (2-FAL) 

concentration found in NEs is several orders of magnitude less than that in mineral oil with paper 

insulation of a similar degree of ageing [11, 23, 24]. In general, the colour of NE insulating oils 

changes rapidly due to the higher solubility of decay products in NE because vegetable oil ageing 

by-products are less carbonaceous [25]. Moreover, ageing by-products of paper insulation could 

also dissolve greater in ester oils due to their polar nature. Overall one fact is clear, established oil 

based diagnosis rules for evaluating the condition of mineral insulating oil cannot be directly 

applied to ester based insulating oils. However, no comprehensive study has addressed this issue 

yet. Thus, this thesis concentrates on providing a solid framework for assessing the condition of 

ester based insulation systems in transformers using existing oil based diagnostic techniques such as 

acidity, viscosity, colour, DDF and DGA. 

Moisture is a hazard to an insulation system in several ways: a) acceleration of the ageing of paper 

insulation, b) lowering the admissible hot spot temperature, c) PD inception becomes significant 

when the moisture in solid insulation is above 3%, d) reducing the dielectric strength of the 

insulation system [26, 27]. Therefore, in order to maximise the lifetime and safety of transformers 

in operation through corrective maintenance actions, it is important to accurately estimate the 
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moisture content in a transformer insulation system using a reliable technique. Conventionally, 

moisture in transformer solid insulation is indirectly determined using the so called equilibrium 

chart method by measuring the moisture content of the oil. This method has been proven to be 

erroneous because moisture content in insulating oil is highly temperature dependent and moisture 

equilibrium between oil and paper insulation is hardly achieved. 

Dielectric properties of oil-paper insulation systems of transformers change significantly with 

moisture. Thus, dielectric response measurement techniques have been utilised to determine the 

moisture and overall condition of transformer insulation systems over decades. Three foremost 

dielectric response measurement techniques are Return Voltage Method (RVM), Polarisation and 

Depolarisation Current (PDC) and Frequency Domain Spectroscopy (FDS). There are several 

limitations in applying the RVM method for insulation diagnostic due to some deficiencies in 

interpretation of RVM data. For example, estimated moisture content in solid insulation using this 

technique is often much higher than the actual value, the recommended interpretation scheme is too 

simplistic and the RVM method does not consider the effect of geometry of the insulation system 

and oil condition [28]. On the other hand, PDC and FDS are considered as promising techniques for 

evaluating moisture in transformer solid insulation [27-30]. Moreover, these methods allow users to 

discriminate the effects of oil condition and moisture content of solid insulation on dielectric 

response of a transformer insulation system.  

In addition to moisture, several other factors influence dielectric response behaviour of a 

transformer insulation system, such as low molecular acids, oil conductivity and temperature. Thus, 

the effect of these factors must be taken into account when interpreting the dielectric response data 

to estimate the moisture content in solid insulation. This issue has been well studied for mineral oil-

paper systems over the last two decades but no systematic study has yet been conducted for ester–

paper insulation systems. Therefore, implementation of basic guidelines to interpret the dielectric 

response measurements of aged and new ester–paper insulation systems is an important part of this 

thesis. 

The dielectric spectrum of a material under investigation is characterised by both conduction and 

polarisation phenomena. Dielectric response of liquid insulation is primarily determined by the 

conductivity. Generally, polarisation of solid materials is a collection of different relaxation 

mechanisms such as dipole polarisation, Maxwell-Wagner polarisation and quasi-DC conduction. 

Overlapping of different polarisation and conduction processes, results in interpretation of raw 

dielectric response data being difficult. In such situations, in order to discriminate and quantitatively 

analyse the contribution of conduction and different polarisation phenomena to dielectric response, 
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several mathematical models namely Debye, Cole-Cole and Havariliak–Negami, Universal law and 

Dissado and Hill’s (DH) cluster model are generally used. However, the majority of models (except 

DH cluster theory) are suitable only for analytical representation of experimental data. Thus, 

selection of an appropriate modelling technique to describe physics of charge transport and 

polarisation phenomena of oil impregnated pressboard insulation is also a main contribution of this 

thesis. Moreover, this thesis concentrates on characterisation of the charge dynamic in insulating 

oils through modelling of their dielectric responses. 

 Scope of Thesis 

The main purpose of this thesis is to develop a comprehensive framework to assess the condition of 

insulation systems of biodegradable insulating oil (ester oil) filled transformers. In order to do that, 

the applicability of well-established electrical and chemical based condition monitoring techniques 

developed for mineral oil-paper insulation systems on ester based transformer insulation is 

thoroughly investigated. The primary objectives of this thesis are given below. 

1. To compare the ageing behaviour of high density pressboard insulation in two 

commercially available NE based insulating oils and one type of synthetic ester with the 

ageing of pressboard in a conventional mineral oil. 

2. To understand the influence of moisture on the ageing process of pressboard insulation in 

mineral oil and NEs. 

3. To investigate the applicability of existing oil based condition monitoring methods on 

ester–paper insulation systems and to provide necessary guidelines to improve these 

methods to comply with ageing characteristics of ester–paper insulation systems. 

4. To investigate the applicability of Fourier Transform Infrared (FTIR) spectroscopy 

method to evaluate the ageing condition of pressboard insulation. 

5. To understand the gassing behaviour of ester insulating oils under simulated thermal and 

electrical fault conditions. 

6. To compare the charge transport and polarisation phenomena in NE insulating oil with 

those of mineral insulating oil through dielectric response modelling. 

7. To investigate and compare the impact of moisture and temperature on dielectric response 

behaviour of mineral oil, NE and synthetic ester impregnated pressboard insulation. 

8. To identify the impact of ageing condition on dielectric response behaviour of NE and 

mineral oil impregnated pressboard insulation. 
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9. To study the charge transport and polarisation effects in oil impregnated pressboard 

insulation through appropriate modelling techniques and to compare the impact diverse oil 

properties on dielectric response using model parameters. 

10. To derive a relationship between moisture and dielectric response parameters of 

pressboard insulation and to identify the effect of temperature and ageing on the 

established relationship. 

11. To investigate the applicability of existing FDS based moisture diagnosing tools on ester-

paper insulation systems. 

In order to achieve the above defined goals, a series of controlled laboratory experiments were 

conducted in this research with four types of insulating oils including one type of mineral oil, two 

types of NEs and a synthetic ester. The objectives (1) to (4) have been accomplished by performing 

two different accelerated ageing experiments with power transformer proportion of pressboard 

insulation, insulating oil and copper conductor material. At regular intervals, the measurements 

mentioned in Figure 1.1 are performed on oil and pressboard samples to analyse their degree of 

ageing. 

 

Figure 1.1. Block diagram of research overview 

In this research gassing behaviour of mineral and ester oils under two different low temperature 

faults (120 ºC and 150 ºC) and low energy electrical discharge condition is investigated to complete 
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task 5. In order to achieve task 6, FDS and polarisation current responses of mineral oil and one 

type of NE oil are measured. In addition frequency and time domain dielectric response data of oils 

is analysed using new equivalent circuit and a mathematical relationship respectively.  

The dielectric response results of pressboard insulation presented in this thesis are mainly frequency 

domain. In this thesis, objectives (7) to (11) have been accomplished by measuring dielectric 

response on different types of oil impregnated pressboard insulation samples. Measurements are 

performed over a wide frequency range from 10-4 (0.1 mHz) to 103 Hz at variable moisture contents 

(0.3%-8.8%) and temperatures (35, 55 and 75ºC). The effect of ageing condition on dielectric 

response is investigated only for mineral and NE impregnated pressboard. In order to explain 

microscopic level charge transport and polarisation phenomena in oil impregnated pressboard 

insulation, this thesis proposes a new equivalent circuit model based on DH cluster framework 

theory.  

 Thesis Outlines 

 Chapter 2 provides introductions to chemical composition and degradation mechanisms of 

insulation materials used in oil filled transformers. Moreover, experimental studies conducted for 

understanding the ageing behaviour of cellulose insulation in ester base biodegradable insulating 

oils and thermal degradation of ester oils themselves are reviewed. 

Chapter 3 briefly reviews the chemical, physical and electrical based condition monitoring 

techniques which have been established for assessing the insulation quality of oil-paper systems. 

From an oil analysis point of view, more attention has been placed on describing the DGA and 

furfural analysis techniques. Theoretical background and interpretation of both time and frequency 

domain dielectric response measurements of transformer insulation are deeply discussed in this 

chapter. 

Chapter 4 presents the results of ageing experiments. In this chapter ageing behaviour of 

pressboard insulation in mineral and ester insulating oils is compared. The ageing rate of pressboard 

insulation in mineral and NE insulating oils at two different moisture levels is demonstrated. 

Application of DDF, acidity, viscosity and colour for assessing the degree of ageing of ester 

insulating oils is discussed in Chapter 4. DGA results presented in this chapter intend to explain the 

different gassing behaviour of ester insulating oils under intense conditions. At the end of this 

chapter, applicability of available DGA interpretation tools (Duval Triangle, IEC gas ratio and  

IEEE key gas methods) on DGA data of ester based insulating oil is investigated. 
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Chapter 5 mainly analyses the FDS and polarisation current responses of a mineral oil and one type 

of NE insulating oil. Influence of temperature on dielectric response behaviour of aged and new 

insulating oil is explained using calculated activation energy. This chapter proposes a new 

equivalent circuit based on Jonscher’s universal capacitor to analyse the low frequency dispersive 

behaviour in FDS responses of insulating oils. The new exponential model proposed in this chapter 

to explain polarisation current response of insulating oils allows us to identify the types of mobile 

ions in the oil and calculate their ionic mobilities. 

Chapter 6 reviews the different types of time and frequency domain dielectric response modelling 

techniques. In this chapter, an equivalent circuit is proposed to discriminate and explain the 

polarisation and conduction effects of oil impregnated pressboard insulation under sinusoidal 

excitation of varying frequency. Moreover, application of this model to represent the frequency 

domain dielectric response data of mineral oil impregnated pressboard insulation is validated.  

Investigating the suitability of extended Debye and Williams-Watt stretched exponential function to 

characterise the dielectric response function of oil impregnated pressboard insulation is also a major 

part of this chapter.    

Chapter 7 presents the dielectric response data of mineral oil and ester oils impregnated pressboard 

insulation samples under varying moisture, temperature and ageing conditions. A new mathematical 

model is presented in this chapter to correlate the low frequency conductivity and moisture content 

of pressboard insulation. This chapter uses the proposed hierarchical equivalent circuit in Chapter 6, 

based on DH cluster theory to explain charge transport and polarisation effects in oil impregnated 

pressboard. The selected equivalent circuit parameters are then used to determine the influences of 

moisture and diverse oil properties on dielectric response behaviour of pressboard insulation. In this 

chapter, temperature dependence of FDS of different types of oil impregnated pressboard insulation 

is analysed using calculated activation energy required for constructing so-called master curve. 

Chapter 8 summarises the major findings and work presented in this thesis. Moreover, suggestions 

for future research are given at the end.  

 



 

  

Insulation in Power Transformers 
 Introduction 

The insulation system is the most imperative part of a transformer and the lifetime of the 

transformer is almost solely determined by the condition of its insulation system. According to the 

materials used in an insulation system, transformers can be mainly categorised into three groups 

namely; oil filled, dry type and gas insulated transformers. However, insulation systems of almost 

all the load bearing transformers around the world are composed of cellulose paper based materials 

and insulating oil. Mineral oil, which is carefully refined from crude oil has been widely and 

economically used as an insulating liquid in power transformers for several decades. In order to 

improve the fire safety and reduce the environmental impacts, there is growing interest in using 

vegetable oil-based insulating liquids (NE) and synthetic esters in transformers as a potential 

substitute for mineral oil. Insulation breakdown in a transformer is a major issue, which can lead to 

a costly catastrophic failure. Thus, continuous assessment of a transformers insulation system has 

become a vital aspect of the modern power system. However, it is only possible with a better 

understanding of the behaviour of both liquids and solid insulation in typical transformer operating 

environments. In order to that, this chapter aims to discuss physical and chemical properties of 

cellulose based insulation materials and insulating liquids including their ageing mechanisms. A 

literature review on cellulose insulation material ageing in both mineral and ester based insulating 

liquids is also presented at the end of this chapter.  

 Development of Transformer Insulations 

In the early days, materials which were plenty in nature and could be easily processed were used as 

electrical insulation [31]. However, after the invention of the electrical transformer in 1892, the 

field of insulation underwent dramatic changes because it was required to have materials which 

could withstand high electric and thermal stresses. In early transformers, cellulose and non-cellulose 

materials including low grade pressboard, cotton, silk, jute and asbestos in air were used as 

insulation [32]. Moreover, “boiled-in-oil” pressboard made up of cotton rags and paper clippings 
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was widely used in transformers before 1920 [32]. Bakelised papers started to be used in 

transformers from about 1915 and were continued until 1960. By early 1930, Kraft paper insulation 

(cellulose) with a combination of mineral oil became the predominant dielectric in transformers and 

they are still widely used. There have been several advancements in the cellulose paper insulation 

manufacturing process to improve their thermal stability and insulation properties for satisfying the 

high thermal and electrical stresses in modern transformers. The introduction of thermally upgraded 

paper in late 1950 was one of the major improvements in cellulose insulation technology because it 

led to a significant increase in the lifetime of transformers [33, 34]. Nowadays paper insulation 

produced from mixes of different cellulose based materials (Kraft and cotton) and blends of 

cellulose and synthetic materials is also used in transformer insulation applications. 

 Cellulose insulation 

2.3.1 Overview of cellulosic insulation 

Cellulose insulation is still the preferred choice for solid insulation in transformers from distribution 

level to large scale power transformers (10 kVA to 1500 MVA). However, it is not the best but it is 

economical and manufactured from a renewable source, which is plentifully available from soft 

wood. Cellulose insulation materials show excellent dielectric and mechanical properties in 

combination with insulating oil [35, 36]. Moreover, they have no melting or softening point and 

their mechanical strength does not significantly reduce at relatively low temperatures. These are the 

key features of cellulose insulation materials, which still make them irreplaceable.  

According to [37], several tonnes of cellulose materials are used in a substation unit, mainly in the 

form of paper and pressboard. Cellulose paper is commonly used to insulate the conductor winding 

because its tensile strength is sufficient to enable cellulose paper to wind in a cylindrical form 

around the conductors at high speed [38]. Pressboard is more desirable for providing insulation at 

angles and corners where electric field stress is high. In particular, pressboard is largely used for the 

main insulation between LV and HV windings as barriers and spacers. Calendared board is a type 

of pressboard insulation generally used to produce washers and tubes of the insulation system. 

There is a special type of pressboard called pre-compressed board. It is ideal for strong support 

blocks and spacers which provide the desired mechanical strength to the insulation system. Both 

electrical grade paper and pressboard are generally made of unbleached Kraft wood, cotton, or a 

mixture of Kraft wood and cotton pulp. Detailed technical specifications of all types of papers and 

pressboards used in transformers for electrical insulating purposes as well as for structural purposes 

are specified in ASTM Std. D 4063, IEC Std. 60641-3-1 and IEC Std. 60641-3-2 [39, 40].  
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2.3.2 Chemistry of Cellulose 

Cellulose is a natural homopolymer of D-anhydroglucose units (AGU) bonded together via C1-C4 

glycosidic oxygen linkage as shown in Figure 2.1(a) [2]. Cellulose is often characterised by the 

degree of polymerisation (DP), which is the average number of glucose rings in a polymeric chain. 

Intramolecular hydrogen bonding between adjacent glucose units imparts linearity in cellulose 

polymeric chains. Intermolecular hydrogen bonding further forms hierarchically arranged highly 

crystalline microfibrils in the matrix of lignin and hemicellulose, which ultimately develops into a 

fibre [2, 5]. Physically, cellulose is a semi-crystalline material in nature, which has domains of high 

microcrystallinity and amorphous regions as shown in Figure 2.1(c). The crystalline domains are 

formed by arranging cellulose chains into a monoclinic lattice structure. Regions where cellulose 

molecules meander between crystalline domains are called amorphous domains.  

 

Figure 2.1. Chemical and physical structure of cellulose 

2.3.3 Adsorption of moisture in cellulose insulation 

Hygroscopic nature is a feature of all cellulose insulation materials due to their porosity and 

hydroxyl side groups in molecular structure because water molecules easily form hydrogen bonds 

with hydroxyl groups in cellulose molecules [41]. Water absorption by cellulose material primarily 

takes place in an amorphous region and in the pores of the cell walls. Thus, when the 

paper/pressboard insulation is exposed to a humid environment, it absorbs moisture and reaches an 

equilibrium state, where water pressure in the gaseous phase is equal to that of the adsorbed phase 

(cellulose paper/pressboard). The process of water absorption is almost solely determined by the 

temperature and relative humidity of the environment [26]. At a room temperature of 23ºC, 

cellulose paper can retain about 5 to 8% of moisture where the relative humidity of the atmosphere 
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is about 50%[41]. Change of percentage moisture content in a cellulose paper under varying 

temperature and relative humidity is shown in Figure 2.2 (a). An increase of moisture content in 

insulation paper leads to a decline in its dielectric and mechanical properties [26, 42]. Thus, it is 

recommended to keep cellulose insulation in a transformer in as much of a dry state as possible. The 

factory drying process reduces the moisture content in paper/pressboard insulation in new 

transformers to about 0.5% [26, 41]. 

.  

Figure 2.2. (a) Moisture adsorption curve of cellulose paper [26],(b) Schematic representation of 
bonding water molecules to OH groups of cellulose [41] 

2.3.4 Oil impregnation 

It is quite possible to have air spaces between and inside the fibres of cellulose paper; pressboard 

and thick laminated pressboard blocks used in the transformers insulation system. Though air 

spaces between fibres are individually tiny, they still occupy a considerable amount of volume in 

the solid insulation material which contributes to absorbing more water. Moreover, the presence of 

air pockets in the solid insulation causes partial discharges under AC field stress. During the course 

of oil impregnation, air spaces in the solid insulation are filled with oil and the absorption of water 

and partial discharges due to electric field concentration in air pockets are thus avoided.  

Impregnation of a thin layer of paper insulation is quite easy, but impregnation of solid insulation 

blocks with larger thicknesses is extremely difficult. During the impregnation of oil, it is very 

important to ensure that no cavities are left inside the cellulose insulation to avoid dangerous 

electrical discharges [43]. Dynamics of oil flow into a cavity (capillary) can be expressed with 

Poiseuille's law (eq (2.1)). As explained by eqns (2.1) and (2.2), it is clear that the process of oil 
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flow into a capillary is mainly governed by three factors namely oil viscosity, capillary radius and 

air pressure inside the capillary. It means the reduction of air pressure inside the capillaries (PI) is 

important for an efficient impregnation process. Therefore, the oil impregnation process is generally 

performed under very high vacuum condition [43-45].  

  IPP
L

r

dt

dv
 0

4

8


  (2.1)   

Where V is the volume of oil inside the capillary, r is average equivalent capillary radius, L is the 

depth of impregnation increasing with time and η is the viscosity of oil. 

 
sE PPP 0  (2.2)  

 
 
Where, PE is the external pressure and PS is the pressure created by the capillary action of oil. 

 

Substitute V= πr2L into eq(2.1) 
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According to the eq (2.3), the time taken for complete impregnation is principally decided by the 

viscosity of the oil. Viscosity of ester oil is higher than that of conventional mineral oil. Therefore, 

efficient impregnation of cellulose insulation materials with ester oils is doubtful to some extent. 

This may be part of the reason for a slow down on their application in large transformers [43]. In 

general, the viscosity of insulating oils decreases with temperature. Therefore, impregnation of 

transformer solid insulation with ester oils should be performed at a higher temperature to have a 

similar degree of impregnation with mineral oil at a lower temperature. 

2.3.5  Kraft paper and pressboard 

Electrical grade Kraft paper and pressboards are produced through an unbleached Kraft pulping 

process of wood pulp derived from coniferous, or softwood trees, such as spruce and hemlock [37, 

46, 47]. Unbleached wood pulp is desirable in manufacturing Kraft paper/pressboard because 

residual bleaching agents make insulation paper more conductive [17]. In general, the wood pulp 

should be a mixture of a high percentage of softwood and a low percentage of hardwood to provide 

mechanical strength and smoothness to paper insulation. Usually, softwood is coarser and has 

lengthy fibres compared to hardwood. Both soft and hard woods are mainly composed of cellulose, 

lignin and hemicellulose (Pentos). Softwood typically contains 40-55% cellulose, 15-35% of lignin 

and 25-40% of hemicellulose [5]. Lignin is a brownish complex polymer of aromatic alcohols 

which cements bundles of cellulose fibre together as shown in Figure 2.3. Hemicellulose is a 
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complex group of water-soluble polysaccharides (polymer of glucose) with a lower degree of 

polymerisation of about 200. Overall, wood pulp has a microscopic fibrous structure as shown in 

Figure 2.3. 

 

Figure 2.3. Micro structure of wood fibres [37, 48] 

During the process of manufacturing Kraft paper and pressboard insulation, raw wood pulp is 

subjected to a series of chemical and physical processes such as Kraft pulping, refining and roll-

forming [17, 37, 46]. This complete process results in increasing cellulose content in Kraft paper to 

about 90% and decreases both lignin and hemicellulose content to about 3-7% [49, 50]. This is 

necessary to provide enough mechanical strength and thermal stability to Kraft paper and 

pressboard. 

Mechanical strength of Kraft paper/pressboard insulation is almost solely determined by the degree 

of polymerisation (DP) of cellulose molecules in paper/pressboard insulation. The average DP value 

of natural cellulose molecules in wood pulp is around 20,000. Chain scission during Kraft and 

drying processes causes to reduce the average DP value of paper insulation to about 1200.  

2.3.6 Cotton Paper 

Cotton fibres are an alternative source which is used to produce electrical grade insulation 

paper/pressboard with high tensile, tear and burst strength and good dielectric properties [17, 46]. 

Cotton fibres used in insulation paper manufacturing mainly come from new cotton rags and the 

first-grade cotton linters remaining on the cotton seed after removing the staple fibres. Staple fibres 

are taken for cloth manufacturing [51]. Cotton fibres comprise a higher concentration of cellulose 

than wood fibres. [52]. Cellulose content in cotton fibres pulp is in the range 62%-98%. It makes a 
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condition to pulping use 0-alkaline way to reduce cleavage of cellulose and helps to increase the 

thermal ageing property of cotton based papers [52]. Cotton fibres are typically longer than wood 

fibres. Moreover, cotton fibres are smoother than wood fibres and it results in weak intrinsic bond 

strength (inter and intra hydrogen bond). Thus, in order to increase the mechanical strength of the 

cotton paper, it requires more work in crushing and refining stages to increase the side groups in the 

cotton fibre and enhance intrinsic bond strength. Paper insulation is also produced from a mixture of 

unbleached Kraft wood pulp and cotton pulp. Mixing of Kraft wood pulp with cotton improves the 

dielectric and mechanical strength of paper insulation [17, 53]. Moreover, Kraft-cotton composite 

paper shows a better oil absorption capability. There is a great importance of a high oil abortion 

property in the use of Kraft-cotton composite paper to insulate some parts of a transformer winding, 

where oil impregnation is extremely difficult even under high vacuum conditions.  

2.3.7 Special types of cellulose paper 

Crepe paper, high extensible paper, thermally upgraded paper and diamond dotted press paper are 

four different types of cellulose insulation which have been specifically manufactured to meet 

certain requirements in insulating transformers. Crepe paper is produced from normal Kraft paper, 

such that a drum of Kraft paper is unrolled and passed through an aqueous bath containing a creping 

compound, it is then collected by a second drum rotating at a slower speed than the first drum [37]. 

Crepe paper is an extensible material which has approximately 20 % of elongation in machine 

direction. When insulating some parts of the transformer such as connection leads to an on-load tap 

changer and electrostatic control rings, the elongation property of crepe paper is very important 

because it allows the shaping of the paper to form bends and irregular shapes [17]. The chief 

disadvantage of crepe paper is that it shows a tendency to lose its elasticity property over time. 

CLUPAK paper is the ideal alternative to crepe paper. It is highly extensible paper insulation with 

good burst, stretch and cross machine tear properties. The process of manufacturing CLUPAK 

paper is almost the same as normal Kraft paper. The difference is the last step called roll-forming 

has been modified to add an elasticity property to CLUPAK paper, such that rolling is performed in 

conjunction with moisture and heat.  

In the process of manufacturing thermally upgraded paper, nitrous compounds such as urea, 

melamine, dicyandiamide and polyacrylamide (upgrading agents) are added in the pulping stage to 

protect cellulose from oxidation [54]. Upgrading agents chemically modify the cellulose molecules 

such that some of the less stable hydroxyl groups in the cellulose structure are being replaced with 

more stable CH2CH2CN groups as shown in Figure 2.4 (cyanoethylation) [46, 54].  
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Figure 2.4. Process of cyanoethylation [54] 

 Degradation of Cellulose Insulation 

2.4.1 Overview of Cellulose ageing 

Ageing of cellulose insulation is an irreversible rupturing of covalent and hydrogen bonds within 

and between cellulose polymer chains under combined influences of heat, moisture and oxygen, 

which are all present in operating transformers [4-8]. The major consequence of ageing is that paper 

insulation converts into a brittle material, which has almost lost its mechanical strength [55]. It may 

lead to irreversible internal damage to the insulation system or catastrophic failure particularly in a 

situation where winding insulation experiences huge mechanical stresses due to short circuit faults 

in the power system [9]. In addition, the broken paper particles disperse in oil and they can align 

with local electric fields and create short circuit paths leading to catastrophic failure [36].Therefore, 

a good understanding of the processes involved in ageing of paper insulation is important to trigger 

early warnings of insulation failure, through interpretation of cumulative ageing by-products 

dissolved in oil, which are easily accessible. Degradation of cellulose insulation is a combination of 

pyrolysis, oxidation and hydrolysis reactions, which are predominantly governed by temperature, 

reactive oxygen species and moisture respectively.  

2.4.2 Pyrolysis degradation of cellulose paper  

Heating of cellulose beyond 130ºC tends to break the glycosidic bonds and open the glucose rings 

[6]. Such chemical degradation of cellulose, only due to intense heat in the absence of an oxidising 

agent and moisture is known as pyrolysis. Pyrolysis of cellulose mainly yields solid carbon 
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containing products (char), water, carbon oxide (CO2 and CO) carbonyl compounds, hydroperoxide 

and volatile tar including epoxy-bridged molecules namely 1,6-anhydro β-D-glucopyranose 

(levoglucosan) [5, 6, 38, 50, 56].  

Further, pyrolysis of levoglucosan produces a different class of substances including carboxyl acids 

(Pyruvic acid, laevulinic acids and acetic acid), aldehyde, alcohol (acetone and methanol), 

heterocyclic compounds also known as furanic compounds (2-furaldehyde-2FAL and 5-

hydroxymethyl-furfural-5HMF) and a lesser amount of aromatic and aliphatic hydrocarbons [5, 26, 

57]. Formation of levoglucosan proceeds via homolysis reaction followed by elimination of a water 

molecule (dehydration of 1C and 2C atoms) and internal rearrangement to a more stable 1C to 6C 

oxygen bridge structure as shown in Figure 2.5 [50, 58, 59]. Elimination of two further molecules of 

water and one formaldehyde from a levoglucosan molecule and rearrangement of internal bonds 

yield 2-FAL which is the most stable furanic compound. 

 

Figure 2.5. One probable cellulose pyrolysis mechanism via levoglucosan to 2-FAL [5, 59] 

In general, the average hottest-spot temperature is 110 ºC and 95 ºC for transformer insulation 

systems rated at 55 ºC and 65 ºC of average winding temperature rise. However, the local hot spot 

temperature could be greater than 130 ºC under an overloading condition or due to a problem with 

the cooling system. In such conditions paper insulation around the hot-spot is subjected to pyrolytic 

degradation. Moreover, pyrolysis could be the main mechanism for degradation of paper insulation 

in a new sealed type transformer with relatively dry paper insulation. 

2.4.3 Hydrolysis degradation of cellulose paper 

Moisture and low molecular acids are the two factors which largely influence the hydrolytic 

degradation of cellulose insulation paper/pressboard. Hydrolysis of cellulose is a catalysed reaction, 

which is almost exclusively controlled by the total concentration of H+ ions from dissociation of 

low molecular acids in water [60-62]. The whole process is a dissociable acids catalysed reaction 
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and water plays a role as a reactant without participating in the reaction rate controlling steps [62]. 

Thus, the presence of dissociable acids causes hydrolytic degradation of cellulose paper even with 

low moisture concentration. However, water causes to dissociate acids and in this way it has a 

profound influence on hydrolysis reaction. Hydrolytic degradation of cellulose yields water and low 

molecular carboxyl acids namely formic acetic and laevulinic. Therefore, it is an auto-catalytically 

accelerated reaction [61, 63]. 

 

Figure 2.6. One probable hydrolytic degradation mechanism of cellulose via enol path to form 2-
FAL and carboxyl acids [6, 64] 

In the first step of hydrolysis reaction, the combined influence of water and acid cleaves the 

glycosidic bond yielding free glucose molecules [6, 64]. This chain scission reaction consumes one 

molecule of water. Unstable free glucose molecules are subjected to further hydrolysis and it takes 

place via formation of an epoxide or an enol followed by series of chain opening, dehydration and 

an internal bond-arrangement to form 5-hydroxymethyl-2-furaldehyde (5-HMF) [56, 65]. 

Hydrolytic degradation of one monosaccharide unit (glucose) to a 5HMF releases three water 

molecules. Thus, net production of water molecules per reaction is two. 5-HMF is not a stable 

compound and it decomposes into different types of furanic compounds including 2-FAL, 2-

acetyfuran (2-ACF), 2-furoic acid, 2-furfuryl alcohol (2-FOL) 5-methyl-2-furfural (5-MEF) [6]. 

The reaction between 5-HMF and water yields laevulinic and formic acids [64]. High temperature 

causes to dissociate formic acid into carbon monoxide and water. Moreover, laevulinic acid tends to 

polymerise and produces dark brown polymer known as caramel followed by formation of sludge. 

Figure 2.6 shows the basic steps of hydrolytic degradation of cellulose via enol path. 

For an in-service transformer, moisture in its paper insulation can increase to about 2% after 10-15 

years of operation because moisture is a by-product of cellulose ageing. Moreover, a leaking seal 

may also cause to increase the moisture in the insulation system. In such conditions hydrolytic 



Chapter 2: Insulation in transformers 

 
   20 | P a g e  

degradation of cellulose can occur at normal transformer operating condition becoming the 

dominant ageing mechanism of paper/pressboard insulation.     

2.4.4 Oxidative degradation of cellulose paper 

Primary and secondary hydroxyl groups in a pyranose ring of cellulose molecules are highly 

oxidation susceptible sites. Thus, in general these hydroxyl groups involved in initiating oxidative 

degradation of cellulose yield carbonyl (aldehyde) and carboxyl (acidic) compounds as primary by-

products [6, 66]. This causes to weaken the glycosidic bond and makes an acidic condition, which 

induces chain scission via hydrolysis. Thus, the whole process is a mixture of oxidative and 

hydrolysis reactions [63].  

 

Figure 2.7. Probable mechanism of oxidation of hydroxyl groups in cellulose molecules   

Figure 2.7 shows the probable oxidative mechanism of cellulose. Oxidation of secondary hydroxyl 

groups in cellulose molecules perhaps causes to open the pyranose ring of cellulose, but it doesn’t 

always. Overall, oxidation of cellulose is a slow combustion reaction and mainly produces water 

and carbon dioxide [62]. Lundgaard et al [62], have specifically reported that oxidative degradation 

of cellulose and hemi-cellulose in insulation paper forms furanic compounds (5-HMF, 2-FAL, 

2ACF, 2-FOL) and carboxyl acids including formic and laevulinic acids. 

Oxidation reaction in cellulose paper is autocatalytically accelerated by reactive oxygen species like 

hydroxyl radical (OH ●) from decomposition of hydrogen peroxide (H2O2) [62, 63]. In the 

transformer operating environment H2O2 is produced by reaction between oxygen and water in the 

presence of transition metal cations such as Cu+/Cu2+ or Fe2+/Fe3+. In the case of a free breathing 

transformer, the oil is in direct contact with air and it causes to increase the dissolved oxygen 
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content in oil to about the range of 2000-3000 ppm. In such a condition, oxidative degradation of 

cellulose materials in typical transformer operating condition could be more pronounced than 

hydrolytic and pyrolytic degradation.  

2.4.5  Kinetic model for cellulose paper degradation 

A kinetic model of degradation of cellulose paper insulation which demonstrates the decrease of 

average DP over ageing time is useful in estimating the lifetime of a transformer insulation system. 

Emsley and Stevens [5] have found that most of the published ageing data on cellulose paper 

materials is shown to be in good agreement with the pseudo-zero rate kinetic model developed by 

the Ekenstam in 1936 for linear polymer degradation. As shown in eq (2.4) the rate of reaction k of 

pseudo-zero model is constant throughout the ageing process and it is assumed to be proportional to 

the number of unbroken polymer chain bonds available in the system Moreover, reaction rate 

depends on the availability of reactants such as moisture, acids and oxygen. 
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    (2.4) 

Where DP0 and DPt represent the average degree of polymerisation at the initial (t=0) and at any 

time t respectively. However, Emsley et al [49] have reported that pseudo-zero law eventually 

breaks down when DP of cellulose paper insulation reaches a value of 200. Thus, it has been 

suggested that the use of a first order kinetic model with two coefficients (k2 and k10) as shown in eq 

(2.5) is more appropriate than pseudo-zero model with one coefficient under such a condition.  
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Emsley has characterised the temperature dependence of reaction rate using so-called Arrhenius 

relationship as shown in eq (2.6). 
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Where Ea is the activation energy of reaction in Jmol-1, T is temperature in kelvin, R is the gas 

constant (8.314 Jmol-1K-1) and A is a pre-exponential factor in h-1. From their investigations, 

Lundgaard et al [62] and Emsley [5] have claimed that activation energy for a degradation reaction 

of Kraft paper is about 114 kJmol-1  and 111 kJmol-1 respectively and it does not depend on the 

condition of the reaction environment. This has been recently confirmed by the activation energy 

value of 106 kJmol-1 obtained in an ageing study performed with grade 3 press paper in different 
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moisture and oxygen conditions [53]. Factor (A) shows great dependence on the availability of 

reactants such as moisture, low molecular acids in paper and dissolved oxygen in oil. An increase of 

these reactants results in magnifying pre- exponential factor (A) by several orders of magnitude 

leading to a higher reaction rate. Combining eqns (2.4) and (2.6), the expected lifetime of the paper 

insulation at a given temperature can be calculated using eq (2.7). 
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Assuming that temperature is the only cause of degradation of paper insulation, IEEE loading guide 

also proposes a relationship in the form of eq (2.8) to evaluate the lifetime of transformer insulation 

[67]. 
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Where θh is the hotspot temperature and the time taken for falling DP of paper insulation to 200 at 

110 ºC (150 000 hrs) is assumed to be 1 per unit. A new parameter called acceleratory factor FAA is 

introduced in the IEEE loading guide to quantify the degradation of paper insulation under varying 

temperature conditions. FAA can be calculated using eq (2.9) and it is equal to 1 at the reference 

temperature 110 ºC. Acceleratory factor is then used to calculate the equivalent ageing factor (FEQA) 

as given in eq (2.10). 
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Per unit life loss of paper insulation can then be determined by dividing the multiplication of FEQA 

and time (t) by normal insulation life (150 000 hrs). 

 EqAF t
per unit lifeloss

Normal lifetime


    (2.11) 
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Table 2.1 Pre-exponential factor and activation energy of pseudo-zero kinetic model from literature     

 Test Condition Pre-exponential 

factor A (h-1) 

Activation 

energy  

( kJmol-1) 

Lundgaard [62] Dry Kraft paper 2.0±0.5E+08 111 
Dry Kraft paper with acidic oil 2.4±0.7E+08 111 
Kraft paper with 1% water 6.2±2.9+08 111 

Lelekakis [53] Low oxygen with 0.5% water 1.28E+08 ±7E06 106 
High oxygen with 1.6% water 4.44E+09 ±5E08 106 
Low oxygen with 2.7%water 3.00E+09 ±6E08 106 

 

Compared to the Emsley model (eq (2.7)), the major drawback of the IEEE lifetime estimation 

criteria is that it has not taken into account the effect of reactance in the system such as oxygen, 

water and acids [46]. It causes to overestimate the expected lifetime of paper insulation in a 

transformer with IEEE loading guide criteria. Figure 2.8 compares the calculated lifetime curves of 

paper insulation using parameters obtained in [53, 62] and eq (2.7) with IEEE lifetime curve. Here 

DPstart and DPend are taken as 1000 and 200 respectively. 

 

 

Figure 2.8. Comparison of life expectancy curve of paper insulation from different literature [53, 
62, 67] 
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 Insulating Liquids in Transformers 

2.5.1 Overview of insulating liquids 

Petroleum based oil (mineral), silicon oil, synthetic ester and NE based oils are currently being used 

as insulating liquids in oil filled transformers. The amount of oil used in a transformer depends on 

the power and voltage rating. Typically, a pole-mounted unit rated at 25 kVA may contain about 

100 litres of oil, whilst a large power transformer in a substation rated at a few hundreds of MVA 

may contain about 40 000 to 100 000 litres of oil [1, 37]. Insulating oil in a transformer plays dual 

roles as an electrical insulant and a heat transfer fluid. When the oil is functioning as a heat transfer 

fluid, it absorbs heat from the core and windings and then transmits to the external cooler surfaces 

of the transformer which are artificially or naturally cooled.  

Mineral oil is still being commonly and economically used in almost all power transformers around 

the world due to its wide availability, good insulation properties, low cost and its compatibility with 

cellulose insulation materials [1, 68-70]. IEC Std. 61100 classifies typical mineral insulating oil as 

O class flammable fluid with a fire point of 180 ºC [71]. Low fire point of mineral oil increases the 

risk of explosion of mineral oil filled transformers. A fire originating from mineral oil filled 

transformers causes potential damage to human life and other nearby infrastructure. Thus, 

additional works such as implementing a fire wall, fire safety, deluge systems and fluid containment 

are required when a mineral oil filled transformer is installed [14]. Therefore, it is expected that 

they be filled with an insulating liquid with a high fire point, when installed at critical places such 

as underground tunnel, ships and high density populated areas. 

Silicon based insulating oil is a K class, less flammable synthetic fluid which can be used for such 

an application. However, use of both mineral and silicon oils in transformers can have significant 

negative environmental impacts such that they contaminate soil and natural waterways in the case 

of an accidental spill, due to their poor biodegradable properties [14, 72]. 

From safety and environmental points of view, mineral or silicon oils are no longer the best 

insulating liquids for transformers. In such situations there is a rapidly growing interest for the use 

of ester-based insulating liquids in power transformers [69]. Natural and synthetic esters are the 

currently used ester-based insulating liquids in the transformer industry. Both esters are readily 

biodegradable, less toxic and less flammable K class fluids. In Germany, NEs are considered as 

nonhazardous to water and an ultimately biodegradable substance according to aquatic 

biodegradation tests [11]. According to section 450.23 of U.S. National Electrical Code, NEs are 

defined as less flammable fluids [11]. The chief disadvantage of NEs is their high oxidation 
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susceptibility and therefore it is recommended only to use NEs in sealed type transformers. NEs are 

widely used in distribution level transformers [23, 71] and there is a growing trend to use NEs in 

high voltage and high power transformers [73-75]. FR3 and BIOTEMP are two commercially 

available NE based insulating liquids. Synthetic esters (MIDEL 7131) are generally used in both 

traction and distribution level transformers and less common in power transformers due to their 

high cost.  

Table 2.2 Typical physicochemical properties of different insulating liquids [76] 

Properties Units Test method 

Typical 

Mineral 

oil 

Typical 

BIOTEMP 

Typical

FR3 

MIDEL 

7131 

syntheti

c ester 

Fire Point ºC ASTM D 92 180 360 362 322 
Flash Point ºC ASTM D 92 160 325 326 275 
Specific 
Gravity g/ml ASTM D 1298 

@20ºC 0.88 0.914 <0.92 0.97 

Kinematic 
Viscosity cSt ASTM D 445 @ 

40°C 12 42 34 29 

Relative 
Permittivity   2.2 3.2 3.2 3.2 

Oxidation 
Stability 

% per 
mass Sludge after 72 h <0.1 0.01 solid non 

Neutralizati
on number 
(Acidity) 

mg 
KOH/g 

ASTM D 974 - 0.03 0.02 <0.015 

IEC 61099 9.11 - <0.03 - <0.03 

Biodegrada-
bility % 

CEC L-33-A-93 - 99 >99 30 
EEC Standard 

79/831 83 - - - 

 

Insulating liquids are produced by different manufacturers. However, all must meet certain 

specifications to use as an insulant and heat transfer fluid in transformers. Generally, all types of 

insulating liquids primarily should have high electrical strength, good thermal conductivity, low 

viscosity, high fire point, low pour point, excellent chemical stability and the ability to absorb gases 

that may evolve in certain intense conditions [17]. Moreover, better compatibility with cellulose 

insulation materials is of the utmost importance. IEC Std. 60296 and ASTM Std. D 3487 cover the 

technical specifications for mineral insulating oils used in power and distribution electrical 

apparatus including transformers and breakers. The technical specifications and methods of 

handling NE based insulating liquids used in similar type of apparatus are detailed in ASTM Std. D 

6871-03 (2008) and IEEE Std. C57.147 (2008). New synthetic esters are produced in accordance 
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with IEC Std. 61099. Table 2.2 compares the typical properties of four different types of 

commercially available insulating liquids. 

2.5.2 Mineral insulating oil 

 Chemistry and overview 

Crude oil is subjected to a special refining process to produce mineral insulating oil, such that 

characteristics of the resulting oil comply with certain specifications which are compulsory to be 

used as an insulating liquid in high voltage apparatus like transformers and breakers. In the first 

stage of the refining process, crude oil is distilled at atmospheric pressure and then the residue is 

further distilled under vacuum [17]. Raw oil (distillate of vacuum distillation) is then subjected to a 

series of physical and chemical treatments to selectively remove unnecessary contaminants 

including sulphur, oxygen, nitrogen, olefines-alkenes, n-paraffin and polar organic substances [1, 

17]. The presence of these contaminants in insulating oil causes a chemical instability.  

 

Figure 2.9. Molecular structure of three main groups of hydrocarbon molecules in mineral 
insulating oil (a) Paraffinic, (b) Naphthenic, (c) Aromatic 

Refined mineral oil is a complex mixture of hydrocarbon molecules which mainly fall into three 

major groups namely paraffinic, (cyclo-paraffinic) naphthenic and aromatic [1, 17, 77]. As shown 

in Figure 2.9 (a) paraffinic molecules have a linear or branched structure. Naphthenic molecules 

have a ring structure with five, six or seven carbon atoms. However, six-membered ring 

configuration shown in Figure 2.9 (b) is the most common in naphthenic molecules. Aromatic 

molecules also possess a ring structure of cyclized six carbon atoms. The major difference between 

aromatic and naphthenic molecules is that there are alternative single (C-C) and double bonds 
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(C=C) in the aromatic ring as seen in Figure 2.9 (c). There are two main classes of aromatic 

molecules namely mono-aromatic and poly-aromatic whose structure includes single and two or 

more aromatic rings respectively. Though, aromatic molecules have unsaturated carbon double 

bonds, mono-and di-aromatic molecules show surprising good chemical stability. On the other 

hand, by-products of oxidation of some aromatic compounds accelerate the further oxidation of oil. 

Thus, during the refining process, aromatic content in mineral insulating oil is reduced to about (5-

10%) to achieve optimal oxidation stability [17, 77].  

 Ageing of mineral insulating oil 

Oxidation is the main degradation mechanism of hydrocarbon oil. Temperature, the presence of 

dissolved oxygen and catalyst metal are the most evident factors which govern the rate of oxidative 

degradation of mineral oil [15-17]. It has been reported in the literature that the rate of oxidation 

reaction exponentially increases with temperature (the reaction rate doubles for every 8-9 ᵒC rise in 

temperature) [17, 77].  

 

Figure 2.10. Major step of mineral oil oxidation [16, 77] 

The breakdown of healthy hydrocarbon molecules into two free radicals due to intense heat and 

strong electromagnetic field produces a conducive environment to create an oxidation reaction in 

oil. These radicals react with oxygen and produce highly reactive peroxide molecules. Reaction 

between peroxide and a hydrocarbon molecule forms a hydroperoxide and a radical. Intense heat 

causes hydroperoxide molecules to dissociate into alkoxy and hydroxyl radicals leading to a chain 

reaction as shown in Figure 2.10. Copper which is readily available in a transformer promotes redox 

reaction in oil and dissociates hydroperoxide in a way similar to heat. Unstable hydroperoxide can 

also be decomposed into ketone and water. The oxidation of ketones forms aldehydes and carboxyl 



Chapter 2: Insulation in transformers 

 
   28 | P a g e  

acids [78, 79]. These by-products make oil more conductive and result in negative impacts on 

dielectric withstand characteristics.  

An increase of radical population in the oil causes the enhancement of random reaction between 

radicals leading to a formation of large insoluble colloidal substances (sludge and X-wax) having a 

molecular weight in-between 500 and 600 [16]. This results in the colour of the oil turning darker 

and decreases the heat transfer capability due to an increase in viscosity. Reaction between large 

colloidal substances and metal also produces metallic soaps, lacquers, aldehydes, alcohols, ketones 

and organic acids [16, 77]. These reactive chemical intermediates are largely absorbed by the 

transformer winding leading to a deposit of heavy tarry acidic sludge on winding insulation. It 

causes hotspots to form and increase the rate of ageing of cellulose paper insulation. The overall 

degradation process of oil is irreversible and impairs its heat transfer and dielectric properties. Thus, 

oxidation inhibitors are added to delay the oxidative degradation of oil. 2,6 di-tertiary-butyl phenol, 

2,6 di-tertiary-butyl para-cresol, or metal deactivators such as benzotriazole and its derivatives are 

some of the oxidative inhibitors included in mineral insulating oil, which does not have natural 

inhibitors [71, 80].  

2.5.3 Natural ester insulating oils 

 Chemistry and overview 

NE based insulating oils are commonly produced from soy, sunflower and rapeseeds mainly due to 

availability, low cost and having characteristics allowing them to be used as a heat transfer fluid and 

insulant in transformers [71]. Raw vegetable oils contain a myriad of unnecessary compounds 

including, gums, wax, metal particles, volatile compounds and free fatty acids. These substances 

show adverse impacts on appearance and performance of oil. Therefore, raw oil is subjected to a 

series of chemical and physical treatments namely, degumming, refining, bleaching and 

deodorization to selectively remove unwanted substances and improve the quality standard 

(appearance, chemical stability) of oil [81, 82]. 

In the case of insulating oil manufacturing, a special bleaching technique is applied to ensure low 

electrical conductivity of the resulting oil, a desired property for insulating oil. Finally processed oil 

is degassed and dehumidified to extract dissolve oxygen and moisture respectively. According to 

IEEE Guide for acceptance and maintenance of NE fluids in transformers, NEs are compatible and 

miscible in all proportions with conventional mineral insulating oil, but it causes the lowering of the 

flash and fire point of the resulting oil [83]. Concentration of mineral oil in excess of 7 % causes the 

reduction of fire point of NE to below 300 ºC.  
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NE molecules are called triglycerides whose molecular structure has three fatty acid molecules 

chemically linked to a glycerol molecule as shown in Figure 2.11 [84]. Constituents of all types of 

NE are almost the same. On the other hand, as listed in Table 2.3 fatty acid composition of 

vegetable oils extracted from different sources are dissimilar to some extent. 

 

Figure 2.11. Molecular structure of Natural ester [84] 

In general, saturated, mono-unsaturated and polyunsaturated fatty acids with two or more carbon 

double bonds are available in NEs. The number of carbon atoms in saturated and mono-unsaturated 

fatty acids (oleic) are typically in the range between 8 to 22 and 10 to 22 respectively [79, 81]. Di 

and tri-unsaturated fatty acids namely linoleic and linolenic mostly have 18 carbon atoms. 

Physicochemical properties of NEs such as viscosity, pour point and oxidation stability are solely 

determined by their fatty acids composition. Saturated fatty acid is a chemically stable compound. 

However, an increase of saturated fatty acid content in the oil causes an increase in the viscosity and 

to freeze oil to solid below room temperature. On the other hand, increases of polyunsaturated fatty 

acids composition in oil results in lowering both pour point and viscosity. However, 

polyunsaturated fatty acids are highly susceptible to oxidation. The relative oxidation susceptibility 

of saturated: mono: di: tri: unsaturated C-18 (18 carbon atoms) fatty acids is roughly 1:10:100:200 

[81]. Therefore, an increase in unsaturated fatty acids composition significantly reduces the 

chemical stability of oil.  

Low pour point, low viscosity and high oxidation stability are desirable properties of insulating 

liquid in transformers. Therefore, high oleic (HO) vegetable oils are chosen in manufacturing 

insulating oil to ensure low pour point, low viscosity and desirable oxidation stability of the 

resulting oil. BIOTEMP insulating liquid is produced from high-oleic sunflower oil, which contains 

5 % of saturated stearic acid (C:18:0), 86 % of mono-unsaturated oleic acids (C18:1), 6 % of 

linoleic acid (C:18:2) and 0.1 % of linolenic (C18:3) [76]. Due to ester groups in their molecules 
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structure, NE based insulating oils are more hygroscopic than typical mineral oil and their moisture 

solubility is about 1000 ppm at 25 ºC. Moreover, they possess higher kinematic viscosity than 

mineral oil as listed in Table 2.2. NE insulating oils are generally more oxidation susceptible than 

conventional mineral oil. Therefore, in addition to 2,6-di-tert-butyl-para-cresol, complex phenols 

and amines are also included as the oxidation inhibitors in NE based insulating oils [85]. Though, 

oxidation inhibitors can provide enough oxidation stability, NE based insulating oils are 

recommended to only be used in sealed type transformers. 

Table 2.3 Fatty acids composition of different vegetable oil [76, 81, 84] 

Type of oil Palmitic C16:0 

+Stearic acid 

C18:0 (%) 

Oleic acid 

C18:1(%) 

Linoleic 

C18:2(%) 

Linolenic 

C18:3(%) 

HO sunflower 5 86 6 0.1 
HO Soy 3-5 75-85 2-5 2-5 
HO rapeseed 4-6 75-85 6-10 3 
Typical sunflower 10 19 65 - 
Typical soy 15 24 54 7 

 

 Degradation of NE insulating oils  

Oxidation is the major degradation mechanism of NEs and it is also a radical chain reaction similar 

to the mineral oil oxidation. Metals such as tin, iron and copper act as effective catalysts in 

oxidation of NE whereas lead shows very little impact. Since the strength of a hydrogen-carbon 

bond next to carbon-carbon double bond sites in fatty acid groups is weak, free radicals are easily 

formed in NEs by eliminating a hydrogen atom from the methylene group next to a double bond 

[18, 84]. It has been reported in the literature [18] that vegetable oils containing polyunsaturated 

fatty acids auto oxidise even at room temperature but mono-unsaturated fatty acids (oleic acids) 

oxidise only at high temperature. Thus, it is clear that the degree of unsaturation is the major factor 

which determines the oxidation stability of NEs. 

As shown in Figure 2.12, reaction among free radical, oxygen and oil molecules results in formation 

of triglyceride hydroperoxides and another radical propagating oxidative reaction [18, 79]. 

Triglyceride hydroperoxides break down to form more radicals leading to a chain reaction in a way 

similar to mineral oil oxidation. A myriad of non-volatile and volatile compounds including smaller 

oxygen containing by-products such as alcohols, aldehydes (octanal and nonanal with some 

heptanal), ketones (2, 4-heptadienal) and high molecular acids are also produced by decomposition 

of triglyceride hydroperoxides [18, 68, 71]. At the last stage of oxidation, secondary non-volatile 

substances of oxidation are subjected to cyclisation and polymerisation processes leading to a 
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formation of high molecular weight compounds including gel and lacquer [18]. Concurrently the 

viscosity of NEs measurably increases and it degrades the cooling capability of oil. 

 

Figure 2.12. Major steps of NE self-oxidation (R denotes hydrocarbon unit) [18, 68] 

In the case of NEs, hydrolysis is another degradation reaction, which concurrently occurs with 

oxidation. This is an autocatalytic reaction because free fatty acid molecules themselves accelerate 

the hydrolysis reaction [84]. There are three major steps in the hydrolysis reaction in NEs, which 

are also reversible as shown in Figure 2.13 [86]. In general hydrolytic degradation largely increases 

the acidity of NEs over time.  

 

Figure 2.13. Major steps of NE hydrolysis degradation 

2.5.4 Synthetic ester insulating liquids 

 Chemistry and over view of synthetic ester oil 

Chemical reaction between polyol (molecules with more than one alcohol group) and synthetic or 

natural carboxyl acids yields synthetic esters whose molecular structure have multiple saturated 

fatty acid groups (mostly 2, 3 and 4) connected to the polyol backbone. There are seven main types 

of synthetic esters namely diester, phthalate, trimellitate, pyromellitate, dimer acid ester, polyols, 

and polyoleates [87]. Pentaerythritol ester is an example of a commercially available synthetic ester 
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insulating oil which is produced from a branched mono-acid containing 5 to 18 carbon atoms and 

alcohol pentaerythritol [71, 87]. The molecular structure of Pentaerythritol synthetic ester which has 

four fatty acid groups connected to a central polyol backbone is shown in Figure 2.14. Since 

synthetic ester insulating oil molecules only contains saturated fatty acids, it possesses excellent 

oxidation stability compared to both mineral and natural ester. Detailed technical specifications of 

new synthetic ester insulating oil are available in IEC 61099 [88] and an in-service maintenance 

guide that is published as in IEC 61203 [89]. 

 

Figure 2.14.  Synthetic ester insulating liquid molecules with 4 fatty acids groups 

 Ageing of synthetic ester insulating oils 

Synthetic ester insulating oils slowly oxidise at high temperature which is accompanied by 

production of gases (CO, CO2 and H2). Thermo-oxidative degradation of synthetic ester oil is also a 

free radical chain mechanism.  

 

Figure 2.15. Major steps of SE oxidative degradation 

At the initial step, α-acylhydroperoxide is formed in a way similar to the oxidation of hydrocarbon 

[90]. This intermediate by-product then decomposes via two routes, one the usual degradation into 
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free radicals via O-O bond splitting and the other route involving hydroperoxide decomposition into 

both peroxy acids (together with an aldehyde) and so-called peroxy ester [90]. The liquid phase 

oxidation of these peroxy esters yields low molecular carboxyl acid (acetic), methyl alcohol and 

methyl acetate. Figure 2.15 illustrates the major steps of synthetic ester oxidative degradation. As 

explained in [90], it is assumed that α-acylhydroperoxide is produced in synthetic ester in a way 

similar to the production of hydroperoxide in hydrocarbon oils.  

Synthetic esters are also subjected to hydrolysis degradation at high temperature. The acids 

generated via hydrolysis of synthetic esters are shorter chain acids. These acids are more aggressive 

than those from NEs and are more corrosive at elevated temperature. 

 Review the Experimental Studies on Ageing of Oil-paper 

Insulation in Transformers  

2.6.1 Mineral oil-paper insulation 

During the last several decades ageing behaviour of typical mineral oil-paper insulation has been 

extensively studied [4-7, 10, 53, 55, 60-62, 65, 91-93]. Collectively these studies have mainly 

investigated the exclusive and combined effects of heat, moisture and oxygen on degradation of 

cellulose paper insulation in mineral oil. Shroff et al [47] have quoted that in an ideal situation 

where air and water are excluded from the oil-paper system, typical wood pulp paper has a lifetime 

of 38 years at 90ºC. On the other hand, presence of some air and 2% water reduces the lifetime to 

about 2 years. They have also reported that an increase of temperature by 10ºC reduces the lifetime 

of wood pulp paper by a factor of 3. 

Lundgaard et al [62] have claimed that both moisture and oxygen accelerate the ageing of cellulose 

materials in mineral oil. However, the effect of water on cellulose ageing is paramount such that 

4 % increase of moisture in paper insulation reduces expected lifetime by a factor of 40 whereas 

saturation of oil with oxygen only reduces it to one-half. Lundgaard et al [61] have underlined that 

low molecular weight carboxyl acids are mostly absorbed by paper material and this behaviour 

enhances the acids catalysed hydrolytic degradation of cellulose insulation material in mineral oil. 

Since water enhances dissociation of acids, in combination they show significant synergetic effect 

on ageing of paper insulation.  

Emsley et al [7] have reported that heat and water accelerate the ageing of paper insulation in 

mineral oil and they are about equally effective individually and show a significant productive 

effect in combination. Moreover, oxygen is also synergetic with heat but this synergism is less 

pronounced than of that with water. This study suggests that interaction between water and oxygen 
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causes a shielding effect, which reduces the interaction between water and cellulose and eventually 

results in reduction of paper ageing rate with low water and low temperature conditions. 

Emsley and Stevens [5, 36] have stated that the degradation kinetic of paper insulation in mineral 

oil can be represented with a pseudo-zero order kinetic model and most of the published data on 

cellulose ageing is in good agreement with this model. They have related the reaction rate of 

pseudo-zero order kinetic model to temperature via so-called Arrhenius relationship which is 

mainly characterised by a factor called activation energy. This analysis yields an activation energy 

111 kJmol-1 for the degradation of cellulose materials in mineral oil and it remains constant under 

different reaction conditions. This value has been confirmed by Lundgaard [62] and Lelekakis et al 

have obtained a similar value of 106 kJmol-1 with upper and lower confidence levels of 124 kJmol-1 

and 87 kJmol-1 respectively. 

2.6.2 Ester-paper insulation 

Wilhelm et al [68] have performed an ageing experiment to evaluate the influence of moisture, 

oxygen, heat and the presence of cellulose insulation material on the deterioration of NE based 

insulating liquids. They have used two types of commercially available insulating liquids namely 

FR3 and BIOTEMP. In their study, the ageing extent of insulating oils is characterised by 

measuring kinematic viscosity, acidity and DDF over ageing. This study underlines that the 

viscosity of NEs measurably increases over ageing in an oxygen rich environment due to the 

oxidative degradation. On the other hand, hydrolytic degradation of NEs in the presence of moisture 

shows no influence on the viscosity of oil but acidity of oil markedly increases over ageing. The 

results of this study also confirm that an increase of temperature intensifies both oxidative and 

hydrolytic degradation of NE insulating liquids. 

Hosier et al [69] have investigated the potential of five different food grade vegetable oils to use as 

insulating liquid in high voltage equipment through an accelerated ageing experiment. The ageing 

extent of oil is characterised by measuring viscosity and DDF over the ageing time. The major 

difference between vegetable oils used in this study is the degree of unsaturation of their fatty acids 

composition. Their ageing experiment has been performed in an open air environment in both the 

presence and absence of copper as a catalyst. The major finding of their study is that olive oil which 

contains a high percentage of mono-unsaturated fatty acid shows excellent resistance to ageing 

(comparable to FR3). On the other hand, oils with high poly-unsaturated fatty acids are more prone 

to oxidative degradation. They suggest that vegetable oils high in mono-unsaturated fat are suitable 

for electrical insulating purposes after carefully processed to offer low dielectric loss. 
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Tenbohlen et al [84] have performed an accelerated ageing experiment using three types of NEs, 

one synthetic ester and one traditional mineral oil in both sealed and open environments with and 

without transformer materials. The main objective of this study is to compare the ageing behaviour 

of NEs with respect to synthetic ester and mineral oil. Moreover, ageing of cellulose paper in NEs is 

also compared with that of in synthetic ester and mineral oil. This study has realised that hydrolytic 

degradation of both natural and synthetic esters causes to increase the acidity of those oils over 

thermal ageing. The results of this experiment underline the necessity of preventing direct contact 

of NE oils with air because viscosity of NEs aged under an air supply shows an extreme increase 

due to severe oxidation. This study has also confirmed that NEs offer better performance 

concerning ageing of cellulose paper insulation than both mineral oil and synthetic ester oils. 

Fofana et al [16] have performed an open beaker ageing experiment to compare the oxidation 

stability of commercially available naphthenic based mineral oil, NE and synthetic ester insulating 

oils. In this paper, DDF, dissolved decay by-products and turbidity of oil are measured to determine 

the degree of oxidation over ageing. This study has revealed that after 1800h of ageing, the 

dissolved decay by-products and turbidity of mineral oil are many times greater than those of NE. It 

confirms the ability of NE to dissolve more sludge. On the other hand, oxidation of NEs forms a 

lower amount of sludge than mineral oil. 

J.C Duart et al [94] have compared the lifetime of Kraft paper insulation in typical mineral oil and 

(BIOTEMP) NE insulating oil through an accelerated ageing experiment performed under a 

nitrogen sealed environment. They have considered the 50% retained tensile strength as the end of 

life criteria. Their ageing test cells contain Kraft paper, high density pressboard, low density 

pressboard, insulating oil (mineral or NE) and a typical power transformer proportion of core steel 

and copper. In their study, dry insulation with 0.4% moisture and wet insulation with 0.9% of 

moisture have been separately aged to compare the impact of moisture. This study has calculated 

the temperature at which end of life is reached in 65,000 hrs for normal dry Kraft insulation in 

BIOTEMP is 114 ºC whereas that of Kraft insulation in mineral oil is 98 ºC. On the other hand, that 

of wet insulation in BIOTEMP is 100ºC, confirming that an increase of moisture accelerates the 

ageing of paper insulation in NE in a way similar to mineral oil-paper insulation systems 

investigated in several studies [53, 62].  

Coulibaly et al [95] have performed an accelerated ageing experiment at 130ºC in sealed vessels to 

compare the ageing behaviour of cellulose insulation materials in three different insulating liquids 

including one type of mineral oil and NE and a synthetic ester. This study has been performed in 

both oxygen rich and low oxygen environments. In addition to insulating oil and paper, copper has 
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been included into the ageing vessels to remain consistent with the condition of a real transformer. 

The results of this study indicate that both paper and pressboard insulation in natural and synthetic 

ester oils age at a slower rate than those in mineral oil in both oxygen rich and low oxygen 

environments. They have hypothesised that this protective effect of both esters on cellulose is due to 

their hygroscopic nature. On the other hand, this study has underlined the limitation in use of 

furanic compounds for diagnostic purposes of ester filled transformers, since the measured (2-FAL) 

concentration in both types of esters is much lower than that of in mineral oil over ageing.  

Lijun et al [96, 97] have compared the ageing behaviour of typical Kraft paper insulation in 

commercially available NE insulating oil (BIOTEMP) with that of conventional naphthenic based 

mineral oil through an accelerated ageing experiment performed at three different temperatures. 

Their study confirms that NEs slow down the ageing of Kraft paper leading to a longer life 

expectancy. They have hypothesised that this advantage of NE over mineral oil is due to two 

reasons. NEs are far more hygroscopic than mineral oil. Thus, NEs attract more water from paper 

insulation than mineral oil and it causes a slowing down of the hydrolytic degradation of paper 

insulation immersed in NE. Moreover, they assume that hydrolysis of NEs yields free fatty acids 

and they are chemically bonded to cellulose molecules via trans-esterification. These esterified fatty 

acids arrange in parallel with the cellulose chain to form a water barrier and further weaken the 

hydrolysis degradation of cellulose. The calculated activation energy (Ea) values in this study for 

degradation of paper in mineral oil and NE are (86.94±18.05) kJmol-1 and (151.24±8.28) kJmol-1 

respectively. These values are in good agreement with the activation values reported in [55]. 

Liao et al [24] have performed a sealed tube accelerated ageing experiment to understand the ageing 

behaviour of typical Kraft insulation paper and thermally upgraded paper in a commercially 

available NE (BIOTEMP) and conventional mineral insulating oils. This study has identified that 

both Kraft and thermally upgraded paper show better thermal stability in NE than in mineral oil. 

Results of this study show that levelling off DP (LODP) of both types of paper insulation aged in 

NE is about 100 to 400 higher than that of paper insulation aged in mineral oil. It results in 

increasing the life expectancy of NE filled transformers. These scholars have hypothesised that this 

protective behaviour of NE ester on paper is mainly due to the hydrophilic nature of NE, the 

tendency for hydrolytic degradation of NEs themselves and trans-esterification of long chain fatty 

acids onto the C6-hydroxyls groups of cellulose molecules. They assume that these effects restrain 

the hydrolytic degradation of paper insulation. One interesting phenomenon that can be seen in their 

result is that 2-FAL concentration in NE is much lower than that of in mineral oil in similar ageing 

condition. 



Chapter 2: Insulation in transformers 

 
   37 | P a g e  

In the last two decades, there have been several studies performed to understand the ageing 

behaviour of electrical grade cellulose material in NEs [11-14] and to investigate the thermal 

stability of NE insulating oils themselves [33, 98]. The major finding of their studies is that NEs 

show resistance to thermal ageing of cellulose insulation materials and it confirms the longer life 

expectancy and high overloading capability of NE filled transformers. One notable fact is that 

acidity of NEs abruptly increases during thermal ageing due to hydrolysis of NEs themselves. These 

studies have also identified that viscosity of NEs greatly increases due to thermal ageing in an 

oxygenate environment and this behaviour significantly decreases the heat transfer ability of oil. 

This literature review has revealed that a number of comprehensive studies conducted for 

understanding the ageing behaviour of cellulose insulation in different types of ester oils at once is 

limited. Moreover, ageing behaviour of moderately wet cellulose insulation in ester oils has not yet 

been investigated through a systematic study. This research proposes that studying the ageing 

behaviour of moderately wet cellulose insulation in NE liquids is very important. This is because of 

an increasing trend in retrofilling of mineral oil filled transformers with NE based insulating oils, 

the solid insulation of such units (which have been operated over 15-20 years) could possess 

moisture content of about 2%. 

 Summary 

Cellulose and mineral oil are still the preferred choice for transformer insulation because they are 

economical and plentiful in nature. However, mineral oils possess fire and environmental hazards 

due to their low fire point and poor biodegradable characteristics respectively. Thus, there is 

growing interest to use ester oils as a substitute for mineral oil due to their superior biodegradable 

properties and high fire point. Cellulose material and oil insulation in transformers degrade under 

combined influences of intense heat, moisture and oxygen which are available in the operating 

environment of transformers. Therefore, the degree of ageing of both paper and oil insulation of 

transformers is needed to be investigated through reliable methods. The next chapter will mainly 

discuss the existing well-established methods for diagnosing oil-paper insulation systems of 

transformers. 

Ageing characteristics and changing of physicochemical properties of cellulose-mineral oil 

composite insulation have been extensively studied during the last several decades. On the other 

hand, there are limited numbers of systematic experimental and field studies that have been 

performed to comprehensively investigate the long-term behaviour of cellulose-ester composite 

insulation in a transformer operating environment. Thus, the present understanding on ageing 

behaviour of cellulose-ester composite insulation systems is inadequate. This limits the cost 
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effective and reliable field applications of ester insulating oil. Therefore, further investigation is 

necessary to understand the ageing behaviour of cellulose material in ester oils under different 

environmental conditions and to realise a change of physicochemical properties of ester oils over 

ageing. The experimental works presented in Chapter 4 of this thesis are mainly intended to address 

this issue. 



 

 

  

Condition Monitoring of Transformer 
Insulation 

  Introduction 

Transformers are indispensable and strategically important pieces of equipment in any power 

system. Their availability and reliability are necessary to run a power system economically and 

efficiently. It has already been mentioned in the previous chapter that during the course of 

operation, the transformer insulation system is subjected to an irreversible ageing. Ageing of the 

insulation system causes a reduction in the ability of the winding structure to withstand high 

compressive and axial forces generated in a fault condition of the power network. Statistical data of 

transformer failures indicates that winding failures due to defects in the insulation system present 

the significant percentage of failures [20]. Transformer failure can be catastrophic and result in 

significant direct and indirect costs including repair or replacement costs and revenue losses due to 

unscheduled outages. Therefore, adequate maintenance is required to ensure the condition of 

transformer insulation system is good. A competitive and liberated energy market forces utilities to 

change their maintenance strategies from time-based to condition and realiability based where 

maintenance decisions are no longer driven by operational time [99]. In such a situation, assessing 

the condition of transformer insulation with reliable non-invasive diagnostic tools is a basic 

requirement to take the right maintenance actions at the right time and avoid costly inadvertent 

outages. This chapter presents the background of existing transformer insulation condition 

monitoring techniques which mainly fall into two types, namely chemical and electrical.  

 Overview of Electrical Based Techniques 

Breakdown voltage (BDV), partial discharge (PD) measurements, dielectric absorption ratio 

(DAR), polarisation index (PI) and power frequency loss factor (DDF) are the typical electrical 

based traditional diagnostic tools which have been used to assess the quality of oil-paper insulation 

in transformers individually and collectively. The destructive nature and lack of information 

provided by some of these techniques impede their current wide application in condition monitoring 
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[100]. On the other hand, development of signal processing methods has enabled noise reduction 

and classification of PD sources. Thus, there is a growing trend to adapt PD-based diagnostic 

techniques in conjunction with modern signal processing tools to identify incipient faults in 

transformer insulation systems.   

With the advancement in fast computers and digital technology in the early 1990’s, dielectric 

polarisation based diagnostic tools namely polarisation and depolarisation current (PDC), recovery 

voltage measurement (RVM) and frequency domain spectroscopy (FDS) were introduced [101]. 

These techniques are collectively known as dielectric response measurements. Dielectric response 

measurements have proven their applicability in condition monitoring of transformer insulation and 

are now widely used.  

 Conventional Dielectric Tests 

3.3.1  Power frequency breakdown voltage measurements 

BDV at power frequency is the most commonly used parameter to assess the quality of insulating 

oils. It primarily measures the ability of the oil to withstand electrical stresses. Breakdown voltage 

indicates the presence of contaminants such as water, cellulosic fibre, dirt and conductive particles 

in the liquid insulation. The presence of a significant concentration of contaminants results in a 

lower BDV. IEC Std. 60156 and ASTM Std. D1816-4 prescribe the standard test procedure for 

analysing breakdown voltage of insulating liquids having a petroleum origin. ASTM D1816 and 

IEC 60156 specify different types of electrodes, electrode gaps, voltage ramp rates, stir times 

between tests and sample sizes. Since ester based insulating oils possess a higher viscosity than 

typical mineral oil, IEEE Std. C57.147-2008 recommends longer rest time (about 15 minutes at 

room temperature) than the standard values provided in IEC and ASTM standards before analysing 

the BDV to allow air bubbles to escape [83]. 

 

Figure 3.1. Example test cell and electrode arrangement in IEC 60156 [102] 
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Figure 3.1 shows a commonly used test cell and electrode arrangement suggested in IEC 60156 

which is used in this research to measure the BDV of insulating oils.  

3.3.2 Overview of IR, DAR and PI measurements 

IR is a basic dielectric parameter which can be used to assess the insulation system of a transformer. 

In this method, a DC step voltage is applied across the insulation being investigated and the 

charging current is measured over 1 minute. IR is then calculated using eq (3.1). This test is 

typically performed periodically and a substantial reduction of IR over time indicates the necessity 

of further investigation for the cause.  

 Applied Voltage
IR insulation resistanceat 1min

Current at 1 min
     (3.1) 

DAR and PI are extensions of IR measurement and these dielectric parameters are calculated by 

using IR values at 30 seconds, one minute and 10 minutes as given in eqns (3.2) and (3.3). Under a 

DC step voltage, the current flowing through an object of insulation consists of three components 

namely, charging current, absorption current and conduction current. Absorption current represents 

the polarisation current due to molecular charge shifting in the insulation and it is assumed to decay 

to zero over time. Thereby, both DAR and PI should possess values greater than 1. In general, 

insulation in good condition has DAR and PI values greater than 1.6 and 2 respectively. Table 3.1 

provides the necessary guidelines to assess a transformer insulation system using PI [103]. 

Generally, the value for PI of insulating oils is equal to 1 and it leads to a low PI for new 

transformer insulation in spite of its good condition. Therefore, it is recommended not to use the PI 

method to assess the condition of the oil-paper composite insulation in a new transformer [100, 

103].   

Table 3.1. Guidelines for evaluating transformer insulation using PI values based on IEEE Std. 
C57.152-2013 [103] 

Polarisation index Condition 

Less than 1 Dangerous 

1-1.1 poor 

1.1 1.25 questionable 

1.25 to 2. fair 

Above 2.0 good 
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  
 

1 min insulation resistance megohm  reading

30 sec insulation resistance megohm  rea
DAR =

ding
   (3.2) 

  
 

10 min insulation resistance megohm  reading

1 min insulation resistance megohm  rea
PI =

ding
 (3.3)  

 

3.3.3 Dielectric Dissipation Factor measurement at mains frequency 

DDF is a dimensionless parameter measured at power frequency which has been known as an 

effective method to assess the overall condition of transformer insulation over decades [100, 103, 

104]. DDF of a transformer mainly characterises the moisture and degree of contamination of its 

insulation system. In the case of obtaining DDF, an AC voltage of power frequency is applied 

across the transformer insulation system. The test voltage used in field measurements is typically in 

the range 100 V to 10 kV. However, most field measurements are performed at rated voltage or at a 

maximum of 10 kV [104]. When an AC voltage is applied across an insulator, there is a current 

flowing through it. This current mainly has two components namely, capacitive and resistive 

current. Basically, DDF also known as tanδ is the ratio of resistive current to capacitive current. The 

resistive current of an insulation system in good condition is much lower than the capacitive 

current. Thereby, the source voltage is nearly 90 degrees lagging the source current which means 

DDF is very small. Any deterioration of the insulation causes an increase in the resistive current and 

gives rise to DDF.  

 

Figure 3.2. Simple vector diagram for dissipation factor measurement [104] 

When assessing the conditions of transformer insulation with this method, the measured DDF is 

usually compared with the previous and factory test results. Thus, this method provides the greatest 

benefit when performed periodically [103]. DDF largely depends on temperature, therefore care 
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must be taken to consider measurement temperature to draw an accurate conclusion based on DDF 

measurement results. Table 3.2 provides necessary guidelines based on IEEE Std. C57.152-2013 

and IEEE Std. 62-1995 to evaluate the condition of transformer insulation using this technique. It 

can be seen in Table 3.2 that limiting values for DDF have been defined for the range of 

transformers based on voltage rating. This is because DDF is a dimensionless parameter which is 

not affected by the geometrical parameters of the insulation system of transformers.     

Table 3.2. Recommended diagnostic characteristics based on DDF [103, 104] 

Insulating oil Voltage rating Limit of DDF @ 20 ºC (%) 

New transformer Service-aged transformer 

Mineral oil ≤ 230 kV < 0.5 1 

0.5<DF<1 acceptable 

DF>1 should be investigated 

 ≥ 230 kV < 0.4 

NE all 1 1 

Since this is a single frequency measurement, it only allows for limited assessment of the insulation 

condition of a transformer. Moreover, DDF does not have enough information to resolve individual 

effects of oil and solid insulation. In the case of old transformers, DDF at power frequency 

predominantly characterises the condition of the oil insulation. These deficiencies of the single 

frequency DDF measurement may lead to an erroneous interpretation of the condition of 

transformer solid insulation.  Figure 3.3 shows an example of the drawback of power frequency 

DDF method where DDF at 50 Hz of moderately and heavily aged transformers solely characterises 

the condition of the oil. 

 

Figure 3.3. DDF of three transformers  with different ageing condition [100] 
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DDF is also used to evaluate the change of quality of insulating oils due to contamination and 

deterioration in service or as a result of handling. ASTM Std. D 924 and IEC Std. 60247 prescribe 

the standard procedure to obtain DDF of insulating oils in the commercial frequency range of 45- 

65 Hz and 40-62 Hz respectively. As per IEEE Std. C57.147-2008, the maximum acceptable DDF 

of new NE based insulating liquids is 0.002 at 25 ºC with the test method specified in ASTM 

D 924. That of new synthetic ester insulating liquids at 90 ºC is 0.03 [105]. As per IEEE Std. 

C57.152-2013, limiting value for DDF of both serviced aged mineral oil and NE insulating liquids 

is 0.005 at 25 ºC. On the other hand, IEEE Std. C57.147-2008 suggests a provisional acceptable 

limiting value of 0.03 for service aged NE insulating oils at 25 ºC. According to British Std. EN 

61203 that of service aged synthetic ester insulating oils is 0.01 at room temperature. 

The results of several studies point out that DDF of NE insulating oils increases far beyond the 

limiting value specified in IEEE Std. C57.152-2013 even aged under oxygen free environment [98, 

106, 107]. Thus one can claim that the provisional limiting value provided in IEEE Std. C57.147-

2008 is more appropriate for quality assurance of service aged NE insulating liquids. 

 Dielectric Response Measurements 

3.4.1  Dielectric polarisation and basic principles 

Both liquid and solid insulation materials can be categorised into two groups, namely polar and 

non-polar [108]. Polar materials contain permanent electrical dipoles which can be molecular 

dipoles due to the chemical interaction between dissimilar atoms in the molecular structure or 

localised bipolar space charges [109]. In non-polar materials there are no permanent electrical 

dipoles and balancing of positive and negatives charges exists at an atomic level. Overall, insulation 

materials are electrically neutral though they have a microscopic level of localised bound or space 

charges [109, 110].  

Soon after an insulation material is subjected to an external electric field, bound and space charges 

show relative microscopic movement in the direction of the electric field which leads to non-zero 

microscopic dipole moments. This is simply called dielectric polarisation. Generally, three main 

polarisation mechanisms can be observed in insulation materials, namely deformation (electron or 

atomic), ionic and dipolar polarisation. Moreover, some of the insulation materials possess different 

types of polarisation mechanisms such as interfacial polarisation (space charge polarisation) and 

hopping charge carrier polarisation [109, 111-116].   
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Deformation polarisation: This arises due to the elastic displacement of electron clouds relative to 

the nuclei of an atom or sets of atoms (molecule). This is a fast temperature independent mechanism 

which is effective when the frequency of applied electric field is in the optical range [117]. 

Ionic polarisation: This occurs when the positive and negative ions in a lattice structure of a 

material are displaced by an electric field in such a way that positive ions displace in the direction 

of the electric field while negative ions shift in the opposite direction. This phenomenon is effective 

in infra-red frequencies and shows a weak temperature dependence [108]. 

Dipolar Polarisation: This occurs in materials containing molecules with permanent dipoles. These 

dipoles are randomly distributed as shown in Figure 3.4 (a) due to the action of thermal energy and 

give zero net polarisations as long as no external field is applied. When an electric field is applied 

across a polar material, dipoles tend to align themselves with the electric field as shown in Figure 

3.4 (b) and gain electrical polarisation. This is also quite a fast phenomenon which is effective when 

the frequency of applied field in the range MHz to GHz. This mechanism is strongly counteracted 

by the thermal motions of molecules and thereby, dipolar polarisation is considered as a highly 

temperature dependent mechanism.  

 

Figure 3.4. Orientation (dipole) polarisation (a) without Field, (b) Polarised under an external filed 

Interfacial polarisation: This type of polarisation can typically be found in composite materials 

such as oil impregnated cellulose where materials in contact have different electrical conductivities. 

When an electric field is applied across such a material, movable positive and negative charges 

become deposited on the interface of different materials and act as some kind of electric 

dipoles[109]. This phenomenon is quite a slow process which is effective in the power frequency 

range or below.  

Hopping charge carrier polarisation: This is a different class of polarisation mechanism that can 

mostly be found in solid materials which are heterogeneous on a microscopic scale in nature such as 
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rock, ceramic, humid cellulose, humid sand, porous structures and most of the biological systems 

[115, 118]. As shown in Figure 3.5, hopping charge carriers spend most of the time in localised 

sites x1 or x2, if they are subjected to small thermal vibrations [110]. However, occasionally they 

make a jump over the potential barrier W. This phenomenon is somewhat similar to an induced 

dipole and creates polarisation. The probability of transition between two preferred sites (x1 and x2) 

is predominantly determined by the distance between the sites and the height of the potential 

barrier. An application of an electric field over the material increases the probability of charge 

hopping transition from site x1 to x2 (R12 >R21) or vice versa. Therefore, under an electric field, 

when the hopping charge carriers are not traversing the entire physical dimension of the sample, this 

phenomenon gives rise to polarisation. This is quite a slow process and effective at sufficiently low 

frequencies. 

 

Figure 3.5. A double potential well for representing hopping charge carrier polarisation [117] 

3.4.2 Theory of dielectric polarisation 

Polarisation P is a vector which represents the dipole moment per unit volume of matter and it can 

be expressed as [108]: 

 2( )
M

P Cm
V

    (3.4) 

Where, M is the macroscopic dipole moment of the whole sample volume V and bracket ‹› 

represents the ensemble average. It is generally accepted that the dielectric polarisation of most 

insulation materials linearly changes with an applied electric field. Assuming that the insulation 

materials considered here are isotropic and uniform, the general relationship between the electric 

field E and polarisation can be presented as: 

 0 eP E     (3.5) 
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Where, ε0 is the dielectric permittivity of vacuum (8.854x10-12 Fm-1) and χe denotes the 

dimensionless electric susceptibility of the material under consideration. According to the first 

Maxwell equation, electric displacement vector and polarisation can be related as in eq (3.6). 

 0D E P    (3.6) 

Then using eqns (3.5) and (3.6) electric displacement vector can be rearranged as: 

  0 01 e rD E E        (3.7) 

The relative permittivity (dielectric constant) of the material under consideration in the linear region 

is denoted by εr=1+χe which does not depend on the magnitude of the applied field. On the other 

hand, relative permittivity of a material depends on the microscopic morphology and chemical 

composition of the material. Furthermore, other external factors including frequency of applied 

electric field and sample temperature significantly influence the relative permittivity of the material 

under consideration.  

As explained in section 3.4.1, it is clear that when an insulation material is exposed to an electric 

field, some of the polarisation processes develop within a very short time while others take quite a 

long time. Therefore, polarisation of insulation materials under an external electric field always 

possesses time dependence behaviour and it reaches an equilibrium condition over a period of time. 

Time dependence polarisation P(t) of insulation material due to any arbitrary time varying electric 

field E (t) can be written as in eq 3.8 [109, 117, 119]. P(t) has two major components namely rapid 

and slow polarisation. The slow polarisation part is the convolution integral of the applied electric 

field and dielectric response function f (t) of the insulation material being investigated. f(t) is always 

a monotonically decreasing function. 

 0 0( ) ( 1) ( ) ( ) ( ) ( 0, ( ) 0)
t

Rapid polarisation

Slow polarisation

P t E t f t E d fort f t     


        (3.8) 

ε∞ denotes the relative permittivity of the material at high frequency, which is referred to as fast 

polarisation process appearing in the material. Using eqns (3.7) and (3.8) the time varying 

displacement current density JD(t)  can then be presented as eq (3.9). 

 0
( ) ( )

( )D

E t P t
J t

t t
  

 
 

  (3.9) 
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In addition to the bound and space charges, insulation materials contain free movable charges. 

Thus, under an electric field of E(t) the current density J(t) through an insulation material with 

volume conductivity of σ can be mathematically represented as eq (3.10) where it is a summation of 

conduction and displacement currents. 

  0( ) ( ) ( ) ( ) ( )

Conduction current Displacement current

J t E t t f t E t         (3.10) 

Once an insulation material is subjected to a sinusoidal time varying electric field E(ω)=Emejɷt , 

polarisation at any arbitrary frequency can be mathematically calculated by taking a Fourier 

transform of eq (3.8). Thereby, frequency domain dielectric polarisation P(ω) of an insulation 

material can then be written as [110]: 

  0

( )

( ) ( 1) '( ) j ''( ) ( )P E

 
     
 
  

          (3.11) 

Where χ(ω) is the frequency dependence complex susceptibility of the material under investigation 

which is equivalent to the Fourier transform of the dielectric response function f(t).  

Then, total current density J(ω) in frequency domain can be expressed as: 

 0
0

( ) '( ) - ''( ) ( )J j j E
       
   

       
 

  (3.12) 

When the dielectric response function obeys causality, which means no reaction before action, real 

and imaginary susceptibility can be interrelated by so-called Krammers-Kronig (K-K) 

transformation as in eqns (3.13) and (3.14). 
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3.4.3 Dielectric response in time and frequency domain 

 Overview 

PDC and RVM are the time domain dielectric responses which characterise the dielectric properties 

of the materials with respect to electrical conduction and slow polarisation processes under DC field 
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stress. FDS presents the response of the material to sinusoidal excitation of varying frequency. A 

notable fact is that dielectric response of a wide range of solid materials including oil impregnated 

cellulose [116, 120-125], poly-oxymethylene, and porous glass [126] are principally governed by 

the absorbed moisture. Therefore, dielectric response measurements in time and frequency domains 

have been significantly increased in use during the past two decades to estimate the moisture 

content in cellulose based insulation of transformers.  

  PDC response measurement 

Figure 3.6 (a) shows the principle circuit used for PDC measurement. Here, a step voltage of U0 is 

applied to the fully discharged insulation object at t = 0 s and the current through the circuit is 

measured with an electrometer connected in series with the source voltage and the insulation object 

over a time period of tc s. Using eq (3.10) and assuming that the geometric capacitance of the test 

object is C0, the resultant polarisation current (Ipol(t) ) can be expressed as eq (3.15) [119, 127].  

 

Figure 3.6. (a) Principle circuit of PDC measurement, (b) General shape of polarisation and 
depolarisation current [119] 
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  (3.15) 

Impulse function δ(t), represents the current spike in Ipol(t) at t=0 due to the charging of geometric 

capacitance of the test objects. It can be seen from eq (3.15) that Ipol(t) characterises the material 

being investigated with respect to its volume conductivity, dielectric response function and high 

frequency permittivity. If tc is sufficiently large enough, the effect of polarisation disappears from 

the measured polarisation current response and thereby, it is equal to the conduction current. 
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At the time equal to tc, applied voltage is removed and terminals of the test object are short-

circuited via an electrometer. This condition is similar to an application of –U0 voltage across the 

test object at t=tc. Using the principle of superposition, the resultant depolarisation current flowing 

through the circuit in the reverse direction (Idepol) due to the relaxation of polarised species can be 

explained as eq (3.16). 

   0 0( ) ( ) ( ) ( )depol c c cI t t t f t t f t C U for t t           (3.16) 

As shown in eq (3.16), depolarisation current is not affected by the conductivity and thereby, 

dielectric response function can be presented as eq (3.17) when the condition f(t) >> f(t+tc) for t >0 

is satisfied. Moreover, assuming that the material is macroscopically homogeneous, DC 

conductivity can be calculated using eq (3.18). 
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However, f(t) of most of the solid materials decreases slowly with time leading to a longer 

measurement time to satisfy the condition f(t) >> f(t+tc) for t >0 [117]. 

  RVM  

In this method, step voltage of U0 is applied across the fully discharged test object over a time 

period of tc s. Then step voltage is removed and the test object is short circuited for a time period of 

td s. To perform RV measurement, the discharging process is interrupted after td s and a high 

impedance voltmeter is connected across the terminals of the test object.  

 

Figure 3.7. Current and voltage responses during a RVM 
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During the short circuited time period (td), activated polarisation processes with different time 

constants are relaxed to different levels. Thereby, soon after the voltmeter is connected, charge 

redistribution occurs in the system and it gives rise to a voltage across the terminal of the test object 

as shown in Figure 3.7. 

The recovery voltage Ur(t) build up across the electrodes of the test object possesses the following 

relationship.  
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Ur(t) can be analytically derived from eq (3.19), if the DC conductivity (σ), high frequency-

permittivity (ε∞) and dielectric response function f(t) of the insulation material are known [117]. 

 Frequency Domain Spectroscopy (FDS) 

In this technique, a sinusoidal voltage of varying frequency U(ω) is applied across the insulation 

object and the current response is measured in terms of magnitude and phase angle. Then the 

frequency dependence complex capacitance C(ω) of the test object can be derived using eq (3.21). 
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If the geometric capacitance (C0) of the test object is known, frequency dependence complex 

permittivity can be explained as: 
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  (3.22) 

Where, εʹ(ω) is the real part of permittivity which has two components; χʹ(ω) and ε∞. χʹ(ω) 

represents the contribution of polarisation to the capacitive current. εʹʹ(ω) is the imaginary part of 

permittivity which associates with energy loss of the insulation material. Energy loss has two 

components, resistive loss due to the conduction effect and dielectric loss due to the inertia of 

bound and space charges when they are displaced by an electric field. The frequency dependence 

complex capacitance or permittivity is generally known as FDS. 



Chapter 3: Background of condition monitoring of transformer insulation  

 
   52 | P a g e  

It can be seen in eq (3.22) that the contribution of conduction effect to the imaginary permittivity 

εʹʹ(ω) is inversely proportional to the frequency. Thereby, it becomes more dominant at low 

frequencies. However, most of the solid insulation materials possess low frequency dispersion 

(LFD) phenomenon which means the contribution from dielectric loss to imaginary permittivity at 

low frequencies is significant. In such a situation, K-K transformation or dielectric response 

modelling techniques can be used to distinguish the effects of conduction and polarisation. 

In the case of a transformer, measured frequency domain dielectric response is largely influenced 

by the geometry of its insulation system. When the geometrical information of the insulation system 

of a transformer is not readily available, DDF(ω) is frequently used to represent dielectric response 

of the transformer as it is the ratio of εʹʹ(ω) to εʹ(ω). 
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  (3.23) 

 Application of PDC and FDS Measurements for Condition 

Monitoring of Transformers 

3.5.1 PDC measurements  

Use of PDC response measurement for condition monitoring of power transformer insulation has 

been widely discussed in the literature [128-133]. The general shape and magnitude of PDC 

response of a transformer at different time ranges are distinctly characterised by the conditions of 

solid and liquid insulation in such a way that PDC response in the initial time range (t<100 s) 

reflects the condition of oil whereas long-time (t>1000 s) polarisation and depolarisation currents 

are mainly influenced by the condition of paper insulation [119, 132, 134, 135]. Exponential time 

decaying current in-between them is preliminary characterised by the interfacial polarisation 

phenomenon arising at the interface of oil–paper insulation. The interfacial polarisation effect is 

largely influenced by the geometry of the insulation system. 

Generally, an increase of oil conductivity results in higher initial polarisation and depolarisation 

currents. On the other hand, long-time polarisation and depolarisation currents increase due to an 

increase of paper insulation conductivity. The conductivity of both oil and paper insulation 

markedly changes with ageing and moisture. Thus, it provides information about the quality of oil 

and paper insulation with respect to moisture content and ageing. However, to calculate the oil and 

paper conductivities from a measured PDC response; exact design details are required along with 

composition of the transformer insulation system. Exact design data is not readily available from 
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the utilities. In such a situation, considering the relative volume proportion of oil and paper 

insulation in a transformer insulation system is adequate for conductivity analysis [119, 136]. 

Assuming that the relative amount of paper insulation in the composite insulation system of a 

transformer is X, Saha et al [119] propose the following eqns to calculate conductivity of oil and 

paper insulation distinctly.  
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Where, εe, εoil, and εpaper represent the effective permittivity of the composite system and 

permittivity of oil and paper insulation respectively. The conductivities of oil and paper can then be 

calculated using eqns (3.25) and (3.26) respectively. 
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Where, Ipol(+0) represents the initial polarisation current just after the first transient and Idc denotes 

the long-time DC current which is the difference between polarisation and depolarisation current. 

 

Figure 3.8. R-C equivalent circuit model for linear dielectric 

A well known R-C equivalent circuit shown in Figure 3.8 which is used for modelling the PDC 

response of linear dielectric materials has been adopted in most of the PDC interpretation schemes 

developed for transformers [129, 130, 132, 134, 135]. In this case, dielectric polarisation behaviour 

of a transformer insulation system is characterised using a series of Debye relaxation processes with 

different time constants. They are represented by parallel branches each containing a series 

connection of resistor and capacitor as shown in Figure 3.8 [132]. R0 and C0 of the equivalent 
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circuit characterise the conductive current and geometric capacitance of the insulation system. 

Accordingly, depolarisation current corresponding with the R-C equivalent circuit can be explained 

with eq (3.27). 
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Where, τi  and Ai are the time constant and pre-exponential factor corresponding to ith R-C branch of 

the equivalent circuit respectively. 

T. Leibfried et al [135] presented PDC responses of oil and paper insulation with distinct R-C 

equivalent circuits. Then an equivalent hierarchical circuit has been derived considering the R-C 

models of oil and paper insulation and the geometry of the insulation system to represent the 

complete transformer insulation. In this way, they propose to calculate PDC response of a 

transformer using the R-C equivalent circuit parameters of oil and paper insulation with known 

properties and then compare with the measured response to interpret the condition of the insulation 

system.  

Der Houhanessian et al [130, 137] consider the insulation system of a transformer as a multilayer 

structure of oil and paper insulation. They propose series connection of R-C equivalent circuit 

elements (for oil and paper insulation) to model the PDC behaviour of transformer insulation. Their 

interpretation scheme to evaluate the condition of an insulation system based on model parameters 

is almost similar to that of Leibfried.  

Application of the above modelling techniques to analyse the condition of transformer insulation is 

hampered by a lack of information about the design, geometry and arrangement of insulation within 

the transformer. Saha et al [132, 134] consider the insulation system of a transformer as a “black 

box” and use a single level R-C equivalent circuit to represent PDC response of the whole system. 

They interpret the physical behaviour of the model parameters in such a way that Ri-Ci values 

corresponding to the smaller time constant branches reflect the condition of oil and magnitudes of 

Ri-Ci elements of the larger time constant branches provide information about the condition of 

paper insulation. Moreover, when the quality of insulating liquid is good, R values of the smaller 

time constant branches tend to increase while capacitance values tend to decrease leading to lower 

initial polarisation and depolarisation currents. On the other hand, decrease in R values and increase 

in C values of the smaller time constant branches reflect the bad quality of the insulating oil. A 

similar interpretation has been proposed to analyse the quality of paper insulation using Ri-Ci 

parameters of large time constant branches. The main advantage of this method over other R-C 
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equivalent circuit based PDC analysis methods is that this technique enables interpretation of the 

condition of both oil and paper insulation distinctly without prior knowledge about their relative 

arrangements.  

3.5.2 FDS measurements 

FDS of a transformer insulation system contains information about polarisation and conduction 

effects associated with both oil and paper insulation materials. Therefore, adequate understanding of 

frequency domain dielectric response behaviour of individual materials is required to analyse FDS 

results of transformer insulation systems. In general, all types of insulating oils show solely 

conductive behaviour and thereby, FDS of an insulating liquid can be characterised using its DC 

conductivity (σoil) and dielectric constant (ɛoil) as in eq (3.28). DC conductivity of new mineral and 

ester insulating oils at 20 ºC is typically in the range 0.05-1 pS/m and 5-20 pS/m respectively [27]. 

Ageing may cause to increase the conductivity of oil to a large value (1000 pS/m). 
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Several scholars have reported that moisture, temperature and ageing largely influence the 

frequency domain dielectric response of oil impregnated cellulose paper insulation by intensifying 

both conduction and polarisation phenomena [27, 123, 124, 127, 138-140]. Thereby, an increase of 

temperature and moisture causes to shift the dielectric response towards a higher frequency. The 

frequency shift due to a temperature change can be characterised by an equation of Arrhenius type 

(eq (3.29). Activation energy Ea indicates the degree of temperature dependence of dielectric 

response and is calculated in eV [141]. 
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Where, ωT and ωref are the frequencies, which have same magnitude in their dielectric responses at 

temperatures T and Tref, respectively. K represents Boltzmann constant (8.6173324(78)×10−5 eV). 

Chandima et al [138] have found that activation energy of oil impregnated paper insulation varies in 

the range 0.8-1.1 eV with a tendency to increase with moisture. Koch et al [27] suggest activation 

energy of 0.9 eV to characterise temperature dependence of cellulose material whereas that for 

mineral oil is 0.4 eV. According to [142], activation energy of oil impregnated paper is typically in 

the range 0.9-1 eV and that of mineral oil in between 0.4 eV and 0.5 eV. Linhjell et al [124] have 
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reported that activation energy value of impregnated and non-impregnated cellulose paper 

insulation is typically in the range 1-1.05 eV and 0.9-1.03 eV respectively.  

Linhjell et al [124] have also observed that the minimum ɛʹʹ (ω) of FDS of oil impregnated paper 

insulation is sensitive to moisture content in such a way that an increase of moisture gives 

exponential rise to the minimum of ɛʹʹ (ω) as in eq (3.30). 

 1
min 1'' B m

A e   (3.30) 

Here A1 and B1 are constants which take the values 0.014 and 0.24 for paper and 0.013 and 0.22 for 

pressboard. m is the percentage moisture content. 

Saha et al [143] suggest that the increase of moisture gives rise to both real and imaginary 

permittivity and this behaviour is sensitive to measured frequency and temperature. They propose 

two empirical formulas as in eqns (3.31) and (3.32) to correlate the real and imaginary permittivity 

at any arbitrary frequency f and temperature T to the moisture content m. 
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Figure 3.9. Typical dielectric response of oil-paper insulated transformer [27] 
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Figure 3.9 elucidates the general interpretation for dielectric response of the oil–paper insulation 

system of a transformer. As seen in Figure 3.9, dielectric response of the paper insulation dominates 

in the frequency range 101-103 Hz. In the mid frequency range (10-1-101 Hz) dissipation factor 

increases with slope of -1 /decade toward the low frequency and this region can be attributed to the 

conductive effect of oil. It is followed by the peak originated by the interfacial polarisation 

phenomenon due to accumulation of space charges at the oil-paper interface. With further 

decreasing frequency, the response of the composite system follows the dielectric properties of 

paper insulation and dielectric response in this frequency region is largely influenced by the 

moisture and ageing by-products in the paper insulation [27, 100].   

In [27, 127, 139, 141], a moisture determination technique has been proposed which is based on a 

comparison of measured FDS of a transformer over a wide range of frequency to a mathematically 

modelled dielectric response. This method has been proven to be effective in determining moisture 

in the paper insulation of transformers. Accuracy of this method is based on the accuracy of the 

pool of data which is used for mathematical modelling. The database mainly contains dielectric 

response data of oil impregnated paper insulation taken at different moisture, temperature and 

ageing conditions. For mathematical modelling, the cylindrical insulation structure between low and 

high voltage windings of a transformer is represented by so-called X-Y model as shown in Figure 

3.10 (b). X is the ratio of the sum of thickness of all barriers in the duct, lumped together and 

divided by the duct width [144]. Y is the ratio of the total width of all spacers to the length of 

periphery of the oil duct. Typically, the value of X is in the range 20-50 % and Y possesses a value 

in the range 15-25 %. In order to estimate the moisture content in the solid insulation, this method 

combines the dielectric response data in the pool using the X-Y model to give the best fit with the 

measured response at a given temperature. Most of the commercialised FDS based moisture 

diagnostic tools such as MDOS use this method.     

 

Figure 3.10. (a) Representation of typical transformer insulation, (b) Equivalent X-Y model 



Chapter 3: Background of condition monitoring of transformer insulation  

 
   58 | P a g e  

However, a very limited number of studies have investigated the FDS behaviour of ester 

impregnated paper insulation [97, 145] and the present understanding of the impact of moisture, 

ageing and temperature on FDS behaviour of ester-paper insulation system is inadequate. Thus, one 

cannot claim that well established FDS data interpretation schemes developed for mineral oil based 

insulation systems are applicable for ester based transformer insulation systems.   

 Chemical Based Techniques 

3.6.1 Overview of chemical based condition monitoring techniques 

Over several decades, several chemical based diagnostic techniques have been used to assess the 

condition of oil and paper insulation in transformers. Most of the established chemical methods 

have been developed for insulating oil because the insulating oil in a transformer contains a 

significant amount of diagnostic information and it can be easy to take an oil sample even from an 

operating transformer. Measurement of viscosity, acidity and determination of moisture content of 

oil with KFT method are the most frequently utilised chemical based techniques to determine the 

degree of degradation of insulating oils. In addition, interfacial tension (IFT) and colour of oil can 

also be used to assess the quality condition of insulating oils. Dissolved gas (DGA) and furfural 

analysis are also widely used oil associated chemical techniques to identify the incipient faults and 

characterise the ageing of solid insulation respectively. 

Measurement of average DP, tensile strength and moisture content of paper insulation with KFT are 

widely used techniques in laboratory investigations for characterising the properties of paper 

insulation. Further, use of FTIR spectroscopy, molecular weight measurement by gel permeation 

chromatography (GPC) and thermo-gravimetry analysis of cellulose paper insulation has also been 

quoted in some of the literature [63, 146, 147]. However, practical use of these paper-based 

techniques is hampered by the dificulty in taking paper samples from an operating transformer.    

This section will only provide a brief overview of commonly used chemical diagnostic techniques 

in the field and their interpretation schemes.  

3.6.2 Moisture analysis using KFT and equilibrium chart techniques 

KFT is a well-established analytical method which has been developed for assessing the moisture 

content in a range of liquid and solid materials. IEC Std. 60814 provides a detailed procedure to 

estimate the moisture content in both insulating oil and oil impregnated solid insulation using KFT 

technique. The principle behind it is based on the reaction between iodine (I2) and sulfur dioxide 

(SO2) in the presence of water [127, 148]. In the mixed solution, iodine is first produced by an 
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electrolysis reaction followed by a reaction between iodine and water. The amount of electricity 

(coulomb) required for the electrolysis reaction is in proportion to the amount of iodine required for 

reacting with the water. According to the stoichiometry of the reaction, one mole of iodine reacts 

with one mole of water and thereby, when 1 mg of water exists in the system, 10.72 C of electricity 

is required to complete the reaction. This principle is used in KFT method to determine the water 

content in oil and oil impregnated paper insulations.  

Though the moisture content of paper insulation can be directly measured using KFT technique, the 

application of this method in the field is impeded by the difficulty in taking a paper sample from an 

operating transformer. Moreover, difficulty in extracting strongly bonded water from the cellulose 

paper is another problem in the use of KFT method on paper insulation. Therefore, it has been a 

common practice to determine the moisture content in oil using KFT method and then estimate the 

moisture in solid insulation using so-called equilibrium charts [149]. The equilibrium charts are 

created by combining the moisture isotherm of cellulose paper and oil assuming that relative 

moisture saturation of oil and impregnated paper is equal under the equilibrium condition. Over the 

years, several equilibrium charts have been established for mineral oil-paper systems to correlate 

the moisture content in oil and paper insulation under equilibrium condition [150, 151]. Since the 

esters have higher moisture solubility than typical mineral oil, one cannot use the equilibrium chart 

developed for a mineral oil-paper system for an ester-paper systems. Thus, Zhaotao et al [152] have 

obtained new equilibrium charts for NE-based insulation systems in transformers. Koch et al [42] 

have developed sets of equilibrium charts for both natural and synthetic ester-paper insulation 

systems. Figure 3.11(a) and (b) show two different equilibrium charts reported in the literature for 

mineral oil-paper and NE-paper systems respectively.  

 

Figure 3.11. Equilibrium chart (a) Mineral oil-paper (MIT curve) [150], (b) NE- paper [152] 
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Operating transformers experience dynamic temperature variations. Therefore, moisture equilibrium 

condition in such transformers is hardly achieved. On top of that it is hard to eliminate the moisture 

ingress to oil samples during sampling and transportation to the laboratory. These factors largely 

influence the equilibrium chart method leading to a high uncertainty in estimated results. 

3.6.3 Formation of dissolved gases in transformers and method of analysis 

Intense heat generated due to abnormal conditions in oil filled transformer such as arcing, 

overheating of insulation, pump failure and overloading, decomposes oil and paper insulation into 

low molecular combustibles H2 (Hydrogen), CH4 (methane), C2H2 (acetylene), C2H4 (methylene), 

C2H6 (ethane), CO (carbon monoxide) and incombustible CO2 (carbon dioxide) gases in varying 

quantities [153, 154]. It has been reported in the literature that gas formation patterns of mineral and 

ester based insulating liquids (natural and synthetic) are almost similar but there are some 

quantitative differences in the ratios of gases formed [155-158]. 

 

Figure 3.12. Gas generation chart for typical mineral insulating oil [159, 160] 

The type and composition of gas formation depends on the degree of localised temperature rise or 

energy contained in a fault because the energy needed for scission of molecular bonds and their 

recombination into different types of gases is not similar. Figure 3.12 demonstrates the relative 

composition of gases evolving in typical mineral insulating oil at different temperatures above 

150 ºC. The dissolved gases evolved due to the decomposition of oil-paper insulation are partly 

dissolved in oil. Therefore, determining the concentration or specific proportion of such gases 

dissolved in oil provides an early indication of developing faults in transformers. Moreover, this 

method enables status checks on new and repaired units and convenient scheduling of maintenance. 
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Table 3.3 gives details of common dissolved gases found in transformer oil and their relation to 

typical fault types in transformers. 

Table 3.3. Fault indicator gases in mineral oil [157] 

Fault gas Key indicator Secondary indicator 

 

H2 (Hydrogen) Corona Partial discharge Arcing overheating 
CH4(Methane)  Corona arcing and overheating of oil 
C2H6( Ethane)   
C2H4(Ethylene) Overheated oil Corona arcing 
C2H2(Acetylene) Arching Severely overheated oil 
CO(Carbon monoxide) Overheated cellulose Arcing in cellulose 
CO2( Carbon dioxide)  Overheated cellulose, arcing in cellulose  
O2(oxygen)  Indicator system leak 
N2(Nitrogen)  Indicator system leak 

 

A detailed procedure for analysing the dissolved gases in mineral insulating oils is prescribed in 

IEC Std. 60567 and ASTM Std. D 3612-2. In order to extract the gases dissolved in oil, all the 

methods described in IEC 60567 ((Toepler, Partial Degassing, Stripping, Head Space) and ASTM 

D3612-2 (Vacuum Extraction, Stripping and Head Space) can be utilised and extracted gases can be 

analysed using gas chromatography techniques. Cigre working group D32 suggests to increase the 

equilibrium time necessary for gas extraction to about 10-15 minutes or higher when the dissolved 

gases in a non-mineral oil sample (natural and synthetic esters) with high viscosity are analysed 

[156].  

3.6.4 Interpretation of DGA results 

IEC Std. 60599 (2007) and IEEE Std. C57.104 (2008) provide general guidelines for interpreting 

the DGA results of mineral oil impregnated electric equipment in service. According to IEEE Std. 

C57.104, equipment variables such as type, location, and temperature of the fault etc. and variables 

associated with the sampling and measuring procedures have to be considered when interpreting the 

significances of DGA data. IEC gas ratio, IEEE key gas, Duval’s triangle and Rogers’s ratio are the 

key methods which have been used for decades to identify the possible faults occurring in operating 

transformers based on DGA results. 

IEC gas ratio method identifies six broad classes of faults in oil filled transformers using the pattern 

of hydrocarbon gases dissolved in oil as given in Table 3.4. In addition, IEC 60599 suggests to use 

CO2/CO and O2/N2 ratios for identifying paper involvement in a fault and detecting abnormal 

oxidation of oil respectively. 
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In the IEEE key gas method, the principle type of gas and relative proportions of other combustible 

gases are considered to identify four different types of basic faults, namely overheating of oil, 

overheating of cellulose, partial discharge and arcing. The principle gases corresponding to those 

faults are ethylene, carbon monoxide, hydrogen and acetylene respectively. 

Table 3.4. DGA interpretation table IEC 60 599 [161]  

Case Characteristic fault 

42

42

HC

HC  
2

4

H

CH
 

62

42

HC

HC
 

PD Partial Discharge (Note 3 and 4) NS <0.1 <0.2 
D1 Discharge low energy >1 0.1-0.5 >1 
D2 Discharge high energy 0.6-2.5 0.1-1 >2 
T1 Thermal fault( t<300 ºC) NS >1 but (NS) <1 
T2 Thermal fault (300 ºC <t<700 ºC) <0.1 >1 1-4 
T3 Thermal fault (>700 ºC) <0.2 >1 >4 
NOTE 1 In some countries the ratio C2H2/C2H6 is used rather than ratio CH4/H2 

NOTE 2 The above ratios are significants and should be calculated only if at least one of gas 
concentration and rate of gas increase above the typical value (IEC 60599- clause 9) 
NOTE 3 CH4/H2 <0.2 for partial discharge in instrument transformer 
 NS -Non-significant whatever the value 

Roger and Doernenberg are two different ratio methods reported in [154] and both methods 

collectively utilise five different gas ratios as shown in Figure 3.13. In the Doernenberg method, 

ratios R1, R2, R3 and R4 are compared to limiting values enabling suggested fault diagnosis [149]. 

Rogers technique considers only three gas ratios (R1, R2 and R5). Flow charts for interpreting DGA 

data using Doernenburg and Rogers methods are given in [154] 

 

Figure 3.13. The gas ratios used in Doernenburg and Rogers methods 

The Duval triangle is a graphical method where coordinates of corresponding DGA results are 

represented in an equilateral triangle as shown in Figure 3.14 (a-d). Eqns (3.33) to (3.35) 

demonstrate the method of calculating triangle coordinates. Duval triangle 1 shown in Figure 3.15 

(a) which has been defined for a transformer filled with mineral oil allows detection of seven basic 

types of possible faults in a service unit namely; PD, D1; D2; T1, T2, T3 and DT(mixtures of 

electrical and thermal faults) [162]. Due to the different gas generation behaviour of different types 

of mineral oils in the market, the low temperature faults are mistakenly identified as PD or T2 by 

Duval triangle 1. Therefore, Duval triangles 4 and 5 have been developed to remove these 

uncertainties. In Duval triangles 4 and 5, C2H2 has been replaced with C2H6. Considering the 

different gassing behaviour of commercially available non-mineral insulating liquids (silicon oil, 
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natural and synthetic esters), Duval triangle 3 has been developed. For constructing Duval triangle 

3, some of the boundary zones of triangle 1 are modified as given in Table 3 of [162] to comply 

with the gassing behaviour of corresponding alternative insulating liquids. 

 

Figure 3.14. Duval triangle (a) Triangle 1, (b) Triangle 3 for FR3, (c) Triangle 4, (d) Triangle 5 
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The mentioned conventional DGA interpretation schemes have been updated recently. A. Akbari et 

al [163] have proposed an artificial neural network and agent based software diagnosis tools to 

automate the interpretation of DGA data and reduce the risk of mistaken diagnosis. Duval pentagon 

is a recently developed graphical DGA interpretation technique which is based on use of five main 

hydrocarbon gases [164]. Each summit of the pentagon corresponds to one gas. In this technique 

relative percentages of each hydrocarbon gases are plotted on the axis between pentagon centre 
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(0%) and pentagon vertex (100%). The Duval pentogon1 allows to identify six basic electrical and 

thermal faults (PD, D1; D2; T1, T2, and T3). Duval pentagon 2 enables discrimination of three 

basic electrical faults ((PD, D1; D2) and four advance thermal faults (T3-H -thermal fault oil only, 

C–Carbonisation of paper, O-overheating (<250 ºC) and S-stray gassing of oil). Umar Farooque et 

al [165] have proposed artificial neural network based implementation for Duval pentagon. 

3.6.5 Furan analysis  

It was mentioned in Chapter 2 that thermal degradation of cellulose paper insulation used in 

electrical equipment yields a class of heterocyclic compounds including 2-furfural aldehyde (2-

FAL), 2-acetylfuran (2-ACF), 2-furoic acid, 5-methyl-2-furfural (5-MEF), 2-furfurylalcohol (2-

FOL) and 5-hydroxymethyl-2-furfural (5-HMF) [9, 10, 166, 167]. Figure 3.15 shows the chemical 

structures of the six furanic compounds. These compounds are partly dissolved in oil medium and 

can be determined using either of the methods described in IEC Std. 61198 or ASTM Std. D 5837 

which are based on High-Performance Liquid Chromatography (HPLC) aided with a liquid or solid 

extraction procedure. These methods allow detecting even trace quantities of furanic compounds 

dissolved in oil in the ppb (parts per billion) range.  

 

Figure 3.15. Chemical structures of furanic compounds [9] 

It has been reported in the literature [6, 168] that all five furanic compounds except 2–FOL are quite 

stable below 100 ºC in the absence of oxygen. Moreover, 2-FAL, 2-ACF and 5-MEF show 

relatively good stability when the temperature is above 100 ºC and below 160 ºC. Emsley et al [7] 

have also made almost the same conclusion such that apart from 2-FOL all other furanic 

compounds are relatively stable at temperatures up to 140 ºC. Hence, furanic compounds dissolved 

in insulating oil are solely related to degradation of paper insulation and most of them are relatively 
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stable in the transformer operating environment, analysis of these compounds has been successfully 

applied as a non-invasive technique to characterise the condition of solid insulation of transformers 

in service [9]. 2-FAL is the main derivative of paper degradation which presents in the highest 

amount in oil and thereby, 2-FAL is the most commonly measured furanic compound for diagnostic 

purposes [26, 168, 169]. 

Several scholars have reported the presence of dissolved 2-FAL in oil when cellulose paper 

insulation is aged in typical mineral insulating oil [10, 47, 56, 93, 167, 170]. Emsley et al [10] 

suggested that formation of 2-FAL due to ageing of cellulose paper insulation is more effective in 

the presence of water and oxygen. Moreover, the main production of 2-FAL occurs when the DP 

value of cellulose insulation falls below 400. They have also observed that cotton paper produces 

less 2-FAL than Kraft paper. It has been reported in recent literature that 2-FAL production from 

cellulose paper insulation immersed in natural and synthetic ester is noticeably lower than that from 

cellulose insulation immersed in typical mineral oil [11, 24, 95]. However, there are not enough 

laboratory investigations or field measurements to confirm this behaviour.  

Shroff et al [47] have reported the existence of a linear relationship between DP value of cellulose 

paper insulation and 2-FAL concentration dissolved in mineral oil in logarithm scale. Pablo [56, 

171] has proposed a different set of empirical formulas to correlate dissolved 2-FAL concentration 

in mineral oil and DP value of paper insulation based on results of his accelerated ageing 

experiments. Table 3.5 presents some of the referred empirical formulas presented in literature for 

correlating DP and 2-FAL concentration in oil. As seen in Table 3.5, one can clearly notice that 

there is no universal generalised relationship existing between DP and 2-FAL concentration 

dissolved in oil. Moreover, the established relationships in literature are valid only under the 

particular condition where the corresponding relationship has been derived.  

Table 3.5. Established relationship for correlating 2-FAL concentration in oil and DP of paper 

Reference Ageing Conditions Proposed 2-FAL(ppm)-DP 

correlation 

De Pablo [56] 25/1 (paper/oil) (based on cellulose chain 
scission theory) 

7100
2FAL= -8.88

DP
 

De Pablo [56] As above 20 % of cellulose age faster  4301
2FAL= -5.38

DP
 

De Pablo[171] 100/1, 2 % moisture in paper, aged in open 
air at -120ºC 

log(2FAL)=3.41-0.00264  

Karcler [167] 10/1, 3.85 moisture in paper, aged  at 85 ºC 
in absence of air in non-inhibited oil  

 ln(2FAL)=8.75-0.013DP   

Chendong 
[172] 

24/1 Dried paper aged at 140 and 148 ºC Log(2FAL)=1.51-0.0035DP  
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Over the last two decades, massive numbers of survey studies have been conducted to investigate 

the typical concentration of furanic compounds in operating transformers. The study conducted by 

S.D Myers laboratory in North America contains test results of 12341 mineral oil samples taken 

from different transformers around the world which represent a vast array of climates, operating 

regimes, transformer manufacturers and types of mineral oils. Statistics of this study present that 2-

FAL concentration in 96.3 % of the transformer population is below 1 ppm (mg/kg) and 98.3 % of 

the transformer population contains insulating liquid with 2-FAL concentration of less than 2.5 

ppm. Based on a statistical survey of more than 5000 transformers, Pablo et al [171] have reported 

that 2-FAL concentration in more than 90 % of the European transformer population is in the range 

1-5 ppm. This is considerably higher than the ones obtained by Myers. A study conducted by 

Japanese researchers has pointed out that 2-FAL concentrations of all the transformers considered 

in their study (98) are below 0.31 ppm [173]. Based on the above information, one can clearly 

conclude that threshold values for 2-FAL suggested in some literature are not valid in a real 

situation for diagnostic purposes [174]. Moreover, the 2-FAL concentration dissolved in oil is 

influenced by several factors including the type and ageing condition of insulating oil, type of paper 

insulation, temperature, moisture content in oil and paper insulation and the presence of oxygen in 

the system, etc. Therefore, Cigre working group D1.01 (TF13) has underlined that it is difficult to 

use any mathematical relationship or absolute value based on dissolved 2-FAL concentration in oil 

for assessing the condition of solid insulation in an operating transformer [9]. On the other hand, the 

use of rate of change of 2-FAL is more appropriate for diagnostic purposes [9].  

3.6.6 Neutralisation number (Acidity value) and colour 

In the case of mineral insulating oil, an increase in the neutralisation number mainly reflects the 

degree of deterioration of oil under oxidising conditions. Short chain acids produced by degradation 

of mineral oil are detrimental to an insulation system and create some problems by oxidising 

metallic parts. However, a rise in the neutralisation number of synthetic and natural ester insulating 

oils does not merely represent oxidising conditions because hydrolytic degradation of esters also 

yields acids. Since degradation of cellulose insulation releases water, hydrolysis reaction in ester oil 

in a transformer could become pronounced with time. Synthetic esters mainly produce short chain 

acids and these acids accelerate the ageing process of paper insulation and create corrosion on 

copper conductors. However, hydrolysis reaction in NEs produces long chain fatty acids and they 

are not harmful to the insulation system or other components in transformers.  

Since chemical activity of acids generated in different insulating oils is not similar, different 

limiting values for the neutralisation number have been proposed for in service mineral, synthetic 
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and natural ester insulating oils. As per British Std. EN 61203, synthetic ester insulating oil with 

satisfactory conditions for further use in electrical equipment with a voltage rating of 35 kV or 

lower should be less than 2 mgKOH/g [105]. Acceptable maximum neutralisation numbers for in 

service mineral and NE oils of < 69 kV voltage class are 0.2 mgKOH/g [175] and 0.3 mgKOH/g 

[103] respectively. 

Acidity value measurement results of several laboratory studies point out that the neutralisation 

number of NE insulating oils can increase far beyond a specified limiting value even after aged in a 

sealed environment with minimum oxygen [68, 79, 95, 176]. In addition, results of some studies 

have confirmed better ageing performance of cellulose material in NE with a higher acidity level 

than that of in a typical mineral oil [24, 95]. Therefore, one can claim that a proposed limiting 

neutralisation value for service aged NE oils is arguable. 

The colour of oil is a primary parameter which reflects the degree of degradation and possible 

contamination of oil during use. A numeral value based on international colour standards (ASTM 

D1500) is generally used in expressing colour changes. As per IEEE Std. C57.152-2013, new 

mineral oil has a clear appearance with a colour number in the range 0-0.5 and severely aged dark 

brown colour mineral oil has a colour number of greater than 7 [103]. Mineral oil of marginal 

condition has a bright yellow colour and its colour number is in the range 2.5-4.0. Synthetic ester 

with a clear appearance without being excessively dark in colour is considered as an insulant with 

acceptable condition for further use [105]. In the case of NE, colour changes have not yet been 

standardised for quality assurance. IEEE Std. C57.147-2008 has provided a provisional limiting 

value (1.5) for colour number of service aged NE insulating oils 

 Summary 

Widely used electrical and chemical based techniques and their interpretation schemes for assessing 

the overall conditions of oil and paper insulation in transformers are briefly reviewed in this 

chapter. It has been identified that complete international standards have not yet been tailored for 

assessing the quality of NE-paper insulation systems based on oil related chemical diagnostic 

methods including acidity value, DDF, viscosity, furfural content, colour and DGA. Moreover, 

experimental results presented in the literature show contradictions with the set limit values in IEEE 

standards for DDF and acidity of serviced aged NE oils. Therefore, application of these chemical 

based methods for assessing the condition of NE-paper composites insulation is needed to be 

investigated. The systematic laboratory study conducted in our research to address this issue is 

presented in the next chapter.  
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FDS and PDC methods have mainly been utilised to estimate the moisture in the solid insulation of 

transformers. However, application of these two methods on ester filled transformers has not yet 

been considered. Ester insulating oils have higher conductivity and moisture solubility than typical 

mineral oil. Moreover, conductivity of ester oils increases largely over thermal ageing compared to 

mineral oil. This research claims that these factors could have a significant influence on time and 

frequency domain dielectric responses of ester filled transformers. However, no systematic study 

has considered this issue yet. Therefore, it is required to understand the influence of different 

physical properties of new and aged ester insulating oils on dielectric response behaviour of 

cellulose paper based materials through a systematic laboratory study. The work presented in 

Chapters 5 and 7 is intended to address this issue. 



 

 

  

Understanding the Ageing Behaviour of 
Ester-paper Insulation Systems  

 General 

Ageing behaviour of mineral oil-paper composite insulation has been extensively studied over 100 

years. Moreover, condition monitoring of mineral oil filled transformers has been well characterised 

by the copious laboratory and field studies conducted during the past several decades. It is a well-

known fact that there is little experience in the use of ester based insulating oils in power 

transformers. Hence, the applicability of existing oil related condition monitoring techniques for 

ester filled transformers is yet to be validated. Furthermore, international standards for analysing the 

degree of insulation quality of service aged NE insulating oils have not yet been completely 

tailored. A limited number of methodical researches have addressed these issues in the last two 

decades. In order to reduce this knowledge gap, an improved understanding on ageing behaviour of 

ester–paper composite insulation in typical transformer operating conditions is required. Therefore, 

the work presented in this chapter mainly focuses on studying the ageing behaviour of ester-paper 

insulation systems through a series of laboratory experiments.  

An accelerated sealed tube ageing experiment conducted in a controlled environment is the most 

widely used laboratory method for studying the ageing behaviour of insulation materials. Moisture 

largely influences the ageing of oil immersed cellulose insulation in transformers and it is an 

uncontrollable parameter because moisture is a by-product of cellulose ageing. Therefore, in this 

research project, the influence of moisture on the ageing behaviour of cellulose pressboard 

insulation immersed in three different types of biodegradable oils has been extensively studied 

through an accelerated sealed tube ageing experiment conducted at 120 ºC. A decrease in the degree 

of polymerisation is used as a primary parameter to characterise the ageing degree of pressboard. 

Appropriateness of FTIR technique for understanding the structural changes of pressboard 

insulation over thermal ageing is also discussed in this chapter. Moreover, the furanic compounds 

dissolved in ester and mineral oils are analysed in order to identify their relationships with ageing 
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conditions of pressboard insulation. The applicability of a number of chemical and physical 

parameters, including acidity value, DDF, viscosity and colour for assessing the quality of aged 

ester insulating oils is also discussed in this chapter. Moreover, comparisons are made based on the 

limiting values provided in related IEEE and British standards and properties of mineral oil under 

similar ageing conditions. Interpretation of DGA data of ester insulating oils for identifying faults is 

also a major part of this chapter. This chapter is primarily based on three publications by the PhD 

candidate [177-180]. 

  Material Used for Experiment 

This study used high-density electrical grade pressboard insulation with textured surfaces 

comprising of 100 % sulphate wood pulp. The density and thickness of the pressboard were 

1.2 gcm-3 and 1.5 mm respectively. Four different types of insulating oils including one type of 

uninhibited mineral oil (Shell Diala), two types of commercially available NE-based insulating oils 

and a synthetic ester (SE) were utilised for experimental investigations. Here onwards, two types of 

NEs are identified as NEA and NEB. NEA has been produced from high oleic sunflower oil which 

contains 5 % of saturated stearic acid (C:18:0), 86 % of mono-unsaturated oleic acids (C18:1), 6 % 

linoleic acid (C:18:2) and 0.1 % of linolenic (C18:3). NEB used in this study is made of soybean 

oil, which contains about 24 % of oleic acids and 54 % of linoleic acids. The synthetic ester 

insulating oil used for this research is pentaerythritol ester. The main properties of all four types of 

degassed oils are listed in Table 4.1. In order to degas and dry the oil, a sealed steel container with 

3 l of oil was connected to a vacuum pump. Then temperature of oil and air pressure inside the 

container were maintained at 70ºC and < 1 kPa over 12 hrs respectively. 

Table 4.1. Properties of degassed oil 

Properties Shell Diala NEA NEB SE 

Acidity (mg KOH/g) 0 0.03 0.02 0.01 

Viscosity mm2/s @ 40 ºC 10 37 14 30 

Moisture (ppm) 1 35 10 38 

Colour Pale yellow Bright yellow Light green Pale yellow 

 

 Experimental Setup  

Two different types of thermal ageing experiments were performed in this study: (1) with dry 

pressboard insulation, (2) with moderately wet pressboard insulation. This was intended to 

understand the impact of moisture on the ageing behaviour of cellulose insulation in different 
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insulating oils. Dry pressboard insulation samples were rectangular shaped strips (150x15x1.5 mm). 

The wet samples were disc shaped of 100 mm diameter. In both cases, oil impregnated dry 

pressboard samples were first prepared using the following method. 

Initially, pressboard samples were inserted into a steel container. The container was hermetically 

sealed and it was placed in a temperature controlled oven. Then a high rotary oil vacuum pump was 

connected to the container and pressboard samples were dried under a very high vacuum level (<1 

kPa) at 65 ºC for 24 hrs. The temperature was then increased to 95 ºC and the drying process was 

continued for another 24 hrs. The temperature was then reduced to 40 ºC and degassed oil was 

infused into the container while kept under a vacuum condition. The oil filled container with dry 

pressboard was kept in the oven for 7 days at 60 ºC to achieve optimal impregnation. Figure 4.1 

illustrates the procedure that was followed for oil impregnating under vacuum. Here, the container 

with dry pressboard (B) was connected to the vacuum pump whilst positive N2 pressure was applied 

on oil through the top valve of the container (A). Due to the positive pressure gradient, oil flows 

from container A to container B. Using this method dried pressboard insulation samples 

impregnated with Shell Diala mineral oil, NEA, NEB and synthetic ester were prepared separately. 

 

 

Figure 4.1. Schematic of oil impregnation process under vacuum condition 

In order to prepare wet samples with about 2 % of initial moisture content, firstly dried disc shaped 

pressboard samples were prepared using the above mentioned method with Shell Diala mineral oil, 

NEA and NEB. Oil impregnated dry pressboard samples were then inserted into three different 

sealed containers where relative humidity inside the containers was controlled at 11% using a 

saturated salt solution prepared with LiCl (Lithium Chloride). 
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In each of the containers, 20 specimens were arranged in a horizontal and a vertical stack. 

Pressboard specimens were separated by small copper bars to allow moisture diffusion through both 

surfaces. This moisture conditioning process was performed over 28 days at 50 ºC to absorb about 2 

% moisture. The relative humidity and temperature inside the container were closely monitored 

with a Vaisala MMT 162 moisture sensor during the whole moisture conditioning process. Figure 

4.2 shows the humidity controlled container with Vaisal sensor which was used in this research.  

 

Figure 4.2. (a) Humidity controlled container and sample holder for arranging disc type sample as a 
vertical and horizontal stack  

In order to prepare a saturated salt solution, the methodology described in ASTM E-102-02 was 

utilised. A measured quantity of LiCl (40 g) was placed in a plastic container with a depth of about 

5cm. Then demineralised water was added in about 2 ml increments and stirred well. Addition of 

water was stopped when the salt solution became pulp slurry, which contained undissolved salt and 

free water as shown in Figure 4.3. 

 

Figure 4.3. LiCl saturated salt solution  
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Moisture contents of unaged both dry and wet pressboard samples were measured using the classic 

KFT method and results have been listed in Table 4.2. Wet pressboard samples impregnated with 

synthetic ester were not utilised in this research. In addition, the degree of polymerisation (DP) of 

all types of oil impregnated unaged pressboard samples was measured. Since a similar drying 

process was applied for all cases, the average value of measured DP was considered as the initial 

DP of all samples. The calculated average initial DP value was 1284.  

Table 4.2.Initial percentage moisture content in oil impregnated pressboard 

Type of 

pressboard 

Type of oil used for impregnation 

Mineral NEA NEB SE 

Dry 0.5 0.7 0.4 0.6 

Wet 2.2 2.4 2.0 - 

 

The ageing of oil impregnated dry pressboard was performed in specially designed glass tubes. 

Firstly 16 g of dry pressboard, 175 ml of degassed oil and 16g of copper conductors were placed 

into the glass tubes. AP 101 high vacuum grease was applied to the ground glass joints of the test 

tube to ensure a fully sealed environment. Then air in the tube headspace was pumped out until the 

pressure decreased to a level between 10-20 kPa. The headspace was then filled with dry nitrogen. 

This process comprised three major steps as shown in Figure 4.4. Four sets of ageing test tubes 

which contained oil, dry pressboard and copper were prepared using this method from each type of 

oil. 

 

Figure 4.4. Basic steps used in the laboratory to prepare sample for thermal ageing 

Finally, for accelerated ageing, the glass tubes were then placed in an aluminium heater block as 

shown in Figure 4.5 (a). The temperature of the heater block was adjusted to 120ºC. Temperature 
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hysteresis of the heater block was ±2 ºC. A FLUKE 51-II thermometer with ±0.1 ºC of accuracy 

was utilised to monitor the temperature of the heater block over the thermal ageing period. A 

thermal image of an ageing tube was also taken as an additional measurement. Ageing was stopped 

at regular intervals for obtaining oil and paper samples for analysing. Before sampling, ageing tubes 

were kept at room temperature for 7 days allowing equilibrium of ageing by-products between 

pressboard and oil to be reached. 

The ageing experiment of wet pressboard insulation was performed in steel containers. The 

moisture conditioned pressboard samples (20 specimens were arranged in a horizontal and a vertical 

stack), degassed oil and copper bars were inserted into three different stainless steel containers, in 

such a way that the mass ratio between oil, pressboard and copper was maintained at 10:1:1. All the 

containers were hermetically sealed and headspaces of the containers were filled with dry nitrogen. 

Then containers were placed inside an oven for ageing. The ageing process was carried out at 120 

ºC. Positions of the steel containers were interchanged at regular intervals. Thus, one could assume 

that the heating effect on all the ageing containers was nearly the same. The ageing process was 

stopped at regular intervals (28, 35, 48, 62, 73 and 84 days) and the containers were kept at room 

temperature for 7 days before obtaining oil and pressboard samples. It is worthwhile to mention that 

the ageing containers had to be opened for taking pressboard samples. Thereby, it was required to 

fill the headspaces of the ageing containers with dry nitrogen before resumed ageing.  

 

Figure 4.5. (a) Ageing of dry pressboard in an aluminium heater block, (b) Thermal image of a glass 
tube during ageing process 
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 Analysing the Ageing of Pressboard Insulation  

In this study, the test method given in IEC Std. 60450–2004 is used to measure the average 

viscometric degree of polymerisation of new and aged pressboard insulation. In this method after 

the pressboard has been cleaned, it is stripped off to provide enough sample size for the DP 

analysis. Then, the analysis is performed for two different pressboard samples from the same batch 

and the average is reported. Figure 4.6 (a) to (c) respectively compares the degradation of both dry 

and wet pressboard insulation thermally aged in mineral oil, NEA and NEB. A decrease in average 

DP values of dry pressboard insulation aged in synthetic ester is presented in Figure 4.6 (d). 

 

Figure 4.6. Decrease of average DP value of pressboard insulation (PB) over thermal ageing (a) in 
mineral oil, (b) in NEA, (c) in NEB, (d) in SE 

One notable fact that can be seen in Figure 4.6 is the measured average DP of pressboard insulation 

decreased rapidly at the beginning and then it declined at a relatively lower rate regardless of the 

types of oil used in the ageing system. This is due to the typical structural features of cellulose. 

There are long chain cellulose polymers in new pressboard insulation [91] which may contain weak 

links in the middle [5]. This naturally occurs in every 500 glucose monomers. These weak links are 

sliced easily by thermal stresses and it would account for fast initial drops in DP [5]. Further, 

amorphous regions of cellulose degrade more rapidly than the crystalline regions, which would also 
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support the rapid initial ageing [8]. This may be because the majority of water and acid produced 

during ageing sit in the amorphous regions [115] due to their greater permeability. On the other 

hand, greater existence of crystalline regions does not allow water and acids to penetrate [62].  

It can be seen in Figure 4.6 (a) and (d) that dry pressboard insulation in mineral and synthetic ester 

insulating oil possesses similar ageing trends. This conclusion is made because the average DP 

values of pressboard aged in mineral oil and synthetic ester are 521 and 510 respectively after 2800 

hrs of ageing. Moreover, reduction of DP of pressboard aged in corresponding oils during the 

period of 1960 hrs to 2800 hrs is 153 and 163. This ageing behaviour of pressboard insulation in 

synthetic ester complies with the results in [84]. On the other hand, the ageing behaviour of dry 

pressboard insulation displayed different trends in NE insulating oils compared to that of in mineral 

oil in such a way that DP decrease for pressboard insulation aged in NEA and NEB during 1960 hrs 

to 2800 hrs is 67 and 82 respectively. It indicates that cellulose insulation ages at a comparatively 

lower rate in NE insulating oils when it reaches midlife. 

If one analyses the degradation behaviour of wet pressboard, it can be clearly seen that DP of wet 

pressboard decreases rapidly compared to dry pressboard. In this research, ageing experiments with 

both dry and wet pressboard have been performed under a minimum oxygen supply (under a 

nitrogen cushion). Thereby, one could attribute the fast ageing rate of wet pressboard insulation to a 

pronounced hydrolytic degradation reaction in oil-paper system in a moisture rich environment. The 

notable fact is that the reduction in DP of wet pressboard insulation in NEA and NEB is 

substantially lower than that of mineral oil throughout the ageing. This behaviour is more 

significant in the initial period of ageing. Moreover, degradation of wet pressboard in NEA is 

negligibly small during the last 832 hrs and its DP is 100 to 150 higher than the DP of pressboard 

aged in mineral oil over the whole ageing period. This behaviour is comparable to the ageing 

experimental results presented in [11, 24]. As it is proposed in [24], one could assume that 

pressboard insulation aged in NEA has reached a levelling off degree of polymerisation (LODP). 

However, this is a misleading interpretation because LODP of cellulose paper insulation occurs 

when the DP value reaches about 200 due to the slower ageing rate of crystalline domains.  

Emsley et al [5] have reported that kinetic degradation of oil impregnated paper insulation in, 

vacuum, air and oxygen in the temperature range 100 to 200 ºC can be characterised using 

Ekenstam pseudo-zero model as given in eq (2.4). It means that the number of chain scissions 

(1/DPt -1/DP0) increases linearly with ageing time. Emsley [5], Lundgaard [62] and Lelekakis [53] 

have claimed that this linear relationship continues until the DP of paper insulation falls to about 

200. Consequently, reaction rate (k) is the gradient of the plot of the number of chain scissions 
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versus ageing time. The reaction rate of oil immersed paper insulation is mainly controlled by three 

factors, namely temperature, moisture content and dissolved oxygen in oil. In this research, 

temperature has been maintained at a constant level throughout the experiment and the influence of 

oxygen on pressboard ageing is not significant. Thus, any change of reaction rate can be ascribed to 

a variation of moisture in the pressboard insulation.  

 

Figure 4.7. 1/DPt-1/DP0 vs. ageing time (a) Dry PB, (b) Wet PB 

Figure 4.7 (a) and (b) present plots of the number of chain scissions versus ageing time for dry and 

wet pressboard insulation respectively. It can clearly be seen that (1/DPt -1/DP0) of dry pressboard 

insulation aged in all types of oils changes linearly. It means, the reaction rate is constant over the 

whole ageing process. Moreover, degradation of wet pressboard in NEB also possesses an 

approximately constant reaction rate. 

 

 Figure 4.8. Measured moisture content in PB insulation over thermal ageing with KFT  
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It can be seen in Figure 4.8 that moisture content of all types of dry pressboards remains nearly 

constant at around 0.5 % and that of wet pressboard aged in NEB persists in the range 1.5-2.1 % 

giving them nearly constant reaction rates. On the other hand, the reaction rate corresponding to the 

degradation of wet pressboard insulation in mineral oil and NEA reduces abruptly after 1152 hrs. 

This behaviour can mainly be attributed to the reduction of their moisture contents. As suggested in 

[62], this research considers the reaction rate of the wet pressboard insulation aged in mineral oil 

and NEA in the first 1152 hrs as the corresponding reaction rate for their initial moisture contents. 

The calculated k values for all the cases considered in this study are listed in Table 4.3. In the case 

of dry pressboard, the pressboard samples aged in mineral oil have a slightly higher reaction rate 

than that of pressboard aged in both natural and synthetic esters. The reaction rates corresponding to 

ageing of wet pressboard insulation samples in mineral oil, NEA and NEB are 4.5, 2.8 and 3.4 times 

greater than that of dry pressboard in corresponding oils respectively. The involvement of heat and 

oxygen in the ageing of both dry and wet insulation samples is similar. Therefore, one could clearly 

presume that high initial moisture content in wet samples is responsible for their high reaction rates. 

Table 4.3. Calculated reaction rate and A factor 

Moisture 

condition   

Parameter Oil types 

Mineral NEA NEB SE 

Dry k (h-1) 3.96×10-7 3.6×10-7 3.43×10-7 3.85×10-7 

A (h-1) 2.25× 108 2.0 ×108 1.95 ×108 2.18 ×108 

Wet k (h-1) 17.88 ×10-7 10.34 ×10-7 11.64 ×10-7 NA 

A (h-1) 10.14 ×109 6×108 6.62 ×108 NA 

 

Emsley et al[5] have shown that temperature dependence of paper insulation ageing rate (k) follows 

the Arrhenius relationship given in eq (2.6) which is governed by the factor called activation energy 

(Ea). It has been reported in [5, 53, 62] that Ea for ageing of cellulose insulation in insulating oil is 

independent of the reaction conditions such as moisture level and oxygen and it possesses a value of 

111 kJmol-1. Assuming that reaction rates of dry and wet pressboard insulations considered in this 

study also have the same activation energy, corresponding A factors have been calculated and listed 

in Table 4.3.  

The life expectancy of pressboard insulation in all four types of oils in the temperature range 80ºC-

140 ºC have been calculated using eq (2.7). It is assumed that DPstart and DPend are equal to 1284 

and 200 respectively. The life expectancy curve obtained for wet pressboard insulation in mineral 
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oil is comparable with that of pressboard insulation aged under a minimum oxygen condition and 

2% of moisture [53]. It validates the accuracy of our experimental results and calculations.   

 

Figure 4.9. Comparison of life expectancy of PB insulation 

It can be seen in Figure 4.9 that pressboard insulation has a longer life expectancy in NEA and NEB 

than that of in mineral oil. This advantage is more substantial in the case of wet pressboard. Overall 

one could make a generalised statement such that NE insulating oils delay the thermal ageing of 

cellulose insulation materials and it confirms the longer life expectancy and high overloading 

capability of NE filled transformers. Most of the studies claim that this advantage of NE insulating 

liquids is mainly due to their high moisture solubility [11, 97].  

At a high temperature NEs attract more water from paper insulation than mineral oils and it causes 

to slow down the hydrolytic degradation of cellulose insulation. Moreover, hydrolysis reaction in 

NEs consumes free water, causing a shielding effect which reduces the interaction between water 

and pressboard [24]. This could also be a reason for decreasing hydrolytic degradation of cellulose 

insulation in NE insulating liquids. Hydrolysis of NEs produces long chain fatty acids. These fatty 

acids are chemically bonded onto the C6-hydroxyls group of cellulose molecules which make them 

more thermally stable [97]. This could also be a reason for the better thermal stability of cellulose 

material in NE insulating oils.  

However, it can clearly be seen in Figure 4.9 that life expectancy of dry pressboard insulation in NE 

insulating oils is not very significant as reported in [14, 95, 97, 181]. This is due to a problem of the 

ageing experimental setup used in this research for dry pressboard insulation. During the ageing 

process, the bottom part of the glass tube which contained oil and pressboard was inside the heater 
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block whilst the long tube shape lid was completely exposed to the ambient surroundings. This 

leads to a high temperature gradient between the top of the oil and top of the lid as shown in Figure 

4.5 (b).  

 

Figure 4.10. (a) Saturated vapour pressure vs. temperature [182], (b) Water sit on the wall of the 
tube shape cap 

At high temperature moisture solubility in oil is high and thereby moisture migrates from paper to 

oil then to the gas space [125] because the headspace has been filled with dry nitrogen. The top 

region of the gas space has a low temperature resulting in a lower saturated vapour pressure as 

given in Figure 4.10 (a). This behaviour causes to produce liquid water on the wall of the lid (cold 

trap) of the glass tube as shown in Figure 4.10 (b). Then liquid water travels downward along the 

glass wall due to gravity and it becomes vapour near the top of the oil due to the high top oil 

temperature. This cycle continues for the whole ageing process minimising the moisture content in 

the oil-paper system and reducing the involvement of moisture in ageing of pressboard insulation. 

Subsequently, this mechanism masks the advantage of high moisture solubility of ester insulating 

oils giving a nearly similar reaction rate for pressboard insulation in both mineral and ester 

insulating oils.    

 Analysing the Furanic Compounds 

It has already been mentioned in Chapter 3 that furanic compounds detectable in oil are solely 

related to degradation of paper insulation. Thus, this research has analysed the five main types of 

furanic compounds dissolved in oil namely 2-FAL, 2-ACF, 5-MEF, 2-FOL and 5-HMF in order to 

identify their relationships with ageing conditions of pressboard insulation. The concentrations of 

these furanic compounds in oil have been identified and quantified by using a high-performance 
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liquid chromatography technique according to ASTM Std. D5837-99. Figure 4.11 (a)-(e) presents 

the concentration of furanic compounds detected in oils which are aged with dry pressboard 

insulation whilst Figure 4.11 (f)-(j) displays the concentration of those compounds measured in oils 

aged with wet pressboard. 

 

Figure 4.11. Dissolved furanic compounds in oils (a)-(e) with dry PB, (f)–(j) with wet PB 
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In both cases where oil was aged with dry and wet pressboard, the highest amount of furanic 

compound detected in all types of oils is 2-FAL. 5-HMF and 2-FOL are the second and third 

highest furanic compounds respectively detected in all types of oil in most of the cases. 5-MEF and 

2-ACF have been measured in lesser quantity in most of the cases. This is mainly due to the fact 

that production of  these furanic compounds due to degradation of pressboard insulation in 

decreasing order is 2-FAL> 5-HMF> 2-FOL [8]. Moreover, 2-FAL is a more stable compound at 

120 ºC than 5-HMF and 2-FOL. This could be another possible reason for detecting the highest 

concentration of 2-FAL in all cases. These results show good consistency with most of the 

experimental data in literature where 2-FAL has been detected as the highest furanic compound in 

oil [7, 10]. Overall, measured concentrations of all furanic compounds in oils which were aged with 

wet pressboard are greater at indicating a faster ageing rate of wet pressboard insulation than dry 

pressboard.  

At around 120◦C, the most likely ageing mechanisms of cellulose are hydrolysis and oxidation [63]. 

This experiment has been conducted under a minimum oxygen environment and thereby, one could 

assume that hydrolysis is the main degradation mechanism of pressboard in this study. The high 

concentration of 5-HMF detected in oil aged with wet pressboard confirmed this hypothesis because 

hydrolysis degradation of cellulose mainly proceeds through the formation of 5-HMF [9, 50]. 5-

HMF mainly retains in paper (pressboard in this case) as it is a high polar substance. This could be a 

possible cause to have a big difference between 2-FAL and 5-HMF concentrations detected in oil 

even under a pronounced hydrolytic degradation condition.  

The notable fact that can be seen in Figure 4.11 (a) and (f) is that 2-FAL concentration in NEB is 

the highest for both cases with dry and wet pressboard followed by that in mineral oil at similar 

ageing condition. Moreover, Figure 4.11 (f) shows that 2-FAL concentration in both NEB and 

mineral oil increases rapidly during the last 232 hrs. This is possibly due to the fact that the DP of 

pressboard in those samples has fallen below 400 [10]. It can be seen in Figures 4.11 (a) and (f) that 

measured 2-FAL concentration in NEA is relatively low compared to that in mineral oil and NEB 

after a similar ageing time. This behaviour is more significant for the case of oil aged with wet 

pressboard. These results show good consistency with experimental data in [23,24] where 2-FAL 

has been generally detected in very low concentration in aged BIOTEMP oil. In both cases, the DP 

value of pressboard aged in NEA has not dropped below 400, this could be a possible reason for 

detecting a low concentration of 2-FAL in aged NEA. In an oil-paper system, 2-FAL can be 

subjected to thermal and hydrolytic decomposition and this mechanism is more pronounced in an 
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acidic environment [23]. Thus, one can also assume that a significant increase in acidity of NEA oil 

over thermal ageing partly accounts for detecting a low concentration of 2-FAL in aged NEA oil. 

In order to predict the DP value of paper insulation,  log-linear relationships between dissolved 2-

FAL concentration in oil and DP value of paper insulation has been widely used [56, 171]. Figure 

4.12 shows that ln (2-FAL) and the DP value of pressboard insulation aged in mineral oil, NEB and 

SE can be represented using linear relationships with good accuracy. On the other hand, it is 

difficult to establish a linear relationship between ln(2-FAL) and DP for NEA–pressboard system 

with reasonable accuracy. However, eqns (4.1) to (4.4) are best fitting curves obtained using 2-FAL 

and DP data corresponding to mineral oil, NEA, NEB and SE oils respectively. The relationship 

corresponds to mineral oil-pressboard system gives DP values of 488, 384 and 343 for 2-FAL 

concentration of 2, 5 and 7 ppm respectively. If one uses relationship obtained by Pablo [56], it 

gives DP of 551, 376 and 310 for a similar concentration of 2-FAL confirming the consistency of 

our results in this DP region for mineral oil-paper systems. On the other hand, established 

relationships show dependence on oil type. It means that the existing 2-FAL based interpretation 

schemes developed for a mineral oil-paper insulation system based on absolute values and rate of 

change may not be directly used for ester based insulation systems. 

 

Figure 4.12. Relationship between DP and 2-FAL concentration of oil 

 -114 ln(2 - ) 567DP FAL     (4.1) 

 -177 ln(2 - ) 457DP FAL     (4.2) 

 -146 ln(2 - ) 845DP FAL     (4.3) 
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 -121 ln(2 - ) 516DP FAL     (4.4) 

 Characterising the Structural Changes in Pressboard Insulation 

Using FTIR Method 

In this method, the vibrational spectrum of a particular type of molecule is distinctively analysed. 

FTIR spectrum is a unique physical property of a relevant molecular structure. Therefore, FTIR 

spectra can be used as a fingerprint for material identification. When a material is exposed to an IR 

radiation, molecular bonds selectively absorb energy from particular wave bands and oscillate. The 

energy required for oscillation depends on the bond type, molecule size, spatial position of 

molecular bonds and type of vibration. In this method, absorbance frequencies of functional groups 

(e.g. OH, CH2) are used as a key to unlock the black box of molecular structure. In addition, 

corresponding frequencies provide qualitative as well as quantitative information; because an 

absorbance energy peak assigned to a particular functional group increases proportionally with the 

number of times that functional group appears within the molecules. 

This research has analysed the FTIR spectra of pressboard insulation samples in spectral band 4000-

400 cm-1 using Thermo ScientificTM FTIR spectrometer. Attenuated Total Reflectance (ATR) mode 

has been utilised to acquire the FTIR spectra. In this technique, the penetration depth of light into 

the sample is about 0.5-3 µm. Therefore, this method primarily characterises the surface properties 

of each sample under investigation. Small samples required for FTIR measurement are prepared 

from bigger pressboard specimens taken from the ageing vessel. Reproducibility of results has been 

confirmed by taking two consecutive FTIR measurements on each sample. 

4.6.1 Esterification of fatty acids with cellulose 

Hydrolysis of triglyceride molecules produces long-chain fatty acids. In general, carboxyl acid 

molecules (fatty acids in this case) can be esterified to C-6 hydroxyl group in cellulose [96, 183]. 

This phenomenon has been verified with X-ray photoelectron spectroscopy and FTIR techniques in 

[24, 96]. Furthermore, using molecular modelling techniques, it has been verified that the esterified 

fatty acid molecules are distributed in parallel to the cellulose surface due to the multi-hydroxyl 

construction of cellulose.  

In this research, esterification of fatty acids with cellulose has been characterised by analysing the 

FTIR spectra of dry pressboard samples aged in mineral oil and NEA at different ageing statuses. 

The FTIR spectra on the textured surface (outer surface) of pressboard samples is utilised in the 

analysis. As shown in Figure 4.13 (b), the intensity of the peak at 1740cm-1 of FTIR spectra of 
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pressboard aged in NEA which can be assigned for ester group has increased upon ageing. On the 

other hand, it can be seen in Figure 4.13 (a) that there is no significant change of ester peak of FTIR 

spectra of pressboard aged in mineral oil. Thus, this observation confirms the chemical bonding of 

long chain fatty acids to cellulose polymer in pressboard insulation aged in NEA through the 

process called trans-esterification. 

 

Figure 4.13. Development of ester peak due to esterification of pressboard insulation (a) PB aged in 
mineral oil, (b) PB aged in NEA 

4.6.2 Analysing the cellulose ageing 

In order to characterise the ageing condition of pressboard with FTIR technique, FTIR spectra on 

the smooth inner surface of the outer layer of wet pressboard insulation has been analysed at three 

different ageing states. Effects of oil and moisture on measurement results have been minimised by 

cleaning surface oil with acetone soaked paper towel and then keeping cleaned samples at a 

constant relative humidity of 23% over 14 days. Figure 4.14 (a) to (b), (c) to (d) and (e) to (f) 

respectively compare the variation of FTIR spectra of mineral oil, NEA and NEB impregnated 

pressboard insulation over thermal ageing.  

In general, a broad peak with the maximum located close to 3340 cm-1
 can be assigned to stretching 

vibrations of hydroxyl groups [184]. It is a typical characteristic of cellulose [185]. It can be seen in 

Figure 4.14 (a), (c) and (e) that the intensities of absorbance peaks located close to 3325 cm-1 and 

3275 cm-1 have decreased with ageing. This indicates the reduction of inter and intramolecular 

hydrogen bonding on the pressboard due to faster degradation or other chemical changes. Further, it 

can be attributed to the reduction of molecular weight (DP). The absorbance peaks corresponding to 

hydroxyl groups of strongly and loosely bonded water molecules in cellulose are generally appeared 

at 3200 cm-1 and 3600 cm-1 in the FTIR spectra of cellulose [186]. Thereby, one clearly confirm 
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that reduction of peaks at 3325 cm-1  and 3275 cm-1 is mainly caused by the reduction of inter and 

intra molecular hydrogen bonds on pressboard surface. 

One notable fact is that reduction of the spectral band corresponding to the hydroxyl group is more 

pronounced in pressboard aged in NEB. It could be due to the reduction of more hydrogen bonds 

over ageing. This may result in lower mechanical strength of pressboard aged in NEB compared to 

that of pressboard aged in mineral oil despite its higher DP value. However, for a conclusive 

interpretation, further investigations will be required to understand the reduction of mechanical 

strength of pressboard insulation due to loss of more hydrogen bonds during thermal ageing.  

 

Figure 4.14. FTIR spectra of aged wet PB in (a)-(b) Mineral oil, (c)-(d) NEA, (e)-(f) NEB 
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It can be seen in Figure 4.14 (b), (d) and (f) that the absorbance spectra of pressboard insulation in 

the spectral band 1500 cm-1 to 500 cm-1 shows a decreasing trend over thermal ageing regardless of 

the types of impregnated liquids. This spectral band primarily represents the vibration of molecular 

bonds in a cellulose polymer chain as given in Table 4.4. Therefore, reduction of absorbance 

intensity peaks in this spectral band can be assigned to the reduction of particular bonds in cellulose 

polymer due to a decrease in the DP of pressboard insulation over ageing. This changing pattern of 

FTIR spectra of pressboard insulation with reduction of DP provides an indication of novel ways of 

monitoring solid insulation in an oil filled transformer using a FTIR sensor. However, Figure 4.14 

clearly shows that FTIR spectra of pressboard insulation are significantly influenced by the type of 

impregnated oil. Thus, this issue needs to be investigated as a priority. 

Table 4.4. Wave bands assigned for different bonds in cellulose polymer [185, 187] 

Wave number (cm-1) Functional group 

1215  C–O–C stretching (Aryl-alkyl ether linkage) 

1170 C–O–C stretching vibration (Pyranose ring) 

1115 C-C and C-O stretching Pyranose ring stretch 

1050, 1060 C-O valence vibration (C-OH groups) 

700-400 C-C stretching 

 

Dominant ageing mechanisms of pressboard highly depend on the working temperature. Around 

120 ºC, the most likely ageing mechanisms of cellulose are hydrolysis and oxidation [63]. These 

degradation processes produce several carbonyl and carboxyl compounds. Peaks corresponding to 

these by-products appear in the wave band 1500-1800 cm-1 of FTIR spectra of pressboard. 

 

Figure 4.15. FTIR spectra in carbonyl region upon ageing for (a) PB aged in mineral oil, (b) PB 
aged in NEA, (c) PB aged in NEB 
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Figure 4.15 (a) shows that a new absorbance peak appears at 1745 cm-1 in FTIR spectrum of 672hrs 

aged mineral oil impregnated pressboard indicating a presence of carboxyl compounds. This peak 

has diminished after 1488 hrs of ageing because these intermediates are thermally unstable. In the 

case of pressboard aged in NEA, the spectral band corresponding to carbonyl and carboxyl ageing 

by-products remains unchanged. On the other hand, there are several new peaks appearing in FTIR 

spectrum of pressboard aged for 672 hrs in NEB. It can be seen in Figure 4.15 (c) that the ester peak 

of 672 hrs aged pressboard sample (1740 cm-1) becomes broader due to formation of carboxyl 

compounds. In addition, new peaks at 1650 cm-1 and 1610 cm-1 can be assigned to enolic and 

ketones compounds [63]. These two peaks have disappeared in FTIR spectrum of 1488 hrs aged 

NEB impregnated pressboard. It indicates that carbonyl intermediate ageing by-products of NEB-

pressboard composite system are thermally unstable and they could further decompose into volatile 

substances. Overall, one could conclude that ageing mechanisms of pressboard insulation in mineral 

oil, NEA and NEB are somewhat different and it causes to produce different intermediate ageing 

by-products. 

 Variation of Acidity Level of Oil over Thermal Ageing 

This research investigates the applicability of a neutralisation number (acidity) for determining the 

quality of aged ester insulating liquids considering mineral oil as the benchmark. The method 

prescribed in ASTM Std. D 974 has been utilised to determine the acidity level of new and aged oil 

samples. Figure 4.16 (a) and (b) show the change of acidity of oil samples aged with dry and wet 

pressboard respectively.  

The acidity of mineral oil aged with dry pressboard insulation remains at 0.01 over the whole 

ageing process while that of mineral oil aged with wet pressboard increases to 0.14 after 1984 hrs of 

ageing. However, in both cases the acidity of mineral oil has not reached the limiting value given in 

[103] indicating their appropriateness for further use. The notable fact that can be seen in Figure 

4.16 is the acidity of ester insulating oils is several orders of magnitude higher than that of mineral 

oil under similar ageing condition. Moreover, acidity values of ester oils show clear rapid increasing 

trends with ageing time. This behaviour is of paramount significance for NE oils aged with wet 

pressboard such that acidity values of aged NEA and NEB oils samples at 1984 hrs are 20 times and 

4.5 times respectively greater than the limiting value (0.3 mgKOH/g) specified for service aged NE 

insulating oil with satisfactory conditions for further use in electrical equipment. Figure 4.16 (a) 

shows that acidity of synthetic ester oil aged with dry pressboard  has also largely increased at the 

last stage of ageing but has stayed under the limit specified in [105] (2 mgKOH/g)  indicating good 

quality even after ageing over 3650 hrs at 120 ºC. 
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Figure 4.16. Change of acidity of oil over ageing (a) oil aged with dry PB, (b) oil aged with wet PB 

It is generally accepted that oxidation of insulating oil and degradation of cellulose insulation in 

transformers results in increasing the acidity level of oil [176]. However, oil samples considered in 

this study have been aged under minimum oxygen supply (headspaces of ageing chamber were 

filled with dry nitrogen). Therefore, a severe oxidation of oil cannot be expected. In the case of 

ester, hydrolysis is another degradation process, which produces free fatty acids as a by-product 

[84]. Moisture solubility of all types of oils exponentially increases with temperature causing 

migration of moisture from pressboard to oil at high temperature. This behaviour enhances the 

hydrolysis reaction in ester oils. Thus, one can clearly state that the acidity level of both natural and 

synthetic ester oils increases mainly due to their hydrolytic degradation. This is confirmed by the 

dramatic increase in acidity of NEA and NEB oils which have been aged with wet pressboard.  

In general, an increase of acidity in oil enhances paper degradation via acid catalyst hydrolysis. 

However, acids which cannot provide H+ ion through dissociation do not support degradation of 

cellulose via hydrolysis [61]. NEs mainly yield high molecular acids, which are not as readily 

dissociated as low molecular acid produced by the ageing of mineral and synthetic ester oils. 

Moreover, low molecular acids are readily absorbed by cellulose. On the other hand, high molecular 
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acids are not absorbed by cellulose and they are mainly persisting in the oil phase [47]. These are 

the main facts which are responsible for the observed slower ageing rate of pressboard insulation in 

NE insulating oil even after the acidity level increased to a very high value. In the case of synthetic 

ester oils, short chain high reactive acids are mainly produced by hydrolytic degradation. This 

would partly account for having a faster ageing rate of dry pressboard insulation in synthetic ester in 

spite of its higher moisture solubility compared to both mineral and NE insulating oils. 

Table 4.5. Specified limiting value for acidity of serviced age insulating oils 

Type of oil Limiting acidity value (mg KOH/g) 

Mineral (IEEE Std. C57.152-2013) 0.2   (for < 69 kV voltage class) 

0.15  (for 69 kV<230 kV voltage class) 

Natural ester (IEEE Std C57.147-2008) 0.3   (for < 69 kV voltage class) 

0.3  (for 69 kV<230 kV voltage class) 

Synthetic ester (BS EN 61203 (1994), 2.0   (for <35 kV voltage class) 

 

The acidity value measurement results of several laboratory studies including results shown in 

Figure 4.16 show that acidity of NE insulating oil can increase far beyond specified limiting values 

even after being aged in a sealed environment with minimum oxygen [68, 79, 95, 176]. In addition, 

results obtained in this study and data given in [24, 95] confirm the better ageing performance of 

cellulose insulation material in NE with such a high acidity level compared to that of typical 

mineral insulating oil. Moreover, this research hypothesis that acids produced in NEs does not cause 

extra corrosion in copper conductors and core steel. This is because of the fact that copper 

conductors and a steel sample holder used in this study have not shown any sign of corrosion even 

after 1984 hrs of ageing with NE oil. It means the proposed limiting acidity value of NE given in 

Table 4.5 is too low. Moreover, this research proposes to measure the low molecular acids content 

in addition to measuring the total acidity value for diagnostic purposes of in-service aged NE oil. 

 Variation of (DDF) of Oil over Ageing  

Dielectric dissipation factor is a widely utilised electrical method to determine the degree of 

deterioration of insulating oil in service. An increase in DDF is mainly caused by contamination of 

ionic or polar particles and excessive water. This research has analysed the variation in DDF of 

ester insulating oils after thermal ageing considering mineral oil as the benchmark. All the 

measurements have been conducted in a standard three electrodes test cell at 50 Vrms using 

commercially available equipment, an IDA 200. It is worth mentioning at the beginning that none 
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of the oil samples considered in this study were saturated with water. Thereby, one could interpret 

that there is no influence of moisture on measured DDF of oil and instead find the ageing by-

products of oil-pressboard composite material to be mainly responsible for changing of DDF with 

ageing [188].  

The DDF results presented in Figure 4.17 correspond to oil temperature of 55ºC. It clearly appears 

that there is a rapid rise in DDF of all types of oils aged with dry pressboard in the early stage of 

ageing. This research assumes that dissociation of peroxy radicals generated in the early stage of oil 

oxidation is responsible for the initial rise of DDF of oils aged with dry pressboard. This is because 

of the fact that some amount of oxygen could have dissolved in oil during sample preparation 

(diffusion coefficient of oxygen in fluid hydrocarbon at 25 ᵒC is about 1.8-2.6 cm2s-1 [189]). Thus, 

it can be expected to have only limited oxidation in the oil until dissolved oxygen is consumed.  

 

Figure 4.17. Variation of DDF of different oils due to thermal ageing (a) Oil aged with dry PB, 
(b) Oil aged with wet PB 

It clearly appears in Figure 4.17 (a) that DDF of mineral and NE oils aged with dry pressboard 

remains nearly constant in the last stage of ageing indicating that there is no severe degradation in 

mineral and NE oils after initial oxidation. This is confirmed by a very small colour change of 
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mineral and NE oils after 2800 hrs of ageing with dry pressboard (Figure 4.18). In the case of 

synthetic ester, there is a rapid increase in DDF in the last stage of ageing. This is mainly caused by 

an increase of low molecular acid in synthetic ester due to hydrolytic degradation. It can be seen in 

Figure 4.17 (a) that DDF at the final stage of ageing is highest of synthetic ester and lowest of 

mineral oil, while NEs show intermediate behaviour. These results show good agreement with the 

data provided in [95] confirming the accuracy of our experimental results. Figure 4.17 (a) shows 

that except for synthetic ester oil aged for 3650 hrs with dry pressboard, all the oil samples can be 

categorised as good oil based on limiting values of DDF suggested in corresponding IEEE and BS 

standards.  

It clearly appears in Figure 4.17 (b) that there is a continuous increasing trend in DDF of both 

mineral and NE oils aged with wet pressboard insulation. If one compares Figure 4.17 (a) and (b), it 

can be clearly identified that DDF of mineral and NE oils aged more than 1488 hrs with wet 

pressboard is greater than that of corresponding oil aged with dry pressboard over 1960 hrs. This 

effect is of paramount significance for NEs such that DDF values of NEA and NEB at 1984 hrs of 

ageing with wet pressboard are almost 19 and 14 times respectively greater than that of 

corresponding oils aged with dry pressboard over 1960 hrs. However, the equivalent magnification 

factor of mineral oil is about 3.8. It is generally accepted that DDF of oil increases due to the 

presence of dissociable impurities such as soot, dust and aging by-products (acids, peroxide) [95]. It 

means ageing of NE oils with cellulose and metal substances in a moisture rich environment 

produces more conductive dissociable substances leading to higher DDF. On the other hand, one 

can assume that conductive ageing by-products of paper insulation dissolve easily in NEs due to 

their polar nature [16] and this behaviour results in a large increase in DDF of NEs. Figure 4.17 (b) 

shows that except 1984 hrs aged NEA and NENB oil samples, IEEE Std. C57.152-2013 and IEEE 

Std. C57.147-2008 respectively characterise all the mineral oil and NE oil samples aged with wet 

pressboard are in good condition for further use. If one uses IEEE Std.C57.152, all NE oil samples 

aged more than 1152 hrs with wet pressboard are categorised as not being in good condition for 

further use. Moreover, NE oil samples aged over 1152 hrs can be rated as oil with marginal 

condition.      

Overall, the results shown in Figure 4.17 indicate that DDF values of ester insulating oils are higher 

than mineral oil at any ageing condition. The difference in DDF of aged mineral and esters oils is of 

more paramount significance and somewhat similar behaviour has been observed in several studies 

reported in literature [16, 84, 98]. Thus, this research concludes that the limiting DDF value 

suggested in IEEE Std. C57.152-2013 for service aged NE insulating oil is too low because it has 
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proposed a value of 0.5% at 25 ºC for both service aged mineral and NE insulating oils. On the 

other hand, limiting the DDF value suggested in IEEE Std. C57.147-2008 is more appropriate for 

quality control of NE insulating oils.  

 Change of Oil Colour and Viscosity over Thermal Ageing 

As explained in Chapter 3, the colour of oil is a visual parameter which reflects the degree of 

degradation and possible contamination of oil during use. A numeric value based on international 

colour standards (ASTM D1500) is generally used in expressing the colour changes of oil. It clearly 

appears in Figure 4.18 that new mineral oil and synthetic esters have a clear appearance with a 

colour number in the range of 0-0.5 while that of new NEA and NEB oil is about 1.  

 

Figure 4.18. Change of oil colour over thermal ageing 

It can be seen in Figure 4.18 that there is very little change in colour of both NE and mineral oil 

aged with dry pressboard over 2800 hrs. Based on colour change, one could conclude that thermal 

stability of NE insulating oils is comparable to mineral oil under minimal oxygen and moisture 

environment. In the case of synthetic ester, the colour change after 2800 hrs of ageing is 
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insignificant indicating excellent thermal stability of synthetic ester insulating oil compared to both 

mineral and NE oils.  

Figure 4.18 shows that a dramatic change in colour of mineral oil, NEA and NEB has occurred after 

1984 hrs of ageing with wet pressboard insulation. Moreover, Figure 4.19 (a) indicates the colour 

number of both mineral and NE oils is increasing with ageing time. This behaviour is more 

significant for NEA such that its colour has turned to black after 1752 hrs of ageing. Further, colour 

scale of NEA has reached 8 which is the maximum value according to ASTM D 1500. After 1984 

hrs of ageing, the colour of mineral oil has become amber and its colour number has a value of 3. 

NEB possesses intermediate behaviour by changing its colour to dark brown and possessing a 

colour number of 5-6 after 1984 hrs. 

In the case of mineral oil, initial oxidation produces free radicals and changes the oil colour into 

amber and further oxidation evolves soluble by-products which darkens the colour of aged oil [16]. 

However, in this study ageing has been conducted under a nitrogen environment and thereby severe 

oxidation cannot be expected. This hypothesis is confirmed by the fact that kinematic viscosity of 

both types of oil remains constant over ageing as shown in Figure 4.19 (b). In a severe oxidation 

condition, the intermediate oxidative by-products are polymerised yielding high molecular weight 

substances leading to a rise of viscosity. Thus, this research concludes that colour change in NE 

insulating oils aged with wet pressboard is mainly due to the migration of more paper ageing by-

products to acidic oil, particularly carbonised compounds and not due to deterioration of oil. 

Moreover, one can clearly claim that hydrolytic degradation of ester insulating oils does not have an 

influence on their viscosity. 

 

Figure 4.19. (a) Change in colour scale of oil over ageing, (b) Kinematic viscosity of oil over ageing 
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IEEE Std. C57.152-2013 [103] provides guidelines for assessing the condition of in service mineral 

oil based on colour. According to that, all the mineral oil samples are categorised as oil in good 

condition for further use except the 1984 hrs aged mineral oil sample (with wet pressboard).  

However, if one applies the same interpretation scheme on NEA, oil samples after 1488 hrs, 1752 

hrs and 1984 hrs of ageing with wet pressboard insulation can be rated as extremely bad oil whilst 

the sample at 1152 hrs ageing time can be categorised as severely aged oil. In the case of NEB, 

samples at 1752 hrs and1984 hrs ageing time (with wet pressboard) can be rated as severely aged 

and extremely bad oil respectively. It means that sludge should have already formed in NEA and 

NEB oil samples rated as extremely bad oil and moreover, these oil samples should possess very 

poor cooling characteristics due to an increase of viscosity. However, it has been observed that no 

sludge has been formed in aged NEA and NEB oil and they possess cooling characteristics similar 

to unaged oil (constant viscosity). Moreover, dielectric breakdown strength of 1984 hrs aged oils 

(mineral, NEA and NEB) has been measured according to the method prescribed in IEC Std. 60156. 

It indicates that aged NEA possesses the highest breakdown strength with an average value of 68 

kV followed by mineral oil (55 kV) and NEB (44 kV). Overall, one can claim that the condition of 

in service NE oils cannot be evaluated only with their colour change. 

Moisture cannot be completely excluded from a transformer as it is a by-product of paper 

degradation. Therefore, rapid colour change in NE oils could be expected under service conditions 

compare to mineral oil. Thereby, this research proposes that the colour code defined for mineral oil 

is not applicable for NE based insulating oils, particularly when an insulation system is moderately 

wet.  

  Experimental Experience on Thin Film Oxidation of NE 

Thin films of NE oil naturally occur in an untanked core and coils, hoses, fittings essentially oxidise 

when such surfaces contact with air [83, 190]. Consequently, a stiff gummy gel is formed. This 

mechanism has created some problems in our experimental study. It has been observed during the 

ageing experiment that the top lid and bottom part of the steel containers which contained NE oils 

and wet pressboard have been completely bonded by a yellowish gummy substance as shown in 

Figure 4.20. Moreover, in order to obtain an oil sample for analysis, this study has used a valve 

located at the bottom of the steel chamber. It has been noticed that the valve holes of NE filled 

containers are completely blocked by a solid substance as shown in Figure 4.20. This study assumes 

that this problem is created by oxidation of a layer of NE oil that remained in the valve hole (after 

sampling) due to exposing it to air and intense heat. Therefore, this research proposes to take 
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practical measures to minimise the time of such surfaces exposure to air and intense heat when it is 

using NEs.  

 

Figure 4.20. Formation of skin of gel due to oxidation of thin film of NE 

  Comparison of Dissolved Gases Generation Behaviour of 

Insulating oils 

As already discussed in Chapter 2, there is a greater difference between molecular structures of 

ester insulating oils and mineral oil. This leads to a quantitatively different dissolved gases 

generation behaviour for ester insulating oils, but, fortunately, gas composition is the same for all 

types of oils. Different types of chemical bonds in ester oils such as C=O, C=C and C-H allylic 

bonds accounts for this quantitative difference. A notable difference is that ester oils yield a large 

amount of carbon oxides (CO and CO2) due to breakdown of the carbonyl group (COO) [81, 191]. 

In the case of NE insulating oils, a radical can easily be formed by eliminating a hydrogen atom in 

allylic position (next to a C=C bond), because energy required for this mechanism is low such that 

it is 100, 75 and 50 kcal/mol respectively for a hydrogen atom in saturated, allylic and doubly-

allylic methylene group [19]. This could also lead to a different gassing behaviour for NE insulating 

oils derived from different sources such as sunflower, soy and rapeseed. IEEE Std. C57.155-2014 

(draft) has reported that production of methane, ethane and ethylene in NEs is greater due to a low 

temperature overheating and NE fluids containing linolenic acid generates ethane even under non-

fault condition. Ester insulating oils show different gas solubility characteristics compared to 

mineral oil and gas solubility constants depend on the type of ester too. This makes analysing and 

interpretation of dissolved gases in ester oils more complex. 

This research has made an attempt to predict the gas formation pattern in mineral, NEA, NEB and 

synthetic ester oils by simulating the same thermal and electric faults in all types of oils. Two 

different thermal faults have been simulated by subjecting oils to thermal stresses of 120 ºC and 
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150 ºC. Low energy electrical discharge faults have been simulated using a standard oil breakdown 

tester. Moreover, the applicability of dissolved gas analysis (DGA) interpretation schemes including 

Duval triangle, IEC gas ratio and IEEE key gas method on ester insulating oils is discussed at the 

end of the section. 

4.11.1  Gassing behaviour under low energy electric discharge 

A standard transformer oil breakdown tester (100 kV, 2 kVA) was used to create electrical 

breakdowns in the oil. Firstly 500ml of degassed oil was poured into the test cell of the breakdown 

tester. Then the top cover was closed and high vacuum grease was applied to all the joints. Gas 

leaks from the oil were thus avoided. The next, 50, 75 and 100 breakdown tests were individually 

performed on three different oil samples. The time difference between two consecutive breakdowns 

was set to 2 minutes. After each breakdown, the oil samples were stirred for 30 s to ensure that the 

fault gases were homogenously distributed. Since the breakdown current had been limited using an 

internal circuit, the electrical breakdowns created in the oil could be considered as low energy 

discharges. These low energy discharge faults were simulated for four different oil types. The 

dissolved gases in oil after electrical breakdowns were analysed using the method prescribed in 

ASTM D Std. 3612-02 and the results are shown in Figure 4.21.  

 

Figure 4.21. DGA results after electrical discharge in oil (a) Mineral oil, (b) NEA, (c) NEB, (d) SE  
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Figure 4.21 indicates that under low energy electrical arcing conditions, gases produced in all types 

of oils are mainly acetylene (C2H2) but in NEB, additionally a significant quantity of hydrogen is 

produced. A notable difference in dissolved gas production under low energy discharge is that 

generation of C2H2 in mineral oil is significantly greater compared to ester fluids. Hydrogen, 

ethylene and methane become the second, third and fourth highest hydrocarbon gases detected in 

mineral oil. Nearly the same gas generation patterns can be observed in NEA and synthetic ester 

oils. On the other hand, hydrogen becomes the second highest hydrocarbon gas produced in NEB 

and one could also assume that hydrogen and acetylene are equally produced in NEB under low 

energy discharge conditions. Moreover, production of carbon monoxide and ethane in NEB is 

several orders of magnitude greater than those gases detected in other insulating oils. Overall one 

can assume that ester oils produce more carbon monoxide due to electric breakdown. The fault gas 

generation patterns of mineral and ester oils which have been observed under low energy discharge 

condition show good agreement with the results in [153, 157] indicating the applicability of these 

results for diagnosis purposes. 

4.11.2  Gassing behaviour under thermal fault at 150 ºC  

In order to simulate a thermal fault at 150 ºC, 250 ml of degassed oil was poured into a specially 

designed glass tube (the same glass tube used for ageing dry pressboard insulation). Then air in the 

headspace was pumped out and the headspace was filled with dry nitrogen. High vacuum grease 

was applied to all the ground glass joints to ensure a fully sealed environment. Thus, one could 

assume that there is no gas leak in the system. Then the oil filled glass bottle was placed in the 

aluminium heater block and the temperature of the heater block was set to 150 ºC (± 2 ºC). Ageing 

was performed over 72 hrs at this temperature and DGA was performed on two aged oil samples 

and the average is reported in Figure 4.22. This thermal fault was simulated on all types of oils 

considered in the previous case. This experimental setup is very simple compared to the method 

described in [155, 192]. However, in this method there is a possibility to lose of portion of dissolved 

gases in oil during the sampling. 

Figure 4.22 (a) indicates that carbon monoxide is the key combustible gas produced in synthetic 

ester insulating oil under thermal overheating at 150 ºC followed by ethylene, methane and ethane 

respectively and they exist in lesser quantities as compared to carbon monoxide. There is no 

production of hydrogen in synthetic ester oil under this ageing condition. One could assume that 

mineral oil mainly produces carbon monoxide, ethane and methane under low temperature 

overheating at 150 ºC with the maximum concentration of carbon monoxide followed by ethane and 

methane. In the case of NEs, ethane remains as the main combustible gas under simulated thermal 
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fault and in addition, a substantial concentration of carbon monoxide has also been detected. If one 

compares the concentration of ethane in NEB to that detected in the other three oils, it clearly shows 

that production of ethane in NEB is nearly 6, 2 and 30 times greater than that of dissolved in 

mineral, NEA and synthetic ester oils respectively. Such behaviour for soybean oil based insulating 

liquids has also been reported in IEEE Std. C57.155-2014 (draft) [191].  

 

Figure 4.22. Dissolved gas in oil after ageing over 72 hrs @ 150 ºC (a) Combustible gases, (b) CO2 

As shown in Figure 4.22 (b) one could express that carbon dioxide is produced abundantly in 

synthetic ester oil under overheating condition at 150 ºC. Moreover, the carbon dioxide 

concentration in synthetic ester oil is almost 6 times greater than that of mineral oil under similar 

condition. This behaviour indicates that the rate of carbon dioxide produced from synthetic ester oil 

could exceed that produced from paper degradation leading to a misinterpretation of DGA results as 

overheating of cellulose insulation [191]. One can also claim that both types of NEs also produce a 

larger amount of carbon dioxide than mineral oil due to overheating at 150 ºC.  On the other hand, 

carbon dioxide concentration detected in both types of NEs is 4.5 times less than that detected in SE 

oil.  
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4.11.3  Thermal fault at 120ºC with pressboard insulation 

DGA was performed on mineral, NEA, NEB and SE oil samples aged with dry pressboard 

insulation over 1960 hrs and 2800 hrs. Figure 4.23 shows that a very low quantity of fault 

hydrocarbon gases is produced in synthetic ester due to thermal ageing at 120 ºC. Moreover, the 

production of hydrogen in synthetic ester due to overheating at 120 ºC is greater than other 

hydrocarbon gases. One could clearly conclude that the hydrocarbon gas generation pattern in 

synthetic ester oil under an overheating condition at 120 ºC and 150 ºC is dissimilar to some extent 

because no hydrogen has been detected in synthetic ester oil after overheating at 150ºC.  

In the case of NEB, the production of ethane is abundantly high being the predominant hydrocarbon 

gas for thermal fault at 120ºC followed by methane. A nearly similar gassing pattern has been 

observed for mineral oil and NEA. Moreover, it can clearly be seen in Figure 4.22 and Figure 4.23 

that the order of magnitude of hydrocarbon gases generation in mineral oil, NEA and NEB is nearly 

similar for both simulated faults at 120 ºC and 150 ºC. It indicates that both faults are in a similar 

category. It is worthwhile to mention that no acetylene is produced in ester insulating oils due to 

low temperature overheating (at 120 ºC and 150 ºC). It indicates that acetylene could also be 

utilised as the key gas for identifying the electric arcing faults in ester insulating oils. 

 

Figure 4.23. Dissolved combustible gases in oil after ageing for 1960 h and 2800 h with PB and 
copper at 120 ºC (a) Mineral oil (b) NEA, (c) NEB, (d) Synthetic ester 
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Figure 4.24. Relationship between dissolved carbon oxides and PB degradation (dry PB) 

At high temperature, cellulose molecules are decomposed and carbon oxides (CO2 and CO) 

produced. In general, a high level of dissolved carbon oxides in oil indicates the thermal 

degradation of cellulose insulation in the system [176]. Hence, it is possible to assess the level of 

solid insulation degradation using the amount of CO2 and CO concentration in oil. In order to 

understand the correlation between dissolved carbon oxides and the degree of ageing of pressboard 

insulation, DGA results for CO2 + CO are plotted against the average number of chain scissions of 

dry pressboard insulation. It can clearly be seen in Figure 4.24 that the relationship between 

dissolved carbon oxides concentration and the average number of chain scissions of pressboard 

insulation aged in corresponding oil can be represented using a linear equation with good accuracy. 

Moreover, the model parameters indicate that dissolved carbon oxides concentration in ester oils is 

relatively higher than that of in mineral oil for the same degree of pressboard ageing. In the case of 

synthetic ester, this effect is of paramount significance. It has been reported in [156] that the gas 

solubility constant of carbon dioxide in NE (FR3) and synthetic ester  oils at 20 ºC is 1.5 and 2 

times higher than that of mineral oil respectively. In addition, esters themselves produce a larger 

quantity of carbon oxides due to the breakdown of the carbonyl groups in their molecular structure. 

This research hypothesises that these two factors result in a higher concentration of carbon oxides in 

ester oils compared to that of in mineral oil at a similar degree of paper insulation ageing. 

4.11.4  Interpretation of DGA Results 

The ultimate objective of DGA is to identify the incipient faults in oil–paper insulation systems. 

This research investigates the application of three widely utilised DGA interpretation techniques 

namely Duval triangle, IEC gas ratio and IEEE key gas for identifying the incipient faults in an oil-

paper insulation system which contains either mineral, NEA, NEB or synthetic ester oil. For this 
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purpose DGA results of ester and mineral oil samples which have been subjected to the same 

thermal and electrical faults are interpreted using the above mentioned methods. 

In addition to the data presented in Figure 4.21, DGA data of oil samples which have been 

subjected to 36 electric breakdowns are also considered. In the case of thermal faults at 120 ºC, 

DGA results of 11 oil samples with different ageing condition (based on ageing time) are utilised to 

investigate the possibility of identifying low temperature faults in mineral, NEA and NEB oils. In 

the case of synthetic ester, only 5 samples are diagnosed for thermal fault at 120 ºC.  

 

Figure 4.25. Duval triangle diagnostic results (a) Mineral (b) NEA, (c) NEB, (d) Synthetic ester 

It is worth mentioning that this study uses the Duval triangle 3 defined for Biotemp, FR3 and 

MIDEL7131 for diagnosing the DGA results of NEA, NEB and synthetic ester respectively. Figure 
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4.25 (a) to (d) shows that this method has accurately identified the simulated faults in all types of 

oils as T1 (thermal fault <300 °C) and D1 (low energy discharge) for most of the cases. However, 

some of the DGA results of mineral, NEA and NEB oil samples aged at 120 ºC have been 

misinterpreted as fault T2 (300 °C <Thermal Fault<700 °C). In addition, DGA data of synthetic 

ester oil sample aged at 150 ᵒC was also wrongly diagnosed as T3 fault (Thermal Fault>700 °C) by 

Duval triangle method. In addition to Duval triangle method, this research uses IEC gas ratio and 

IEEE key gas methods for interpreting DGA data. Table 4.6 summarises the diagnostic results for 

gases produced in all types of oil under simulated faults by using Duval triangle, IEC gas ratio and 

IEEE key gas methods.  

Table 4.6. Correctly identified faults for DGA results 

Oil type Fault condition Duval IEC 60599 [161] IEEE key gas 

Mineral Low energy discharge  4 of 3 4 of 4 NA (not applicable) 

120 ºC thermal faults 10 of 11 11 of 11 NA 

150 ºC thermal faults 2 of 2 2 of 2 NA 

NEA Low energy discharge  4 of 3 3 of 4 NA 

120 ºC thermal faults 8 of 11 10 of 11 NA 

150 ºC thermal faults 2 of 2 2 of 2 NA 

NEB Low energy discharge  4 of 3 1 of 4 NA 

120 ºC thermal faults 9 of 11 11 of 11 NA 

150 ºC thermal faults 2 of 2 2 of 2 NA 

SE 

 

Low energy discharge  3 of 4 3 of 4 NA 

120 ºC thermal faults 5 of 5 3 of 5 5 of 5 overheating 

cellulose 

150 ºC thermal faults 0 of 2 0 of 2 0of 2   

  

Based on the fault diagnosis results shown in Table 4.6, one could conclude that extended Duval 

triangle and IEC gas ratio methods interpret the DGA results of all types of oils considered in this 

study with reasonable accuracy. On the other hand, IEEE key gas method possesses the lowest 

accuracy in diagnosing faults on all types of insulating oil systems with DGA data. IEEE key gas 

method diagnoses the DGA results of synthetic ester oil aged at 120 ºC as overheating of cellulose 

insulation. This is caused by the production of a large concentration of carbon monoxide due to 

overheating of synthetic ester oil. In addition, this research has recognised that ethane is the key 
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fault gas dissolved in NE insulating oil for low temperature overheating faults. Since ethane is 

mainly produced by a reaction between linolenic acid (present only in NEs) and oxygen, this 

research proposes ethane as an indicator for NE insulating oil oxidation and to trigger an early 

warning before oil quality is affected.  

  Summary 

Overall experimental results presented in this chapter have confirmed that NE insulating oils 

possess resistance to the ageing of pressboard insulation. This behaviour is mainly caused by high 

moisture solubility and hydrolysis reaction of NE insulating oils. Experimental results presented in 

this chapter indicate that the 2-FAL may be less stable in NEA oil. Thus, it is necessary to further 

investigate whether 2-FAL can be used as a paper insulation ageing indicator for NE based 

insulation systems. This study has pointed out that acidity and colour of NE ester oils could increase 

rapidly due to the pronounced hydrolytic degradation in a moisture rich environment. This type of 

behaviour can be expected after retrofilling of an in-service transformer with NE oil. In such a 

condition acidity and colour could not reflect the real condition of NE oil. This study has revealed 

that the acids produced by hydrolysis of NE are not detrimental to paper insulation and not 

corrosive. However, it is necessary to further investigate the effect of high acidity of aged NE oils 

on copper and steel, particularly its corrosion effect at high temperature.  

The DGA results presented in this chapter have indicated that similar fault gases are produced in 

both mineral and ester insulating oils. However, there is a significant quantitative difference 

between fault gases generated in ester and mineral oils. Moreover, gases generated in different 

esters due to thermal and electrical faults are also not similar in quantity. The results presented in 

this chapter indicate that dissolved CO2 in ester oils is greater than mineral oil for similar degree of 

paper insulation ageing. Moreover, it has been confirmed that synthetic ester oil produces more CO2 

than both NEs and mineral oil under low temperature overheating condition. In case of low 

temperature overheating condition, NEs produce more C2H6 than mineral and synthetic ester. This 

behaviour is significant for soy oil based NEs. In spite of different gassing behaviour of mineral and 

ester insulating oils, this research has identified that extended Duval triangle method and IEC gas 

ratio methods seem to be applicable for diagnosing low temperature overheating and electrical 

discharge faults in ester insulating oils.  

This chapter mainly discussed the changing of chemical and physical properties of insulating oil 

over thermal ageing. However, the impact of these factors on dielectric response behaviour of 

insulating oils needs to be investigated. The next chapter presents the main work done in this 

research to address this issue. 



 

 

  

Modelling and Analysing the Dielectric 
Response Behaviour of Insulating oil  

 Introduction 

Dielectric polarisation based measurements have been used as one of the techniques to characterise the 

quality of insulating oil [193, 194]. Understanding the variation in dielectric response of insulating oil is 

important to accurately interpret the condition of a transformer’s composite insulation system. It has 

been discussed in Chapter 4 that physicochemical properties of insulating oils markedly change due to 

ageing under thermo-electrical stresses. In addition, temperature of the oil in an operating transformer is 

a continuously varying parameter due to dynamic loading conditions experienced by the transformer. 

Thus, it is important to characterise the influences of ageing and temperature on dielectric response 

behaviour of different types of insulating oils. In this chapter, the behaviour of two different types of 

insulating oils including one type of mineral oil and a NE based oil during frequency and time domain 

dielectric response measurements are analysed for different ageing and temperature conditions. 

In the case of dielectric response measurements of insulating oils, parasitic phenomena including 

electrode polarisation (EP), interfacial polarisation and electro hydrodynamic motion (EHD) arise due to 

the diverse oil properties and problems inherent in the measuring system. Furthermore, they may 

impede the determination of intrinsic dielectric parameters of the oil under test. Thus, mathematical and 

equivalent circuit models analogous to the real physical systems are presented in this chapter to model 

time and frequency domain dielectric response data of oils respectively. They provide a better 

understanding of various physical phenomena which have been observed during dielectric response 

measurements of oil. This chapter is mainly based on two publications of the author [195, 196]. 

 Measurement Setup  

Frequency Domain Spectroscopy (FDS) and polarisation current measurements on oil samples were 

performed using a three electrode test cell shown in Figure 5.1(a). The test cell has been made of 

stainless steel in accordance with IEC and Cigre standards [197]. Geometric capacitance of the test 
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cell is 60 pF and the gap between the measuring electrodes is 2 mm. The oil volume required for a 

measurement is 50 ml. Here, FDS measurement was executed first, which was followed by the 

polarisation current measurement. During measurements, the test cell was placed in a temperature 

controlled oven with a temperature hysteresis of ±2 ᵒC. A commercially available Insulation 

Diagnostics Analyser (IDA 200) was used to obtain FDS [198]. During the measurement, three 

leads of the IDA 200 were connected to the electrodes of the test cell placed on an insulation plate 

as demonstrated in Figure 5.1 (b). In the case of polarisation current measurement, equipment 

developed at the University of Queensland was used [199]. A highly sensitive 6571A Keithley 

electrometer is used in the PDC equipment to measure the polarisation current in the nA range.  

 

Figure 5.1 (a) Test cell for oil measurements, (b) Schematic circuit diagram for FDS measurement 

 Selection of Measurement Voltage 

Dielectric response measurement under high field stress may introduce several charge generation 

and transportation mechanisms which could cause nonlinear behaviour of oil conductivity i.e. 

voltage dependence conductivity [200, 201]. Therefore, the applied voltage should be low enough 

to avoid charge carrier injection and field enhancement dissociation (<0.1 kV/mm). Moreover, in 

order to avoid electrohydrodynamic motion and electroconvection effects, the measuring voltage 

should be less than 300 V. However, the voltage should be high enough to elude electrochemical 

polarisation (>1 V) [201]. In addition, when a high field stress is applied for a longer time compared 

to ion transit time (time taken by an ion to cross the electrode gap), swept out of ionic particles from 

the bulk may result in lower conductivity. Thereby, this research has used a moderate voltage for 

dielectric response measurement of oil samples to minimise nonlinear effects. FDS measurements 
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were performed with a frequency varying sinusoidal signal of 50 Vrms and polarisation current was 

measured under a DC step voltage of 50 V or 100 V. 

 Properties of Oil Samples 

This chapter compares the dielectric response behaviour of NEA and shell Diala mineral oil under 

different ageing conditions. Properties of oil samples including moisture content, acidity, viscosity 

and ageing conditions are listed in Table 5.1. Relative humidity (RH) presented here has been 

calculated by considering the moisture saturation levels of mineral and NEA oils at 25 ºC as 50 ppm 

and 1100 ppm respectively. 

Table 5.1 Properties of oil samples tested in this study 

Oil type Sample 

Index 

Ageing condition 

@120 ºC 

Acidity 

mgKOH/g 

Viscosity 

@40 ºC 

mm2/s 

Moisture 

(ppm) 

RH(%) 

Mineral M0 Unaged oil 0 10 1 2 
Mineral M1 Oil only for 384 h 0.01 10 36 72 
Mineral M2 Oil only for 1280 h 0.0 10 36 72 
Mineral M3 Oil, copper, dry PB for 

384 h 
0.01 10 4 8 

Mineral M4 Oil, copper, dry PB for 
1280h 

0.01 10 2 4 

Mineral M5 Oil, copper, dry PB for 
2800 h 

0.01 10 8 16 

Mineral M6 Oil, copper, core steel,  
PB (2.2%) for 1152 h 

0.02 10 20 40 

Mineral M7 Oil, copper, core steel,  
PB (2.2%) for 1752 h 

0.06 10 30 60 

Mineral M8 Oil, copper, core steel,  
PB (2.2%) for 1984h 

0.14 10 32 64 

NEA NA0 Unaged oil 0.03 37 35 3 
NEA NA1 Oil only for 384 h 0.04 37 86 7 
NEA NA2 Oil only for 1280 h 0.07 37 47 4 
NEA NA3 Oil, copper, dry PB for 

384h 
0.06 38 48 4 

NEA NA4 Oil, copper, dry PB for 
1280h 

0.26 38 93 7 

NEA NA5 Oil, copper, dry PB for 
2800 h 

0.59 38 62 6 

NEA NA6 Oil, copper, core steel,  
PB (2.4%) for 1152 h 

2.04 38 239 22 

NEA NA7 Oil, copper, core steel,  
PB (2.4%) for 1752 h 

4.55 38 246 22 

NEA NA8 Oil, copper, core steel,  
PB (2.4%) for 1984h 

6.19 40 184 17 
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 Investigating the Nonlinear Behaviour under Moderate Voltage  

This section presents the influence of measurement voltage on dielectric response of insulating oil 

at 55 ºC. Figure 5.2 (a) and (b) depict the frequency domain dielectric response as DDF vs. 

frequency for mineral oil sample M1 and NEA oil sample NA1 respectively for two different 

measurement voltages, 5 V and 50 V.  

 

Figure 5.2 (a) FDS -M1, (b) FDS-NA1, (c) Polarisation current -M1, (d) Polarisation current-NA1, 
(e) Voltage dependence DC conductivity of (M0,M1 & M2), (f) Voltage dependence DC 
conductivity of (NA0,NA1 & NA2) 

Figure 5.2 (a) and (b) indicate that there is no influence of voltage on measured DDF of both types 

of oils at high frequencies when the measurement voltage is between 5 V and 50 V. On the other 

hand, DDF of both types of oil shows a clear tendency to decrease with the voltage at a frequency 

of below 10 mHz. Garton [202] has observed a similar behaviour at power frequency under a higher 

field stress across a thin oil gap. He has explained this behaviour such that amplitude of motion of 

ions in the liquids is limited by the width of the electrode gap at a certain electric field and thereby, 

a further increase of measurement voltage causes to decrease the DDF. Saad et al. [203] have also 

given a somewhat similar interpretation for this behaviour. When under a low electric field, a 

similar effect could occur at low frequencies. However, this research does not solely attribute the 

reduction of DDF at low frequencies to so-called Garton effect and it is characterised as a 

combination of space charge and Garton effects. Space charge effect is introduced by the 

accumulation of charges at the electrode liquid interface at low frequencies. 

Figure 5.2 (c ) and (d) show measured polarisation current response of oil samples M1 and NA1 

under different voltage levels between 5 V and 100 V. Measurements have been performed from the 
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lowest voltage to the highest voltage. It can be seen in Figure 5.2 (c) and (d) that polarisation 

current does not linearly change with measurement voltage and this characteristic can be clearly 

identified in DC conductivity vs. voltage graphs in Figure 5.2 (e) and (f). DC conductivity of an oil 

sample is derived from measured polarisation current using eq (5.1). The average of measured 

polarisation current in the time range 50-100s is used for calculating the oil conductivity. It shows 

that conductivity of oil samples M1, M2, NA1 and NA2 firstly increases with voltage and then 

shows a decreasing trend whilst that of oil samples M0 and NA0 has a decreasing trend with 

voltage. Once voltage stress is applied across a liquid layer, segregating the ions of the opposite 

sign will lower the probability of ion recombination [202, 204] and thereby, ion concentration in the 

liquid phase is increased and gives rise to conductivity. On the other hand, a further increase of 

applied voltage causes swept out ions from the bulk and decreases the ion concentration in the 

liquid phase causing a reduction of oil conductivity. These two phenomena account for the variation 

of measured oil conductivity with voltage as shown in Figure 5.2(e) and (f). Overall, the change of 

measured conductivity of both types of oil in the voltage range 50-100 V is significantly lower than 

that in the voltage range 5-50 V. It means that measuring the dielectric response of an oil sample 

with a voltage signal in the range of 50-100 V is more appropriate.   

 (50 100 ) 0

0

. pol s to s
oil

Avg I

C U





   (5.1) 

Here Ipol, ε0, C0 and U represent the polarisation current, dielectric permittivity of free space, 

geometrical capacitance of the test cell and measurement voltage respectively. 

 Temperature Dependence of Dielectric Response 

This section presents the influence of temperature on dielectric response behaviour of insulating oil. 

Figure 5.3 (a) and (b) depict the frequency domain dielectric response as complex capacitance vs. 

frequency for oil samples M8 and NA8 respectively. The measurements on both samples were 

performed at three different temperature points 35 ºC, 55 ºC and 75 ºC. Corresponding polarisation 

current responses of those oil samples are shown in Figure 5.3 (c) and (d). It can be seen in Figure 

5.3 (a) and (b) that imaginary capacitance Cʹʹ(ω) which represents the conduction and dielectric 

polarisation losses significantly increases with the temperature. Moreover, an increase of 

temperature intensifies the low frequency dispersive behaviour of real capacitance Cʹ(ω). These two 

phenomena cause to shift the whole response towards high frequency. Figure 5.3 (a) and (b) clearly 

depict that measured imaginary capacitance of both types of oil increases toward low frequency 

with -1 gradient. This statement is true at all temperatures. Thereby, one can suggest that the 

dielectric response of both types of oil is solely characterised by their conductivities and an increase 
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of conductivity of insulating oil with temperature gives rise to both polarisation current and 

imaginary capacitance as shown in Figure 5.3. The conductivity of insulating oil is determined by 

the mobility and density of ions which are provided by dissociation of electrolytic impurities 

present in the oil. If one assumes that both positive and negative ions in a particular oil possess the 

same mobility (μ), the electrical conductivity can be written as [194, 205]: 

 ( )oil q q      (5.2) 

Where, q+ and q- denote the positive and negative ions density in oil. Thus, it is clear that 

conductivity of insulating oil can increase either due to increase of ion mobility or density.  

 

Figure 5.3 Temperature dependence of dielectric response of oil (a) FDS- M8, (b) FDS- NA8, 
(c) Polarisation current-M8, (d) Polarisation current-NA8 

Stokes law indicates that ion mobility in a medium like oil is inversely proportional to the effective 

viscosity of the medium as given in eq (5.3).  

 1
6 r




    (5.3) 
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Where η is the viscosity, r is the radius of the ion. Thereby, an increase of oil conductivity with 

temperature can be assigned to two superimposed effects; increase in fluidity (inverse viscosity) and 

increase in dissociation of electrolytic impurities to ions with increasing temperature [194, 205]. 

Temperature dependence of conductivity of insulating oil can be characterised using a so-called 

Arrhenius type relationship as given in eq (5.4) [205]. 

 0 exp( E / )oil a KT     (5.4) 

Where, Ea, denotes the activation energy for ion motion in oil media and K represents the 

Boltzmann constant, T is absolute temperature. The conductivity of insulating oil (σoil) can be 

calculated using eq (5.5) and measured imaginary capacitance. Thus, the gradient of oil 

conductivity vs. reciprocal of temperature (1/T) plot gives the activation energy as shown in Figure 

5.4(a) and (b). It has been found that activation energy of mineral oil lies between 0.36 eV and 0.47 

eV and that of NEA is in the range 0.37 eV to 0.44 eV confirming that conductivity of both types of 

oil show almost similar temperature dependence characteristics. Moreover, the activation energy 

values found for mineral oil in this study show good agreement with the value provided in [141]. 

 0

0

''( )
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    (5.5) 

 

Figure 5.4 Temperature dependence DC conductivity & activation energy (a) Mineral oil, (b) NE 

 Influence of Ageing Condition on FDS  

Figure 5.5 compares the influence of different ageing conditions on frequency domain dielectric 

response of both mineral and NE insulating oils. Figure 5.5 (a) and (c) represent the dielectric 

response as real capacitance vs. frequency for insulating oil aged with dry and wet pressboard 

insulation respectively. The change in imaginary capacitance of these samples at the same 

frequency is presented in Figure 5.5(b) and (d). It can be seen in Figure 5.5 that ageing gives rise to 
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oil conductivity and interfacial effect in a way similar to temperature does. This behaviour is caused 

by formation of easily dissociable molecules of organic acids and peroxides over thermal ageing in 

the presence of some dissolved oxygen in oil [15, 202]. Data provided in Table 5.1 confirms that in 

all cases oil samples are not saturated with moisture. Therefore, this study does not attribute change 

of oil conductivity over ageing to the moisture content in oil [188]. 

 

Figure 5.5 Impact of ageing on FDS of insulating oil (a)-(b) FDS of oil aged with dry PB, (c)-(d) 
FDS of oil aged with wet PB (Broken line for mineral oil, thick line for NE)  

In general, conductivity of NEs is greater than typical mineral oil and it is confirmed by the results 

shown in Figure 5.5 (b) such that even dielectric loss of 2800 hrs aged mineral oil sample (M5) is 

less than that of unaged NE (NA0). Higher dielectric constant (permittivity) of NE oils causes this 

behaviour because polar liquids enhance the dissociation of ionic impurities leading to a higher 

charge density in the system. Oil samples aged with wet pressboard (Figure 5.5(d)) possess very 

high dielectric loss compared to that of aged with dry pressboard (Figure 5.5(b)) confirming the 

formation of more dissociable ionic impurities in the presence of moisture in both mineral and NE–

paper insulation systems.  
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The measured real capacitance of both types of insulating oils at high frequencies does not show a 

measurable change over ageing and remains at a constant value. On the other hand, regardless of the 

type of oil, the interfacial effect increases the real capacitance by several orders of magnitude at low 

frequencies and this effect becomes pronounced with ageing. 

One can clearly identify in Figure 5.5 (a) that the frequency (fon), at which real capacitance starts to 

increase is higher for mineral oil compared to that of NE. This could be due to the fact that time 

taken to travel between electrodes by an ion in mineral oil is less than that in NE, since the NE has a 

higher viscosity than mineral oil [195]. On the other hand, low frequency dispersion of NE oil 

samples NA7 and NA8 starts at a higher frequency than mineral oil (M7 and M8). It indicates the 

presence of different types of high mobility ions in samples NA7 and NA8. These two samples 

possess very high acidity values (4.05 mg KOH/g and 6.2 mg KOH/g). Thereby, one could clearly 

mention that very small H+ ions provided by dissociation of carboxyl acid are the high mobility ions 

in those samples. This is because the mobility of an ion is inversely proportional to its radius as 

explained in eq (5.3).  

 

Figure 5.6 Impact of ageing on PDC (a) Mineral oil (b) NE 

Figure 5.6 (a) and (b) show the polarisation current responses of mineral and NE oil samples at 

different ageing conditions respectively. The polarisation current of both types of oils increases over 

ageing, thus pointing to the feasibility of using polarisation current response to monitor the ageing 

conditions of insulating oils. Here, samples M8 and NA8 possess the highest polarisation current 

reflecting that polarisation current measurement also provides similar information as FDS 

measurements.  
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 Modelling of Frequency Domain Dielectric Response of Oil  

5.8.1 Characterising of low frequency behaviour 

In order to characterise the low frequency behaviour, dielectric response of oil samples at three 

different ageing conditions have been measured in the frequency range 10-4-103 Hz for both mineral 

and NE oils. Figure 5.7 (a) and (b) illustrate the dielectric responses of mineral oil as complex 

capacitance vs. frequency and AC conductivity vs. frequency respectively. The responses 

corresponding to NE oil samples are shown in Figure 5.7 (c) and (d).  

 

Figure 5.7. Dielectric spectra of insulating oil at 55ºC for three different ageing condition (a) FDS 
of mineral oil, (b) conductivity of mineral oil, (c) FDS of NE, (d) conductivity of NE 

A massive increase can be seen in measured real capacitance of insulating oil at low frequency and 

the rate of increase is shown to be dependent on the conductivity of corresponding oil sample. 

Figure 5.7 (a) and (c) show that this effect is more substantial in NE compared to mineral oil such 

that the rise of real capacitance of the unaged NE oil sample (NA0) is  higher than that of 1280hrs 

aged mineral oil sample (M4). 
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The low frequency trend of real capacitance of samples M8, NA4 and NA7 has a steep gradient 

between -1 and -2 at the beginning followed by a gradient of -1 to 0 during the lowest frequency 

decade. It indicates that this is a somewhat different behaviour compared to the so called Maxwell-

Wagner effect. In addition to the rise of real capacitance, there is a substantial decrease in measured 

conductivity at low frequencies as shown in Figure 5.7 (b) and (d). The observed behaviour is 

caused by interfacial phenomenon which occurs at the oil and electrode interface namely electrode 

polarisation. 

Generally in ionic liquids, charges arriving at the metallic electrode under electric field stress 

accumulate in a thin layer immediately next to the electrode surface and form a space charge region 

as shown in Figure 5.8 [206-210]. This appears as a large impedance connected in series with the 

bulk material impedance in the electrical circuit. This leads to a massive increase in measured real 

capacitance at low frequencies. In such a system, the apparent conductivity of the liquid also 

decreases by several orders of magnitude. This phenomenon is called electrode polarisation and it 

depends on several external parameters such as conductivity of liquid, temperature, electrode 

properties including material, structure and roughness. Thereby, we suggest taking special care 

when low frequency dielectric response data is used to assess the condition of insulating oil as 

suggested by [209].  

 

Figure 5.8. Electrical double layer forms at electrode liquid interface 

5.8.2 Equivalent circuit for explaining low frequency behaviour 

In conventional approaches, electrode polarisation is analysed using an equivalent circuit with a 

constant phase angle element (universal capacitor) in series with the bulk impedance as shown in 

Figure 5.9 (a). The frequency domain characteristic of a universal capacitor model is given in 

eq (5.6). In addition to that, a parallel R-C element connected in series with the intrinsic bulk 

impedance is also used to characterise the electrode polarisation phenomenon [207, 211].  
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 1( ) (j ) 0 1n
nC B n        (5.6) 

Frequency responses shown in Figure 5.9(a) and (b) respectively for universal capacitor and R-C 

element based circuits indicate that these equivalent circuits not only represent the upward 

dispersion in real capacitance but also contribute to large dispersion in imaginary capacitance. 

Moreover, it can clearly be seen in Figure 5.9 (b) that parallel R-C element circuit can only 

represent a rise in real capacitance with a constant gradient of -2 in log scale. Therefore, only with a 

conventional approach, it is difficult to explain observed dielectric response behaviour of insulating 

oil where the decrease in oil conductivity is very small while capacitance has increased by a couple 

of decades with different gradients between -2 and 0 at low frequencies. 

 

Figure 5.9. Conventional equivalent circuit for representing electrode polarisation 

Figure 5.10 (a) demonstrates the complex admittance diagram of the M0 sample derived from its 

FDS results. The low frequency region of this diagram is similar to the complex admittance diagram 

of a R-C circuit, which has a universal capacitor, non-dispersive constant capacitive element and a 

conductive element connected in parallel [110]. Eq (5.7) can be used to calculate the complex 

admittance when the complex capacitance is known from FDS. Further, in Figure 5.7 one could 

observe that conductivity has a single point of deflection and then reaches a constant value. Based 

on this observation, it is assumed that two types of charge are active in these insulating liquids 

within the considered frequency range. Therefore, to characterise the observed low frequency 

dispersion a phenomenological equivalent circuit has been proposed as shown in Figure 5.10 (b). 

Here, C∞ represents the high frequency capacitance of oil. G1 and G2 denote the conductance given 

by ionic species I1 and I2 respectively. 

 ( ) '( ) ''( ) '( ) ''( )

Complex_Admitance Complex_Capacitance
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   
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   
      

  (5.7) 
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It is assumed that I2 tends to be completely blocked at the electrode surface at low frequencies, 

whereas I1 instantaneously discharges without accumulating near the electrodes. This hypothesis is 

plausible in reality due to the diversity of ion mobility in oil [206] and a multi-step chemical 

reaction at the electrode liquid interface. That is, neutralisation of ions at the electrode can occur as 

single or multi step chemical reactions. In the low frequency region, where an electrode blocking 

state is significant, conductance G1 of the oil is solely due to the I1. As the response of the universal 

capacitor is diminishing at high frequencies, the same circuit presented in Figure 5.10 (b) can be 

used to model the high frequency behaviour of oil. At high frequencies both types of ions contribute 

to the conduction process in oil. Frequency domain response of the proposed equivalent circuit can 

be expressed as in eq (5.8). 

 

Figure 5.10. (a) The complex admittance diagram of sample M1, (b) Proposed equivalent circuit 

  
1

11
2

1
( ) (j ) /nG

C j G C
j B

  






     
 

  (5.8) 

Figure 5.11 (a) and (c) compare the measured frequency domain spectra of real capacitance with the 

modelled spectra using the proposed equivalent circuit for both mineral and NE oils respectively. 

As demonstrated by the solid line in Figure 5.11 (a) and (c), FDS of the proposed equivalent circuit 

yields a satisfying fitting curve of measured real capacitance throughout the observed frequency 

range. One could observe that below the frequency at which the real capacitance started to rise, the 

model response slightly deviates from the corresponding measured response. This may be due to the 

forming of more than one space charge layer at the electrode interface. Diversity of ionic mobility 

in a liquid could lead to form several space charge layers. Therefore, to increase the accuracy of the 

model two or more universal capacitors connected in series will be required. However, the 

measured frequency responses do not provide enough information to confirm such behaviour as the 

conductivity shows only a single point of deflection in the measured frequency range. 
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Table 5.2 provides estimated values of pre-exponential factor (B) and exponential factor (n) of the 

universal capacitor element for representing FDS of mineral and NE oil samples with three different 

ageing conditions. Parameters are selected using the nonlinear least squares technique in MATLAB 

environment with R2>0.93. The initial values for G1 and G2 were obtained by using eq (5.9) with 

imaginary components of their spectrums at 0.1 mHz and 100 Hz respectively. 

 ''( )G C     (5.9) 

 

Figure 5.11. Measured and modelled FDS response (a)-(b) Mineral oil, (c)-(d) NE 

Figure 5.11 (b) and (d) compare the measured ac conductivity with the calculated value of them 

using parameters B, n, G1, G2 and C∞ as given in Table 5.2. The modelled data match very well with 

the measured conductivity in the whole frequency window for oil samples M0, M4 and NA0. On 

the other hand, reduction of modelled conductivity at low frequencies of oil samples; M8, NA4 and 

NA7 is lower than the reduction of the measured conductivity. One could claim that charge carrier 

loss can occur at low frequencies as a consequence of a long measuring time [120]. For example, 

oxidation results in decreasing charge carriers in the system. This phenomenon leads to decreased 

conductivity but loss of charges does not contribute to EP. One can also assume that H+ ions play a 

role as the main charge carrier in oil sample M8, NA4 and NA7 because acidity values of those 
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samples are quite high compared to unaged oil. Thus, so-called cathode reaction could remove H+ 

ions from the system and gives a similar effect as oxidation.  

Table 5.2 Parameters of Equivalent Circuit for representing frequency domain behaviour of oil 

Sample ID G1 (pS) G2 (pS) C∞ (pF) B (pF) n 

M0 24 29 137 71 0.67 

M4 112 48 137 111 0.61 

M8 500 50 50 262 0.56 

NA0 152 10 178 263 0.65 

NA4 338 33 178 500 0.73 

NA7 3732 200 178 2724 0.7 

 

 Correlation between LFD and Conductivity 

This section discusses the correlation between low frequency dispersion (LFD) of real capacitance 

and AC conductivity of insulating oil. FDS measurement of oil samples aged with and without dry 

pressboard are considered for this analysis assuming that moisture effects on their ageing 

characteristic is similar. The change of real capacitance (ΔC) is calculated using eq (5.10). 

 1 100' 'mHz HzC C C     (5.10) 

Where, Cꞌ1mHz and Cꞌ100Hz are real capacitance at 1mHz and 100Hz respectively. Conductivity of a 

corresponding oil sample at 100 Hz is used for analysis and it is derived from measured imaginary 

capacitance at 100 Hz and using eq (5.5). This study proposes an empirical formula in the form of 

eq (5.11) to describe the correlation between the low frequency dispersion (ΔC) and the AC 

conductivity of insulating oil. 

 ( )b
oilC      (5.11) 

Where, λ is a pre-exponential factor and b is a constant. Both parameters depend on temperature, 

electrode material and type of insulating liquid. Parameters of eq (5.11) have been obtained with a 

nonlinear least square method using the MATLAB tool with R2>0.95. Figure 5.12 (a) and (b) 

compare the measured and calculated ΔC values for mineral and NE respectively.  

As shown in Figure 5.12, the derived model confirms that LFD effect (ΔC) at 55 ºC is greater than 

that at 75 ºC for a similar conductivity value of oil. This phenomenon is due to the fact that an 
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increase in temperature decreases the effect of electrode polarisation [208] by reducing the ionic 

hopping time τe at the electrode interface as given in eq (5.12). 

 0 exp a
e

E

KT

 
  

 
    (5.12) 

Where τ0 is a constant and Ea is activation energy corresponds to charge hopping at the electrode 

interface. Therefore, one could expect low dispersion in real capacitance at high temperature. The 

modelled parameters for eq (5.11) are presented in Table 5.3. These parameters show dependence 

on both temperature and type of oil. Different liquids show diverse adsorption behaviour at the 

liquid electrode interface [212]. Adsorption of oil molecules to the electrode blocks the sites for the 

desired electron transfer across the interface. This may be the reason for having a different EP effect 

between NE and mineral oil at a similar conductivity. 

 

Figure 5.12. (a) LFD effect vs. conductivity for mineral oil, (b) LFD effect vs. conductivity for NE 

Table 5.3 Parameters of proposed model for correlating conductivity and LFD of real capacitance 

Oil type Temperature Λ b 

Mineral 55ºC 40 1.01 
75 ºC 15.74 1.16 

NEA 55 ºC 2.28 1.53 
75 ºC 2.88 1.44 

 

  Modelling Time Domain Dielectric Response Behaviour  

5.10.1 Characterising behaviour of polarisation current 

In order to characterise the charge transport phenomena in different types of insulating oil under a 

DC electric field, polarisation current responses of mineral and NE oil samples at different ageing 
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conditions have been measured over 10000 s. The results are shown in Figure 5.13 (a) and (b) for 

mineral and NE oils respectively.  

 

Figure 5.13. Measured polarisation current over 10000 s, (a) Mineral oil (b) NE 

It is clear that the polarisation current of oil is highly time dependent; even in unaged oil this effect 

is significant. This is partly caused by swept out ions in the bulk region and an accumulation of 

them near the electrodes [200, 201, 213]. Ions that reach the electrode may either discharge or 

persist as charge particles. It depends on the chemical nature of the ions as well as the physical 

nature of the electrodes. The accumulation of charge leads to a reduction of conductivity in two 

ways; first by decreasing the charge carriers in bulk and secondly by dropping effective voltage 

across the oil gap [214].  

In general, interpretation of basic features of the polarisation current curve is difficult due to 

overlapping of several charging mechanisms having different time constants. However, in the 

presented results, there are two regions, such that rapid decay of polarisation current during the first 

100-200 s and very slow decay components during the rest of the period. In between these two 

regions there is a plateau in the current waveform. Indeed, this phenomenon is noticeable in aged 

NE oil. This may be due to a second type of ion, which is still not blocked at the electrode and 

trapped in the space charge region. A very high electric field in the space charge region causes the 

acceleration of these trapped charges and enhances the conductivity for a short period of time. 

5.10.2  Modelling electrode polarisation and conduction phenomena of insulating 

liquids under DC field stress  

As explained in [213], the apparent conductance of insulating oil (Gt) at the start of the 

measurement is given by eq (5.13). 
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 0t fG G G     (5.13) 

Where, G0 is the conductance due to the total dissociated charge accumulated at the electrode and 

Gf is the conductance of the system at steady state. Accumulation of charge near the electrode forms 

an electrical double layer with capacitance of C, which is in series with the bulk conductance. When 

the electrode cross sectional area is unity and two electrodes are separated by a distance ɑ, loss of 

conductance due to charge accumulation can be expressed as [213]: 
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Where, U0 is the voltage applied across the sample and β is (G0/C)-bU0. In this study, we consider 

that U0 is much greater than the maximum polarisation voltage (G0/bC ) which is equal to the 

voltage across the electric double layer. Therefore; 
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Then eq (5.14) can be approximated as:  
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When one considers that two types of ions with different mobilities (μ1, μ2) such as positive and 

negative ions are blocked at electrodes, eq (5.16) can be generalised to represent the change of 

conductivity over time as: 
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   (5.17) 

Therefore, polarisation current measured in such a situation can be mathematically represented by  

 1 1
1 2

( * ) ( * )( ) *exp *exp s
t t

I t I
        (5.18) 

Where α1 and α2 are arbitrary constants decided by the mobilities of ions corresponding to 

exponential decay currents. Is is the steady state conduction current component. τ1 and τ2 equal to 

(μ1U0 /a
2) and (μ2U0 /a

2) respectively. 

As shown in Figure 5.14 (a) to (d), a time domain function with two exponential decay terms can 

accurately represent the measured polarisation current waveform of both mineral and NE insulating 



Chapter 5: Modelling and analysis the dielectric response behaviour of transformer oil  

 
   123 | P a g e  

oils. It confirms that two types of ions with different drift mobilities are blocked at the electrode. 

Polarisation current of sample M8 possesses only one exponential decay component because the 

current during the first 5 s has not been recorded in the measured response. 

 

Figure 5.14. Simulated and experimental polarisation current (a)-(b) Mineral oil, (c)-(d) NE 

Parameters given in Table 5.4 have been selected using the nonlinear least squares technique in the 

MATLAB environment with (R2>0.96). Model parameters show that polarisation current has 

exponential decay terms with low and fairly large time constants. According to [213], there are 

mainly two types of ions in insulating liquids, i.e. ions with an equivalent number of oppositely 

charged ions and partially dissociated molecular size ions. The free ions are quickly removed from 

the system and that gives a sharp drop in current in a short period, whereas the partially dissociated 

ions provide a slow decay current. One could claim that this phenomenon causes the observed 

exponential decay characteristic of polarisation current during a measured time period. In the case 

of NE, 1/τ2 possess very high values. Therefore, one could also assume that an exponential decay 

component with a larger time constant represents the loss of ions from NE oil due to a longer 

measuring time and only one type of ions are blocked at the electrode. 
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Calculated ion mobility values for mineral oil and NE indicate that they follow the viscosity of the 

corresponding oil such that ion mobility in mineral oil is higher than that of in NE. However, 

mobility of type 1 ion in NA7 sample (μ1) has a value in the same order of magnitude as μ2 of M8 

mineral oil sample. One can assume that very small protonic ions H+ coming from dissociation of 

acid causes this behaviour because NE oil sample NA7 has a very high acidity value of 4.55 mg 

KOH/g. The calculated ionic mobility in mineral oil agrees with the typical range provided in [215] 

that is 10-9 m2/Vs. It means the modelling technique presented in this research for characterising the 

polarisation current of insulating oil is accurate.  

Table 5.4 Calculated model parameters and ion mobilities for experimental results 

Sample 

ID 
α1 (nA) α2 (nA) Is (nA) τ1 (s-1) 

μ1 

(m2/Vs) 
τ2 (s-1) 

μ2 

(m2/Vs) 

M1 3.36 1.96 1.4 0.062 2.4x10-9 0.014 5.2x10-10 

M4 3.9 1.52 12.1 0.22 8.4x10-9 0.017 6.4x10-10 

M8 0 15.1 42 - - 0.022 8.4x10-10 

NA1 2.7 2.7 14.5 0.007 2.8x10-10 0.0001 4x10-12 

NA4 5.6 1.6 36.2 0.01 4x10-10 0.002 5.6x10-11 

NA7 70 8 320 0.022 8.8x10-10 0.0001 4x10-12 

 

Intermediate plateau, which is a result of temporary acceleration of charge in the space charge 

region, cannot be explained with this model. In fact, it is an intermittent phenomenon which cannot 

be included in a charge carrier based model. Since the insulation system of a transformer has a 

layered structure, charge blocking at the liquid and solid insulation interface could create an almost 

similar effect as we observed here.  

   EHD Effect in Highly Conductive Contaminated Oil 

Polarisation current measurement of some of the oil samples showed transient behaviour at the 

beginning as shown in Figure 5.15 (a) and (b). To provide a better understanding of this behaviour, 

polarisation current responses of mineral oil samples taken from two different transformers owned 

by one of the Australian utilities have been measured. These samples are named as MF1 and MF2. 
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In order to make this transient behaviour pronounced, a measurement voltage of 100V is used for 

polarisation current measurement of samples MF1 and MF2.  

 

Figure 5.15. Example for EHD motion phenomenon (a) Polarisation current of M8 at 75ºC, (b) 
Polarisation current of NA6 at 35ºC (c) ) Polarisation current of MF1 at 35ºC, (d) ) Polarisation 
current of MF2 at 35ºC 

It can be seen in Figure 5.15 (a) and (b) polarisation currents of samples M8 and NA6 increase to a 

maximum and then exponentially decrease. This behaviour is more substantial in oil samples MF1 

and MF2 such that even after 300s, the current is still higher than the initial value. This behaviour is 

known as electrohydrodynamic (EHD) motion. Particularly, when a metallic electrode is used, a 

unipolar charge layer spontaneously appears next to the electrode [194, 203, 216]. This is caused by 

electron tunnelling transfer between the metal and molecular states in the liquid [217]. When the 

system is excited with low or moderate voltage, the hetero-charges layer either compresses or 

discharges, while the homo-charges layer displaces towards the counter electrode. This 

phenomenon induces EHD motion in liquid. It enhances the mobility of charge carriers. Therefore, 

one can explain that observed transient behaviour of polarisation current is due to EHD motion. 

Figure 5.15 shows that there are three distinct regions in measured polarisation current. In the first 

region, current is continuously increasing due to fluid flow and then in the second region current is 
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approximately constant due to the constant velocity of the transport charge. In the last region, 

current is decreasing. The polarisation current starts to decline just after the first charge carrier 

reaches the electrode. It is called transit time of ions in oil [216]. EHD effect leads to an erroneous 

and misleading interpretation of the quality of insulating oil. For example, there is a large error in 

calculated DC conductivity when the measurement is severely affected by EHD motion as shown in 

Figure 5.15 (c) and (d). Further, the effect of EHD motion on FDS measurement at very low 

frequencies cannot be ignored. Therefore, it is better to select a very low voltage for the dielectric 

response measurement of contaminated oil samples taken from field transformers. 

  Summary 

This chapter compares the dielectric response behaviour of one type of commercially available NE 

insulating oil to a mineral oil under similar conditions. It shows that conductivity of both oils have 

almost similar temperature dependence characteristics and ageing results in increasing their 

conductivities. Moreover, this chapter provides a broader understanding of parasitic phenomena 

appearing in the dielectric spectra of insulating oil. In order to explain low frequency dispersive 

behaviour in the FDS of insulating oils, this chapter has proposed an equivalent circuit model. The 

polarisation current behaviour of insulating oils has been mathematically represented using an 

exponential model. Both models have been derived based on charge transport phenomenon at the 

oil-electrode interface. The proposed models have verified that there are two different types of ions 

present in both mineral and NE oils. Moreover, the exponential model is used to model the 

polarisation current, which allows the mobility of ions existent in the oil to be calculated. 

In this chapter it has been identified that dielectric responses of insulating oils are mainly 

characterised by their conductivities. The influence of polarisation on dielectric response of oils is 

mainly introduced by the parasitic phenomena like electrode polarisation. However, in the case of 

solid insulation materials, their dielectric responses are characterised by a collection of different 

relaxation conduction processes. In such conditions, dielectric response modelling techniques are 

typically used to interpret the dielectric response data. Appropriate modelling techniques to 

represent the frequency and time domain dielectric response data of oil impregnated pressboard 

insulation are selected in the next chapter.  



 

 

  

Modelling the Dielectric Response of Oil 
Impregnated Pressboard Insulation  

 Introduction 

Frequency domain spectroscopy (FDS) and polarisation and depolarisation current (PDC) are 

collectively known as current based dielectric response measurements. It is generally accepted that 

the dielectric response of solid phase materials is primarily determined by their morphology and 

chemical structure. Moreover, dielectric response behaviour of the majority of solid materials is 

extremely sensitive to the presence of water as an impurity. Thereby, dielectric response method has 

been widely utilised in the transformer industry as a non-invasive method for determining ageing 

condition and moisture in solid based insulation. In addition, analysing the microscopic morphology 

of biological systems with dielectric response method has been widely discussed in the literature. 

The dielectric spectrum of a material under investigation is characterised by both conduction and 

polarisation phenomena. The effect of conduction is dominant in the low frequency region and in 

long-time polarisation current. Mostly, polarisation of solid materials is a collection of different 

relaxation mechanisms such as dipole polarisation, Maxwell-Wagner polarisation and quasi-DC 

conduction (q-dc). Overlapping of different polarisation and conduction processes, results in 

difficulty in interpretation of raw dielectric response data. In such situations, to discriminate and 

quantitatively analyse the contribution of conduction and different polarisation phenomena to 

dielectric response, several mathematical models namely Debye, Cole-Cole, Havariliak–Negami, 

Jonscher’s Universal law and Dissado and Hill’s (DH) cluster theory are generally used. However, 

the majority of these models are suitable only for analytical representation of experimental spectra. 

This chapter briefly reviews the different types of dielectric response modelling techniques and 

their suitability for representing dielectric spectra of oil impregnated pressboard insulation. An 

equivalent circuit is proposed based on DH cluster framework theory to model the frequency 

domain dielectric response data of oil impregnated pressboard insulation. In order to derive this 

circuit, the physics of microscopic level charge transport and polarisation processes that can arise in 
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oil impregnated pressboard insulation are considered. Moreover, the applicability of the proposed 

circuit is validated in this chapter. In the case of time domain data modelling, the suitability of 

extended Debye model and Williams-Watts exponential decay function for interpreting 

depolarisation current response data is discussed. The content of this chapter is mainly based on two 

publications of the author [218, 219]. 

 Modelling the Frequency Domain Dielectric Response Data 

6.2.1 Loss peak behaviour 

Loss peak is a common phenomenon that appears in frequency domain dielectric spectra of both 

solid and liquid materials. Debye deduced the first physical interpretation in 1945 for explaining 

this phenomenon in such a way that relaxation of assembly of non-interacting ideal dipoles in gases 

and liquid media results in loss peak behaviour in dielectric loss part εʹʹ(ω) [220, 221]. A change of 

complex susceptibility χ (ω) of a system due to a Debye type relaxation can be characterised using 

eq (6.1). It can be seen in Figure 6.1 that the Debye model can only be utilised to represent unique 

symmetrical loss peak behaviour.  

 1
( )

1 i

p


 



    (6.1) 

Where, ωp denotes the angular frequency at which maximum loss occur. 

 

Figure 6.1. Frequency dependency of Debye response 

It has been reported in the literature that ideal Debye behaviour can hardly be found in almost all 

solid and liquid matters because assembly of non-interacting dipoles is idealistic in nature [220-
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222]. Therefore, the concept of distribution of relaxation time (DRT) was introduced in order to 

represent non-Debye behaviour. In this case, contributions from an ensemble of non-interacting 

dipoles to total relaxation occur in parallel leading to a continuous distribution of dipole relaxation 

time. However, this is also a physically impractical concept because of the inevitability of 

intermolecular interactions, particularly in solid phase materials [223]. In the case of pressboard 

insulation, molecular level dipoles such as hydroxyl and alcohol groups are strongly bonded to each 

other by intra and intermolecular hydrogen bonds. Thereby, straight forward application of both 

Debye and DTR concepts for interpretation of polarisation phenomena in oil impregnated 

pressboard insulation is not plausible. 

A broad class of materials including polymer composite, porous materials, colloids and aqueous 

solutions possess symmetrical broader loss peak behaviour which can be characterised by Cole-

Cole (CC) relaxation function given in eq (6.2) [224]. The exponent α (0 < α ≤ 1) of the CC 

function determines the degree of broadening of loss peak. Asymptotic behaviour of CC function 

follows relationships of χʹ(ω) χʹʹ(ω)ωα-1 and χʹʹ(ω)ω1-α in high and low frequency parts of 

symmetrical loss peak as shown in Figure 6.2(a). Haveriliak-Negami (HN) relaxation function 

given in eq (6.3) has a kind of universality being applicable for representing both symmetrical and 

asymmetrical loss peak behaviours appearing in dielectric response of a wide range of materials. 

Asymptotical behaviour of HN function in the low frequency side of loss peak is similar to CC 

model whilst susceptibility in the high frequency side obeys the relationship of χʹ(ω)χʹʹ(ω)ω- 

β(1-α). The exponent β is a parameter in the range 0-1.  
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Udo et al [225] and Alexander et al [224] have provided a physical interpretation of CC behaviour 

in a framework of complex system theory. They propose that CC behaviour can be expected when 

relaxation times corresponding to the motion of electric dipoles interacting with their surrounding 

matrices possess fractal nature. Moreover, the broadening parameter α indicates the rate of 

interactions of dipole relaxation units with their surroundings. Nivikov et al [226] have deduced a 

physical interpretation for CC relaxation considering the morphological properties of 
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inhomogeneous media. They have proposed that a series of successive relaxation events of different 

relaxation times in an inhomogeneous medium due to a presence of self-similar fractal ensemble of 

polarisable entities produces either CC or Haveriliak-Negami type loss peak behaviour. In this 

regime, it has been assumed that a sequence of relaxation processes starts from the lowest level of 

self-similarity. 

 

Figure 6.2. Frequency dependency of (a) Cole-Cole response, (b) Havariliak-Negami susceptibility 
function 

This research proposes that matrices of oil filled cavities in pressboard insulation could possess self-

similar fractal hierarchical structure on average as shown in Figure 6.3. Moreover, charges blocking 

at the wall of oil cavities at different size scale of fractal hierarchy under an electric field can be 

assigned to a sequence of interacting relaxation processes with different relaxation times. Moreover, 

the relaxation times could also have a hierarchical fractal nature similar to geometry and relaxation 

starts from the smallest set of cavities. According to Nivikov et al [226], this type of hierarchical 

relaxation process should lead to a CC or HN relaxation behaviour. However, more details about 

the microscopic geometry of pressboard insulation are required to confirm whether this type of 

relaxation exists in the frequency band of our interest (10-4-103 Hz) [227]. 

Chandima et al [127, 138] have observed that there is a loss peak in FDS of oil impregnated 

pressboard insulation in the frequency range 10-4-103 Hz. Moreover, HN relaxation function has 

been successfully utilised to analyse this behaviour. However, they have not deduced a clear 

physical interpretation to correlate HN type relaxation and physical properties of oil impregnated 

pressboard. This research hypothesis that proposed an oil cavity based relaxation process would 

account for observed loss peak behaviour. 
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Figure 6.3 Possible self-similar structural organisation in a large network of random fibre [228]  

6.2.2 Universal relaxation law 

Jonscher has proposed that there are fundamentally two broad classes of dielectric response 

behaviours, namely loss peak and low frequency dispersion (LFD) which are associated with 

relaxation of dipolar and charge carrier systems respectively [220]. LFD is a phenomenon which 

gives steep rise to both real and imaginary susceptibility in the low frequency region as shown in 

Figure 6.4 (b). Jonscher has first identified a remarkable similarity in both loss peak and LFD 

behaviours of diverse materials and an electro-chemical process in that they follow fractional power 

of frequency dependence [113].  

 

Figure 6.4. Universal behaviour of frequency dependence of dielectric response (a) Loss peak, 
(b) LFD effect 

As appears in Figure 6.4 (a) real and imaginary susceptibilities corresponding to loss peak 

relaxation obey the fractional power law relationships given in eqns (6.4) and (6.5) at above and 

below the loss peak frequency ωp [113] respectively. 

 1'( ) ''( ) n          (6.4) 
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  (0) '( ) ''( ) m           (6.5) 

Where n and m are parameters which characterise the shape of loss peak and both are in the range 

0-1. Thereby, all types of loss peak responses including Debye, CC and HN can be analysed using 

eqns (6.4) and (6.5) due to their universality [221].   

LFD behaviour is always accompanied by two dispersive regions as shown in Figure 6.4 (b) in such 

a way that susceptibility obeys the relationship given in eq (6.6) at above and below the 

characteristic frequency ωc. The values of n1 and n2 are in the range 0-1 and they always possess the 

relationship n1>n2.  Jonscher assumes that the whole LFD behaviour is a result of two concurrent 

polarisation processes. Thereby, LFD effect can be mathematically represented by an addition of 

two different fractional power laws. The exponent of fractional power laws possesses values of n1-1 

and n2-1.  
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   (6.6) 

Susceptibility models explained in eqns (6.4) to (6.6) have a similar form of frequency dependence 

and thereby, Jonscher has named this characteristic as a “universal” form of dielectric response. 

Jonscher has claimed that if loss-to-stored energy for a microscopic polarisation in a system is 

independent of frequency, the dielectric response of the system obeys universal law. It means that 

values of indexes n, m, n1, n2 are determined by the constant ratio of loss-to-stored energy.    

Jonscher has deduced a generalised physical interpretation for loss peak behaviour based on the 

theory of DH many-body interactions. He has hypothesised that two different types of sequential 

configurational tunnelling transitions namely flip and flip-flop lead to a loss peak behaviour in a 

system with an ensemble of dipole entities [222]. It means numbers of interacting particles undergo 

small displacements in which collective effects equals to a single large transition. One can claim 

that this general interpretation is also valid for oil cavity based loss peak relaxation in pressboard 

insulation. 

Jonscher has suggested that dielectric materials with large densities of low-mobility charge carriers, 

hopping carrier systems and fast ion conductors show strong LFD effect. This is caused by the giant 

polarizabilities produced by transport of hopping electrons or ions in random paths over a longer 

distance [110, 220, 229]. Application of this interpretation for oil impregnated pressboard insulation 

is plausible because charge transport over a long distance in pressboard insulation at low 

frequencies mainly occurs via random percolation paths of water molecules. Due to existence of 
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dead ends of charge percolation paths, giant polarizability could be expected in pressboard 

insulation at low frequencies. It means oil impregnated pressboard insulation shows strong LFD and 

an increase of moisture could intensify this effect. However, the use of Jonscher’s universal 

relaxation law in modelling dielectric response data is hampered by two factors. No single function 

has been defined to characterise LFD and loss peak behaviour in corresponding frequency bands. In 

addition, there is no clear physical explanation for nature of relaxation corresponding to LFD 

phenomenon at above and below characteristic frequency ωc. 

Dissado has derived physical interpretation for universal type dielectric response of biological 

systems based on their structural organisation. He has identified that [227], most of the biological 

systems are composed of self-similar hierarchal structures on average such that small structural 

units with their own dielectric responses are embedded in larger units which are themselves 

embedded in even larger units [227]. The dielectric susceptibility of such material can be 

characterised by a series of fractional power law similar to eq (6.4). The exponent factor n of such 

systems is mainly determined by the fractal dimension (df) of the self-similar unit. Figure 6.5 (a) 

shows a self-similar hierarchical structure with fractal dimension df equal to 1.77 (Personal 

communication with L. Dissado). In this way, dielectric response of different sizes of geometry 

domains has different power law regions in the whole response and they are separated by a plateau. 

Thus, the overall response can be divided into so-called γ, β and α type relaxation processes which 

individually obey the universal power law proposed by Jonscher. 

 

Figure 6.5 (a) Example for self-similar hierarchy, (b) Possible self-similar hierarchy in PB [230] 

As shown in Figure 6.5 (b), bundling of microfibrils by layer to layer van der Waals and side to side 

hydrogen bonds produces macro fibril. Cellulose fibres are produced in a similar way by bundling 

of macro fibrils. It is illustrated in Figure 6.5 (b) that amorphous regions in pressboard insulation 

possess self-similar hierarchical fractal geometry similar to the biological systems. In addition, 
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dipolar molecules such as water and acids produced by ageing reside mainly in amorphous regions 

due to their high permeability. Thus, one can assume that relaxation of dipolar entities enclosed in 

amorphous domains with hierarchical fractal geometry could result in a plateau in dielectric 

response of oil impregnated pressboard insulation. Moreover, the dielectric response obeys  the 

relationship given in eq (6.4) at above the plateau frequency (frequency of loss peak). This 

interpretation can also be assigned to loss peak observed by Chandima et al [127, 138] in the FDS 

of oil impregnated pressboard.   

6.2.3 DH cluster model 

Though, Jonscher’s universal law is applicable for representing any form of dielectric response 

data, it does not enable any physical interpretation for dielectric response data with respect to 

physicochemical properties of polymeric solids. However, physical interpretation for dielectric 

response behaviour of a wide range of materials can be derived based on DH cluster theory. 

DH cluster theory is a linear dielectric response theory, which describes the two distinct classes of 

relaxation processes associated with bound charge dipole clusters and potentially mobile charge 

clusters [118, 231, 232]. The first category describes a cooperative motion (relaxation) of molecular 

dipoles within a constrained geometrical domain called a cluster followed by the interactive motion 

between neighbouring clusters. In this regime, displacement of a group of correlated dipoles in a 

cluster as a cooperated entity is called intra-cluster motion (above the characteristic frequency ωm). 

When the frequency of the applied field is less than ωm, motion of some portion of dipoles sites in a 

cluster can either correlate with dipole sites of neighbouring clusters or disconnect from them and 

produce new clusters. This phenomenon is known as inter-cluster motion. This type of intra and 

inter-cluster dipole relaxation leads to a loss peak in frequency domain. The complex susceptibility 

of such a relaxation can be described in terms of the Gaussian hyper-geometric function, as in eqns 

(6.7)- (6.9) [232, 233].   
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Here, Γ(x) symbolises the gamma function and 2F1 denotes the Gaussian hyper-Geometric function. 

The amplitude factor χ0 represents the strength of dipole concentration in a microscopic cluster. 
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Figure 6.6  shows the changing of complex susceptibility for DH loss peak function. Moreover, it is 

illustrated in Figure 6.6 that the maximum of loss peak and the rise of real susceptibility linearly 

increases with dipole strength of the local cluster (χ0). Parameters m and n remain in a range of 0 to 

1 and decide the shape of the loss peak below and above the characteristic frequency respectively. 

The asymptotical behaviour of equation (6.7) possesses the fractional power law frequency 

dependence as: 
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DH loss peak function (6.7) covers a wide range of relaxation phenomena formerly explained with 

so-called Debye, CC, Davidson-Cole and HN relaxation functions. Moreover, its asymptotical 

behaviour obeys Jonscher’s universal law.  

 

Figure 6.6. Susceptibility vs. frequency for DH loss peak function  

The dielectric susceptibilities of a wide range of materials, which are heterogeneous on a 

microscopic scale in nature such as rock, ceramic, humid cellulose and humid sand largely disperse 

at low frequencies [115, 118, 229]. This phenomenon is called Quasi-DC (q-dc) conduction by 

Dissado and Hill. They have proposed that q-dc effect can be expected in a system, when it 

comprises a matrix of clusters containing ions or ionisable entities. Moreover, effective charge 

transport between clusters through structured paths is a necessary condition of q-dc effect. In such 

systems, a transported charge and its counter charge behave as an effective dipole. It provides a 
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large dipole moment leading to a sharp increase in both real and imaginary susceptibilities at low 

frequencies. When a system holds q-dc behaviour, frequency dependent susceptibility can be 

described by eqns (6.12)- (6.14) [234]. 
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Herein, ωc is the characteristic frequency. Charge carriers in clusters are bound together and give 

weak dispersion at above the characteristic frequency (ωc). Charge carriers become free to move 

along the structured path to a finite distance below the characteristic frequency. It leads to a large 

dispersion in susceptibility. The power law exponent n2 (0.5<n2<1) reflects the binding motion of 

charges within a cluster when the frequency of applied field is greater than ωc, At the time equal to 

(ωc
-1), charge carriers start to move independently from their counter charges along a structured 

path. This relaxation process is characterised by the exponent factor p, which typically is in the 

range between 0.5 and unity. Here, charge transport within a cluster is known as intra-cluster 

transport and that between clusters is denoted as inter-cluster motion. The q-dc relaxation function 

possesses asymptotical behaviour above and below the characteristic frequency as: 
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Though, asymptotical behaviour of DH q-dc effect and Jonscher’s universal law of LFD behaviour 

is similar; there is a fundamental difference between their concepts. Dissado and Hill have 

considered that intra and inter cluster charge transitions as two sequential processes whilst Jonscher 

has treated them as parallel processes.   

6.2.4 Cluster structure in oil impregnated pressboard insulation 

In this research DH cluster theory is used for modelling the frequency domain dielectric response of 

oil impregnated pressboard. Thus, it is required to identify the possible charge cluster structure in 

the system. In order that microscopic morphology and hygroscopic behaviour of pressboard 

insulation are considered. 
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Pressboards are semi-crystalline materials with highly ordered crystalline and disordered 

amorphous regions as shown in Figure 6.5 (b). The array of hydroxyl (HO־) groups in cellulose 

polymers are considered as potential moisture absorbent sites. The majority of absorbed water 

resides in amorphous regions in pressboard such as spherulite and lamellar surfaces [115]. It may be 

partly due to the fact that microscopic pores in paper structures are mainly associated with 

amorphous regions. In addition, greater permeability of amorphous regions allows more penetration 

of water and low molecular acids too.  

 

Figure 6.7. Cluster of water cellulose mixed phase in PB insulation 

It is accepted that the absorbed moisture in cellulose materials is in the form of clusters [186]. 

Water clusters are bonded to nearby hydroxyl groups in cellulose through hydrogen bonds. 

Therefore, it can be considered that amorphous regions in cellulose pressboard insulation are 

clusters of hydrogen bonding polar molecular groups. Here we present it as a cluster of water-

cellulose mixed phase. Since the carbon-6 hydroxyl (6-OH) is the most exposed hydroxyl group in 

the cellulose polymer, the possible way of forming a cluster of hydrogen-bonds can be represented 

as Figure 6.7. When the amorphous regions absorb water, the inter-molecular hydrogen bonds in 

cellulose polymer chains are broken; consequently distances between polymer chains are increased. 

This causes to decrease the crystallinity of cellulose pressboard insulation by surrounding 

crystalline areas becoming more amorphous. Subsequently, this phenomenon increases the size of 

the water-cellulose mixed phase clusters. Eventually, this type of cluster organisation leads to a loss 

peak at high frequencies due to cooperating microscopic motion of cluster dipoles. It is termed as 

flip and flip-flop transitions in the concept of the many-body interaction theory [222]. Herein, flip 

and flip-flop transitions determine the high and low-frequency side of the loss peak.  

As a result of water clusters formed at the interface between amorphous and crystalline regions, 

existence of q-dc behaviour in dielectric response of pressboard material is obvious. In this case, 
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proton hopping between and within the water oriented charge clusters is the primary mechanism 

which determines the q-dc behaviour. When hopping distance is less than the cluster correlation 

length, charge displacement occurs within a cluster following an ion hop (intra cluster motion). This 

results in changing the centre of motion of all ions within the cluster and produces a cluster dipole 

which thereby becomes a polarised cooperate entity. This mechanism characterises the q-dc 

behaviour above the characteristic frequency. When the frequency of the applied field is less than 

ωc, proton hopping between clusters cannot be avoided. It occurs through a percolation network of 

water molecules and hydroxyl groups along the cellulose fibre wall. This is termed as inter cluster 

hopping and this mechanism determines the dominant q-dc behaviour below the characteristic 

frequency.  

On the other hand, cellulose pressboard insulation contains a matrix of three-dimensional 

microscopic pores (cavities). As a result of the vacuumed impregnation process, microscopic pores 

in the pressboard are completely filled with oil. These oil filled cavities can be considered as 

clusters of electrical charges dipole because oil is a source of ionic impurities. They are physically 

interconnected via narrow three-dimensional oil filled channels. The cross sectional area of the 

channels decreases with an increase of distance because cellulose fibres in high-density pressboard 

are packed very tightly. These oil channels are considered as conducting paths and thereby, the 

whole system is an ensemble of charge clusters interconnected by weakly conducting paths in a 

three-dimensional grid. The dielectric response measurement of such systems at low frequencies 

results in a blocking of the transport of charges at the wall of the cavity leading to a loss peak 

(interfacial polarisation). Further lowering of the frequency allows the separating of charges over 

longer distance via the oil filled channel or charge hopping along the cellulose fibre wall. Before a 

charge can escape from a cluster, it walks along the cavity wall finding a path to escape from the 

cluster. The latter two processes represent the inter and intra cluster charge transport of so-called q-

dc effect. The combined charge transport processes related to oil filled cavities could also lead to 

loss peak and q-dc behaviour in FDS of oil impregnated pressboard insulation. 

6.2.5 Equivalent circuit for modelling the FDS of pressboard insulation 

The above mentioned cluster based charge transport and polarisation phenomena in oil impregnated 

pressboard insulation leads us to propose an equivalent circuit, as shown in Figure 6.8, for 

modelling the frequency domain dielectric response data of oil impregnated pressboard insulation. 

This circuit is somewhat similar to that of [114] and has the dispersive capacitive elements of DH-

q-dc and DH loss peak. In the proposed circuit, these two capacitive elements are in series because 

DH loss peak and q-dc processes behave sequentially.  
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Figure 6.8. Proposed equivalent circuit to represent FDS of oil impregnated PB insulation 

However, here we have treated the high frequency permittivity (ε∞ ) which represents the strength 

of dielectric polarisation taking places at high frequencies as an independent element. Thereby, 

element ε∞ is in parallel to both loss peak and q-dc elements. In early studies, it has been reported 

that there is a loss peak at high frequency region due to the segmental vibration of cellulose chains 

(β relaxation ) [235-237]. This loss peak behaviour shows a significant influence on loss part of 

dielectric response of oil impregnated pressboard insulation in the frequency range 101-103 Hz, 

particularly for samples with low moisture content. Nilanga et al [238] have identified that this 

behaviour can be accurately represented with CC function. Thereby, the C-C peak element in the 

proposed circuit stands for the β relaxation process. It remains as a parallel element in the 

equivalent circuit because β relaxation process has a different physical origin compared to DH loss 

peak and q-dc mechanism. 

In this case, σ2 denotes the short range ions transport mechanism constrained to the small 

geometrical domains. When the frequency is lowered, charges start to transport over progressively 

larger distances. However, effective charge transport at low frequencies is very low because the 

number of effective paths available decreases when the distance becomes longer [118]. In an ideal 

situation, where a system is below the critical percolation limit, there is no charge transport route 

across the sample and it yields zero DC conductivity. However, a sample of finite size may have 

some routes across the sample and show weak DC conductivity. It means that, σ1 has a finite value 

since the effective DC conductivity is (1/(σ1
-1+σ2

-1). Moreover, σ1 is always a much lower value 

than σ2. 
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  (6.17) 

According to the proposed circuit configuration, the high frequency dispersive behaviour of 

dielectric response of the pressboard insulation is characterised by the parallel combination of the 

DH-peak capacitor, σ2 conductive elements and CC loss peak component. The low frequency 

behaviour is determined by the parallel arrangement of DH q-dc capacitive element and effective 

DC conductivity. Eq (6.17) describes the frequency domain response of the proposed equivalent 

circuit. 

6.2.6 Validation of proposed equivalent circuit 

In this section, applicability of a proposed equivalent circuit for modelling the FDS data of oil 

impregnated pressboard insulation is validated. For modelling purposes, the hypergeometric 

functions correspond to DH loss peak and q-dc capacitive elements are defined in the form of eq 

(6.18) which converges quicker than the general form. Parameters for the proposed equivalent 

circuit model have been derived using a MATLAB based optimization routine. 

 ( , , ; ) (1 ) ,c b,c;
1

a z
F a b c z z F a

z

      
   (6.18) 

 

Figure 6.9. Measured and modelled FDS of mineral oil impregnated PB with 1.6% of moisture 

It can clearly be seen in Figure 6.9 that measured FDS of mineral oil impregnated pressboard 

sample with 1.6% of moisture content accurately fits with the modelled response using the proposed 

equivalent circuit. The corresponding model parameters are shown in Table 6.1. However, the 
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modelled response slightly deviates from observed loss component of the measured response at the 

high end of the frequency window. It is due to the fact that this study has not selected the 

parameters of C-C component, because FDS data does not represent the complete CC relaxation. 

Thus, one can claim that the proposed equivalent circuit model can be used for explaining dielectric 

response behaviour of oil impregnated pressboard insulation. However, validity of the proposed 

model for pressboard insulation impregnated with different types of oils at different degrees of 

humidity will be investigated in Chapter 7. Moreover, the impact of moisture and diverse oil 

properties on conduction and polarisation effects in oil impregnated pressboard insulation will also 

be explained by using equivalent circuit model parameters in the next chapter. 

Table 6.1 Equivalent circuit parameters for FDS of mineral oil impregnated PB with 1.6% of 
moisture 

DH loss peak DH q-dc σ1 

pS/m 

σ2 

pS/m Xp ωp n1 m Xqdc ωc n2 p ε∞ 

1.05 0.30 0.35 0.1 3.8 0.2 0.90 0.55 5.2 0.08 0.9 
 

 Modelling the Time Domain Dielectric Response 

6.3.1 Selecting an appropriate modelling technique 

In time domain modelling, the response of the dielectric medium to specified electric excitation is 

mainly identified using measured depolarisation current (discharge current) [110]. Debye model in 

the form of eq (6.19) is the most fundamental approach to represent the time domain dielectric 

response data. However, as mentioned in section 6.2, Debye form of dielectric response function 

can be hardly found in almost all the solid materials. Curie-von Scweidler model expressed in eq 

(6.20) shows a satisfactory fitting curve with most of the dielectric response data of a wide range of 

materials with different exponent values of n for specific time ranges [117]. However, no 

interpretation has yet been derived for correlating Curie-von Scweidler model parameters to 

properties of the physical system.   

 ( ) exp (1/ )
t

f t s




 
 
 
 

   (6.19) 

 ( ) (1/ )n
f t t s
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 1
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  
  (6.21) 
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Figure 6.10. Time domain behaviour of different types of dielectric response function 

General response model given in eq (6.21) characterises two different process transitions at time t=τ 

which gives a logarithm slope of –m and –n below and above τ to discharge current. The 

asymptotical behaviour of general response indicates universality of time domain response in a way 

similar to frequency domain loss peak response. Jonscher has identified that exponent n possesses 

relationship of 1<n<2 for a dipolar system which possesses loss peak in frequency domain [110]. 

On the other hand, n possesses a value of less than 1 and obeys relationship n < m for carrier 

dominant systems which shows LFD behaviour in frequency domain response. Thereby, the general 

shape of the discharge current should resemble Figure 6.11.  

 

Figure 6.11.  General shape of depolarisation current response of carrier dominant system 

Oil impregnated pressboard, particularly with high moisture content can be considered as a carrier 

dominant system. Thus, the measured depolarisation current response should have a general shape 
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as shown in Figure 6.11. Though, oil impregnated pressboard insulation shows a strong LFD 

behaviour in frequency domain, the measured depolarisation current response data presented in the 

literature markedly deviates from the expected shape [130, 134, 219]. Moreover, their trends look 

like loss peak behaviour which can be explained with a general response model with 1< n <2. This 

is due to the fact that depolarisation current characterises the true dielectric response function of a 

material only up to one tenth of charging time [110]. Thereby, the general shape of long time 

depolarisation current response deviates from the expected shape. In this way, the general response 

model is not suitable for interpreting the depolarisation current response of oil impregnated 

pressboard insulation.  

Several studies have reported that dielectric response function of oil impregnated paper insulation 

can be modelled with a series of concurrent Debye relaxation processes with different time 

constants as given in eq (6.22).  This approach is known as extended Debye model [132, 134, 239].  

  ( / )

1

( ) * (1/ )
n

t i
if t A e s

    (6.22) 

Here, τi is the time constant of ith relaxation and Ai is the corresponding pre-exponential factor. 

Consequently, PDC response can be modelled with a simple RC equivalent circuit (Figure 3.8), 

where parallel branches each containing a series connection of a resistor and a capacitor denotes 

exponential relaxation current components with different relaxation time constants. The parameters 

τi and Ai can be correlated to R and C values of the equivalent circuit using eqns (6.23) and (6.24).  

 i i iR C   (6.23) 
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

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   (6.24) 

Saha et al [132] have identified the physical significance of the Debye form of relaxation process in 

oil impregnated pressboard insulation with respect to the chemical structure of cellulose. According 

to Saha all polar groups in cellulose polymers can have a different configuration of neighbouring 

molecules. Thus, the response time of the polar groups after the application of an electric field may 

differ from one to another leading to a series of Debye relaxation processes [132]. However, non-

interacting relaxation of different polar groups can hardly be seen in solid material like pressboard. 

Thus, this research proposes new philosophy to characterise the extended Debye type relaxation 

processes in pressboard insulation from the perspective of hierarchical semi crystalline structural 

organisation of cellulose.  
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Cellulose has organisational hierarchy under a microscopic view as shown in Figure 6.5 (b), i.e. 

small elementary fibrils are embedded within larger units called bundles, which are themselves 

embedded in even larger units called fibres. Ultimately, layers of fibres are embedded in cellulose 

paper and layers of cellulose paper embedded in pressboard. Therefore, one can assume that the 

separation of ions resides in amorphous regions due to an external electric field charging the 

crystalline amorphous interfaces at different levels of the organisational hierarchy. Dipoles induced 

by charging of crystalline surfaces physically separated by crystalline regions. Thereby, relaxation 

of such dipoles can be considered as non-interaction type dipole moment. This behaviour results in 

a series of Debye relaxation processes and their time constants are decided by the size scale of 

geometrical hierarchy. It suggests that charge separation in a coarse level of geometry such as in 

fibre and paper layer has large time constants. Moreover, separation of charge over long distance is 

difficult as the number of charge transport paths decreases with distance. Electrically this behaviour 

can be modelled by selecting a high resistance value for the R-C branches, which possess high 

relaxation time constants. Therefore, this research proposes that extended Debye approach is a good 

way to characterise the depolarisation current behaviour of oil impregnated pressboard insulation.  

It has been reported that dielectric response function of a wide range of polymeric and glass 

substances obey the Williams-Watts polarisation stretch exponential decay function given in 

eq (6.25). Thereby, it is known as a “universal” model of dielectric response function. 

 ( ) exp (1/ )
t

f t s

        
  (6.25) 

Where γ is a constant in the range 0-1 and τ is the time constant of the particular relaxation process. 

Michel et al [240] have assumed that there are wide varieties of polar groups in polymer molecules 

and their dipole moments remain frozen as the field is removed. Moreover, they have hypothesised 

that there are mobile defects in the system and a dipole is relaxed once a defect reaches a frozen 

dipole site. Here, diffusion of defects towards dipole sites is executed as a continuous time random 

walk. When a system has this type of dipole relaxation behaviour, its dielectric response function 

obeys Williams-Watts relaxation law.  

In the case of oil impregnated pressboard insulation, transport of charge mainly occurs along a 

percolation network of water molecules in a random manner. In the presence of an electric field, 

charges can accumulate at the dead ends of percolation paths (mostly crystalline surfaces) and acts 

as an ensemble of large dipoles [116]. Once the electric field is removed, these temporary dipoles 

are relaxing and contribute to depolarisation current. The relaxation process also occurs by charge 
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hopping along random paths in a way similar to defect movement described by Michel [240]. Thus, 

one can also assume that Williams-Watts function could be suitable for representing depolarisation 

current response data of oil impregnated pressboard insulation. Thus, this research proposed 

eq (6.26) to represent the depolarisation current of oil impregnated pressboard insulation. The 

Debye component in eq (6.26) represents the microscopic interfacial polarisation phenomenon in oil 

filled cavities. The contribution of Debye component may be significant only for samples with low 

moisture contents. 

 ( ) exp expdepol w db
w db

t t
I t A A


   

      
    

   (6.26) 

Where Aw and Adb represent the magnitude factors and τw and τdb denote the time constant of 

Williams-Watts and Debye relaxation processes respectively. 

6.3.2 Validation of applicability extended Debye model and William –Watts 

function. 

It can be seen in Figure 6.12 (a) that depolarisation current response of mineral oil impregnated 

pressboard insulation can be equivalent to five different Debye relaxation processes. The 

corresponding R and C model parameters can be found in Figure 6.12 (a).  

 

Figure 6.12. Comparison of modelled and measured depolarisation current of mineral oil 
impregnated PB at 2.4% of moisture (a) Extended Debye method (b) Williams-Watt function 

As shown in Figure 6.12(b), one can claim that Williams-Watts function based model defined in eq 

(6.26) also represents the measured depolarisation current of the sample with reasonable accuracy. 

It means that both extended Debye and Williams-Watts function based models can be used to 

interpret the time domain dielectric response data of oil impregnated pressboard insulation. 

However, applicability of these techniques for different types of oil impregnated pressboard at 
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different degrees of humidity will be discussed in Chapter 7. Moreover, correlation between model 

parameters and moisture content of the pressboard insulation will also be identified in Chapter 7.   

 Summary 

Different types of dielectric response modelling techniques and their appropriateness for analysing 

the dielectric response data of oil impregnated pressboard insulation have been discussed in this 

chapter.  Based on DH cluster framework theory, a new hierarchical circuit has been proposed to 

analyse the frequency dependence conduction and polarisation phenomena in oil impregnated 

pressboard insulation. Moreover, the proposed model has been validated for analysing the FDS of 

mineral oil impregnated pressboard insulation. The suitability of extended Debye model and 

Williams-Watts polarisation stretch exponential decay function for representing depolarisation 

current response of mineral oil impregnated pressboard insulation has also been validated. 

However, applicability of proposed time and frequency domain modelling techniques on different 

types of oil impregnated pressboard at different degrees of humidity is investigated in the next 

chapter. 

 



 

 

  

Influence of Moisture Ageing and 
Temperature on Dielectric Response 
Behaviour of Pressboard Insulation 

 Introduction 

Experimental results presented in Chapter 4 and previously published works clearly indicate that an 

increase of moisture content in the oil-paper system in a transformer accelerates the ageing process 

of paper insulation. Moreover, high moisture in paper insulation significantly reduces the dielectric 

strength of the insulation system. Moreover, it also causes gas bubbles to evolve in the case of 

sudden temperature rise due to an emergency overloading condition. Thereby, utilities have an 

incentive to estimate the amount of moisture in the solid insulation of transformers using a reliable 

tool with the aim to maximise the lifetime and minimise the risk of catastrophic failure.  

The equilibrium chart method is the conventional approach to estimate the moisture content in 

transformer solid insulation by measuring the water content in oil. However, this method has been 

proven to be erroroneous because transformers in service experience dynamic temperature variation 

which makes it virtually impossible to reach moisture equilibrium between oil and paper insulation. 

On the other hand, dielectric response based measurements namely FDS and PDC have been 

utilised as reliable tools for estimating the moisture content of solid insulation in mineral oil filled 

transformers. This is due to the fact that dielectric response of a transformer is not significantly 

influenced by moisture equilibrium between oil and paper insulation. However, ageing of oil-paper 

composite insulation and temperature largely influence the dielectric response behaviour of 

transformer insulation in a way similar to moisture. Therefore, good understanding of effects of 

ageing and temperature on dielectric response of transformer solid insulation is required to quantify 

the contribution of moisture. Otherwise, it may cause a large error in estimated moisture content in 

transformer solid insulation using dielectric response measurements. This issue has been well 

studied for mineral oil-paper insulation systems over the last two decades but not enough systematic 

studies have been performed for ester–paper insulation systems. In order to fill this knowledge gap, 
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this research investigates the dielectric response behaviour of ester impregnated pressboard 

insulation under varying moisture, ageing and temperature conditions. This chapter mainly focuses 

on frequency domain dielectric response measurement and PDC measurement will also be 

presented for some cases. 

In this chapter, dielectric response data of pressboard insulation impregnated with Shell Diala 

mineral oil, NEA, NEB and synthetic ester oils are presented. Dielectric response measurements on 

all four types of unaged pressboard samples in a range of moisture content from 0.3% to 8.8% have 

been performed at 35, 55 and 75ºC. This is intended to understand the influence of moisture and 

temperature on dielectric response behaviour of unaged solid insulation. In order to understand the 

collective effects of ageing and moisture, dielectric response measurements on pressboard 

insulation samples aged in NEA and NEB have also been performed. Furthermore, the results are 

compared with dielectric response data of mineral oil impregnated pressboard insulation with 

similar ageing conditions. This chapter analyses both time and frequency domain dielectric 

response data of pressboard insulation using corresponding mathematical and equivalent circuit 

models proposed in Chapter 6. It enhances the understanding of impact of diverse oil properties and 

moisture on conduction and polarisation effects in pressboard insulation.  At the end of this chapter, 

applicability of a commercially available FDS based moisture diagnostic tool on new and aged ester 

based insulation systems is investigated. The content of this chapter is mainly based on [218, 219, 

241]. 

 Experimental Procedure 

7.2.1 Preparation of pressboard sample with different moisture level 

A set of disc shaped pressboard samples with a diameter of 100 mm was prepared from high density 

pressboard insulation (1.2 gcm-3) sheets with a textured surface and thickness of 1.5 mm. Then 

vacuum drying and oil impregnation processes described in section 4.3 were used to prepare dry oil 

impregnated pressboard insulation samples from mineral oil, NEA, NEB and synthetic ester. 

However, in this case vacuum drying process was conducted at 95ºC for 48 hrs. In order to prepare 

samples with different moisture contents, dry oil impregnated pressboard samples were then 

inserted into five different humidity control chambers. The humidity inside the chambers was 

controlled at constant levels using saturated salt solutions prepared with Lithium bromide (LiBr), 

Lithium chloride (LiCl), Magnesium chloride (MgCl2), Magnesium nitrate (Mg(NO3)2) and Sodium 

Chloride(NaCl). In each container, pressboard samples were arranged in a vertical stack and they 

were separated by copper bars as shown in Figure 4.1 to allow moisture diffusion through both 

surfaces. This moisture diffusion process was conducted at 50 ºC for 28 days which is far greater 
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than the minimum time required for reaching equilibrium homogeneous moisture distribution in 

pressboard insulation with a thickness of 1.5 mm at any humidity condition. Equilibrium relative 

humidity for selected aqueous salt solution and expected equilibrium moisture content in pressboard 

at corresponding relative humidity are listed in Table 7.1.  In order to identify the unaged oil 

impregnated pressboard samples with different moisture level, the following ID format is used in 

this chapter.  

 

Figure 7.1. Name format for unaged PB samples 

Table 7.1. Equilibrium relative humidity of saturated salt solution and expected moisture level in 
PB insulation  

Salt solution Relative humidity @ 50 ºC 

(%)[242] 

Expected moisture level in 

pressboard (%) [150] 

LiBr 5.5±0.5 1.0-1.5 
LiCl 11.3±0.3 2.0-2.5 

MgCl2 30.5±0.2 3.7-4.2 
Mg(NO3)2 45.4±0.6 5.0-5.5 

NaCl 74.4±0.9 8.0-9.0 
 

7.2.2 Preparation of aged pressboard samples 

Another three sets of pressboard samples with initial moisture content of 2.2 %, 2.4 % and 2.0 % 

were aged in three different hermetically sealed stainless steel chambers which contained mineral 

oil, NEA and NEB respectively. The ageing process was performed at 120 ºC with a power 

transformer proportion of copper conducting bars and core steel. The ageing process was stopped at 

regular intervals of 28, 48, 62, and 84 days and samples were taken out for dielectric response 

analysis. Before taking a sample out, ageing chambers were kept at room temperature for 7 days 

and thereby, one can assume that the distribution of ageing by-products between oil and pressboard 

could have attained the equilibrium condition at the time of sampling. This research investigates the 

dielectric response of three categories of aged samples from each type of oil impregnated 

pressboard insulation such as: 
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 28, 48, 62, and 84 days aged pressboard samples taken from chambers at equilibrium 

condition (after keeping chambers for 7 days at room temperature)  

 Dry aged  samples: This set of samples was prepared by subjecting 28, 48 and 84 days aged 

samples to a vacuum drying process at 95-105 ºC for 12 hrs. This dry set of aged pressboard 

samples was analysed to discriminate the sole contribution of ageing on dielectric response 

behaviour of pressboard insulation.  

 Wet aged samples : In order to prepare wet aged samples, a set of 28 and 48 days aged 

pressboard samples was placed in a humidity chamber for 60 days at 45 ºC where relative 

humidity inside the chamber was controlled with MgCl2 (Magnesium Chloride) salt 

solution.    

In order to identify the aged pressboard samples with different moisture levels and ageing 

conditions, the following ID format is used in this chapter. 

 

Figure 7.2. Name format for aged PB samples  

7.2.3 Calculate the time required for moisture equilibrium in pressboard. 

This section presents the finite element based analysis used for calculating the minimum time (t0) 

required to reach homogeneous equilibrium moisture distribution in pressboard insulation under 

constant humidity and temperature environment. Moisture diffusion in pressboard is a conjunction 

of several mass transfer mechanisms including, capillary flow, Knudsen diffusion and moisture 

transfer due to heat and pressure gradient and external forces [243]. Moreover, it is influenced by 

sample thickness, temperature, number of active surfaces, etc. In this study, we consider one 

dimensional diffusion along thickness with two active surfaces. Therefore, moisture diffusion along 

the thickness of pressboard sample can be expressed with Fick’s second law as in eq (7.1) [244-

246].  

 ( , ) ( , )m x t m x t
D

t x x

        
  (7.1) 

Where m(x, t) is the moisture concentration and x is depth along thickness. D is diffusion coefficient 

which depends on local moisture concentration and temperature (T) as given in eq (7.2)  [244].  
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    (7.2) 

Where D0 (m2s-1) is the diffusion constant at reference temperature T0 (K). Ea and k are activation 

energy for the moisture diffusion process and dimensionless constant respectively. Eq (7.1) is a 

nonlinear second order differential equation, which can be solved by using several numerical 

methods suggested in literature namely finite difference, finite volume and Crank-Nicolson method. 

This research has used finite difference methods and considered the values given in [247]  for 

diffusion coefficient, coefficient (k) and activation energy of  mineral oil and ester oil impregnated 

pressboard.  

 

Figure 7.3. Simulated moisture concentration along thickness of PB sample under relative humidity 
of (a)-(b) 11 % (c)-(d) 31 %, (e)-(f) 47 %  
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Finite difference solution of eq (7.1) can be written as [248, 249] 

 
1 1

2 2
2 ( , ) 0

0 2
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       

 (7.3) 

Where Δt/Δx2 ≤ 0.5 and for this study Δt and Δx were selected as 10 ms and 0.15 mm respectively. 

In order to determine the time varying moisture content of pressboard samples under a constant 

relative humidity and temperature condition, eq (7.3) is implemented in MATLAB software with 

the following boundary conditions. 

 (0,0) ( ,0) %
( , ) 0          0,

cm C l m
m x t for x l

 
    

Where l is the thickness of the pressboard sample (1.5 mm) and mc is the final equilibrium moisture 

content in a pressboard sample for a corresponding relative humidity. Figure 7.3 shows the 

simulated results for both mineral and ester impregnated pressboard samples under a relative 

humidity of 11 % (a-b), 31 % (c-d) and 46 % (e-f). It can clearly be seen in Figure 7.3 that the value 

of t0 is inversely proportional to the relative humidity. Moreover, t0 of ester impregnated pressboard 

is almost double compared to that of mineral oil impregnated pressboard at similar relative 

humidity. The calculated values of t0 for a mineral oil impregnated pressboard sample under a 

constant relative humidity of 6 %, 11 %, 31 %, 46 %, 75 % at 50 ºC are approximately 8, 5, 3, 1.5 

and 0.5 days respectively. The corresponding values for an ester impregnated pressboard samples 

are 14, 8, 6, 3, and 1 days respectively. In this study a moisture diffusion process at all relative 

humidity levels has been performed over 28 days at 50 ºC. Thus, one could assume that there is no 

influence from inhomogeneous moisture distribution on dielectric response measurement results 

presented in this chapter.  

7.2.4 Measurement setup  

The three electrode test cell shown in Figure 7.4 was utilised to measure the dielectric response of 

oil impregnated pressboard samples. During measurements the test cell was filled with 350 ml of oil 

and a constant pressure of 2 MPa was applied on the sample using a hydraulically operated piston 

connected to the upper voltage electrode. In order to obtain FDS of a sample, the test cell was 

placed in a temperature controlled oven and was connected to a commercially available frequency 

domain dielectric response analyser (IDA 200/IDAX 350). Measurements were performed in a 

range of frequencies from 10-4-103 Hz at three different temperature points; 35 ᵒC, 55 ᵒC and 75 ᵒC 

under sinusoidal voltage excitation of 10 Vrms. 
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Figure 7.4. The test cell for dielectric response measurement on oil impregnated PB sample [123]  

In the case of PDC measurements, equipment developed by the researchers at the University of 

Queensland was used [119]. Two measurement voltages were used in this research for samples with 

low and high moisture contents; 500 V and 50 V respectively. Polarisation current was measured 

over 7500 s while depolarisation current was measured only for 5000 s. 

 Dielectric Response of Unaged Oil Impregnated Pressboard 

Insulation 

7.3.1 Investigate the impact of impregnated liquid on FDS 

Figure 7.5 (a) and (b)  respectively depict the change of real and imaginary permittivity of mineral, 

NEA, NEB and synthetic ester insulating oils impregnated dry pressboard samples with nearly the 

same low moisture content (0.6-0.8%) at 55 ºC over a frequency range of 10-4-103 Hz . It clearly 

shows that the general shape of the dielectric response of all three types of ester impregnated 

pressboard samples is qualitatively similar to that of the mineral oil impregnated pressboard sample. 

It implies that impregnation of pressboard with both natural and synthetic esters does not cause an 

extra relaxation.  

Figure 7.5 (a) shows that high frequency constant real permittivity values of ester impregnated 

pressboard samples which reflect the strength of dipole, electronic and quantum resonance type 

polarisation processes are greater than that of mineral oil impregnated pressboard samples. This 

behaviour is caused by the higher dielectric constant value of ester insulating oils. Moreover, an 

increase in real permittivity of ester impregnated pressboard specimens in the low frequency region 

is greater than that of mineral oil impregnated pressboard. Imaginary permittivity also follows a 

similar behaviour and it becomes noticeable when frequency is less than 10Hz for all types of ester 

impregnated samples. This behaviour reveals that both conduction and polarisation phenomena in 
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ester insulating oil impregnated pressboard are more prominent than in the mineral oil impregnated 

pressboard insulation. Moreover, the experimental results presented in [145] have also depicted 

similar behaviour confirming accuracy of our measurement.    

 

Figure 7.5. FDS of relatively dry unaged PB insulation samples (a) Real permittivity, (b) Imaginary 
permittivity 

 

Figure 7.6. (a) Measured conductivity of four different types of oils used in this study at 55 º C, 
(b) Scanning electron microscope (SEM) image of unaged PB insulation[250] 

It is generally accepted that conductivity of ester insulating oils is larger than mineral oil [27]. 

Figure 7.6 (a) clearly shows that measured conductivity of new synthetic ester possesses the highest 

values of 37 pS/m followed by NEA (27 pS/m) and NEB (19 pS/m). New mineral oil has the lowest 

conductivity and it is almost 10 and 15 times lower than that of NEA and synthetic ester oil 

respectively at the same temperature. Figure 7.6 (b) shows a SEM image of unaged pressboard 

insulation. It indicates that there are considerable volumes of free inter and intra fibre spaces in the 

pressboard structure which can be occupied by oil due to vacuum impregnation. Thus, one can 

assume that charge density in a high conductive ester oil impregnated pressboard sample is greater 

than that of a mineral oil impregnated sample. This phenomenon causes larger polarisation and 
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conduction effects in ester impregnated pressboard insulation than the mineral oil impregnated one. 

This hypothesis is confirmed by the fact that the real and imaginary permittivities of pressboard 

insulation at low frequencies follow the order of magnitude of conductivity of impregnated oil.  

7.3.2 Effect of moisture on frequency domain dielectric response  

Figure 7.7 compares the effect of moisture on frequency domain dielectric response of mineral and 

NEA oil impregnated pressboard insulation at 55 ºC. Figure 7.7 (a) and (c) respectively show the 

FDS of mineral and NEA impregnated samples with moisture content less than 3 % whereas that of 

samples with moisture contents greater than 3 % is presented in Figure 7.7 (b) and (d). 

 

Figure 7.7. FDS response of PB insulation at different moisture level (a) Mineral oil impregnated 
(0<m<3%), (b) Mineral oil impregnated (m> 3%), (c) NEA impregnated (0.5<m<3%), (d) NEA 
impregnated (m> 3%) : Thick lines represent the εʹʹ(ω) and broken lines represent the εʹ(ω) 

It is clearly seen that moisture largely influences the dielectric response by increasing the 

polarisation and conduction mechanisms of both types of oil impregnated pressboard insulation. 

Thus, increasing moisture content tends to shift the whole response along the frequency axis toward 

high frequency together with an upward magnitude shift. However, the general shape of dielectric 

response of both types of pressboard remains nearly the same with increasing moisture level. FDS 
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of samples impregnated with NEB and synthetic ester have depicted similar behaviour with 

increasing moisture level and those results are presented in Figure A.1 (Appendix A). 

One can clearly see a local minimum in the dielectric loss part (εʹʹ(ω)) at the high end of the 

frequency window, particularly when a sample has a moisture content less than 3 %. Moreover, it 

shows a tendency to increase with moisture and also shifts along the frequency axis towards high 

frequency. In particular, minimum in dielectric loss part of samples with moisture content greater 

than 3 % is not visible in the observed frequency range and it may occur above 1 kHz. This local 

minimum in the imaginary part of permittivity is caused by β relaxation due to the segmental 

vibration of cellulose molecular chains [235-237]. When the moisture level in a pressboard sample 

is high, the pronounced conduction and polarisation effects at low frequencies could mask the effect 

of β relaxation leading to no local minimum in the observed frequency spectra. Since the ɛʹ(ɷ) 

remains at a constant value at high frequencies, dielectric dissipation factor (tanδ) also has a local 

minimum similar to ɛʹʹ(ɷ) at the same frequency. Some scholars have established empirical 

relationships between the minimum value of tanδ and moisture content of paper insulation [124]. In 

the case of oil-paper insulation system of a transformer, properties of paper insulation dominate in 

the frequency range 101-103 Hz. Thus, one can claim that an increase in the minimum value of tanδ 

in FDS of a transformer also indicates the rise of moisture content in paper insulation [139].  

Figure 7.7 clearly depicts two other key features in frequency domain dielectric spectra of both 

types of samples such that a local peak in dielectric loss component in the mid frequency band 

followed by an upward dispersion in both real and imaginary permittivities towards low frequency. 

Peak in dielectric loss component is not clearly visible in the FDS of samples with moisture content 

greater than 3 %. However, dispersion in real permittivity of those samples indicates the presence of 

pronounced loss peak behaviour.  

In the case of pressboard insulation with low moisture contents, weak loss peak phenomenon shown 

in Figure 7.7 (a) and (c) arises mainly due to accumulation of charge at microscopic interfaces of oil 

filled cavities. Moreover, a layered structure of pressboard may also cause an interfacial 

polarisation leading to a peak in dielectric loss component [109]. However, this interfacial 

polarisation phenomenon could diminish with increasing moisture. On the other hand, intense loss 

peak is expected as a consequence of βwet relaxation originated by collective motion of water 

cellulose mixed phase dipole clusters in amorphous regions of pressboard insulation. Moreover, 

Figure 7.7 (b) and (d) confirm the existence of intense peak due to βwet relaxation in samples with 

moisture content greater than 3 % via the presence of dispersion in real part of permittivity of 

corresponding samples at high frequencies . 
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The upward dispersion of real and imaginary permittivity at low frequencies is named low 

frequency dispersion (LFD) by Jonscher [251] and quasi-DC (q-dc) conduction by Dissado and Hill 

[118]. It can be seen in Figure 7.7 (a) and (c) that both mineral and NEA impregnated pressboard 

samples with moisture content less than 3 % possess week q-dc effect giving relatively low increase 

to real permittivity at low frequencies. On the other hand, it is clearly seen in Figure 7.7 (b) and (d) 

that the q-dc process has fully developed in pressboard samples when their moisture content is 

greater than 3 %. In the case of a sample with nearly 5 % of moisture, both real and imaginary 

permittivities increase towards low frequency with a slope of nearly -1/decade over 3 frequency 

decades. This effect largely increases the value for εʹ(ω) at low frequencies such that εʹ(ω) of 

sample MINUP-5.2% and NEAUP-4.8% at 10-3Hz is 104 and 8*103 respectively. Figure A.1 (b) and 

(d) of Appendix A show that both NEB and synthetic ester impregnated pressboard insulation with 

moisture content of greater than 3 % also possess  similar behaviour at low frequencies. 

The q-dc effect of oil impregnated pressboard insulation is associated with the charge hopping 

along the percolation network of water molecules in the system. In the case of a charge percolation 

system, there are dead ends of percolation paths. In the presence of an electric field, charges can 

accumulate in these dead ends and act as a set of large dipoles [116]. The dead ends are not 

permanent and they have limited lifetimes. The lifetime of dead ends decreases with increasing 

moisture contents and subsequently leads to the increase of the average dipole length. When a 

system possesses this type of charge transport phenomenon, it can be expected to have a 

pronounced q-dc effect at lower frequencies such that its effect is extending to high frequency with 

increasing moisture. It is generally accepted that once moisture content reaches a value of 3%, a 

monolayer of water is formed in pressboard insulation [252]. Thus, one could assume that longer 

charge percolating paths exist in the pressboard insulation with moisture content greater than 3%. 

This could be the reason for the pronounced q-dc effects shown in Figure 7.7 (b) and (d). 

εʹʹ(ω) represents the collective effect of both conduction and dielectric losses. The contribution of 

conductivity to dielectric loss part is inversely proportional to frequency. Therefore, one could 

assume that an increase of dielectric loss part with moisture content, particularly in the low 

frequency region is also caused by the rise of DC conductivity. It is clear that the increase of 

moisture content leads to increase the number of charge carrier transport paths, which are extended 

over the entire sample size and subsequently increases the apparent DC conductivity. Moreover, 

high dielectric constant of water enhances the dissociation of the ionic impurities residing in the 

system and water molecules themselves dissociate into hydroxyl (OH-) and hydronium ions (H3O+) 

[121]. In this way, an increase of moisture content results in increasing charge carrier density in the 
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system. This mechanism may also give rise to DC conductivity of  oil impregnated pressboard 

insulation  [121].  

7.3.3 Effect of moisture on time domain dielectric response 

Figure 7.8 (a) and (b) depict the normalised PDC response data of mineral and NEA impregnated 

pressboard insulation at two different moisture levels. It is clear that both polarisation and 

depolarisation currents increase with moisture content. This behaviour is caused by an increase in 

both conduction and polarisation phenomena as explained with FDS data. One notable fact that can 

be seen in Figure 7.8 (a) and (b) is that the measured polarisation current is significantly higher than 

the depolarisation current for all cases. It means that conduction effect mainly characterises the 

measured polarisation current responses leading to a nearly time independent polarisation current as 

shown in Figure 7.8. Pressboard samples impregnated with NEB and synthetic ester have depicted 

similar behaviour and those results are presented in Figure A.2. 

 

Figure 7.8. PDC response of PB insulation at 55ºC (a) Mineral oil impregnated, (b) NEA 
impregnated, (c) Harmon approximation for mineral oil impregnated, (d) Harmon approximation  
for NEA impregnated 
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Time domain dielectric response data can be mapped into the frequency domain using so-called 

Harmon approximation [117]. Thus, an imaginary part of dielectric susceptibility χʹʹ(ω) can be 

expressed in terms of measured depolarisation current using eq (7.4). 
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DC conductivity (σ) can be derived using PDC data and eq (3.18). Thereby, imaginary part of 

permittivity in the frequency domain can be calculated using eq (7.5). 
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Due to practical limitations, polarisation and depolarisation current data has only been recorded for 

times greater than 1 s. Thus, Hamon approximation can only be used to derive data in low 

frequencies (< 1 Hz). Figure 7.8 (c) and (d) clearly show that measured frequency domain dielectric 

loss part show satisfactory fitting curve with modelled data using Hamon approximation in low 

frequency region. It confirms that both time domain and frequency domain dielectric response data 

provides the same information with respect to polarisation and conduction phenomena of material 

under investigation. Thereby, this study mainly uses frequency domain measurement which 

characterises polarisation phenomena at both high and low frequencies. 

7.3.4 Effect of moisture on frequency dependent AC conductivity  

Figure 7.9 represents the measured conductivity vs. frequency of oil impregnated pressboard 

insulation at different moisture levels. We can see that frequency dependency of conductivity is 

stronger in the sample with low moisture content but becomes much less at high humidity. An 

almost similar behaviour has been observed in conductivity spectra of NEB and synthetic ester 

impregnated pressboard insulation (refer Figure A.3, Appendix A). 

The main feature that can be identified in conductivity spectra is that conductivity remains constant 

at low frequencies and then continues to increase with a fractional power law of frequency. This is a 

typical feature of a system of charge carriers hopping within a disordered distribution of sites such 

as humid cellulose [116]. This behaviour at low frequencies can be explained by an equation in the 

form of eq (7.6). 

 ( ) (1 ( ) )dc c         (7.6) 
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Where, σdc is the frequency independent conductivity at low frequencies. It represents the collective 

effect of both DC conduction and q-dc effects. The influence of q-dc effect on σdc is significant 

when a sample contains a moisture level of greater than 3 %. β has values in the range 0-1. In this 

case, we assume 1/τc (cut-off frequency) is the frequency which the loss peak relaxation process 

starts to be dominant over the conduction effects and it is supposed to increase with moisture.  

 

Figure 7.9. Conductivity spectra of PB with different moisture contents at 55ºC (a) Mineral oil 
impregnated, (b) NEA impregnated(thick line present the modelled data) 

Parameters; σdc, β and τc for conductivity spectra of all types of oil impregnated pressboard 

insulation have been selected using the nonlinear least squares technique in MATLAB environment 

with R2>0.95. Continuous lines in Figure 7.9 show that the proposed model yields a satisfying 

fitting curve of the measured response. Model parameters have been calculated for conductivity 

spectra measured at three different temperature points; 35 ᵒC, 55 ᵒC and 75 ᵒC.  

Table 7.2. Selected model parameters of conductivity spectra: mineral oil impregnated PB at 55 ºC 

Sample ID σdc(pS/m) 1/τc (rad/s) β 

MINUP-0.3% 2.2x10-2 4.5x10-4 0.61 

MINUP-0.8% 4.5X10-2 6.6x10-4 0.63 

MINUP-1.6% 8.0x10-1 2.5x10-2 0.6 

MINUP-2.4% 8.1 7.6x10-1 0.6 

MINUP-3.8% 5.0 x102 2.0x101 0.5 

MINUP-5.2% 9.9 x103 3.3x102 0.53 

MINUP-8.8% 1.04x106 5.2x104 0.52 
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Table 7.3 Selected model parameters of conductivity spectra: NEA impregnated PB at 55 ºC 

Sample ID σdc(pS/m) 1/τc (rad/s) β 

NEAUP-0.6% 5.0x10-2 1.44x10-3 0.68 

NEAUP-0.7% 1.47x10-1 3.24x10-3 0.69 

NEAUP-1.6% 2.5 7.7x10-2 0.6 

NEAUP-2.1% 1.25x101 4.5x10-1 0.64 

NEAUP-2.9% 4.7 x101 1.3 0.5 

NEAUP-3.8% 4.5 x102 17.2x101 0.53 

NEAUP-4.8% 9.6x103 1.6x102 0.52 

NEAUP-8.3% 5.7x105 5.5x103 0.52 

 

One can clearly see in Table 7.2 and Table 7.3 (Tables A.1 and A.2) that σdc and cut-off frequency 

possess clear increasing trends with moisture indicating their applicability to assess the moisture in 

pressboard insulation. Thus, identifying the relationship between these two parameters and moisture 

content is needed. 

7.3.5 Relationship between σdc and moisture content  

It is generally accepted that a monolayer of water molecules is formed in pressboard insulation 

when its moisture content reaches 3 % [122]. Moreover, extended phase of water which behaves 

like bulk water is established in pressboard insulation when its moisture content rises above the 

limit of 6 % [252]. When the moisture content is less than 3%, water molecules in the system are 

spatially distributed and physically isolated. Thus, this research claims that dependence of σdc on 

moisture content changes at these two critical moisture levels and the exponential relationship given 

in eq (7.7) is proposed to correlate moisture content and σdc. 
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Where, ψ is an arbitrary constant which depends on impregnated liquids and ageing condition of 

pressboard insulation. ζ is  exponential factor which depends on the charge transport mechanism of 

the system. Figure 7.10 presents a comparison between dependence of experimentally obtained 

frequency independent conductivity (σdc) on the moisture content with the one modelled using 

eq (7.7). It is clearly apparent that measured conductivity data shows a good fit with modelled data 

for corresponding ψ and ζ values given in Table 7.4. 
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Figure 7.10. Measured and modelled conductivity vs. moisture content of PB (a) Mineral oil 
impregnated, (b) NEA impregnated, (c) NEB impregnated, (d) synthetic ester impregnated 

Table 7.4. Selected parameters for exponential model of conductivity vs. moisture content (m) 

Type of oil 
35 ºC 55 ºC 75 ºC 

ψ ζ ψ ζ ψ ζ 

Mineral 8.0x10-4 11.5 6.0x10-3 11.5 4.0x10-2 11.5 

NEA 1.4x10-3 11.5 1.14x10-2 11.5 7.4x10-2 11.5 

NEB 1.4x10-3 11.5 1.14x10-2 11.5 7.4x10-2 11.5 

Synthetic ester 2.5x10-3 11.5 1.6x10-2 11.5 7.5x10-2 11.5 

 

A noticeable fact is that the same relationship is possessed by both types of NE impregnated 

pressboard insulation. In addition, the values of ζ listed in Table 7.4 confirm that it is no longer an 

unknown parameter and remains at a constant value of 11.5. The effect of diverse properties of oils 
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on low frequency conductivity is reflected by parameter ψ. The value of ψ corresponding to 

synthetic ester impregnated pressboard insulation is the highest followed by NE and mineral oil 

impregnated pressboard respectively. It indicates that for a similar moisture content synthetic ester 

impregnated pressboard has the highest dielectric and conduction loss in low frequency region 

whereas NE impregnated pressboard possesses moderate behaviour. Moreover, one could also 

suggest that values of ψ presented in Table 7.4 follow the order of magnitude of conductivity of 

impregnated oil. One deficiency of this model is that it indicates the impact of diverse oil properties 

on σdc is significant even for a sample with very high moisture content. However, this issue will not 

significantly influence the real time application of this model because the moisture content of solid 

insulation of transformers is typically in the range of 0.5-4%. 

Temperature dependence of pre-exponential factor ψ can be explained with a so-called single 

Arrhenius type eq (7.8) where T is absolute temperature and T0 is reference temperature (298 K). 

Eψa is activation energy corresponding to low-frequency conductivity. Thereby, the generalised 

formula as given in eq (7.9) can be utilised to characterise the dependence of conductivity on both 

moisture (m) and temperature (T). 
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Figure 7.11. Temperature dependence of ψ 

The activation energy Eψa can be calculated by multiplying the gradient of log (ψ) vs. reciprocal of 

absolute temperature plot and Boltzmann constant.  As shown in Figure 7.11, for mineral oil and 
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NE impregnated pressboard insulation, the activation energies found are 0.90 eV and 0.91 eV 

respectively and they show a good match with the values given in [124, 253]. On the other hand, 

synthetic ester impregnated pressboard insulation possesses activation energy of 0.79 eV indicating 

its less temperature dependence behaviour.  

In the case of a transformer insulation system, low frequency conductivity of paper insulation can 

easily be derived from its FDS data. Thus, eq (7.9) with selected parameters in this research can be 

utilised to estimate moisture in paper insulation of ester and mineral oil filled transformers. 

7.3.6 Relationship between moisture content and cut-off frequency 

This research has identified that the relationship between cut off frequency (1/τc) and moisture 

content can also be presented with a similar form of equation which is used to explain dependence 

of σdc on moisture content in pressboard insulation.  
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Where, 1/τc is the cut off frequency of AC conductivity response. ψc and ζc stand for arbitrary 

constants associated with the relationship of cut off frequency and moisture content. 

 

Figure 7.12. Measured and modelled cut off frequency conductivity spectra vs. moisture content of 
PB (a) Mineral oil impregnated (b) NEA impregnated 

Figure 7.12 shows that calculated cut off frequency data from experimental conductivity spectra 

shows a good fit with that of modelled data using parameter values given in Table 7.5 for mineral 

oil and NEA impregnated pressboard insulation. Comparison of modelled and experimental data of 

NEB and synthetic ester impregnated pressboard insulation is presented in Figure A.4 (refer 
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Appendix A). In this case, exponential factor ζc possesses a value of 13.5 for mineral oil 

impregnated pressboard whereas that of all other types of pressboard is 11.5.  

Table 7.5. Selected parameters for exponential model of cut off frequency vs. moisture 

Type of oil 
35 ºC 55 ºC 75 ºC 

ψc ζc ψc ζc ψc ζc 

Mineral 8.0x10-6 13.5 7.0x10-5 13.5 5.2x10-4 13.5 

NEA 2.0x10-5 11.5 2.2x10-4 11.5 2.2x10-3 11.5 

NEB 2.0x10-5 11.5 2.2x10-4 11.5 2.2x10-3 11.5 

Synthetic ester 4.4x10-5 11.5 2.5x10-4 11.5 1.5x10-2 11.5 

 

A similar method which applied for conductivity model was used to calculate the activation energy 

corresponding to ψ factor of cut off frequency model. As shown in Figure 7.13, for mineral oil and 

NE impregnated pressboard insulation, the activation energy value found is 1 eV and that of for 

synthetic ester impregnated pressboard is 0.83 eV.  

 

Figure 7.13 Temperature dependence of ψc 

The discrimination of the dielectric response of paper insulation from the FDS of oil-paper 

composite insulation of a transformer is difficult. Thus, practical use of established relationships 

between cut off frequency, moisture content and temperature cannot be confirmed in this research.   



Chapter 7: Influence of moisture ageing and temperature on dielectric response behaviour of press board  

 
   166 | P a g e  

 Quantitative Determination of Polarisation and Conduction 

Phenomena in Oil Impregnated Pressboard Insulation 

7.4.1 Through modelling of FDS data  

In order to quantify and discriminate the influence of moisture and diverse oil properties on 

different relaxation and DC conduction processes in oil impregnated pressboard insulation, this 

research models the observed frequency domain spectra using the hierarchical equivalent circuit 

proposed in section 6.2.5 (refer Figure 6.8). The equivalent circuit mainly consists of two dispersive 

capacitive elements connected in series. These capacitive elements stand for DH loss peak and DH 

q-dc behaviour. Parameters of the proposed equivalent circuit model have been derived using a 

MATLAB based optimization routine. Calculated circuit parameters for mineral and ester 

impregnated pressboard insulation at different levels of moisture content are presented in Table 7.6.  

Table 7.6. Selected equivalent circuit model parameters for FDS response at 55ºC 

Sample ID DH loss peak DH q-dc σ1 

pS/m 

σ2 

Ps/m Xp ωp n1 M Xqdc ωc n2 p ε∞ 

MINUP−0.3% 0.35 0.12 0.35 0.1 1.4 0.08 0.90 0.55 4.3 0.001 0.03 
MINUP−0.8% 0.55 0.70 0.35 0.1 1.9 0.15 0.90 0.55 4.5 0.002 0.6 
MINUP−1.6% 1.05 0.30 0.35 0.1 3.8 0.2 0.90 0.55 5.2 0.08 0.9 
MINUP−2.4% 0.18 1.10 0.60 0.1 5.2 0.32 0.90 0.55 5.3 3.3 1.3 
MINUP−3.8% 1.70 2.40 0.60 0.1 146 12.7 0.75 0.90 5.7 80 95 
MINUP−5.2% 3.20 21.0 0.60 0.1 223 19.0 0.65 0.90 5.8 1400 1800 
NEAUP−0.6% 1.25 0.16 0.30 0.1 3.8 0.02 0.90 0.55 4.8 0.003  0.15 
NEAUP−0.7% 1.40 0.20 0.30 0.1 4.0 0.05 0.90 0.55 5.2 0.01 0.75 
NEAUP−1.6% 1.05 0.32 0.30 0.1 6.6 0.08 0.90 0.55 5.2 0.4 1.5 
NEAUP−2.1% 0.30 0.80 0.60 0.1 10.4 0.16 0.90 0.55 5.3 1.8 4.2 
NEAUP−3.8% 1.70 1.60 0.60 0.1 151 0.64 0.75 0.90 5.8 75 90 
NEAUP−4.8% 5.40 15.0 0.60 0.1 230 12.7 0.65 0.90 5.8 1200 1900 
NEBUP−0.8% 1.40 0.32 0.35 0.1 3.8 0.05 0.90 0.55 4.8 0.01 0.7 
NEBUP−1.1% 1.70 0.45 0.35 0.1 5.7 0.13 0.90 0.55 5.2 0.05 2 
NEBUP−1.6% 1.00 0.80 0.35 0.1 7.6 0.15 0.90 0.55 5.2 0.22 2.2 
NEBUP−2.7% 0.30 0.95 0.60 0.1 10.4 0.19 0.90 0.55 5.3 3 5 
NEBUP−3.8% 1.70 1.90 0.60 0.1 151 0.31 0.75 0.90 5.8 85 140 
NEBUP−5.4% 5.40 23.8 0.60 0.1 291 19.0 0.65 0.90 5.8 2000 3500 
SEUP−0.6% 2.00 0.24 0.35 0.1 5.7 0.03 0.90 0.55 4.8 0.015 0.9 
SEUP−1% 3.90 0.95 0.32 0.1 10.4 0.13 0.90 0.55 5.2 0.7 10 
SEUP−3% 4.80 1.30 0.40 0.1 63 0.32 0.90 0.60 5.8 8 18 
SEUP−3.8% 1.70 1.60 0.60 0.1 156 2.40 0.75 0.90 5.8 80 95 
SEUP−5.3% 4.50 16.0 0.60 0.1 264 8.00 0.65 0.90 5.8 1800 2000 

 

Xp and Xqdc stand for magnitude of loss peak and q-dc behaviour respectively. Estimation of 

accurate power law exponents and amplitude factors is extremely dependent on the selection of 
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appropriate initial values for those parameters. The initial parameter values have been selected to 

better match with the physical condition of corresponding pressboard specimens. 

 

Figure 7.14. Comparison of modelled and measured FDS spectra at 55ºC (a) Mineral oil 
impregnated, (b) NEA impregnated, (c) NEB impregnated (d), synthetic ester impregnated 

Figure 7.14 presents the comparison of experimental and modelled dielectric response data of all 

four types of pressboard insulation samples for three different moisture levels. It is clear that the 

FDS of the proposed equivalent circuits yields a satisfying fitting curve of the measured response 

throughout the observed frequency range. It confirms the validity of proposed cluster based physical 

interpretation for dielectric response data of all types of oil impregnated pressboard insulation. It 

means that correlated motion of a group of electric dipoles in a constraint geometrical domain 

called cluster give loss peak behaviour in high frequency. This is followed by q-dc type relaxation 

due to effective charge transport between charge clusters through percolation bond created by 

spatially distributed matrix of water molecules in the system. As explained in section 6.2.5, charge 

dipole clusters could be either oil or water associated. It discusses the physical significance of 

model parameters with respect to moisture contents and diverse oil properties in the proceeding 

section. 
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Calculated values of ε∞ show an increasing trend with moisture for all types of oil impregnated 

pressboard insulation. This behaviour is caused by dipole polarisation of water molecules at high 

frequencies. ε∞ of mineral oil impregnated pressboard is varying in the range 4.3-5.8 whilst that of 

ester impregnated pressboard is changing in the range of 4.8 to 5.8. 

As shown in Table 7.6, the estimated value of p possesses a value of 0.55, when a pressboard 

sample contains a moisture level of less than 3%. This somewhat deviates from the value of p 

expected for a typical system with hydrogen bonds, which is in the range of 0.8-1 [115, 254]. In oil 

impregnated pressboard at lower frequencies, charge transport may occur between charge clusters 

associated with oil cavities through a matrix of narrow oil filled channels giving a value of p 

approaching unity. In contrast, charge hopping will occur between spatially distributed water 

molecules in a diffusive manner when a sample contains a low moisture content giving weak q-dc 

dispersion with p close to 0.5. Therefore, based on the modelling results it is confirmed that the 

dominant charge transport mechanism between oil based clusters at a low moisture content is that of 

the diffusive charge hopping between spatially distributed water molecules. Moreover, charge 

transport mechanism is independent of the diverse properties of impregnated oil. 

The parameter Xqdc which represents the strength of q-dc relaxation is significantly lower for all 

samples with a moisture content of less than 3%. Moreover, the value of exponent n2 always 

remains at 0.9 indicating weak dispersion in both real and imaginary permittivities above the 

characteristic frequency. Thus, one can claim that oil dependent charge clusters govern the 

dielectric response behaviour of pressboard insulation with low moisture content (<3%) giving 

weak dispersion to dielectric constant regardless of type of impregnated oil. 

On the other hand, it is clearly seen in Table 7.6 that exponential factor p takes a value of 0.9 for all 

cases where pressboard specimens are containing moisture content greater than 3%. Furthermore, 

Xqdc is several orders of magnitude greater than that of pressboard samples with low moisture level 

(<3%) and value of n2 reaches 0.6 when moisture content reaches about 5%. All four types of 

pressboard insulation with a moisture content of greater than 3% follow a similar trend indicating a 

pronounced q-dc effect. Thus, one could claim that if both real and imaginary permittivities in 

dielectric response of an oil-paper system increase toward low frequencies with nearly -0.9 

gradients, the paper insulation in that system has a moisture content of greater than 3%. 

Modelling results indicate that characteristic frequency of q-dc process (ωc Hz) increases with 

moisture content. In the case of the q-dc process, ωc denotes the rate of charge escape from the 

cluster and charge transfer to nearby clusters through weakly conducting connections (bonds of a 
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percolation model matrix) [227]. It is accepted that the principal charge transportation mechanism 

in cellulose is the proton hopping along a percolation network of water molecules and CHOH 

groups in cellulose polymer. Therefore, it is clear that an increase of moisture content results in a 

growing number of charge transport routes, which provide support to charge transition between and 

within the clusters shifting the q-dc response towards high frequencies.   

It can clearly be seen in Table 7.6 that when water dependent charge clusters dominate, pressboard 

possesses stronger and broader loss peak than in the case when oil dependent clusters dominate. It 

has been noticed that loss peak relaxation process is also shifted towards higher frequencies with an 

increase of moisture content. Calculated data shown in Table 7.6 provides evidence for this 

behaviour such that characteristic frequencies of DH loss peak (ωp Hz) show a tendency to increase 

with moisture content. This effect is more significant when the pressboard holds moisture content 

higher than 3%. Increase of moisture results in swelling of the pressboard and decreases the spatial 

hindrance of microscopic motion of the water–cellulose mixed phase clusters. This may be one 

possible reason for the shifting of the DH loss peak toward higher frequencies with moisture. 

It can be seen in Table 7.6 that Xp, Xqdc, σ1 and σ2 of pressboard samples NEAUP-0.7%, NEBUP-

0.8% and SEUP-0.6% are higher than those of pressboard specimen MINUP-0.8%. However, they 

have almost similar moisture contents. This implies that the high conductivity and moisture 

solubility of ester boost the free and bound charge carrier concentration in the system leading to 

high conductive and polarisation effects. This hypothesis is confirmed by the modelled parameters 

of samples MINUP-1.6%, NEAUP-1.6% and NEBUP-1.6%. Moreover, the model parameters 

indicate that the conduction and polarisation effects in sample NEAUP-2.1% are stronger than that 

of sample MINUP-2.4%. On the other hand, model parameters (Xp, Xqdc, σ1 and σ2) which reflect the 

strength of polarisation and conduction phenomena of specimens MINUP-3.8%, NEAUP-3.8%, 

NEBUP-3.8% and SEUP-3.8% are in similar order of magnitudes. It implies that when water 

oriented clusters dominate in pressboard, the effect of diverse properties of impregnated oil on 

dielectric response behaviour is not significant. Moreover, in such a condition the amount of water 

is the main factor which determines the dielectric response behaviour of pressboard insulation. This 

hypothesis is confirmed by the facts that parameters Xqdc, σ1 and σ2 of samples MINUP-5.2%, 

NEAUP-4.8%, NEBUP-5.4% and SEUP-5.3% nearly follows the order of moisture content in those 

samples. 

This study calculates the effective DC conductivity of pressboard insulation using model parameters 

σ1 and σ2 presented in Table 7.6. Effective DC conductivity is 1/(1/σ2+1/σ2), because these two 

elements are electrically in series [255]. Figure 7.15 manifests that effective DC conductivity 
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exponentially increases with moisture content. The magnitude of effective DC conductivity is 

governed by three factors; mobile charge density, charge mobility and the number of effective 

charge transport paths across the samples. Here we hypothesise that the effect of mobile charge 

density is dominant when a sample contains low moisture level and thereby, effective DC 

conductivity of ester impregnated pressboard should be higher than that of mineral oil impregnated 

pressboard. We propose that the number of charge transport paths across a sample is solely 

determined by the concentration of water and moreover, charge mobility is inversely proportional to 

the distance between water molecules [253]. Thus, DC conductivity for all type of oil impregnated 

pressboard insulation with higher moisture level should be in a similar range. It is clear that the 

experimental results shown in Figure 7.15 confirm our physical interpretation corresponding to 

effective DC conductivity. 

 

Figure 7.15. Variation of effective DC conductivity with moisture at 55ºC  

In estimating moisture content in the solid insulation of a transformer, low frequency behaviour of 

dielectric response of pressboard insulation is very important. The effect of DC conductivity on 

dielectric response is dominant at low frequencies because the contribution of DC conductivity to 

dielectric loss is inversely proportional to frequency. An exponential relationship between effective 

DC conductivity and moisture content of mineral oil impregnated pressboard has been deduced. 

Figure 7.15 shows that if one uses the proposed model it overestimates the moisture content in ester 

impregnated pressboard insulation, particularly when a sample contains low moisture content. 

However, it clearly shows that the error in the estimated moisture content is in the range between 

0% and +0.5% for all cases except SEUP-1%. It means the DC conductivity model given in Figure 

7.15 can be applied on ester based insulation systems for assessing the moisture content in paper 

insulation.   
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7.4.2 Modelling the depolarisation current response data 

Figure 7.16 shows that depolarisation current responses of all types of oil impregnated pressboard 

insulation with moisture content in the range 2.1- 3 % can be modelled with five different Debye 

type relaxation processes. In addition, depolarisation current responses of all types of samples with 

moisture content of 3.8 % have also been modelled with a similar number of Debye functions. A 

comparison of modelled and measured data of those samples is presented in Figure A.5 (Appendix 

A). The Debye relaxation with the smallest time constant represents the microscopic interfacial 

polarisation phenomenon in oil filled cavities. Thus, it is clear that the other four Debye processes 

represent the relaxation of four different groups of dipoles in pressboard insulation. As explained in 

section 6.3, one could assume that four different dipole groups are produced by blocking of mobile 

charges at crystalline interfaces of four different size scale of pressboard structure.  

 

Figure 7.16. Comparison of experimental and the modelled depolarisation current with extended 
Debye methods (a) MINUP-2.4%, (b) NEAUP-2.1%, (c) NEBUP-2.7%, (d) SEUP-3% at 55ºC 

Since depolarisation current response is a collection of Debye processes, its behaviour can be 

represented using a RC equivalent circuit as shown in Figure 3.8. The physical significance of the 
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RC equivalent circuit parameters with respect to moisture content of pressboard samples will be 

discussed in the proceeding section. 

It can be seen in Figure 7.17 that irrespective of the type of impregnated oils, the resistance values 

of all the branches markedly decrease with the increase of moisture while capacitances show the 

opposite behaviour. It means that an increase of moisture reduces the resistance to charge transport 

in pressboard insulation and thereby large dipoles are produced by separation of charge over a long 

distance. Branches 1 and 2 which have the largest and second largest time constants (R*C) 

represent the long time depolarisation current. Thus, the behaviour of R and C elements of those 

two branches is very important, because in the case of a transformer long-time depolarisation 

current is determined by the properties of paper insulation while short term depolarisation current is 

determined by the interfacial polarisation phenomenon at the oil-paper interface. Change of circuit 

parameters of branches 1 and 2 shows good consistency with moisture regardless of type of 

impregnated oil. Therefore, one can clearly claim that decrease of resistance value and increase of 

capacitance corresponds to long-term depolarisation current of any type of oil filled transformer 

indicating an increase of moisture in paper insulation and vice-versa. However, more research will 

be required for discriminating the effect of moisture on R and C elements of aged oil-paper systems. 

 

Figure 7.17. Equivalent circuit model parameters (a) Resistance (b) capacitance 

This research hypothesises that relaxation of induced temporary dipoles in the solid phase of oil 

impregnated pressboard insulation may follow Williams-Watts stretched exponential function. 

Thereby, depolarisation current response can be represented using eq (6.26) where it is addition of a 

Debye and William-watt function. The Debye component represents the microscopic interfacial 

polarisation phenomenon in oil filled cavities. 

It can be seen in Figure 7.18 that depolarisation current response of all types of oil impregnated 

pressboard insulation can be accurately modelled using eq (6.26). A comparison of modelled and 
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measured depolarisation current responses for samples MINUP-3.8%, NEAUP-3.8%, NEBUP-

3.8% and SEUP-3.8% is presented in Figure A.6 (Appendix A). Calculated model parameters for all 

types of pressboard insulation at two different moisture levels have been listed in Table 7.7. 

 

Figure 7.18 Comparison of experimental depolarisation current response with the modelled 
response using Williams-Watts function (a) MINUP-2.4%, (b) NEAUP-2.1%, (c) NEBUP-2.7%, 
(d) SEUP-3% 

The calculated model parameters indicate that the contribution of a Debye component to the 

depolarisation current is insignificant when the pressboard insulation has a higher moisture level. 

These results confirm that dielectric relaxation phenomena in solid phase of oil impregnated 

pressboard mainly follow the Williams-Watts function. The parameters γ and τw of Williams-Watts 

function significantly change with moisture indicating their applicability in moisture estimation in 

transformer solid insulation. The variation of γ with moisture shows good consistency and less 

dependency on diverse oil properties. It means that value of γ nearly follows the magnitude of 

moisture content in pressboard insulation. 
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Table 7.7. Modelled parameters to represent depolarisation current with Williams-Watts function 

Sample ID Parameters of Williams-Watt function Parameters of Debye function 

Aw(pA) τw(s) γ Adb(pA) τdb(s) 

MINUP-2.4% 7.8 0.5 0.14 17.3 4.6 
MINUP-3.8% 472 769 0.3 2.5 0.002 
NEAUP-2.1% 8.9 0.5 0.15 23.3 4.5 
NEAUP-3.8% 318 588 0.3 2.5 0.002 
NEBUP-2.7% 8.2 5 0.16 18.3 4.5 
NEBUP-3.8% 432 833 0.3 2.5 0.002 
SEUP-3% 24.5 142 0.2 22 3.5 
SEUP-3.8% 518 416 0.3 5 0.002 

 

 Impact of Ageing on Dielectric Response Behaviour 

Figure 7.19 presents the comparison between frequency domain dielectric response of unaged and 

aged dry pressboard insulation which are impregnated with mineral oil, NEA and NEB. Moisture 

contents in aged pressboard samples are nearly similar to that of in unaged samples. Thereby, one 

could attribute any changes in dielectric response pattern in aged pressboard to ageing by-products 

present in the system. Table 7.8 depicts a comparison of DP values of pressboard insulation at 

different ageing stages. 

Table 7.8. Comparison of DP value of PB aged in different oils 

Ageing time (days) DP value 

 Mineral NEA NEB 

0 1200 1200 1200 
28 495 640 625 
48 350 481 432 
84 298 458 338 

 

Figure 7.19 shows that FDS responses of all three types of aged samples qualitatively resemble 

unaged dry pressboard such that it can be identified by two major relaxation processes in the 

frequency range 10-4-103 Hz. They are loss peak due to charges blocking at the microscopic 

interfaces of oil filled cavities and q-dc effect due to the presence of thermally activated hopping 

charge carriers in the system [251].  
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Figure 7.19. Comparison of the impact of ageing on FDS of PB insulation (a)-(b) aged in mineral 
oil (c)-(d) aged in NEA, (e)-(f) aged in NEB 

Figure 7.19 (a) and (b) indicate that the complex permittivity of mineral oil impregnated pressboard 

shows a clear tendency to increase with ageing particularly at low frequencies, whereas local 

maxima in loss part of the sample MINAP28-0.5% has diminished. This behaviour is possibly due 

to evaporating of mineral oil in that specimen during the vacuum drying process, since mineral oil 

has a relatively low boiling point. However, with further ageing, radicals are formed on the cellulose 

surface and facilitates to chemically attach low molecular weight oil molecules [177] avoiding them 
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from evaporating during the process of vacuum drying. Thus, a pronounced loss peak behaviour is 

visible in FDS of samples MINAP48-0.8% and MINAP84-0.6%. 

Figure 7.19 (c)-(f) shows that oil dependent loss peak of both types of NE impregnated samples 

becomes prominent with ageing. Moreover, the increase of imaginary and real permittivity at low 

frequencies which represents the strength of q-dc and DC conduction effects in combination is of 

paramount significance in pressboard insulation aged in NE oils compared to that of pressboard 

insulation aged in mineral oil. If one compares the dielectric responses of 84 days aged samples, it 

can be clearly identified that both real and imaginary permittivities of samples aged in NEs are 

several orders of magnitude greater than those of samples aged in mineral oil at low frequencies. 

However, they possess almost the same moisture content and a low degree of ageing compared to the 

sample aged in mineral oil. Thus, one can clearly claim that ageing of oil-pressboard composite 

insulation intensifies both the conduction and polarisation phenomena in pressboard insulation in a 

way similar to moisture does and this effect is of paramount significance in NE–pressboard systems. 

A myriad of polar and conductive substances, particularly low molecular acids and soots are 

produced during ageing of oil-pressboard insulation [60, 61]. These by-products mostly reside in 

pressboard insulation and mainly enhance the q-dc and conduction effects giving a higher imaginary 

and real permittivity at low frequencies. However, a considerable concentration of ageing by-

products is needed for a contribution comparable to that of moisture. Thus, this research does not 

totally ascribe to the increase of polarisation and conduction phenomena in aged pressboard to 

ageing by-products. 

With ageing, cellulose fibres are significantly destroyed and become much shorter and thinner [250]. 

This results in formation of large oil filled cavities and conductive oil paths across the sample. Thus, 

one can assume that penetration of high conductive aged oil into pressboard with ageing also causes 

to intensify both conduction and polarisation phenomena. It is generally accepted that NE insulating 

oils are highly oxidation susceptible and oxidation of NE oils produces gummy waxes. These waxes 

deposit on the wall of cellulose fibres and it enhances the long range charge transport along the 

surfaces of fibres [114]. This may also be a cause for having higher conduction and polarisation 

phenomena in pressboard aged in NE than that of aged in mineral oil. 

Figure 7.20 (a) shows that there is an exponential relationship between σdc calculated using eq (7.6) 

and reciprocal of DP of pressboard insulation aged in both mineral and NE oils. 1/DP represents the 

degree of ageing because it is proportional to the number of chain scissions. Established 
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relationships confirm that pressboard insulation aged in NEs possess higher σdc than that of mineral 

oil impregnated pressboard insulation at a similar degree of ageing. 

 

Figure 7.20. (a) Change of σdc of PB over ageing, (b) Change of oil conductivity over ageing  

Figure 7.20 (b) shows that oil conductivities also increase exponentially with ageing time. The 

increasing trend of conductivities of NEA and NEB oils is almost the same and their conductivities 

at 1984 hrs of ageing are about 20 times higher than that of mineral oil with a similar ageing time. 

Thus, one could claim that exponential increase in σdc of dry aged pressboard insulation is mainly 

caused by penetration of high conductive oil into a destroyed cellulose structure. This hypothesis is 

confirmed by the fact that calculated σdc values presented in Figure 7.20 (a) nearly follow the order 

of the magnitude of the oil conductivity in the pressboard. Moreover, in this case contribution of 

low molecular acids to σdc can be neglected because of the fact that they could have evaporated 

during the process of vacuum drying.  

 

Figure 7.21. Relationship between oil conductivity and σdc of PB 

Figure 7.21 shows that contribution of oil conductivity to σdc can be explained with a power law 

equation for both mineral oil and NE impregnated pressboard insulation. Thus, this research 
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proposes an improved model as eq (7.11) for moisture diagnostic of mineral and NE oil based 

insulation systems using low frequency conductivity (σdc). The value of S for mineral and NE 

impregnated pressboard insulation is 2.85x10-2 and 1.3x10-2 respectively and ς possesses values of 

0.92 and 0.91. S and ς are the parameters of the power law relationship which correlate the σdc of 

aged dry pressboard insulation and oil conductivity.  
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 Combined Effect of Moisture and Ageing on FDS 

Figure 7.22 (a)-(c) compare the influence of moisture on FDS behaviour of the pressboard samples 

aged in mineral oil, NEA and NEB respectively. It can be clearly identified that influence of 

moisture on dielectric response of aged pressboard qualitatively resembles that of unaged 

pressboard insulation. It means no additional relaxation process arises in the system.  

 

Figure 7.22. Impact of moisture on FDS of aged PB (a) MINAP28 (b) NEAAP28 (c) NEBAP28 
(d) 28 days aged PB with relatively high moisture contents 
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If one compares the results shown in Figure 7.22 (a)-(c) with FDS data of corresponding un-aged 

pressboard specimens shown in Figure 7.7 and A.1, it clearly indicates that the effect of moisture on 

FDS of aged PB is greater than that of un-aged pressboard insulation. This effect is of paramount 

significance for pressboard aged in NEs. It has already been mentioned in section 7.3 that moisture 

itself enhances both polarisation and conduction effects in pressboard insulation. This study 

proposes that there is a synergetic effect of moisture and ageing by-products on FDS response of 

aged pressboard insulation. It means that moisture causes to dissociate low molecular acids and 

ionic impurities which are mostly available in aged pressboard. This behaviour increases charge 

density in the system with moisture and intensifies the conduction and polarisation phenomena 

giving larger value to real and imaginary permittivities at low frequencies for aged pressboard 

insulation with relatively high moisture contents. 

Figure 7.22 (d) compares the dielectric responses of relatively wet pressboard samples aged in 

mineral, NEA and NEB oils. It indicates that mainly dielectric loss component of pressboard 

specimen aged NEs is greater than that of the pressboard specimen aged in mineral oil. On the other 

hand, moisture content of wet mineral oil impregnated pressboard specimen is about 0.7% greater 

than that of NE impregnated aged pressboard specimens considered here. This case demonstrates 

that enhancement of conduction phenomenon in NE impregnated pressboard insulation due to 

dissociation of ageing by-products in water is more prominent than that of pressboard insulation 

aged in mineral oil. Thus, one can claim that ageing of NE-paper composite material produces more 

water soluble conductive substances than ageing of mineral oil-paper insulation system leading to 

higher conduction effect. It means synergism of ageing by-products and moisture is more effective 

in NE-paper systems.  

Table 7.9. Estimated moisture content in moderately wet aged PB using σdc based model 

Sample ID Estimated moisture content (%) Error 
MINAP28-1.8% 1.8 0.0 
MINAP28-3.5% 3.8 0.3 
NEAAP28-1.3% 1.3 0.0 
NEAAP28-2.8% 3.6 0.7 
NEBAP28-1.8% 1.9 0.1 
NEBAP28-2.9% 3.8 0.9 

 

This research investigates the effect of this synergism on σdc based moisture diagnostic model given 

eq (7.11) when the moderately aged pressboard insulation contains relatively high moisture 

contents. The results shown in Table 7.9 confirm that though the effect of oil conductivity has been 

considered in eq (7.11), it overestimates the moisture content of moderately aged pressboard 
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insulation. This behaviour is of paramount significance for NE impregnated wet aged pressboard 

such that estimated moisture content of samples NEAAP28-2.8% and NEBAP28-2.8% is 0.7 % and 

0.9 % respectively higher than the actual value. On the other hand, one can claim that the proposed 

improved σdc base model estimates the moisture content in all types of aged samples with 

reasonable accuracy when their moisture content is less than 2 %.  

 Effect of Temperature on FDS  

7.7.1 Unaged pressboard insulation 

Figure 7.23 presents the dielectric response as ε(ω) vs. frequency for mineral and NEA impregnated 

pressboard insulation with two different moisture levels at three distinct temperature points of 35, 

55, and 75 ºC.    

 

Figure 7.23. Temperature dependence of FDS responses (a) Real permittivity of MINUP, 
(b) Imaginary permittivity of MINUP, (c) Real permittivity of NEAUP, (d) Imaginary permittivity 
of NEAUP 

Figure 7.23 manifests that temperature largely influences the dielectric response by increasing 

dielectric polarisation and conduction phenomena in pressboard insulation analogous to how 

moisture and ageing do. Thus, increasing of the measurement temperature shifts the dielectric 
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response along the frequency axis toward higher frequency. Pressboard insulation samples 

impregnated with NEB and synthetic ester also show similar behaviour with increasing temperature 

(refer Figure A.7 in Appendix A). 

The increase of polarisation and conduction effects with temperature is caused by two 

superimposed effects: increase in hopping charge carrier density and increase in the mobility of 

charge carriers residing in pressboard insulation [199]. Self-dissociation of water molecules and 

ionic impurities in oil at high temperature mainly contributes to enhance the charge carrier density 

in the unaged pressboard insulation. Charge carrier hopping between localised sites which are 

created by the adjacent water molecules is the main mechanism of long range charge transport in 

pressboard insulation. The frequency of charge transfer between such sites increases with 

temperature due to the raising of thermal vibration of mobile charge carriers in the system. 

Subsequently, this phenomena increases charge carrier mobility in the system leading to higher 

conduction and polarisation effects.  

Though, the amplitude and characteristic frequency of relaxation processes can be expected to be 

temperature dependent, the spectral shape of the frequency response of a given material does not 

usually change with temperature as shown in Figure 7.23, unless the material alters its structural 

organisation significantly [110]. This allows normalising of frequency responses obtained at 

different temperature points on to a reference temperature to form a master curve. When all 

relaxation processes in the observed frequency range have the same physical origin, the frequency 

shift required to form the master curve can be characterised by an equation of Arrhenius type with 

single activation energy Ea as in eq (3.29). On the other hand, when they have different physical 

origins, different activation energy values are needed [29]. Thus, it is clear that activation energy is 

the factor which reflects the temperature dependence of dielectric response. 

Figure 7.24 indicates that low and high frequency regions of FDS of samples MINUP-0.3% and 

MINUP-1.6% should be shifted at two different rates in the lateral direction to obtain the master 

curve at the reference temperature of 35 ºC. Similar behaviour has been observed for samples 

MINUP-0.8%, NEAUP-0.6%, NEAUP-0.8%, NEAUP1.6%, NEBUP-0.8%, NEBUP-1.1%, 

NEBUP-1.6%, SEUP-0.6% and SEUP-1%.  

This study calculates the equivalent circuit model parameters for dielectric response of those 

samples at different temperatures. Then it has been identified that frequency shift of ωp and σ2 for 

the above mentioned pressboard samples to obtain a master curve can be evaluated using eq (3.29) 

with activation energy values in the range of 0.45-0.55 eV. On the other hand, frequency shift of q-
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dc relaxation and σ1 need higher activation energy. This confirms that when the moisture content is 

low, clusters associated with oil filled cavities could govern the DH loss peak relaxation and short 

range ion transport mechanisms in oil impregnated pressboard as explained in section 7.4. Thus, 

one can claim that DH loss peak relaxation and σ2 may have low activation energy as these are 

consequences of ion transport in the liquid phase. This is suggested based on the calculated 

activation energy of nearly 0.5 eV, which is close to the activation energy of oil conductivity in 

Chapter 5 [124]. On the other hand, q-dc relaxation and σ1 may have higher activation energy as 

they are consequences of charge transport along convoluted paths in the solid phase. Moreover, in 

all other cases frequency shift required to form the master curve can be characterised by single 

activation energy. 

 

 

Figure 7.24. Master curve εʹʹ(ω) with single frequency shift  

Figure 7.25 compares activation energy for frequency domain dielectric response of different types 

of oil impregnated pressboard insulation considered in this research at various degrees of humidity. 

In the case of specimens MINUP-0.6%, MINUP-0.8%, etc. activation energy corresponding to low 

frequency region of FDS is considered. In all types of oil impregnated samples, the initial increase 

of moisture causes activation energy to first increase and then decrease to about 0.7 eV when the 

moisture content is high as 8 %. Thus, one can hypothesise that when moisture content of 

pressboard insulation is very high; the charge transport in the system is close to the nature of bulk 

water because conductivity of water corresponds to an activation energy of 0.44 eV. In the case of 

mineral oil impregnated pressboard, activation energy changes in the range 1-1.1 eV for samples 
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containing a moisture level of less than 4%. These results show good agreement with data presented 

in [124] confirming accuracy of our experimental results. 

 

Figure 7.25. Change of activation energy with moisture  

The noticeable fact that can be seen in Figure 7.25 that activation energy values of natural and 

synthetic ester impregnated pressboard insulation are lower than that of mineral oil impregnated 

pressboard when they have a moisture content of less than 4 %. In unaged pressboard specimens, 

water is the key factor, which governs both the polarisation and conduction effects. It is generally 

accepted that when pressboard has low moisture content, water molecules are strongly bound to the 

OH groups of cellulose chains. As mineral oil possesses hydrophobic characteristics, it does not 

change the physical state of water in the system. On the other hand, ester molecules easily form 

hydrogen bonds with free water, causing a significant concentration of moisture in the oil medium. 

Therefore, one could hypothesise that due to strong electrostatic attraction of OH groups in 

cellulose polymer, proton mobility along the cellulose fibre surface via strongly bonded water 

molecules is lower than that via water molecules in ester oil medium. This may lead to low 

activation energy of ester impregnated pressboard insulation when a sample contains low moisture. 

Since synthetic esters are more hygroscopic than NEs, this effect is more significant for synthetic 

ester impregnated pressboard. For example activation energy of low frequency response of sample 

SEUP-0.6% and SEUP- 1% is 0.65 eV. Moreover, this value is closer to the activation energy of 

liquid water. 

At high moisture content (M >4%) all the samples have the same activation energy. It indicates that 

in this condition the activation energy is governed solely by the connections of the water system in 

solid medium. 
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7.7.2 Aged pressboard insulation 

This research has identified that dielectric responses of aged mineral oil, NEA and NEB 

impregnated pressboard specimens require two lateral shifts in order to obtain a master curve when 

their moisture content is below 2%. Moreover, activation energy corresponding to characteristic 

frequency of oil dependent loss peak is in the range 0.35-0.6 eV for all cases. In the case of FDS 

response of a transformer insulation system, dielectric response behaviour of pressboard insulation 

at high frequencies is less significant. Thereby, this research analyses the temperature dependence 

of FDS for aged pressboard insulation using activation energy corresponding to the low frequency 

region. 

Figure 7.26 (a) compares the temperature dependence of dielectric response of dry aged pressboard 

insulation over thermal ageing. In order to identify the influence of moisture on temperature 

dependence behaviour of aged pressboard insulation, activation energies of 28 days aged pressboard 

samples at three different moisture levels have been calculated and presented in Figure 7.26 (b). 

Figure 7.26 (a) manifests that initial ageing gives rise to activation energy leading to a stronger 

temperature dependence behaviour and further ageing results in lowering that effect. This behaviour 

is of paramount significance for pressboard aged in NEA in such a way that activation energy of 84 

days aged samples is 0.5eV. The reduction of activation energy can be correlated to the ageing 

process such that intra and inter-fibre contacts are broken allowing aged conductive oil penetration 

between the fibres [255]. Thereby, ions transport in aged pressboard insulation could be governed 

by their movement in the oil reducing the activation energy towards that of oil conductivity. 

 

  

Figure 7.26. (a) Change of activation energy over thermal ageing, (b) Effect of moisture on 
activation energy of aged PB 
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As shown in Figure 7.26 (b) one can assume that the influence of moisture on the temperature 

dependence characteristic of moderately aged mineral oil impregnated pressboard resembles that of 

unaged pressboard insulation. Moreover, a higher activation energy value indicates that the 

temperature dependence of aged mineral oil impregnated pressboard insulation is stronger than that 

of both NEA and NEB impregnated pressboard insulation at a similar degree of ageing and 

moisture level. 

 Applicability of Commercially Available FDS Based Moisture 

Diagnosing Tools on Ester Oil Based Insulation Systems 

7.8.1 Overview to method of moisture analysis 

The prime concern of FDS measurement is to determine the moisture content in the solid insulation 

of transformers without obtaining a paper sample which is known as a destructive method. In a 

particular transformer, comparison of FDS responses acquired at regular intervals provides a better 

understanding on change of moisture content in the solid insulation. However, most of the 

commercialised tools propose a different approach to determine moisture content in a transformer 

solid insulation using FDS measurement. In this regime, the measured frequency domain response 

of a transformer is compared with a modelled response which is obtained using FDS responses of 

paper based insulation with known physical conditions such as moisture and degree of ageing. 

This section discusses the applicability of a commercialised FDS based moisture diagnosing tool 

namely MDOS which has been established for mineral oil-paper insulation systems on ester-paper 

insulation systems. In order to determine moisture content in solid insulation, MDOS software 

requires measurement temperature and geometrical parameters of the insulation system (X and Y). 

This software characterises the effect of temperature on FDS behaviour of paper and oil insulation 

with two different activation energy values of 0.9 eV and 0.4 eV respectively. Experimental data 

reported in Chapter 5 indicates that activation energy of 0.4 eV is reasonable to represent the 

temperature dependence of FDS of all types of insulating oil. However, based on results of [124] 

and our experiments, we have utilised an activation energy of 1 eV for paper based insulation. 

Due to a limited number of ester filled transformers in the Australian power system and the 

difficulty of accessing those units, field measurements in this research were hampered. Therefore, a 

set of data was obtained using FDS response data of aged and unaged pressboard insulation with a 

moisture content of less than 4% and so-called X-Y model [141]. In this study, we have selected 

values of 30 % and 20 % for parameters X and Y respectively. Then simulated data has been 

analysed using MDOS tool by setting all parameters including oil conductivity, permittivity, X and 
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Y to simulated values, for example, X is 30 % and Y is 20 %. Moreover, permittivity of esters set to 

3.2 and a value of 2.2 is used as permittivity of mineral oil. 

7.8.2 Unaged oil-paper system 

Figure 7.27 presents a comparison of moisture diagnostic results for unaged oil-paper systems using 

the MDOS tool and Karl Fischer titration (KFT). This research performs KFT on two pressboard 

samples from each batch and average moisture content is reported. Thereby, one can assume that 

KFT method determines the exact moisture content of a pressboard sample.  

 

Figure 7.27.Comparison of the estimated moisture content in unaged PB insulation with KFT 
method and MDOS tools (a) Mineral oil impregnated (b) NEA impregnated (c) NEB impregnated 
(d) Synthetic ester impregnated 

It can be seen in Figure 7.27 that the MDOS tool estimates the moisture content in mineral oil 

impregnated pressboard insulation with reasonable accuracy except sample MINUP-3.8%. 

Moreover, despite higher conduction and polarisation effects, the MDOS tool estimates the 

moisture content in relatively dry ester impregnated pressboard insulation with good accuracy. On 

the other hand, moisture contents in moderately wet ester impregnated samples are overestimated 

by the MDOS software. The maximum difference of estimated moisture contents is +0.7 %, +0.6 % 

and +0.6 % for samples NEAUP-2.2%, NEBUP-2.7% and SEUP-3% respectively. Moreover, the 
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estimated moisture content in all the samples with 3.8% of moisture is 0.6-0.7 % higher than the 

actual value indicating low accuracy of the MDOS tool when diagnosing wet insulation systems 

irrespective of the type of oil in the system.  

7.8.3 Aged oil-paper systems 

In the case of aged pressboard insulation, more than one sample with different moisture content and 

similar ageing condition has been considered for some cases. Thus, x, y and z are used in sample 

names to denote samples with different moisture level and similar ageing condition. Figure 7.28 

indicates that estimated moisture content of 28 days and 48 days aged mineral oil impregnated 

pressboard insulation using MDOS software are quite similar to actual moisture contents except that 

of MINAP28-x (3.6 %). On the other hand, the estimated moisture content in 84 days aged mineral 

oil impregnated samples are significantly larger than the actual values (0.5 %, 0.6 %) in spite of the 

fact that there is no large difference in degree of ageing of 48 days and 84 days aged samples. 

However, there is a large increment in oil conductivity during 48 to 84 days (refer Figure 7.20). It 

implies that though MDOS has been implemented for mineral oil–paper insulation systems, special 

care must be taken in analysing the moisture content in solid insulation of a mineral oil filled 

transformer with the MDOS tool when the oil conductivity is high.  

 

Figure 7.28. Comparison of estimated moisture content in aged PB with KFT method and MDOS 
tools 

It can clearly be seen in Figure 7.28 that MDOS software overestimates the moisture content in 

aged NE–paper insulation systems. Moreover, the error has an increasing trend with ageing time 

and it is in the range +0.4 % to +2.2 %. A noticeable fact that can be seen in Figure 7.28 is that the 

error in estimated moisture content of sample NEAAP84 is significantly greater than that of 

samples NEAAP48-x and NEAAP48-y in spite of the fact that those samples have almost similar 
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degrees of ageing as given in Table 7.8.  Comparison of diagnostic results corresponding to 84 days 

and 48 days aged NEB impregnated pressboard insulation also shows somewhat similar behaviour. 

In both cases conductivities of NE oils have largely increased during this period. It means increase 

of oil conductivity could be one of main reasons for the increasing trends of error in estimated 

moisture content using MDOS over ageing time. This is because, high conductive oil penetrates into 

partially destroyed cellulose structure of aged pressboard and it increases the conductive loss of the 

pressboard in a way similar to the effect of moisture. Overall, one can claim that FDS based 

moisture diagnosing tools established for mineral oil-paper insulation systems are not directly 

applicable for aged NE–paper insulation systems. Thus, this research proposes to consider the 

findings and interpretation provided in this chapter when extending FDS based moisture diagnosing 

tool for ester-paper insulation systems.  

 Summary 

This chapter compares the dielectric response behaviours of high density pressboard insulation 

impregnated with mineral and ester insulating oils at different degrees of humidity, ageing and 

temperatures. In order to determine moisture content in unaged mineral oil, NE and synthetic ester 

impregnated pressboard insulation, this chapter proposed two universal type of models based on 

low frequency conductivity (σdc) and characteristic frequency (1/τc) of conductivity response.  

In this chapter, the contribution of DC conductivity and different relaxation processes to FDS 

response of oil impregnated pressboard insulation has been discriminated using an equivalent circuit 

model defined based on DH cluster theory. Moreover, selected model parameters indicate that high 

conductivities of ester oils significantly influence both conduction and polarisation effects of 

pressboard insulation with a moisture content of less than 3%. However, the effect of diverse oil 

properties diminishes when the moisture level of pressboard insulation is higher than 3% where 

water oriented charge clusters are formed in pressboard. This chapter has identified that an increase 

of oil conductivity causes pronounced conduction and polarisation effects in aged pressboard 

insulation. Thus, an improved σdc based moisture diagnostic model has been produced by 

incorporating the effect of oil conductivity. The improved model can be used to accurately estimate 

the moisture content in an aged pressboard with moisture content of <2%. σdc based model defined 

for unaged pressboard insulation characterises the sole effect of moisture on dielectric response and 

improved model quantify the effect of both moisture and aged oil in pressboard insulation. 

However, single effect of pressboard ageing by-products on FDS has not been quantified in this 

thesis. 
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Experimental results presented in this chapter have revealed that FDS of ester impregnated 

pressboard insulation possesses low temperature dependent behaviour than that of mineral oil 

impregnated pressboard insulation. This behaviour is caused by the hygroscopic nature of ester oils. 

The temperature dependence of FDS has been quantified by calculating activation energy required 

for constructing a master curve at reference temperature of 35ºC. It is clearly found that activation 

energy of ester impregnated pressboard insulation is lower than that of mineral oil impregnated 

pressboard.   

At the end of this chapter, it has been verified that FDS based moisture diagnosing tools established 

for mineral oil-paper systems can be applied on unaged relatively dry ester-paper insulation system. 

However, their application on aged NE-paper insulation systems will result in misleading 

interpretation. 



 

 

  

Conclusions and Recommendation for 
Future Research 

 General 

In this thesis, a broader understanding of insulation materials used in oil filled transformers 

including their chemical compositions and degradation mechanisms in a typical transformer 

operating environment is provided. This thesis has mainly focused on understanding the ageing 

behaviour of ester-paper composite materials compared to that of mineral oil-paper systems. An 

extensive literature survey conducted in this research has revealed that cellulose and mineral oil are 

still the preferred choice for transformer insulation but there is a rising demand for natural and 

synthetic ester insulating oils, which have a higher fire point and excellent biodegradable 

characteristics as a substitute for mineral oil. However, the present understanding on ageing 

behaviour of ester-paper composite insulation systems and knowledge on application of existing 

condition monitoring tools for ester based insulation are inadequate for cost effective field 

application. To reduce this knowledge gap, this research has carried out a series of controlled 

laboratory experiments to understand the behaviour of ester-paper composite insulation in typical 

transformer operating conditions. Moreover, experimental results have been analysed through the 

comparisons made based on the limiting values provided in related IEEE and BS standards and 

properties of mineral oil. 

The accelerated ageing experiments conducted in this research have confirmed the longer life 

expectancy of cellulose insulation materials in NE insulating oils. Moreover, it has been recognised 

that variation of physical and chemical properties of natural and synthetic ester oils such as DDF, 

colour and acidity over ageing is completely different to mineral oil. It means that set limits of 

corresponding parameters defined for mineral oil cannot be used to assess the condition of ester 

oils. Thus, further research will be required to accurately determine the degree of insulation quality 

of aged ester oils by measuring their chemical, physical and electric properties.  
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This research has experimentally verified that dielectric response of mineral and NE insulating oils 

is mainly governed by their conductivities. Moreover, the conductivities of mineral and NE 

insulating oils are primarily characterised by two types of ions in the system which have two 

different ionic mobilities. In addition, it has been observed that temperature dependence of 

conductivity of both mineral and NE insulating oils (i.e. activation energy) is almost similar and it is 

in the range 0.37-0.44 eV and 0.36-0.46 eV respectively. This research has recognised that 

dielectric response measurements of insulating oils are typically subjected to parasitic phenomena 

such as electrode polarisation and electrode hydrodynamic motion which impede the determination 

of intrinsic dielectric parameters of oil under test. 

FDS and PDC measurements performed on well-defined high density pressboard insulation samples 

(i.e. moisture and temperature controlled) have revealed that dielectric response behaviour of ester 

impregnated pressboard insulation qualitatively resembles that of mineral oil impregnated 

pressboard insulation. It means no additional relaxation process arises in pressboard insulation due 

to impregnation with ester oil. However, diverse oil properties, particularly high conductivities of 

ester oils show a significant influence on dielectric response behaviour of pressboard insulation by 

increasing both conduction and polarisation phenomena.  

The work presented in this thesis has mainly concentrated on FDS measurements. This thesis has 

analysed frequency domain dielectric response data of different types of oil impregnated pressboard 

insulation under varying moisture, temperature and ageing conditions. Moreover, physical 

interpretations are provided by considering the diverse properties of oil in the pressboard insulation. 

The physical interpretations provided in this thesis will be extremely useful to those who are 

interested in the use of FDS measurements to determine moisture in new and aged ester–paper 

insulation systems in transformers. Furthermore, this study has used Hamon approximation to 

calculate the low frequency dielectric response data from measured PDC response and compared 

with measured data. Both the calculated and measured response agreed very well. It means that 

measurements have been performed in the linear region.  

This research has confirmed that three relaxation processes together with DC conductivity 

characterise the frequency domain dielectric response of pressboard insulation in the frequency 

range 10-4–103 Hz. The three relaxation processes include β relaxation due to segmental vibration of 

molecular side groups of cellulose; βwet relaxation caused by cellulose water mixed phase cluster 

vibration or due to microscopic interfacial polarisation at the interface of oil filled cavities and q-dc 

relaxation process at low frequencies. When a pressboard insulation sample contains a moisture 

level of less than 3 %, it possesses weak q-dc behaviour. 
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The experimental results presented in this thesis have confirmed that moisture, ageing and 

temperature largely influence the FDS of pressboard insulation by increasing both polarisation and 

conduction effects. The effects of these factors on FDS of mineral, NE and synthetic ester oil 

impregnated pressboard insulation are quantitatively different.  For example a pressboard insulation 

sample aged in NE possesses higher conduction and polarisation effects than samples aged in 

mineral oil under the same conditions.  

 Main Findings and Contribution 

 Life advantage of cellulose insulation in natural ester 

Accelerated ageing experiments performed with wet pressboard insulation in mineral oil, NEA and 

NEB indicates that the reaction rate corresponding to ageing of pressboard insulation in mineral oil 

is 1.75 and 1.55 times higher than that of in NEA and NEB respectively. This research confirms that 

this advantage of NE is mainly caused by high moisture solubility and hydrolytic degradation of NE 

oils. Moreover, it has been identified that long chain fatty acids produced by hydrolytic degradation 

of NE are not detrimental to pressboard insulation. Moreover, they show a protective behaviour to 

cellulose insulation via trans-esterification. Measured FTIR spectra on pressboard samples aged in 

NE has confirmed the esterification of fatty acids with cellulose. 

 Assessing the quality of NE insulating oils with their physical and chemical properties 

This research pointed out that acidity and colour of NE oils increase rapidly due to pronounced 

hydrolytic degradation in a moisture rich environment. For an in-service transformer, moisture in its 

paper insulation can increase to about 2 % after 10-15 years of operation. In such a situation rapid 

increase in acidity and colour change of NE insulating oil will be expected. Moreover, retrofilling 

of an in-service transformer with NE oil could also create a similar environment. Thus, in this type 

of condition acidity and colour change with existing set limits in the standards cannot be utilised to 

determine the suitability of in-service aged NE insulating oil for further use. On the other hand, 

experimental results presented in this thesis have confirmed that DDF, viscosity and dielectric 

breakdown voltage collectively can indicate the overall condition of NE insulation oils which have 

been subjected to hydrolytic degradation. Moreover, it is proposed to increase the set limiting 

values given for acidity of serviced aged NE oils. 

 Assessing degree of ageing of pressboard insulation with FTIR technique 

Experimental results presented in this thesis have shown that absorbance intensity of FTIR spectra 

of pressboard insulation in the frequency band 1500-500 cm-1 gradually decreases over thermal 

ageing regardless of the type of impregnated liquids. This spectral band primarily represents the 

vibration of molecular bonds in the cellulose polymer chain. Therefore, reduction of absorbance 
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intensity peaks in this spectral band can be assigned to the reduction of particular bonds in the 

cellulose polymer due to a decrease in degree of polymerisation of pressboard insulation over 

ageing. This changing pattern of FTIR spectra of pressboard insulation with reduction of DP 

provides an indication about novel ways of monitoring solid insulation in an oil filled transformer 

using a FTIR sensor. 

 DGA analysis of natural and synthetic ester 

This research identified that similar fault gases are produced in mineral, NEs and synthetic ester 

insulating oils. However, there are significant quantitative differences between fault gases generated 

in ester and mineral oils due to the difference in their molecular structures. In spite of different 

gassing behaviour of mineral and ester insulating oils, this research has confirmed that extended 

Duval triangle and IEC gas ratio methods can be applicable for diagnosing low temperature 

overheating and electrical discharge faults in ester insulating oil. In addition, this research has 

recognised that ethane is the key fault gas dissolved in NE insulating oil for low temperature 

overheating faults. Since ethane is mainly produced by a reaction between linolenic acid (present 

only in NEs) and oxygen, this research proposes ethane as an indicator for NE insulating oil 

oxidation and as an early warning trigger before oil quality is affected. 

 Avoid cold trap in ageing experiment 

This research has observed that dry pressboard insulation aged in mineral oil shows similar 

resistance to ageing as in natural and synthetic ester insulating oils in spite of the fact that ester 

insulating oils are far more hygroscopic than mineral oil. This research has understood that this 

behaviour is caused by a cold trap naturally occurring at the top of the ageing tubes. Therefore, this 

thesis proposes to consider this effect in designing future laboratory experiments. 

 Modelling the electrode polarisation phenomena and calculate ionic mobility in oil 

This thesis proposes two new models for characterising the frequency and time domain dielectric 

response data of insulating oils based on the charge transport phenomenon at the electrode interface. 

The equivalent circuit proposed in this thesis clearly explains the low frequency dispersive 

behaviour of FDS of insulating oil as a consequence of partly blocked electrode. Moreover, such 

behaviour cannot be described with existing models which used to explain electrode polarisation 

phenomena. The exponential model deduced in this research to represent the polarisation current 

response of insulating oils allows to discriminate the types of ions in the system and calculates the 

mobility of corresponding ions. It has been identified that both mineral and NE oils mainly have 

two different types of ions with different ionic mobilities.  



Chapter 8: Conclusions 

 
   194 | P a g e  

 Modelling the dielectric response behaviour of  pressboard insulation 

This thesis has proposed a new equivalent circuit based on DH cluster framework theory to explain 

the frequency domain dielectric response behaviour of pressboard insulation. It allows us to 

discriminate the contribution of different relaxation processes and DC conductivity to dielectric 

response. Moreover, the equivalent circuit parameters clearly explain the effects of moisture and 

diverse oil properties on conduction and polarisation phenomena of pressboard insulation. Overall, 

the proposed circuit improves the understanding of the physics of microscopic level charge 

transport and polarisation processes that arise in the system. Through analysing the FDS data with 

the proposed equivalent circuit, it has been realised that oil oriented charge clusters govern the 

dielectric response behaviour of pressboard insulation when the moisture content is less than 3%. 

On the other hand, water based charge clusters determine the dielectric response behaviour of 

pressboard insulation with moisture content of greater than 3 %. It means the effect of diverse oil 

properties on dielectric response is masked by the dominant effect of moisture at such a high 

moisture level. 

 Guide to moisture analysis in ester based system  using FDS  

In order to determine moisture content in unaged mineral oil, NE and synthetic ester impregnated 

pressboard insulation, this thesis has proposed a universal type of model based on low frequency 

conductivity (σdc) and characteristic frequency (1/τc) of conductivity response.  Moreover, σdc based 

model has been improved by considering the contribution of oil conductivity to low frequency 

conductivity. It has been verified that improved σdc based models can be used for moisture 

diagnosing in moderately aged mineral oil-paper and NE-paper insulation systems with reasonable 

accuracy when the paper insulation contains a moisture content of less than 2%. However, the 

synergetic effect of moisture and ageing by-products on conduction and polarisation phenomena in 

aged pressboard causes a large error in estimated moisture content using the improved σdc based 

model when the pressboard insulation contains higher moisture. This research proposes that 

dissociable ageing by-products in aged oil in the pressboard play a major role for this synergetic 

effect. Thereby, it is worth determining the relationship between ψ factor (corresponds to σdc model) 

and oil conductivity in future experiments. Subsequently, σdc based model with modified ψ factor 

can be utilised as an alternative method to accurately determine the moisture in aged oil–paper 

systems. 

Experimental results presented in this thesis have shown that FDS of ester impregnated pressboard 

insulation has a different temperature dependence behaviour compared to that of mineral oil 

impregnated pressboard insulation due to the hygroscopic nature of ester oils. That is activation 
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energy of ester impregnated pressboard insulation is lower than that of mineral oil impregnated 

pressboard. Importantly this fact should be considered when the available FDS based moisture 

analysis software is extended to ester oil-paper insulation systems. 

In this thesis, it has been verified that the FDS based moisture diagnosing tool established for 

mineral oil-paper system namely MDOS can be used with unaged relatively dry ester-paper 

insulation system. However, application of MDOS on aged NE-paper insulation system will result 

in misleading interpretation due to a large positive error in estimated moisture content.  

 Future research 

This research proposes a number of recommendations for future research as below: 

 2-FAL as an ageing indicator in natural ester based insulating systems 

This research proposes that oxidation inhibitors and higher acidity levels of aged NE insulating oils 

have a significant influence on the thermal stability of 2-FAL and partition of 2-FAL between paper 

and oil insulation. Thus, it is recommended to study thermal stability and partition behaviour of 2-

FAL in NE insulating oils. 

 Methanol as an ageing indicator in ester based insulating system 

Rupturing of 1, 4-β glycosidic bonds in cellulose molecules results in formation of methanol 

(CH3OH). Recent studies have identified the existence of strong correlation between degree of 

ageing of cellulose insulation paper and the production of CH3OH. In the case of mineral oil-paper 

system in a transformer, some portion of methanol produced by the degradation of paper based 

insulation dissolves in oil. Moreover, thermal stability of dissolved CH3OH in mineral oil has been 

experimentally confirmed in transformer operating environment. Therefore, this research suggests 

to identify the relationship between dissolved CH3OH in ester insulating oils and paper insulation 

ageing condition (based on tensile strength) through controlled ageing experiment. 

 Study the influence of acid generation in NEs on paper ageing  

This research hypothesises that high molecular weight acids produced by hydrolytic degrdation of 

NE insulating oils delay the ageing process of paper insulation. To confirm this hypothesis, this 

thesis proposes to study the ageing behaviour of cellulose insulation in aged NE oil with a high 

acidity value. 

 Understanding insulating quality of NE based insulating oils 

This research has observed that colour, acidity and DDF of NE insulating oils rapidly change due to 

thermal ageing in a moisture rich environment. Moreover, it has been noticed that ageing rate of 

pressboard insulation in NE insulating oils with dark colour and very high acidity value is much 
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lower than that of in mineral oil with a lower acidity value. Thus, this thesis proposes further 

research to identify suitable limiting values for acidity and colour number of service aged NE oils.    

 Understand the effect of oil conductivity on dielectric response 

This thesis has identified that an increase of oil conductivity over ageing is the main factor which 

causes to increase the dielectric polarisation and conduction phenomena in pressboard insulation. 

Thus, this thesis proposes to measure FDS of four sets of aged pressboard specimens impregnated 

with insulating oil with four different conductivities under varying humidity conditions. Then it is 

suggested to find the correlation with oil conductivity and ψ factor of σdc based moisture diagnosing 

model. Subsequently, this model will be a good alternative method to determine moisture in solid 

insulation of new and aged transformer insulation systems. 

 Mixing effect 

This research proposes to investigate the effect of mixing of NE insulating oils with mineral and 

synthetic ester oils on ageing behaviour of paper insulation. Moreover, it is needed to investigate 

the effect of mixing on oil related condition monitoring tools.  
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Appendix A: Dielectric Response of oil 
impregnated Pressboard  

 

Figure A.1. FDS of (a)-(b) Mineral oil impregnated (c)-(d) Synthetic ester impregnated: dotted lines 
real permittivity solid lines imaginary permittivity 

 

Figure A.2. PDC response of NEB and synthetic ester impregnated pressboard at two different 
moisture level at 55ºC 
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Figure A.3. Frequency dependence conductivity at 55ºC (a) NEB impregnated pressboard (b) 
synthetic ester impregnated pressboard 

Table A.1. Selected parameters for conductivity based model: NEB impregnated at 55 ºC 

Sample ID σdc(pS/m) 1/τc (rad/s) β 

NEBUP-0.8% 1.3x10-1 2.1x10-3 0.7 

NEBUP-1.1% 4.7x10-1 3.8x10-3 0.6 

NEBUP-1.6% 1.88 3.7x10-2 0.64 

NEBUP-2.7% 1.6x101 1.3 0.5 

NEBUP-3.6% 4.2x102 2.5x101 0.53 

NEBUP-3.8% 6.4 x102 3.3x101 0.51 

NEBUP-5.4% 17.3x103 3.6x102 0.53 

NEBUP-8% 4.2x105 4.0x103 0.7 

 

Table A.2.  Selected parameters for conductivity based model: synthetic ester impregnated at 55 ºC 

Sample ID σdc(pS/m) 1/τc (rad/s) β 

SEUP-0.6% 2x10-1 3.1x10-3 0.7 

SEUP-1% 6.0 7.7x10-2 0.6 

SEUP-3% 4.7X101 6.8x10-1 0.64 

SEUP-3.8% 4.7x102 2.2x101 0.5 

SEUP-5.3% 10.3x103 3.0x102 0.53 

SEUP-8% 4.15 x105 6.6x103 0.51 
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Figure A.4. Measured and modelled cut off frequency Vs moisture content of oil impregnated 
pressboard (a) NEB (b) synthetic ester 

 

Figure A.5. Comparison of experimental and modelled depolarisation current with extended Debye 

model (a) MINUP-3.8% (b) NEAUP3.8 % (c) NEBUP-3.8% (d) SEUP-3.8% 
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Figure A.6. Comparison of experimental and modelled depolarisation current with Williams-Watt 

function based model (a) MINUP-3.8%, (b) NEAUP-3.8%, (c) NEBUP-3.8%, (d) SEUP-3.8% 
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Figure A.7. FDS responses at three different temperatures (a)-(b) NEBUP (c)-(d) SEUP 

 




