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Abstract

The main concern of this work is the development of methods for automatic
condition monitoring of control loops with application to the process indus-
try. By condition monitoring both detection and diagnosis of malfunctioning
control loops is understood, using normal operating data and a minimum
amount of process knowledge.

The use of indices for quantifying loop performance is dealt with in
the first part of the thesis. The starting point is an index proposed by Harris
(1989). This index has been modified in order to cover a larger range of
processes. The same concept is then used to assess the sampling rate in
control loops. Other index-based monitoring methods where some amount
of process knowledge is available are discussed.

The evaluation of the performance indices discussed requires knowl-
edge of the process dead-time. Therefore a concept called event-triggered
estimation is introduced in the second part of the thesis. Both automatic
data selection and dead-time estimation methods are proposed and condi-
tions for successful estimation are discussed.

The last part of the thesis deals with the diagnosis of oscillations. A
method to automatically diagnose static friction (stiction) in the actuator is
presented. Furthermore, two methods are proposed which allow automatic
distinction of externally and internally generated oscillations. All described
methods have been implemented in a MATLAB™-based graphical user interface
which is briefly described.
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Chapter 1

Introduction

1.1 Control performance monitoring

Performance in control loops is an important issue. A large part of the liter-
ature concerning control performance deals with the performance during the
control design stage. A process model, specifications and results from experi-
ments are often available to the designer. Many of the available performance
measures are therefore defined from this background.

The literature is much more sparse when it comes to the control perfor-
mance assessment stage. Typically, in such a situation one does not have the
same information as during the design stage. The reasons for this are many:
lost information, bad documentation, trial-and-error tuning, no-tuning at all
etc.

A simple illustration may help to understand what is meant here by con-
dition monitoring, see Figure 1.1. The two main problems one has to face
when desiring to assess the performance of a control loop are

e to obtain information despite the required passiveness of an automatic
monitoring tool,

e to quantify what kind of behaviour is considered to be acceptable.

It is obvious that the more information about the process that is available,
the better one can assess the control performance. However, the amount of
available information is restricted since a monitoring tool is subject to certain
operating constraints. The most important ones posed by the industry are
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disturbance

setpoint ' process variable

—= contrd{ler / process

Figure 1.1: A simple illustration of condition monitoring. Using non-invasive
tools (“stethoscope™) the aim is to monitor the performance of the control
loop.

1. Non-invasiveness. The tool has to be a passive observer.
2. No new sensors. Only available measurement signals may be used.

3. Minimal process knowledge. Ideally, one should not assume any knowl-
edge about the loop in question®.

4. Simple and non-complex algorithms. Since the aim is to monitor many
(in the order of 102 — 103) control loops, it is important that the
complexity of the used algorithms is modest.

On the other hand, there are requirements on the tasks which a monitoring
tool has to be able to perform. The following list is a selection of properties
which the author thinks are most important.

1. Detection of malfunctioning loops, i.e. loops with large variability.

2. Diagnosis of malfunctioning loops.

w

. Suggestion of suitable measures in order to remove the cause of the
performance deterioration.

4. Present the results to the user in an intelligible way.

1This assumption will be qualified to some extent in later chapters
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1.2 Previous work

A brief review of related work within the area of control performance mon-
itoring will be presented here. More detailed reviews will be given later
on in this thesis. Most of the research has been concentrated around the
minimum-variance based performance index, first suggested by Harris (1989).
The ideas go back to Astrdm (1970) who settled the theory necessary for
minimum-variance control and DeVries and Wu (1978) who used these ideas
for performance assessment. The concept has also been extended to feed-
forward loops, see (Desborough and Harris, 1992, 1993). Many others took
up the idea and applied it to real processes, mostly within the pulp & paper
industry, see for example (Stanfelj et al., 1991), (Perrier and Roche, 1992),
(Jofriet et al., 1995), (Owen et al., 1996), (Thornhill et al., 1999). Modifi-
cations and extensions of the original performance index have been reported
by Tyler and Morari (1995, 1996) who extended the concept to unstable
and non-minimum phase processes and introduced statistical likelihood ratio
tests. Lynch and Dumont (1996) used Laguerre networks to evaluate the
performance index. Also multivariable extensions of the Harris performance
index have been studied, see for example (Harris et al., 1996b), (Huang et
al., 1997), (Huang and Shah, 1999) or (Ettaleb, 1999).

Furthermore, conceptually different performance indices have been pro-
posed. Eriksson and Isaksson (1994) and Ko and Edgar (1998) considered
constraints on the control structure, Hagglund (1995) proposed a method-
ology to detect oscillations, Swanda and Seborg (1997) suggested a perfor-
mance index which normalises the closed-loop settling time with the process
time-delay. Hagglund (1999) presented a method to detect sluggish control
loops, Bezergianni and Georgakis (2000) defined a performance index which
compares actual control to both minimum-variance and open-loop control.
Rhinehart (1995) and Venkataramanan et al. (1997) proposed and applied a
statistical test which detects deviations from setpoint.

Commercial tools

The demand in the process industry for control performance monitoring tools
is considerable. Therefore, many suppliers have either started their own
implementations of published results, started collaborations with groups who
do research in the area or purchased commercially available software tools.
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Future control systems will most likely have monitoring tools as a part of
the system. Nowadays, supervision tools are often used as stand-alone units.
Except for single company implementations and development tools used by
universities, the following commercial tools are known to the author

1.3

ABB: Loop optimizer suite™

Honeywell: Loop scout™, @sset. MAX™

Pulp & Paper Research Inst. of Canada (PAPRICAN): LoopMD™
Invensys, Foxboro: LoopAnalyst™

Matrikon: ProcessDoc™

Contributions

Results which can be considered as the main contributions of the thesis are:

A modification of an existing minimum-variance based performance in-
dex. The modification is shown to be significant for a certain class of
processes. Furthermore, the modified method does not require more
knowledge than the original one, but permits the incorporation addi-
tionally available process knowledge.

Using the minimum-variance based performance index, a method is
developed which allows control performance assessment for sampling
rates higher than the actual one used for data collection. By that, the
benefit of faster sampling can be quantified.

A new method for the detection of static friction (stiction) in valves
in self-regulating processes.

A new method for detection of stiction in integrating processes.

Modification of a method for dead-time estimation from normal oper-
ating data.

An automatic procedure for data segmentation for use in closed-loop
estimation.
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e A new method for distinction between internally and externally caused
oscillations based on a simple process model.

e A modified method for evaluation of the Harris index for oscillating
loops. This method can also be used to distinguish between internally
and externally caused oscillations.

The work reported in this thesis has thus far led to the following publications
and submissions:

A patent application has been filed for the method proposed in Chapter 11.

The material in Chapter 3 has been published in

e A. Horch and A.J. Isaksson. “A modified index for control performance
assessment”. In Journal of Process Control, 9(6):475-483, December
1999. A shorter version has also been published in 1998 American
Control Conference, Philadelphia, PA, pp. 3430-3434, June 1998.

The material in Chapter 4 has been published in

e A. Horch and A.J. Isaksson. “Assessment of the sampling rate in
control systems”. Proc. Control Systems 98. Porvoo, Finland, pp.267-
274, September 1998. An extended version has been accepted for
publication in Control Engineering Practice, 2001.

The method proposed in Chapter 10 has been published in

e A. Horch. A simple method for detection of stiction in process con-
trol loops. In Control Engineering Practice, 7(10):1221-1231, October
1999. A shorter version has also been published in IEEE Int. Confer-
ence on Control Applications, Hawai'i, USA, 1284-1289, August 1999.

Parts of Chapters 6, 7 and 8 have been submitted as

e A.J. Isaksson, A. Horch and G.A. Dumont. Event-triggered deadtime
estimation from closed-loop data. In American Control Conference,
Arlington, Virginia, USA, 2001.

A short version of Chapter 11 has been submitted as
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e A. Horch and A.J. Isaksson. Detection of valve stiction in integrating
processes. In European Control Conference, Semindrio de Vilar, Porto,
Portugal, September 2001.

Work that has not been explicitly included in this thesis but was performed
during the Ph.D. studies was published in

e A. Horch and A.J. Isaksson. “A method for detection of stiction in
control valves”. In Proc. IFAC Workshop on On-Line-Fault Detection
and Supervision in the Chemical Process Industry, Session 4B, Lyon,
France, June 1998.

e A.J. Isaksson, A. Horch and G.A. Dumont. Event-triggered deadtime
estimation — comparison of methods. In Control Systems 2000, Victo-
ria, B.C., Canada, pp.209-215, May 2000.

e A. Horch, A.J. Isaksson, B.J. Allison, A. Karlstrém and L. Nilsson.
“Dynamic simulation of a thermomechanical pulp refiner”. Nordic Pulp
and Paper Res. J., Vol.12, No.4, pp.270-275, December 1997. Also
presented at the 4th PIRA International Refining Conference, Fiuggi,
Italy, March 1997.

e A.J. Isaksson, A. Horch, B.J. Allison, A. Karlstrom and L. Nilsson.
“Modelling of Mechanical Thrust in TMP Refiners”. Presented at the
International Mechanical Pulping Conference 1997, Stockholm, Swe-
den, June 1997.

e K.H. Johansson, A. Horch, O. Wijk and A. Hansson. “Teaching mul-
tivariable control using the Quadruple-tank process”. In 38th IEEE
Conference on Decision and Control, Phoenix, AZ, December 1999.

1.4 Topics for further research

Even though the research in the area of control performance monitoring is
quite active, there are only few commercially available tools which are able
to cover the whole range of requirements mentioned before. Unfortunately,
many of the commercially used algorithms are not available in the literature.
There are, however scattered results published which suggest solutions for
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some of the problems in connection with condition monitoring. In addition,
a lot of practical applications have been reported.

There is, however, still a lot of research to do even though it is not clear
how far one can get while adhering the restrictive practical constraints given
by the industry. It is more than likely that one cannot perform a detailed
(and error-freel) performance assessment of a complicated industrial process
simply by passively collecting data.

Future work may include some of the following topics:

Learning supervision tool. Learning here means the automatic construc-
tion of a database for each loop. For example the storage of important loop
information such as re-tuning, operating range, valve characteristics, process
model (if available) etc. Such information — if available — may then be used
by different algorithms and then enable more detailed analysis.

Smart equipment. Modern actuator elements (e.g. control valves) and
sensor equipment are nowadays operated digitally and have the ability to
perform computations and to communicate with the distributed control sys-
tem. These features should of course be used for self-diagnosis in actuators.
A supervision system could for example compare the self-diagnosis to other
available data.

Model-based diagnostics. This thesis deals mainly with model-free ap-
proaches, i.e. no process model has to be available when commissioning the
monitoring tool. When using mechanistic process models, one could use the
large quantity of results from the fault detection area, see (Isermann and
Ballé, 1997) for a recent survey. This could be interesting for example for
the petro-chemical industry, where (at least static) models for most processes
are usually available.

Large-scale tests. Many different approaches for performance assessment
have been proposed during the last decade. However, no large scale com-
parison of all methods has been published so far. It would be an interesting
experiment to design a database of benchmark data which can be used by
all researchers and suppliers within the area.
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Chapter 2

Control performance
indices

One of the starting points for the work presented in this thesis is a control
performance index proposed by Harris (1989). This method will briefly be
reviewed in Section 2.1. Ingredients in Harris' method are the fitting of a
time-series model to the process output and the calculation of the output
variance. These topics are discussed separately since they can be done in
several ways, see Sections 2.2 and 2.3 respectively. Strengths and weak-
nesses of the Harris index are then discussed in Section 2.4. How a similar
performance index has been defined by Eriksson and Isaksson (1994) if a
process model is available is described in Section 2.5.

The Harris index has started an intensive research activity which has
resulted in a number of similar and new concepts for performance assess-
ment using indices. Some of these approaches will briefly be reviewed in
Section 2.6.

2.1 A minimum-variance based index

An appealing method for control performance assessment was first described
by Harris (1989) and compares actual (process) output variance o3 to the
output variance 0%, as obtained using a minimum variance controller. A
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performance index is defined as

02

I, =Y. 2.1
pGIZ\AV 1)

The index will of course always be larger than or equal to one, where values
close to one indicate good control with respect to the theoretically achievable
output variance.

All the information needed to compute the index (2.1) is one set of normal
operating output data, y(t), and knowledge of the process dead-time d. As
pointed out by Harris, the minimum achievable variance, O';ZVLV, can indeed
be calculated, regardless of what the current controller is. To calculate 0%/,
estimate a time-series model from the measured output

y(t) = ——left). (2.2)

A series expansion (i.e. the pulse response) of this time-series model can be
written as

yt) = (ho+hig " +hag 2 +...)e(t) (2.3)
e .
= Z (hig ") e(t)
i=0
where hi, 1 =0,... are the Markov-parameters of the time-series model. It

can be shown that the first d elements of this series expansion coincide with
the coefficients of the series expansion of the noise process, see (Astrém,
1970). The reason is that no controller can influence the process output
before the time-delay d has elapsed.

Theoretically, a minimum-variance controller can completely remove all
influence from the noise after the time-delay. Hence, the theoretically optimal
output is a moving average process

yt) = (hothia "+ +ha1a (@) eft), (2.4)
and as a consequence

0%y =(h3+h2+h3+---+h3 )o? (2.5)
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The actual output variance can of course directly be estimated from
the collected samples of y(t). However, it is suggested to use the estimated
time-series model also for evaluating the current variance 05, see Section 2.3
for a more detailed discussion. It is therefore proposed to compute the
performance index using

YoM
da-1,2"
Yioh

Note also that this form of the index guarantees that I, > 1 and that the
noise variance estimate 62 is not needed since it is cancelled.

I, = (2.6)

To summarize, the complete algorithm to evaluate the performance in-
dex (2.1) contains the following steps:

1. Estimate a time-series model (2.2) for the measured out-
put y(t).

2. Calculate the series-expansion (2.3) of the estimated
time-series model.

3. Calculate the minimum achievable variance (2.5) based
on the series expansion.

4. Calculate the actual output variance 013 (Section 2.3).

5. Compute the performance index (2.1).

2.2 Time-series modelling

Even though the evaluation of the Harris index is straight forward, one has to
make certain decisions. One of them is the choice of the time-series model
structure. Several different structures can be chosen from:
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Auto-regressive moving average (ARMA) model. The process variable
y(t) is described by

Alg N y(t) =Cla M e(t). (27

As will been shown in Chapter 3.1 (Equation 3.2), the process variable y(t)
is theoretically a real ARMA process. In order to estimate the parameters
in (2.7), one has to solve a nonlinear optimisation problem.

Moving average (MA) model. If A(q~') =1 in (2.7), the process vari-
able is described by

y(t) =Clq e(t). (2.8)

This model has finite memory. In order to model closed-loop systems with
slow decay a large number of parameters will be required. Still the parameter
estimation has to be done by solving a nonlinear estimation problem. As a
consequence it seems reasonable to estimate a full ARMA-model instead,
thereby being able to reduce the number of parameters.

Auto-regressive (AR) model. If C(q~') = 1in (2.7), the process variable
is described by

Ala™ N y(t) =e(t). (2.9)

The estimation of the parameters in (2.9) is simple and the problem can be
formulated as a linear regression with a closed-form solution. Theoretically,
one needs an AR-model of infinite order to completely describe an ARMA
model. This can be seen using a simple example:

Cl4ceq! 1
T+ag™'  (1+aq ")
1

= :AR .
(14+ag ")(1—cq ' +c?2q2+--) (c0)

ARMA(1,1)

It is usually sufficient to use a high-order AR model in order to approximate
a process which is really ARMA, see for example (Wahlberg, 1990) for a
detailed discussion. Ogawa (1998) proposed the use of the partial autocorre-
lation function (PACF) in order to determine the AR model order required to
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describe a certain signal sufficiently. The author makes use of the fact that
the PACF of an AR(n)-model vanishes after lag n. The PACF measures the
correlation between y(t) and y(t — j) after the correlation due to interme-
diate values y(t—1),...,y(t —j + 1) has been eliminated. The PACF can
be calculated using the Levinson-Durbin algorithm or as a by-product from
a lattice filter estimator.

A simple way of determining the necessary AR model-order is hence to
calculate the PACF up to an order which is almost surely larger than the
required model order. Then a sufficiently high model AR model-order is the
lag from which on the PACF stays within its 95% confidence limit.

The estimation of the parameters in A(q~') can be done in may ways.
Some commonly used algorithms, see for example Ljung (1999), are

1. Least-squares method. The sum of squared forward prediction errors
is minimised.

2. Forward-backward method. The sum of a least-squares criterion for a
forward model and the analogous criterion for a time-reversed model
is minimised.

3. Yule-Walker method. Solving the Yule-Walker equations, formed from
sample covariances (using e.g the Levinson-Durbin algorithm).

4. Lattice filters The lattice filter equations are solved, using the har-
monic (Burg's method) or the geometric mean of forward and back-
ward squared prediction errors.

Note that for some of the methods the estimated model is also guaranteed
to be stable (Methods 3 and 4). Performing comparative tests on real data
it has been found that the estimated time-series model does not change
significantly when using different estimation methods for the AR-parameters.

Laguerre network. The use of a Laguerre network for evaluation of the
Harris index has been proposed by Lynch and Dumont (1996). Laguerre
models will also be used for dead-time estimation in Chapter 8. A Laguerre
network can be used either in a moving average or an auto-regressive sense,
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i.e.
ylt) = <1+Zciu(q,oc)> e(t), (2.10)
i=1
ylt) = —(Zcih(q,oc)> y(t) +elt), (2.11)
i=1

where the Laguerre filters are given by

— o i—1
VI—« (l “q) i

L =

i(q, x) -« \q-«

Note that if the filter pole is chosen as « = 0, models (2.10) and (2.11)
reduce to MA- and AR-models respectively. See also Figure 2.1 for a block
diagram of (2.11). The estimation of the parameters in the Laguerre model

m L] (t) 1—agq Lz(t) 77777 1—agq T'L(t)
q— q—« q—«

©

—
—+

=

(t)
: b

Figure 2.1: Block diagram of the Laguerre network (2.11).

(2.11) can be done easily since the estimation problem can be formulated
as a linear regression. A thorough treatment of parametric signal modelling
with Laguerre filters has been presented by Wahlberg and Hannan (1993).
They conclude that — having chosen the Laguerre filter pole appropriately
— the number of parameters needed to obtain useful approximations can be
considerably reduced compared to AR modelling. Also, several results on AR
parameter estimation could be generalised to Laguerre models (e.g. asymp-
totic statistical properties and the Levinson algorithm).
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When using (2.10), the estimation problem is more difficult since the
noise (which has to be estimated) is filtered. The benefit for the price paid is
that one obtains the Markov-parameters directly from the time-series model.
The use of Laguerre models for industrial problems has been advocated by
Dumont et al. (1990) and by Wang and Cluett (2000)

Recommended model orders. Whatever model structure is chosen for
the estimation, one has to choose a certain model order. It can easily be
verified that the performance index may vary considerably if the model order
is chosen too low. As a consequence, the model order is recommended to
be chosen rather too high than too low. Reasonable values which have been
tested in practice are shown in Table 2.1. The orders for AR and Laguerre

model structure | model order
AR 15-25
ARMA 8-12
Laguerre 10

Table 2.1: Recommended model orders for time-series modelling.

modelling have been proposed by Ogawa (1998) and Lynch and Dumont
(1996) respectively.

2.3 How to compute the actual variance

The simplest way of estimating the actual output variance 0‘% is directly from
measurement data, i.e.
1T 1
Ui ZWZ[E(U*WZ» gzﬁzyﬁ)- (2.12)
i=1 i=1

However, since a time-series model for y(t) has already been estimated, one
can make use of that for estimation of cﬁ also. Using the series expansion
of the time-series model, we have

ol = (i hf) o2. (2.13)
i=0
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Note that using (2.13) has the nice effect that the noise variance (estimated
using the residual variance from the identification procedure) will be cancelled
when computing the performance index (2.1). Since the residuals contain all
unmodelled dynamics, this is an advantage.

Of course, the evaluation of (2.13) should not be done by computing the
sum directly. One can instead convert the time-series model to state-space
form (F, G, H) and use

P =FPF' +GG'

o, =Ey(t)? = (HPH') 03 (2.14)

which only requires the solution of a Lyapunov equation.

2.4 Pros and Cons

The index as described in the previous section has become popular in the
process industry, especially in the paper industry where many applications are
reported, see e.g. (Fu and Dumont, 1995), (Harris et al., 1996a), (Kozub,
1996), (Lin et al., 1998) or (Ogawa, 1998). The advantages are obvious:

+ easy to implement

+ easy to interpret

+ non-invasive

+ modest process knowledge required (dead-time only)

These properties are perfectly in line with the requirements for an industrial
control performance tool. There are however some weaknesses which have
to be taken care of, namely

— comparison to perfect control, i.e. possibly overly optimistic indices,
— dead-time often unknown or time-varying,
— assesses only dead-time as performance limiting factor,

— data pre-treatment necessary in order to avoid use on “bad” data (for
example outliers, linear trends etc.),
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— based on stochastic control (i.e. stochastic disturbances) whereas the
control task is often rejection of deterministic disturbances or setpoint
tracking,

— even though the Harris index is an absolute measure on loop perfor-
mance, one has to set reasonable alarm limits. Malfunctioning loops
shall be detected but no unnecessary alarms should occur. (A limit of
two or three is often used in practical applications).

An example

Consider a simple example taken from (Astrém and Wittenmark, 1997). The
ARMAX process is given by

(1—g N1 =07gNyt)=(14+059g Hut—2)+(1-09q " elt)
where e(t) is zero mean white noise with variance 02 = 1. Consider first a
minimum-variance controller for that process, which can be calculated as

(14059 ")(1+08q ult) =—(0.66—0.56q ") y(t).

Closed-loop data using this controller can be seen on the top left side of
Figure 2.2. The bottom left plot shows the impulse response of the (esti-
mated) time-series model. It can clearly be seen that the controller succeeds
in removing the stochastic disturbances after the dead-time (dashed-line)
has elapsed. Since the process has a time-delay of two samples, the the-
oretical minimum variance is 0%,y = (1 +0.8%) x 1 = 1.64. The actual
output variance when using the minimum-variance controller is ai =1.61.
The minimum achievable variance as computed from the estimated model is
0%y = (1 +h?) x 1 =1.52 yielding an index of I, = 1.06.

As a comparison consider a P-controller with gain 0.06 instead. The
results using this controller are shown on the right side of Figure 2.2. The
actual output variance is 05 = 3.29, the minimum-achievable variance is
estimated to be 0%,y = 1.55 yielding an index of I, = 2.12.

It is interesting to take a look at the control signals which were used in
both simulations, see Figure 2.3. The control signal variances are 1.87 and
0.12 respectively. The minimum-variance controller requires hence a more
than 15 times higher control signal variance compared to P-control. On the
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Figure 2.2: Example for minimum-variance control (left) and proportional
control (right).
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Figure 2.3: Control signals for MV-control (left) and P-control (right).

other hand, the output variance is only about two times lower than for P-
control. From this it is understandable why a performance index lower than
three often is considered as satisfactory due to practical constraints in the
actuator.

2.5 Performance index using a process model

As stated in Chapter 1, a monitoring tool should not require knowledge
of a process model in order to perform its task. However, simple process
models are often available. For example if model-based controller tuning
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was performed, such as the A-tuning method which is widely spread in the
pulp and paper industry nowadays. Such models are typically first order plus
dead-time and are mostly fitted to experimental data. A natural question is
then in what way the concept of a performance index can be used to assess
control performance when such a simple process model is indeed available.

Furthermore, often the controller parameters are also known. If this is
not the case, they can easily be estimated from normal operating data as
will be shown in Chapter 6.

The use of a process model and the controller parameters has been pro-
posed in (Eriksson and Isaksson, 1994) and (Isaksson, 1996). Such a knowl-
edge allows the evaluation of performance indices for different control tasks
and/or for different controller structures. Below a brief review of this concept
is presented.

Another interesting model-based performance assessment approach using
frequency performance measures has been proposed by Kendra and Cinar
(1997). However, their approach requires closed-loop experiments and given
design specifications for each loop.

The index for different control tasks

The original Harris index evaluates control performance when the control
task is stochastic control. As shown by Eriksson and Isaksson (1994), the
same concept can be used to assess the performance when the control task
is setpoint tracking or input disturbance rejection. If the setpoint change or
the input disturbance are assumed to be steps, the noise model is replaced by
1/(1—g~"). The actual output variance 03 can then no longer be calculated
directly from data since a step disturbance may not have been present in the

actual data set. The variance can instead be calculated from

o2 =Y (1) = 21—7( LT H(e')|* da (2.15)

t=1

where H(q ") is the closed-loop transfer function from input disturbance or
setpoint to the process output depending on what the control task in question
is. The denominator of the performance index is calculated as usual by series
expansion of H(q~ ') as described in Chapter 2. In order to do that, process,
controller and noise model are needed. Note the interesting fact that if the
noise model is assumed to be 1/(1 — q~'), the minimum-variance term is
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trivially given by o2, = d since the series expansion of 1/(1 —q~ ') is
T+q '+q2+....

The index for different control structures

The comparison of the actual output variance to minimum-variance may be
overly pessimistic. What one rather would like to assess is how much the
output variability can be decreased using the current control structure. For
a Pl-controller one would like to compute an index as

2
o

Ipr = —-, (2.16)
Op1

where 03 is the minimum achievable output variance using a Pl-controller.
Here, in order to compute (2.16), process, controller and noise model have to
be available too. The index (2.16) is obtained by minimising the expression
for o3, with respect to the controller parameters. For a Pl-controller one
has to evaluate

1

— min —J IH(e')|* daw (2.17)
Ke n

2 2
(o) = Imi
PL ™ oT Y T: 27t

in o
,Th
where H(q ™) is the closed-loop transfer function as described above.

Note that one is not restricted to the current control structure. One can
of course compare the current controller with another structure, for example

to assess the possible benefit of adding a derivative part to a Pl-controller.

A matrix of indices

Combining the indices from the two previous sections one can obtain a whole
matrix of performance indices. In (Eriksson and Isaksson, 1994) and (Isaks-
son, 1996) three different control tasks and three different controller struc-
tures are proposed yielding the following index matrix:

stoch. control | setp. track. | inp. dist. rej.

free contr. struct.
restr. to PID
restr. to Pl
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From such a table it is obvious that the additional information leads to a
more detailed assessment. The simplicity of a single performance index has
disappeared somewhat. However, this is not really a disadvantage since the
described method cannot be used as a first-level assessment on all loops since
a process model is typically only available for a limited amount of loops. For
such loops, a more detailed performance assessment should be considered.

It is interesting to note that the procedure here also — at least implicitly
— delivers the optimal controller parameters in a least squares sense. Two
remarks shall be made on this fact. Firstly, since optimal controller parame-
ters are computed implicitly, a monitoring system should save these and on
request be able to suggest them in case re-tuning was decided.

Secondly, for the calculation of the index denominator, some control
design has to be performed implicitly. In (2.17) the controller parameters
are optimised using a quadratic criterion. As an alternative, one could use
any control design method which can be automised. Having achieved a
certain design, the theoretical minimal variance can be computed and the
index be evaluated. By that, one could create an individual performance
index which takes a certain design method into account. If then controller
re-tuning is requested, the new parameters are already available.

Assessment using other quantities

With the process and the controller available, it is also possible to compute
other quantities which can be used for performance assessment. Examples are
design variables as, for example, gain and phase margin, cross-over frequency,
bandwidth or sensitivity function. Such information may be of great use for
an engineer when scrutinising a certain loop. It is however more difficult
to use it for automatic performance assessment since none of these values
represents an absolute measure as the Harris index is. The estimation of the
phase margin from routine operating data for performance assessment has
been proposed by Miiller (1986).

2.6 Other approaches based on indices

As already mentioned in Chapter 1, there are other performance indices
proposed in the literature. Some of them will be reviewed very briefly for
completeness.
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Relative variance index (RVI). Bezergianni and Georgakis (2000) pro-
posed a performance assessment index where the closed-loop performance is
compared with minimum-variance control and open-loop control. The RVI
is defined as

2 2
(6) — O
L
RVI= 2L ¥
0oL — Omv

where 64 is the output variance if the controller is removed. The RVI is
equal to zero if the current performance is equal to the open-loop perfor-
mance and equal to one if the performance is equal to minimum-variance
control. The price paid for the more sophisticated assessment is that one
needs to know the process, controller and noise model. The authors suggest
closed-loop identification using subspace identification techniques.

Idle index. Hagglund (1999) proposed a performance index which detects
sluggish control loops. The idle index describes the relation between times of
positive and negative correlation between the control signal and the process
output increments, Au and Ay respectively. It is defined as

L — tpos - tneg

Y tpos +tneg
where t,05 and tneq are updated every sampling instant (sampling period
Ts):

= tpos + Ts if AuAy >0 A tneg +Ts  if AuAy <0
POS Tt FAUAY SO 9T\ tneg i AuAy >0

Then, positive values of I; > 0.4 indicate sluggish control. The idle index
should be evaluated when load disturbances occur in the loop.

A performance watchdog. Rhinehart (1995) proposed a very simple per-
formance index which is the ratio of the process variance, calculated in two
different ways,

2
I, = u!
w 0_2
y2
. . . N . .
The variance 03, is obtained from o2, = 5 X ;_; di(i) where d;(i)

is the deviation of sample i from the setpoint value. The variance Giz
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is obtained from 02, = > M, d2(i) where dy(i) is the distance
between two consecutive samples. A performance problem is then indicated
if both variance estimates differ such that the ratio is larger than I,, = 3.

Normalised settling time. Swanda and Seborg (1997) proposed to use
the settling time T of a setpoint response, normalised by the apparent time-
delay 0 of the process. The index is defined as

The authors define intervals of I, which indicate satisfactory and non-
satisfactory control respectively. They also show that the value of It is
rather insensitive to the model order and model type for a wide range of
process models.

Pl-control performance index. Ko and Edgar (1998) suggested an index
similar to the one described in Section 2.5. They compute the ratio of the
actual variance and the minimum achievable one using a Pl-controller. It is
assumed that a process model is available. The noise model is then estimated
using stochastic disturbance model realisation.
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Chapter 3

A modified control
performance index

The Harris approach as introduced in the last chapter has been shown to
indicate actual control performance correctly in many reported cases. For
an overview see (Harris et al., 1999). The main principle of the minimum
variance based index is to relate the actual performance to the best achievable
performance when time-delay limitations are considered. Hence, if the time-
delay is the main factor limiting performance in a control loop, the Harris
index will give good results.

Another situation arises when the system time-delay is very short. In
that case there may be other limitations which have a larger influence on
the achievable performance. These other limitations can be taken into ac-
count by integrating their contributions to output variance when calculating
a performance index. Tyler and Morari (1996) proposed a modification of the
Harris index which takes performance limitations due to non-minimum phase
zeros and unstable poles into account. They showed that neglecting these
performance limitations can lead to an incorrect performance assessment.
This modification requires knowledge of the unstable poles and zeros.

In order to accomplish a realistic performance bound that takes other
limitations than time-delay into account, Kozub and Garcia (1993) suggested
a performance index which allows an exponential decay of the closed-loop
response after the dead time has run out. They consider this an important
extension of the original method. The minimum variance benchmark was



28 3 A modified control performance index

found to be “not practical in many circumstances” (Kozub, 1996). This
extension was also used and described by Huang and Shah (1997). However,
a problem of the “user-defined benchmark” in (Huang and Shah, 1997) is
that it requires knowledge of the disturbance model. Huang assumes that
the disturbance model is either an integrator or has to be estimated from
input-output data. The use of an integrator noise model for deterministic
disturbances has also been discussed in (Eriksson and Isaksson, 1994).

We will here introduce an alternative problem formulation which allows
both the specification of a user-defined benchmark and the calculation of
the modified performance index using solely the measured output and the
process time-delay. The concept of the user-defined benchmark implies that
not all closed-loop system poles! are placed in the origin — as done when
using minimum variance control — but one of them is placed arbitrarily by
the user. This means that we do not assume a dead-beat system but allow
an exponential decay which depends on where the free pole was placed. This
modified minimum achievable variance will always be larger than the variance
achieved by a minimum variance controller. Hence, our modified index will
always be smaller than the Harris index.

The chapter is organised as follows. In Section 3.1, the Harris approach
is re-derived in the pole-placement framework. The same notion is then
used to formulate the proposed modified closed-loop system in Section 3.2.
Also, a possible implementation is outlined. The choice of the closed-loop
pole is discussed in Section 3.3. In order to determine the accuracy of the
calculated index, it would also be desirable to compute its standard deviation.
A method to do this is presented in Section 3.4. Examples from industrial
processes are used to compare the old and the new index in Section 3.5.
Finally, conclusions are given in Section 5.2.

3.1 An alternative derivation of the Harris in-
dex

In this section the performance index presented by Harris (1989) is re-
formulated using a pole placement notion. The key-point in the approach

INote that closed-loop system here refers to the transfer function from noise to process
output. The poles of the transfer function from setpoint to output are not all located in
the origin.
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presented by Harris is that the controller cannot influence the process output
before the dead-time has run out. Consider the block diagram in Figure 3.1.
Let the process be described as

Ca™ "
D(q ")

T(t)‘/):\ S(q—") u(t) B(q ")q ¢ ‘é\ y(t)‘
&/ R(g 1) Alg ) \Z/

B(q™") 4
Al ¢

y(t) = u(t) + e(t). (3.1)
where y(t) and u(t) are the process output and the control signal and e(t)
is zero mean white noise with variance o2. Denote the degrees of the poly-
nomials A, B, C and D as na, ng, nc and np respectively. We will assume
that ng < na and nc < np.

Closing the loop with a polynomial controller F(q~')
the closed-loop system

_ S(a~
R(q

1 ) .
™ yields

ARC

VY = BAR+ BSqa]

e(t). (3.2)
We assume here that the process is stable and minimum phase. Now, all poles
shall be placed in the origin, which equals to applying a minimum variance
controller. To achieve this, the controller denominator has to contain both
the noise model poles and the process zeros R = DBR; where Ry is the
remainder of R. Inserting this controller into (3.1) yields

AR, C

t)=———1— ¢ 3.3
y(t) ADR, 5¢ ¢ (3.3)
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The minimum variance closed-loop system,
y(t) = Rye(t), (34)
will be obtained if we require
ADR; +Sq~¢ = CA. (3.5)

Note that the polynomial A(q~') appears on both sides of the Diophantine
equation (3.5). That means also S(q~") has to contain A(q~ "), i.e. S = AS.
Hence the controller cancels all (stable) process poles. Inserting S(q~ ")
yields the Diophantine equation

DR; +Sq ¢ =C. (3.6)

With the orders ng = d — 1 and ng = np — 1, this equation has a
unique solution, (Astrdm and Wittenmark, 1997), Ry (q ') and S(q"). This
follows since nc <np +d—1and g~ and D(q~") do not have common
factors. Note that the time-delay d is at least one sample in all discrete-
time processes originating from sampled continuous-time ones. Since Ry is
of order d — 1, its parameters can easily be determined as the first d — 1
samples of the the series expansion of

CcC = S
— =R —dZ 3.7
o =Rit+d g (3.7)
The minimum achievable variance can be calculated as
o7y =(h§+hf +...+hi )02 (3.8)

where h; are the coefficients of R;. The performance index will then be
obtained as the ratio of the actual output variance O'ﬁ and the minimum
achievable variance

o2

=Y (3.9)
P oy

The key-point in the Harris approach is that the process noise model does
not have to be known. This implies that the first d — 1 coefficients of the
impulse response of the closed-loop transfer function from disturbance e(t)
to output y(t),

y(t) = e(t), (3.10)
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are exactly equal to the first d — 1 coefficients of the impulse response of
the noise model C/D. The closed-loop transfer function in (3.10) can be
estimated as a time-series model for the measured process output y(t).

3.2 The modified performance index

Derivation

Let us now assume that we want to place one pole at g = u and the other
poles in the origin. That means we require the following closed-loop system
Ry(q ")

e )

e(t). (3.11)

With the same assumptions for S(q~') and R(q~") as in the previous section,
i.,e. R=DBR; and S = AS, we have to solve the Diophantine equation

DR, +Sq ¢=C(1—nqg ). (3.12)

Sincenc +1<np +d —1is satisfied for np > n¢c and D(q~ ') and g ¢

do not have any common factors, Equation (3.7) has a unique solution
Ra(a™")  with mgp =d—1 (3.13)
§(q’1) with ng =Np —1.

It remains to show that l~{2 still can be calculated from a time series model.
Consider therefore Equation (3.12) when divided by D(q~")

C -1y _ P S a
pI—ra ) =R+ 597" (3.14)

As shown above, R; is of degree d — 1 and can thus be calculated as the
first d — 1 elements of the series expansion of the left side of (3.14).

Implementation

Since the control has no influence before time t = d, the impulse response of
R2/(1—ug™") has to coincide with the impulse response of Ry for t < d. For
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t > d we have the impulse response h(t) = h(d — 1)ut~4*+1. The output
variance of y(t) can now be calculated as

d—1 00 )
s = (T iy )
i=0

=5

2 2 w 2
h‘i + hd*] —_I — uz O%
i=0

2 »  Wo 2 2
e
= Omv + hd,] —] — I,,LZ =0mv + O-P‘-' (315)

o
- ©

Note that this variance has two parts, the minimum variance and the contri-
bution from the first-order decay. Thus the implementation of the modified
index I ;104 can be done using the following steps:

1. Estimate a time-series model for the closed-loop system
T(q ")/N(q'). The series expansion of this is equal
to the one of C(q~')/D(q ") for the first k—1 samples.

2. Equation (3.15) showed that only Ry is needed for the
calculations. Determine R; as the first k — 1 coeffi-
cients of the series expansion of the identified time series
model.

3. Calculate the minimum variance 0%, as in (3.8).

4. Calculate the modified minimum variance as in (3.15).
5. Calculate the actual output variance O'ﬁ.

6. Calculate the modified performance index as

2
%y

Imoa = 2
mod




3.3 Choice of closed-loop pole 33

Connection to the original performance index

An interesting property of the presented modified index and the original
Harris index is their ratio. Consider therefore

2 2 2
r= I‘P _ v _ Omod _ Omv t+ ou (3 16)
- =Tz T o2 2 : :
Imoa Ty oMV Oy
Oimod

If we assume the smallest possible time-delay k = 1, this ratio can be calcu-
lated analytically from (3.15) and depends only on the choice of the closed-
loop pole w:

1

*

i e R (3.17)
It reveals that the Harris index is always 33% larger than the modified index
if we choose u = 0.5. For uw = 0.7 the Harris index is 96% larger. From
Equation (3.16) it can also be seen that the ratio of the indices decreases
(towards one) if the process time-delay increases. Hence we can conclude
that the modified index becomes more significant for systems with short
time-delays, as desired in the introduction.

Note that the modified index may in fact be smaller than one, thereby in-
dicating that the current controller is doing better than required. This is due
to the fact that a more realistic benchmark than perfect control (minimum-
variance) is used.

3.3 Choice of closed-loop pole

A modified performance index was introduced which requires the specification
of a closed-loop pole. In this section, different approaches for the choice
of this closed-loop pole 1 are discussed. As there are many possibilities to
choose W, no final solution can be given and some ideas will be outlined. The
first one does not require any extra knowledge and is based on robustness
considerations only. The second approach makes use of available additional
process knowledge. Note again that the original minimum-variance based
index corresponds to = 0.
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Choice of closed-loop pole based on robustness margins

We will here derive a lower bound on the closed-loop pole w. It is based
on an imaginary controller design using robustness arguments. Recall now
that the time-delay plays a central role in the concept of the Harris index.
Assume that the correct process time-delay is only known with an accuracy
of £1 sample, i.e. let the real process be described as

. _B(qq) —a
Gla") =z a (3.18)
and the process model as
R 7B(q7]) -d
Gla") = Xgmy 4 (3.19)

where d =d+1. The following theorem gives a lower bound on the closed-
loop pole.

Theorem 3.1. Let the real process and its model description be given by (3.18)
and (3.19). The controller is designed (using G) such that one closed-loop
pole is located in ¢ = w and the others in the origin. Then, if the closed-loop
pole W is chosen as

u>0.5, (3.20)

the closed-loop system, now using G(q~ ') instead of the model, has a guar-
anteed gain margin GM > 2. d

Proof: See Appendix A.

The assumption that the process time-delay is not known exactly is rea-
sonable. As a matter of fact, the assumed variation of £1 sample is rather
modest. The main reason being that the delay is often inaccurate since it
has to be estimated in most cases. Furthermore the physical time-delay is
seldom an exact multiple of the sampling interval, hence rounding errors are
introduced when determining the number of samples of dead-time.

Use of additional process knowledge

Another reasoning can enlighten what the lower bound for | derived in the
previous section means for the case of a correctly estimated time delay.
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Assume that the system is sampled with a reasonable sampling interval,
i.e. approximately 5 to 10 times the slowest process time-constant. When
determining the discrete-time pole A from the continuous-time counterpart
we have to calculate

A =exp (%) (3.21)

where T is the sampling time and T is the slowest process time-constant.
Inserting T € [5...10] - Ts into (3.21) yields A € [0.81...0.90]. Using
n = 0.5 as proposed above would mean to compare the current controller
to a controller which speeds up the system [3.5 ... 7] times. As this is
rather much, one may choose p to be even larger than 0.5. Clearly, there
are processes which may be speeded up that much but a reasonable choice
which often gives good results in process industry is to speed up the system
not more than two to four times.

As a consequence, a constraint on p could be formulated if it was known
to what extent the process can be speeded up. This would result in a
benchmark which is quite realistic for that specific loop. Assume that the
slowest process time-constant, T, is known approximately and one allows to
speed up the system three times. Then a reasonable choice of the closed-
loop pole would be p > exp (—%ﬁ) As mentioned in the introduction,
here the question of the available process knowledge arises. In our opinion it
is reasonable to assume that knowledge of the open-loop dominant process
time-constant is not less likely than knowledge of the time-delay. When
such a knowledge is available, there are several guidelines how to place the
dominant closed-loop pole. See (Panagopoulos et al., 1997) for a discussion
on this issue.

It would also be highly desirable to take the control action into account.
A drawback of minimum variance control is that it yields rather excessive
control actions. These may not be able to apply due to constraints in the
manipulated variable. In this case, the input constraints may limit control
performance rather than the system time-delay. Hence the actual process is
compared to a sometimes over-optimistic benchmark. The incorporation of
the control action, however, would require additional process knowledge.
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3.4 How accurate is the index?

An estimate of the closed-loop performance using an index is of course of
little value without some indication of its accuracy. Therefore the standard
deviation of the estimated index should be presented along with the index.

This issue was also discussed by Desborough and Harris (1992) where ap-
proximate statistical moments of a normalised performance index are calcu-
lated using Taylor series approximation. We will here use a similar approach.

Generally speaking, the calculated index is a function of the estimated
time-series model parameters 8 = (07,...,0,,)", (e.g. the parameters of
T(q~ ") and N(g~ ") in (3.10)); i.e.

1=f(0). (3.22)

The function f(0) is nonlinear and the exact calculation of the standard
deviation is therefore difficult. However, the variance of (3.22) can be ap-
proximated using the Gauss approximation formula

Var(I) =~ f'(8)Cov(8)[f'(6)]" (3.23)

where

£1(0) = (af(e) of(0) 6f(6)>
007 7 002 ' 00,
and Cov(0) is the covariance matrix of the estimated parameters. In most
system identification software packages the covariance matrix Cov(0) is de-
livered along with the estimated parameters 8. For some cases it should be
possible to calculate f'(0) analytically. However, in this chapter the standard
deviation will be calculated using a numerical approximation of f’(0). Each
f'(0;) is calculated by perturbing a certain parameter 0; and then using the
approximation
f(0;+25)—f(0:— %)
A )
where A is the size of the perturbation. In (Eriksson, 1995) it it shown
that it is rather complicated to calculate the covariance for GI_ZJ and that it
still remains to calculate some cross-correlations. A solution to this problem
is to calculate Gﬁ using the Markov parameters {h;},i = 0,...,00. The
performance index can then be calculated from
_ oy _ ﬁzli\‘ﬂ(yi*g)z ~ (Eooh)oy Yoo (3.24)
v (X0 hi)o? (Tisond)ed Y h?

(6:) =
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where §j is the signal mean. Note that this expression does not involve the
estimated noise variance o2 any more. The approximation is used to indicate
that both expressions are theoretically equal. They will normally differ and
none of them can be claimed to be the “true”one. The problem of how to
calculate the actual output variance using (3.24) has already been discussed
in Chapter 2. Using the Lyapunov approach the value of the output variance
and hence the performance index only depend on the estimated model, i.e.
0. Note that the Harris index has to be calculated again and again for every
parameter perturbation. However, the computations involved are simple and
fast such that the additional computational effort is not severe.

Note that it may be misleading to compare the relative uncertainty of
the Harris index and the modified index. This is because the value of the
modified index is always lower than the Harris index. What matters is the
absolute value of the uncertainty, giving a measure of the reliability of the
performance index.

Another important remark has to be made here. It is easy to see that the
original performance index, as described in Section 3.1 may vary considerably
in some cases. If there is a short dead-time, then the performance index will
be rather sensitive to an uncertain estimate of the number of samples of
time-delay. Also, the time-delay may be time-varying which is often the
case in many processes, €.g. paper machines. This sensitivity will be smaller
when the proposed modified index is used. This is because the additional
exponential decay of the impulse response decreases the impact of time-delay
variations on the index value. This effect is illustrated in Figure 3.2 where
the performance index is evaluated for a process with uncertain time-delay.
It can be seen that the index becomes less sensitive to uncertain time-delay
with increasing value of the closed-loop pole .

3.5 Application to industrial examples

In this section the described indices along with their standard deviations will
be evaluated on industrial data sets. Data from two different processes are
investigated.
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Figure 3.2: Performance index for a process with varying time-delay and
different values of the closed-loop pole u. ©=0(0), u = 0.5(x), u = 0.77(>),
pn=0.88(+)

Frontend-temperature control of a lime kiln

The data analysed in this section was collected at a Swedish pulp mill. It
describes the frontend temperature in a lime kiln. The system which is
controlled by a model-predictive controller has a sampling time of 2 minutes,
an open-loop dominant time-constant of about 30 minutes and no dead-time.
Since the process is controlled by a digital controller and the calculations
of the model-predictive controller are time-consuming, there is, however, a
process time-delay of two samples. Note that if the sampling rate is changed,
there will still be a time-delay of two samples. This sampling-independent
behaviour of the time-delay for systems with no or very short dead-time is
important when applying the described indices. In this case, the proposed
modification will become significant.

The measured control error of the frontend-temperature of the lime kiln
is shown in Figure 3.3. The different calculated indices for this example are
shown in Table 3.1. The Harris index for this system is rather high, indicating
that the output variance can theoretically be decreased significantly. The
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Figure 3.3: Measured control error of the frontend-temperature control in
a lime kiln. Sampling time T; = 2 [min)].

pole | Tg [min] Harris mod. index

0.5 2 499+025 3954021
0.77 2 499+ 025 231+0.13
0.88 2 499 +£0.25 1.34+0.08

05 1 1092 +0.38 9.27 = 0.36
0.88 1 1092 £ 0.38 3.84 £ 0.21
0.94 1 10.92 £ 0.38 2.15+0.13

Table 3.1: Performance indices (given with their estimated standard devi-
ations) for the control of the lime kiln process for different choices of the
closed-loop pole 1 and the sampling time Ts.

modified performance index using p = 0.5 results in a smaller but still high
value. From practical experience it is known that the process cannot be
speeded up too much. Since the open-loop dominant time-constant of the
process is approximately 30 minutes, the sampling of 2 minutes is rather fast.
This constellation corresponds to a discrete-time pole of 0.94. Requiring
n = 0.5 means thus that the system has to become more than 10 times
faster. For this process it is not likely to speed up the system more than
two times resulting in > 0.88. The resulting modified index is significantly
smaller than the Harris index. If one would like to keep the open-loop time-
constant, the modified index would become smaller than one which means
that the actual performance is better than the required one. The different
impulse responses for u = 0.88 are plotted in Figure 3.4. Even if we allow
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Figure 3.4: Impulse responses of the frontend-temperature control loop.
Time-series model (x), minimum variance benchmark (+) and modified
benchmark (0). Closed-loop pole p = 0.88, sampling time Ts = 2 [min].

to speed up the system four times, which corresponds to a closed-loop pole
at p=0.77, it can be seen that the modified index is significantly smaller
than the Harris index.

The actual data set was originally collected with a sampling interval of
one minute. If we consider the performance of the system when applying
this faster sampling rate, the indices differ even more. For the open-loop
dominant time-constant of about 30 minutes, we get an open-loop pole at
0.97. A closed-loop pole at u = 0.5 corresponds to speeding up the system
more than 20 times. Table 3.1 shows the resulting indices when allowing
to speed up the process two or four times which corresponds to closed-loop
poles at 0.94 and 0.88 respectively.

For an autonomous control performance tool one has to specify an alarm
threshold on the calculated performance index. This choice is a trade-off
between unnecessary false alarms and the detection of control loops which
perform badly. For industrial acceptance, the threshold must not be too
low. Let us here for instance assume a value of three. Then the results
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from Table 3.1 show that only the modified index will correctly indicate
good control performance if the sampling rate and the open-loop dominant
time-constant are taken into account.

Tray temperatures in a distillation column

This example deals with data originating from three different distillation
columns at Shell. Kozub and Garcia (1993) offered this data to the aca-
demic community in order to stimulate research on performance monitoring.
Part of this data was also analysed in connection with control performance
monitoring in (Vishnubhotla et al., 1997). We will here consider two of the
available data sets which are referred to as Column 1 and Column 3. Part
of the measured tray temperatures are plotted in Figure 3.5. As can be
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Figure 3.5: Tray temperature in a Shell distillation column. Column 1 (top)
and Column 3 (bottom).

seen in the figure, there are some rather large temperature deviations in the
data. These are mainly caused by disturbances. The sampling time here
is one minute, and the open-loop dominant time-constant is about three
minutes. The process time-delay is determined to two samples. All calcu-
lated indices are shown in Table 3.2. The data of Column 1 is sampled very
slowly compared to the open-loop dominant time-constant. For that reason,
the modification does not give significantly different results. The sampled
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Data | pole n Harris mod. index
Col.1 0.5 2.60 + 0.07 2.21 + 0.07
Col.3 0.5 451 +£0.15 424 +£0.14
Col.3 | 073 |451+015 3.71 £0.13

Table 3.2: Performance indices of the distillation columns.

open-loop pole is located at 0.72 which means that u = 0.5 corresponds to
speeding up the process two times. This is a reasonable assumption.

In Column 3 we have a significantly larger dead-time. The sampling
time is one minute and the open-loop dominant time-constant is about 16
minutes. The time-delay was determined to be seven samples. The numerous
disturbances result in rather different indices dependent on the chosen data
batch. The choice is necessary since the data batch contains about 90,000
samples. Here, 10,000 samples were used to calculate the indices. The open-
loop pole of this fast-sampled loop is located at 0.94. Hence, a closed-loop
pole at u = 0.5 corresponds to speeding up the process about 11 times.
When we assume that the process should be speeded up at most five times,
which means u = 0.73, then the modified index is still not significantly lower
than the Harris index as shown in Table 3.2. In this case the dead-time is
the main performance limiting factor, hence the Harris index does give a
reasonable result and will be close to the modified index as mentioned in
Section 3.2. The impulse responses for 1 = 0.73 are shown in Figure 3.6.

To summarise, Column 1 has a short time-delay but too slow sampling for
the modified index to be significantly lower than the Harris index. Column 3
has relatively speaking faster sampling but here the dead-time is long enough
to completely dominate the achievable performance. Hence for both these
examples the Harris index gives a sufficiently good assessment of achievable
control performance.

Summary

The control performance index described in Chapter 2 may be overly pes-
simistic when used for processes with short or no dead-time. A modified
benchmark has therefore been applied, allowing for one closed-loop pole
outside the origin. The idea has been inspired by Kozub and Garcia (1993)
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Figure 3.6: Impulse responses of the tray temperature for Column 3. Time-
series model (x), minimum variance benchmark (+) and modified bench-
mark (0).Closed-loop pole u = 0.73.

and was further derived and applied to industrial data. It was shown that
such a modified performance index can be computed based on measure-
ments of the process output and knowledge of the time-delay only (i.e. the
same information as for the original Harris index). No knowledge about the
noise model is required. Also a practical algorithm for industrial application
has been discussed and several other important practical issues have been
addressed.

Of course it also remains to choose the free closed-loop pole. Some
discussion on this matter was presented. Firstly, it was argued that for many
plants in the process industry it is inconceivable to speed up the response
more than, say two to four times. Approximate knowledge of the open-loop
time-constant is then enough to determine a lower bound on the discrete-time
closed-loop pole. Secondly, a robustness bound on the sampled closed-loop
pole was referred to with respect to modelling errors in the time-delay and
the process gain. According to this bound, the sampled closed-loop pole
should always be larger than 0.5.

The described modified performance index is less sensitive to uncertain
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or time-varying time-delays. This feature makes the proposed modification
interesting when thinking of industrial implementation. In order to increase
the reliability of an automatic performance measure, it was shown how to
calculate a standard deviation along with the index. The additional compu-
tational effort needed is modest.



Chapter 4

Assessment of the sampling
rate in control systems

A modification of the minimum-variance based performance index was de-
scribed in the last chapter. It was found that the performance index is very
sensitive to the actual sampling interval in cases where there is no or only
a very short physical dead-time. Therefore, it would be desirable to assess
automatically — by computing a performance index — if the present controller
uses an appropriate sampling frequency. Too slow sampling may cause an un-
necessarily large output variance. This will, however, typically not be picked
up by the performance index, unless it is computed using data sampled faster
than the controller sampling rate. Notice that also too fast sampling may
be undesirable (e.g. due to wear of actuators), but is less likely to occur in
process industry.

Hence, one would like to be able to evaluate the performance index
at sampling rates faster than the one used for data collection. Thereby,
it is possible to assess the benefit of increasing the sampling rate, without
disturbing the process itself. As a byproduct one also can detect if the process
is controlled unnecessarily fast which may imply excessive input actions.

The calculation of the original and modified Harris index requires a time-
series model of the process output. In this chapter a method is described
which calculates a re-sampled time-series model for the new sampling rate
based on the available model estimated from data. Wahlberg et al. (1993)
proposed a method which allows the direct determination of the closed-loop
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system for a decreased sampling rate. A similar result was presented by
MacGregor (1976). Here modifications necessary to handle also increased
sampling rate are described.

The following information will be needed in order to be able to use the
methods presented here. First of all, the measured process output (under
routine operation) has to be available with the same sampling rate as used by
the discrete-time controller. Secondly, one needs to know the dead-time of
the process. This information is sufficient to be able to compute the Harris
index. In order to apply the modification suggested in Chapter 2, one may
use some additional information, for example an approximate estimate of the
dominant time constant of the process.

The remainder of the chapter is organised as follows. Two methods for re-
sampling of an ARMA model, one exact and one approximate, are proposed
in Sections 4.1 and 4.2. Both methods are illustrated on two simple numerical
examples in Section 4.3. The method for calculating the control performance
index for different sampling rates is presented in Section 4.4. In Section 4.5
the described approach is evaluated on two data sets from Swedish pulp and
paper industry. Finally, a conclusion section finishes the chapter.

4.1 Exact re-sampling of an ARMA model

This section deals with the problem of calculating a time-series model for
a new sampling rate. Even though the interpolation problem is of main
interest here, both, interpolation and decimation can be handled with the
same algorithm.

The problem of calculating the continuous-time counterpart of a dis-
crete-time ARMA model has also been dealt with in (Séderstrom, 1991),
where several exact and some approximate methods are described. Here,
it is not necessary to go via a continuous-time model in order to calculate
the re-sampled ARMA model. Given an ARMA model with the autocorrela-
tion function (ACF) ry1, an algorithm is sought which delivers a re-sampled
ARMA model with a new ACF, 7,5. In common lags, the two ACFs are
required to be equal.
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Consider now the following (original) ARMA model:

E(qg ")
D(q~")
T+eig ' +...+eq1q ™1
- kh

T+ diq T+t dng M)

E{e?(kh1)} = 02,

y(khy) = e(kh) (4.1)

where it is assumed that degE < degD. Let the sampling interval be
denoted by hy. Then a possible state-space representation is the controller
canonical form:
x(khi+hq) =Fa1x(khy) + e(khi+hq)
=Fai1x(khq) + Gqiw1 (khy) (4.2)
y(khq) = Hx(khq)

where
—d; —dy - —dy,
10 0
Fa1 = .
0 10
e(khy+hi) = [e(khy +hy) 0 o'
Gar = [1 0 ... 0"
H = [1 e en_1 | x(khy)

and the noise covariance
Ra1 = E{Ga1wj(kh1)Gg,}

contains zeros except for Rq1(1,1) = o2. In (4.2) the substitution wy (khq) =
¢(khy + hy) is made, which does not change the statistical properties of
y(khq).

The system (4.2) shall now be re-sampled with the new sampling rate
hy = hy/k where k > 1. The decimation case (k < 1) is easily handled
using an algorithm described in (Wahlberg et al., 1993). A similar result was
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also presented by MacGregor (1976). However, even the decimation case
can be handled by the method proposed here.
The new state-space model is now given by

x(khy + hy) = Fgx(khy) +wa(kh,)

(4.3)
y(khz) = Hx(khz),

As mentioned in the beginning of this section, the requirement on the re-
sampled model is that its ACF coincides with that of the original one for
common lags. To calculate the ACF of the process output y(t) it is first
necessary to compute the state covariance matrix P = E{x(kh)x(kh)"} for
the respective models. This can be done solving the Lyapunov equation

P =F.P(Fq4)" +Rg. (4.4)
Then the ACFs for (4.2) and (4.3) can be obtained (Séderstrom, 1994) as
Ty1(v) = HF Y ParH'; my2(p) = HEY, PaH'.

Require then ACFs to be equal in common sampling points, i.e. Ty1(v) =
Ty2(Kkv) — where kv integer. This is obviously satisfied if P41 = P4 and
Fa1 = Fj,. The latter condition yields

Fa2 = exp (ha [1/hy log(Fa1)]) = [Faa]"/*. (4.5)

For ry1(v) = 1y2(kVv) to hold, it remains to make sure that the state covari-
ances P47 and P4, are equal. This is here done by adjusting the covariance
matrix Rq2 = E {waz(khz)w;(kh;) T} for the re-sampled noise wy (kh,). If
the Lyapunov equation (4.4) is first solved for (4.2) yielding P, the noise co-
variance matrix for (4.3) can be calculated from Rg; = P — F4,P (Fdz)T.
Notice that, for very short sampling periods, numerical errors may be intro-
duced here because Rg> is calculated as the difference of two almost equal
quantities, see (Soderstrom, 1994).

Unfortunately, the noise covariance matrix R 42 is typically a full-rank ma-
trix, why (4.3) does not describe an ARMA model. Therefore it is necessary
to use spectral factorisation in order to obtain the desired new ARMA-model
description. This is equivalent to calculating the innovations form of (4.3),
which is given by

x(khz +h2) = Faax(kh2) 4+ Kv(khz),

(4.6)
y(khz) = Hx(khz) +v(khz).
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Note that the state-vector x in (4.6) is no longer the same as in (4.2). The
output of system (4.6) has the same spectral density as the output of (4.3)
if the Kalman gain K is calculated as

K =FgXHT (HXHT) ™'

where X solves the following Riccati Equation
X =Fa:X(Fa2)" + Raz

o 4.7)

—FoXH'(HXH') HX(Fqa2)'.

Finally one gets Ev(kh;)? = HXHT for the innovations v(kh;) = y(kh;) —
Hx(kh3) and the re-sampled ARMA model is given as

e

y(kha) = 297D ey
D(q~1)

= [] +H(qI—Fgy) K] v(khy).

An interesting phenomenon is that, even though both processes (4.2) and
(4.3) now describe the same stochastic process y(t), there is generally no
guarantee that the new noise covariance R g3 is positive definite. However,
the indefinite noise covariance matrix does not prevent the Riccati Equation
from having a solution for certain cases. In particular, this appears to be
the case when the underlying continuous-time model exists. See (Soder-
strom, 1991) for a discussion in the context of calculating the continuous-
time counterpart of an ARMA model.

An extensive treatment of the problem of the existence of solutions of the
discrete-time algebraic Riccati Equation (DARE) was presented by Hassibi
(1996). The author proves that there is a unique, stabilising solution to the
DARE for all initial conditions that ensure that the output y(t) behaves like
a stochastic process.

Hence, even though the method proposed here does not involve the un-
derlying continuous-time system, there will typically be no solution in cases
where there is no continuous-time counterpart to the discrete system in ques-
tion. Unfortunately, there is no guarantee that the data collected originates
from a sampled continuous-time process. On the contrary, a continuous-
time plant controlled by a discrete-time controller may well constitute a
closed-loop system that has no continuous-time counterpart. It may still be
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interesting, however, to evaluate the achievable minimum variance at another
sampling interval than the one used for data collection. In the next section
a re-sampling procedure is described which yields a result even though an
underlying continuous-time process is missing.

Another drawback is that the proposed method cannot handle poles on
the unit circle. However, methods for this case are described in (Séderstrém,
1991).

4.2 Using deterministic re-sampling

Even though the numerical tools used in the previous section are well-known,
it would be advantageous to have a method which avoids the solution of
Riccati and Lyapunov equations. Note that the method presented above is
exact in the sense that the auto-covariance functions of the original system
and the re-sampled system are exactly equal at the lags of the slower sampled
system.

A simpler but approximate way of approaching the re-sampling problem
would be to treat the system as re-sampled with a zero-order hold circuit,
i.e. neglecting the stochastic nature of the system. This method, used to
obtain a continuous-time ARMA model from a sampled one, is also con-
sidered in (Soderstrom, 1991). In order to compensate for the error made
by neglecting the stochastic nature of the system, one has to adjust the
noise-covariance matrix of the re-sampled system.

Consider the state-space model for the original sampling rate h;:

x(kh1 4+ h1) = Fai1x(khq) + Ggiwi (khy)

(4.8)
y(khy) = Hx(kh1).
The re-sampled system is given by
x(khz + hz) = Fa2x(khz) + Gaowz (khz) (4.9)

y(khz) = Hx(khz),

where F 4 is obtained from (4.5). An expression for the vector G4z can be
found by considering the underlying continuous-time system x(t) = Ax(t)+
G¢v(t) using

hy
Gaz :J eAsG. ds
0
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and
Ge =A(Fa1 —1)7'Gan,
which — using A = hiz log F 42 — leads to
Gaz = (Fa2 —1I)(Fa1 — 1) 'Ga1. (4.10)

As shown in the Appendix, the approximation of the “correct” noise covari-
ance of the re-sampled system can than be achieved by substituting

Gag2 — mGdz. (4.11)
h;

Using deterministic sampling does not involve intensive computations and
the error made is rather modest, see (Soderstrom, 1991). Furthermore, this
method does not require the underlying continuous-time counterpart to exist.
Another remark about numerical problems has to be made here. The
time-series models used in the performance index framework are usually rel-
atively high-order. This may in some cases lead to numerical problems when
using the exact method which involves solution of Lyapunov and Riccati
equations. The simpler calculations involved in the approximate method

appear to result in a numerically more stable computation.

4.3 Numerical examples

Some simple examples for the re-sampling of an ARMA model are presented
in this section, illustrating the methods described in the previous section.
Assume for all examples that the original sampling rate is hy = 2 and one
wants to re-sample the system with the new sampling rate hy = 1.

Re-sampling of an ARMA model

Consider first an ARMA model which is known to have a continuous-time
counterpart. Consider the ARMA model
1-05q7"7
k = k
y(kha) 1154 +07g—2c kM)

O% = E{e?(khy)}=3.
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In state-space form one gets, defining wi(khq) = e(khq + hy),

x(kh1+hq)

1 0
y(kh1) = [] —0.5] X(kh1)

[1 o _0'7] x(khy )-I-[:)] w1 (khq)

30
Rd1 = E{GmW%(khq)Gg]}—[o 0]

The new dynamics matrix (4.5) and the state-covariance matrix (4.4) become
F 13117 —0.3930
27 |05614 04697

[26.5625 23.4375]

P = 134375 265626

The new noise covariance is calculated to be

0.9191 —0.4885]

Raz = [—0.4385 —0.0263

Note that this matrix is indefinite. The solution of the Riccati Equation (4.7)
and the Kalman gain K are obtained as

< [08927  —05638]  _ [1.2283
= |-05638 —0.2413)" " [0.3232]°

yielding the innovations form (4.6)
1.3117  —0.3930
0.5614  0.4697

1.2283

[0.3232
y(khy) = [1 —0.5]x(khz) + v(kh;)
02 = E{v*(khy)} = 1.40.

v

X(khz -I-]’Lz) = [ :|X(kh2)

:|V(kh2 )

Hence, the exact re-sampled ARMA model is given by

1-0.7147q~"
_ kh
vikh2) = =800 7 1 0.8367q 2 M2

02 = E{v*(khy)} = 1.40.
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This can be re-written using a new noise e1(khz) with the same variance as
the original noise e(kh1), i.e. in this case Gﬁl = 3. The system with the new
noise is obtained by multiplying the numerator of the ARMA process with
0y /0. This yields

0.6822 — 0.4876q"
k =
ylkhe) = =800 T 1 0.8367 2 ¢
02, = E{ef(kh2)} = 3.

(kh2)

Using deterministic re-sampling, together with the proposed compensation (4.11)
for the error made, the following system is obtained:

13113 —0.3930
x(khz +ha) = [05614 04697]X(kh2)
0.5745
[—0.2194] ez (khz)
y(khz) — [] —O.S]X(khz)
02, = FEfe3(khy)}=3.

Then the approximated re-sampled ARMA model becomes

0.6842 — 0.4887q""
Khy) = kh
y(kha) = 7— 178109~ + 0.8367q2 e2(khy)

02, = E{e3(khz)} = 3.

The impulse responses for the three different models and the auto-covariance
functions (ACF) are shown in Figure 4.1.

Re-sampling of an AR-model

The next example shows that the re-sampling of an AR model does not
generally yield an AR model but an ARMA model. Consider the AR model

1

1—15q1+0.7q 2
02 = E{e(kh;)?} = 3.

y(khy) = e(khy)
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Figure 4.1: Re-sampling of an ARMA model. Top: Autocorrelation function
original, exact and approximated re-sampled; bottom: impulse responses,
original (0), exact (A). The impulse response for the approximative method
equals almost perfectly the exact one and is hence omitted.

Using the same steps as in the previous example yields the (exact) ARMA
model
1-0.2751q"
khy) = k
ylkh2) = =9 787001 1 0.8367q 2 "2

02 = E{v(kh,)?} = 0.87.

As in the previous example, this can be re-written using a new noise e (kh;)
with the same variance as the original noise e(kh), yielding

0.5390 —0.1483q~"!
= k
vlikha) = 7o T 083672 ' (kM2
O'é] = E{€1 (khz)z} =3.
The approximate method using deterministic sampling yields the model
0.5745 —0.1836q !
k = kh.
vikh2) = =800 T 0.8367q 2 2 (K2

02, = E{ez(khz)?} = 3.
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Another situation arises when the discrete-time ARMA model does not have a
continuous-time counterpart. In that case, the exact method in general does
not work and one has two choices. Either to use an approximate method or
modify the original time-series model and thereby hoping to receive a model
which has a continuous-time counterpart.

4.4 Index for different sampling intervals

The evaluation of a performance index requires the calculation of the actual
output variance oﬁ. As briefly discussed in Section 2.1, the direct estimation
of 0'5 will not be used here. Instead, since a state-space representation of
the time-series model is available, it will be used to calculate Gﬁ by solving
a Lyapunov equation and using the available state-space model (F, G, H):

P =FPF' + GG’

of = Ey(t)?> = (HPH') o2 (4.12)

Notice that the variance expression cﬁ in the index for the re-sampled system
has to be the same as for the original system since it was required that the
two ACFs are equal in equal sampling points. Then of course it holds for lag
zero, i.e.

05 =T1y1(0) = 1y2(0).

Hence, in order to calculate a performance index for other than the origi-
nal sampling rate, one only has to calculate the minimum-variance expres-
sion 0%, using the re-sampled time-series model.

A remark on the time-delay

When evaluating the re-sampled performance indices, one has to express
the system dead-time in terms of the new sampling intervals. Assume that
the physical dead-time is T4 time units, and that the sample-and-hold and
controllers introduce a fixed number of delays ds. Then the resulting total
time-delay is

d = ds + floor(Tg/h),

where floor(x) rounds x to the nearest integer towards zero.
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Obviously, if the system is re-sampled with a faster sampling rate, the
number of samples of time-delay increases if there really is a physical dead-
time in the process. However, if there is no physical dead-time in the process,
the number of samples of time-delay (e.g. as may be introduced by the
controller) remains constant at d = ds, regardless what the sampling rate
is.

Implementation

The scheme for sampling rate assessment can be implemented as shown in
the following algorithm.

1. Calculate the minimum-variance based (Harris) index for
the original system (Section 2.1).

2. Calculate a modified minimum-variance based index if
the process has short or no dead-time (Section 3).

3. Calculate the re-sampled process model for the new sam-
pling rate (Section 4.1 or 4.2).

4. Evaluate the Harris and modified index for the re-
sampled system.

5. Repeat steps 3 and 4 for other sampling rates.

Note that Step 2 is not necessary. However, as shown in Chapter 3, for
the cases mentioned, it yields a more reliable performance assessment.

4.5 Evaluation on industrial data

Frontend-temperature of a lime kiln

The data analysed in this section were collected at a Swedish pulp mill. It
describes the frontend temperature in a lime kiln. The current controller,
which is a model-predictive controller, uses a sampling interval of 2 minutes.
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The process has a dominant time-constant of about 30 minutes and no
physical dead-time. Since the calculations of the model-predictive controller
are somewhat time-consuming, an extra sample delay is introduced by the
controller, resulting in a total delay of two samples.

The speed of the MPC program has been considerably improved com-
pared to when it was first installed in 1996. Today the control could easily
be run at a sampling rate five times the current one, and the total time-delay
would still only be two samples. This sampling-independent behaviour of the
time-delay for systems with no or very short dead-time is important when
applying the described re-sampling. In this case, the proposed modification
in Section 3 will become significant.

The measured control error of the frontend-temperature of the lime kiln
is shown in Figure 4.2. The time-series model of the control error was re-

50 100 150 200 250 300 350 400 450 500
time [min]

Figure 4.2: Control error of the frontend-temperature control in a lime kiln.

sampled for different sampling intervals h, = [8, 4, 2, 1, 2/3, 1/2, 2/5].
Since the current sampling is 2 min, this gives the re-sampling factors k =
hi/hy of k =[1/4, 1/2, 1, 2, 3, 4, 5].

Figure 4.3 shows the original impulse response of the estimated ARMA
model and the interpolated one at twice the sampling rate. Different perfor-
mance indices were computed for all the re-sampled models.

In addition to the original and modified minimum-variance based index,
the minimum-variance based index was also calculated assuming a fictitious
physical dead-time of 1 minute. The modified index was calculated using A
computed according to (3.21) with a dominant time-constant T = 30 minutes
and a speed-up factor k. = 2. The different performance indices are plotted
versus the inverse sampling rate in Figure 4.4. Not surprisingly, all indices
increase if the sampling rate is increased. Since the number of delays is fixed
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Figure 4.3: Impulse responses for original sampling rate (0) and interpolated
model at twice the sampling rate (x).

at two, the original minimum-variance based index yields too large values to
really be useful for assessing whether faster sampling would be beneficial.
Both the modified index and the index with artificial dead-time tend to level
out somewhat when sampling is made faster.

For example, the modified index for 5 times faster sampling has the value
3.6 compared to 2.6 at h = 1 minute. The likely conclusion is that increased
sampling would not lead to any significant improvements in performance for
this process.

Notice that indices are also computed for two cases of slower sampling.
Again based on the modified index, it can probably be concluded that even
the current controller sampling interval of 2 minutes is sufficient for this
relatively slow process. The modified performance index does not change
considerably for sampling rates of 8, 4 or 2 minutes.

Motor load control of a TMP refiner

Here data collected from a thermo-mechanical pulp refiner at a Swedish paper
mill will be analysed. The data set contains data from a trial with automatic
motor load control. Contrary to many other TMP refiners, the motor load is
controlled by changing the dilution water flow rate rather than the chip feed
rate. Since that dilution water flow rate has an almost immediate effect on
the motor load, this is an appealing choice as a manipulated variable.

The dilution flow is locally controlled and the DCS is constructed such
that both controllers in the cascaded loop introduce one sample of delay each.
Hence, the overall time-delay is determined to be three samples, independent
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Figure 4.4: Performance indices for the lime kiln evaluated for different
re-sampling rates k. Original minimum-variance based index (e), modified
minimum-variance based index (M) and original minimum-variance based
index assuming a physical dead-time of one minute (%).The standard devi-
ation is given by the dotted lines. The vertical solid line denotes the current
situation, i.e. hy = hy.

of the sampling rate. The current sampling interval is 1 second and the data
are shown in Figure 4.5. Also for this case, the time-series model of the
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Figure 4.5: Motor load in a TMP refiner.

control error was re-sampled for different sampling intervals. Figure 4.6
shows the original impulse response and the interpolated one at twice the
sampling rate. The same three indices were computed as for the lime kiln
case, but the third one here introducing an artificial physical dead-time of one
second. The modified index was computed using a dominant time-constant
of 5 seconds, and again a maximum speed-up factor of 2. The performance
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Figure 4.6: Impulse responses for original sampling rate (o) and interpolated
model at twice the sampling rate (x).

indices are shown in Figure 4.7. The modified index here shows a more

30

251
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Figure 4.7: Performance indices for the pulp refiner evaluated for different
re-sampling rates k. Original minimum-variance based index (), modified
minimum-variance based index (M) and original minimum-variance based
index assuming a physical dead-time of one second (%). The standard
deviation is given by the dotted lines. The vertical solid line denotes the
current situation, i.e. hy = hs.

significant increase than for the lime-kiln case. At ten times the sampling
rate the modified index becomes 4.6, which should be compared to 1.2 at
the current sampling. Based on this it could probably be concluded that if
good control of the motor load is important, then increased sampling speed
should be considered.
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A remark on spectral properties

Whenever dealing with sampling, one has to be aware of aliasing. In order
to get reliable results, one has to assume that an anti-aliasing filter was used
when collecting the measurement data. Clearly, then one can only assess
the information which is left in the data, i.e. the low-frequency information.
For the case of interpolation there will be no problem if the original data
set contains all frequencies where the main information is located. That
this requirement is easily satisfied for the data sets considered here is shown
in Figures 4.9 and 4.8. It can be seen that the main information is at

EX)

““norm. frequéncy””

Figure 4.8: Power spectrum for the lime-kiln data set. The frequency axis
is scaled such that the Nyquist frequency is unity.

““norm. frequéncy”™”

Figure 4.9: Power spectrum for the motor load data set. The frequency
axis is scaled such that the Nyquist frequency is unity.

frequencies which are much lower than the Nyquist frequency.
When this data is then used for decimation, the Nyquist frequency will
decrease, i.e. get closer to the important frequencies. It is clear that reliable
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information can only be obtained as long as the Nyquist frequency is above
the frequencies where the main information is located. As can be seen, this
is also satisfied up to a decimation by a factor of three to four.

Summary

In process industry, too fast sampling in control loops seldomly occurs whereas
too slow sampling may increase the output variability considerably. This will
have a negative effect on product quality.

A method has been presented which allows interpolation and thereby the
evaluation of performance indices at other sampling rates than the one used
for data collection. Of course the index will increase for faster sampling, and
it is then how significant this increase is which will determine if the faster
sampling should be pursued or not.

The proposed exact method yields correct results as long as the discrete-
time system has a continuous-time counterpart. However, the calculation of
the latter is not necessary. The method cannot handle systems with poles
on the unit circle. Furthermore, an approximate method has been presented
which yields very good results as long as the same assumptions as for the
exact method are made. The approximate method is computationally much
simpler and seems to be numerically more stable.

The proposed approach was illustrated using two data sets from pulp
and paper industry. Common to the two selected processes is that they
have no apparent physical dead-time. For that case the original minimum-
variance based index produces too large values to be used for the assessment.
Therefore the modified index as presented in Chapter 2 was applied, which
takes into account that in practice it is typically not advisable to speed up
the closed-loop system more than 2-4 times compared to the open-loop one.

For processes with long physical dead-time the number of samples delay
will be proportional to the increase in sampling rate. As a consequence, the
benefit of increased sampling will typically be insignificant unless the current
sampling is extremely slow.

Also notice, that even if fast sampling is usually not a problem, the
proposed method can be used to check whether the system may actually be
sampled slower.



Chapter 5

Performance index for
oscillating loops

It has been pointed out that a large amount of control loops in the process
industry are oscillating, see (Bialkowski, 1992) or (Ender, 1993). Therefore,
when applying the Harris index to a large number of control loops as a
first-level performance assessment, it will end up being evaluated for some
oscillating signals. It is therefore interesting to investigate what kind of
results the minimum-variance based index will give in these cases.

As a motivating example consider the process variable in a flow control
loop in a pulp mill, see Figure 5.1. The signal is oscillating for the first 350

0 100 200 300 . 400 500 600 700 800
time [s]

Figure 5.1: Measured data from an oscillating flow control loop.

samples, after that the oscillation vanishes. The reason for the oscillations
is likely to be a nonlinear phenomenon and a change in the noise structure is
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not expected within the short time period considered!. One would therefore
expect that the performance index should be able to pick up the change in
the performance.

From identification experiments is is known that the process dead-time is
two samples. Table 5.1 shows the estimated indices and variances for both
parts of the data. The time-series model used is an AR model of order 25.

2 2
data o Omy | O Ip

y e
[1:350] 587 | 1.92 | 0.75 | 3.06
[500:800] | 0.14 | 0.087 | 0.081 | 1.71

2

Table 5.1: Performance index and estimated variances for the data shown
in Figure 5.1.

Notice that the variance in the process output decreased by a factor of about
40. The performance index however, decreased by a factor less than two.
It is also noteworthy that both the estimated minimum-variance terms and
the noise variances differ considerably for both cases. On the other side, the
output variances were obtained using the estimated time-series models and
are in good agreement with the variances obtained directly from the data.
The question then arises:

Why is the obvious change of performance not properly reflected
in the index?

In the rest of this chapter we will illuminate this question mainly by using
some simulation examples. The finding will be that the performance index
may be misleading in some cases when the signals used are oscillating. Fur-
thermore, it will be argued that if one wants to calculate the Harris index for
oscillating signals, AR- rather than ARMA-modelling should be used.

5.1 Simulation example

In this section four simulation examples will be shown, each of them dealing
with an oscillating control loop. The impact of the oscillation cause on the
resulting performance index will then be inpspected.

Lirregular changes between oscillating and non-oscillating intervals could be found for
this loop over a period of several months.
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Consider the open-loop system

withF(g=")=D(q~ ") =1-1.797'4+0.7q972, B(q~ ") =q>(1+0.597")
and C(q7'") = 1—-0.9q". The noise e(t) is zero-mean Gaussian with
variance 02 = 0.1. Let the controller be of proportional type (gain K.) and
consider the following four different scenarios which all lead to oscillations:

1. linear system on the stability boundary (K. = 0.045),

2. stable system with backlash? (K. = 0.035, dead-zone=0.1),

3. unstable system with saturation (K, =1, limit £0.5),

4. stable system with oscillating output disturbance (K. = 0.015).

The disturbance in Case IV was realised by changing the noise model de-
nominator to

D(q~") =1 2cos[2-0.05]q~' +q~2.

This means that the noise model has two poles on the unit circle. As in the
other three cases, white noise is fed into the noise model.

The minimum achievable variance 0%,, can be computed easily from the
series expansion of the noise transfer function C(q~')/D(q~'). For Case

I-111 this yields

Clg™")

AlqT) ~ ! 08 q ' +0.66q 2 +0562q % +04934q " +....

and therefore
oy ~ [1+0.8% +0.66% +0.562% +0.4934%] 0.1 = 0.263.
For Case IV the minimum variance term becomes
omy & [1+1.002% +0.906> + 0.722> + 0.4667] 0.1 = 0.356.

Simulation results for all cases can be seen in Figure 5.2. Then, when com-
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Figure 5.2: Simulation results for the four different cases.

puting the Harris index (using an AR(25) model), the results shown in Ta-
ble 5.2 have been found. Several interesting remarks can be made. The
actual output variances O'ﬁym — as obtained via the time-series model —
are approximately equal to the ones obtained directly from data (O‘ﬁ)d) in
all cases. Also the residual variances 62, which are an estimate of the noise
variance are close to the correct value (02 = 0.1) in all cases. The minimum-
variance term 6%,y is only correctly estimated for Case I. For all other cases
it was increased thus yielding a performance index which is lower than the
theoretically correct one.

For further illustration consider also the first parts of the series expansion
(i.e. the first Markov parameters) which are shown for all cases in Figure 5.3.
Note that Case IV used a different noise model and is shown separately. The
following remarks can be made from this example

2

e The actual output variance oy,

the time-series model.

can usually be correctly estimated using

e The noise variance 02 was correctly estimated in all cases. From ex-

perience with real data however, it is recommended to avoid the use

2The nonlinearities will be defined more detailed in Chapter 9.
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Case |07 v 004 |0y Omv | 62 o2 | T, 19
I 0.64 061 | 024 0.263 | 0.095 0.1 | 265 243
1] 228 220 | 041 0.263 | 0.115 0.1 | 556 8.67
" 1.01 106 | 0.39 0.263 | 0.112 0.1 | 259 384

v 403 393 | 043 0.356 | 0.099 0.1 | 9.37 11.04

Table 5.2: Performance index (T,) and estimated variances for the data
shown in Figure 5.2. The variable I,, denotes the theoretical performance
index, i.e. the actual variance Gi divided by the theoretical minimum-variance
term 0%,y. The actual variance obtained from model and data are denoted
05 m and o7 4 respectively.

Cases I,I1,111

Case IV

|
|
|
|
|
1 1
0 2 4 6 8 10 12 14 16 18 20

lags

Figure 5.3: Series expansions based on the estimated AR(25)-model. Top:
Theoretical expansion (x), Cases I(o), 11(A) and 111({). Bottom: Theoretical
expansion (x), Case IV(o). The number of samples of dead-time is denoted
by the dashed line.
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of 62 for the index calculation as already advocated in Chapter 2.

e The estimated minimum-variance term 6%,,, may be wrong if non-
linearities are involved resulting in a wrong value of the performance
index.

Recall again the large difference in the estimation of 0%, and o2 in Ta-
ble 5.1. It is less surprising that the minimum-variance based performance
index can run into problems when significant® nonlinearities occur since it re-
lies on a linear concept. In the case of an external oscillating disturbance, the
assumption (for minimum variance control) that the disturbance is station-
ary, is violated. However, as can be seen from the example, the performance
index is able to indicate the bad performance in this special case.

The most puzzling case is Case | where the controller is tuned such that
the loop is on the stability boundary. The oscillation amplitude is not very
large in this case, thus yielding a modest value of the index. The estimated
time-series model is dominated by the oscillating behaviour (i.e. it has two
dominating complex poles near the unit circle). Then, even though the true
noise model does not have such a behaviour the first Markov parameters are
correctly estimated.

Notice again that experiences from real data show that the index may
vary far more than the simulations shown here indicate. Also the results of
the simulations exhibit considerable variations for different noise realisation.

The conclusion to be made is the following. Since it is not known a
priori whether an oscillation is a linear or nonlinear phenomenon, it would be
best to screen out oscillating loops before evaluating the performance index.
However, if it cannot be avoided to compute an index for oscillating signals,
one should choose a AR model rather than ARMA as will be motivated in
the next section.

5.2 Modelling oscillating signals

As already mentioned, in order to describe an oscillating signal the time-
series model needs at least two complex poles on the unit circle. Consider
first the case when the chosen time-series model is ARMA.

3Significant here means that the nonlinearity actually dominates the loops behaviour,
i.e. it causes the oscillation.
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ARMA model

For simplicity, assume that the oscillating signal in question can be described
as a sum of sinusoids with additive noise

y(t) = x(t)+elt), (5.1)
X(t] Z o sin wkt + d)k)
k=1

where o, Wy, ¢k and e(t) are the amplitudes, the frequencies, initial phases
for each component of the noise-free sinusoidal signal and the additive white
observation noise respectively. Note then that

(1 —e ™ xg™ ) (1 —e'wxq ") xx(t) =0, (5.2)

where xi(t) is the k-th component in x(t). If (5.2) is used for each compo-
nent in (5.1), one obtains

Alg)x(t) = 0,

n
H (1 —2cos (wi)g~ ' + qu) .
k=1

-l
el
I

The full ARMA-model for the noisy data y(t) = x(t) + e(t) then becomes

Alqly(t) = A(a)e(t). (53)

A model such as (5.3) is called degenerate ARMA and all its poles and zeros
are exactly located on the unit circle. Furthermore, the AR and the MA
parts of the model are identical*.

The consequence for the evaluation of the performance index is that one
has to estimate the model parameters such that poles and zeros are located
on the unit circle. Additionally, poles and zeros have to cancel each other.
Since it was recommended in Chapter 2 to use the estimated model for
calculation of 0',3, an important requirement is stability. The estimation of
an ARMA model may hence be very difficult, especially since stability can in
general not be guaranteed.

“Note that the polynomial A(q) cannot be cancelled since y(t) = e(t) is not true!
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AR model

In Chapter 2 it was already mentioned that AR models are often sufficient
when evaluating the performance index. Furthermore, using AR models sta-
bility can be guaranteed.

In order to describe an oscillation properly one usually needs high-order
AR models. For such cases, the poles are spread out around the unit cir-
cle close to the stability boundary, see Figure 5.4 for a plot of the poles of
an AR(25) model for an oscillating signal. The data used was taken from
the same (oscillating) loop as the data in Figure 5.1. This interesting phe-

L L L
-08 -0.6 -04 -02

Figure 5.4: Poles of the AR(25) time-series model for an oscillating signal.

nomenon has been discussed and explained by Mari et al. (2000). They
showed that the poles approach a circle around the origin with radius 1.
Figure 5.5 shows the series expansion of the AR(25) model. It can be seen
that the response is decaying since the AR model is stable. As a matter of
fact it has to decay in order to yield the correct value of the output variance
which otherwise would be infinite since

6 — (i h5> o2. (5.4)
i=0
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Figure 5.5: Series expansion of the estimated AR-model.

Laguerre-model

Note that the Laguerre filters have a real pole only. In order to fit oscillating
data it would be better to consider the use of Kautz filters instead which
contain a complex pole pair, see for example (Wahlberg, 1994). However,
the use of Kautz filters would require knowledge whether or not the loop is
oscillating, and of the oscillation frequency.

Conclusions

The question asked in the introduction of this chapter contained can now be
answered:

Oscillations are a potential problem when evaluating the Harris
index since the index may become too low.

The best way is of course to detect oscillations prior to computing the per-
formance index. If this is not possible, one should use AR modelling rather
than ARMA modelling.






Part 1l

Event-triggered estimation






Chapter 6

Closed-loop identification

The evaluation of the control performance index introduced in Chapter 2
requires knowledge of the process dead-time. For fast and simple com-
missioning of a monitoring tool, it would be desirable to enable automatic
dead-time estimation. Furthermore, as will be seen later on, simple process
models may be of great help for oscillation diagnosis.

A natural question is therefore if one can obtain information about the
process in question, e.g. the dead-time in a non-invasive manner. This chap-
ter deals with the question of how to obtain suitable identification data
from a control loop (in closed-loop) without performing experiments. Such
a procedure will be called event-triggered identification. The theory about
closed-loop identification is now well-explored, see for example (Forssell and
Ljung, 1999).

In real control systems, there is always excitation present. This excitation
can caused by setpoint changes or external disturbances. Limit cycles do
also excite a control loop. In this chapter slight re-formulation of a result
in (Ljung, 1999) is given. It establishes conditions for closed-loop data to be
informative, both for single (Section 6.1) and cascaded (Section 6.2) control
loops.

6.1 Informative closed-loop data

Let the system be described as

y(t) = Glqa ult) +H(g ")elt),
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where G(q~ "), H(q ") are process and noise transfer function respectively.
Start with the following definitions (Ljung, 1999):

Definition 6.1. Introduce the operation E defined by

1 N
Ef(t) = lim — > Ef(t)
=1

N—)ooNt

where it is assumed that the limit exists whenever the symbol is used. [

Definition 6.2. A quasi-stationary data set Z* is informative enough with
respect to the model set M*if, for any two models W+1(q) and W3(q) in
the set,

E[(W1(q) —Wa(q)) z(t)]* =0 (6.1)
implies that W1(e*®’) = W, (e'?) for almost all w. O

Now the following theorem can be stated which is a more general formu-
lation of a result, (Theorem 13.2), in (Ljung, 1999).

Theorem 6.1. Consider the block-diagram in Figure 6.1, where F(q) and
G(q) are linear time-invariant dynamical systems. Let u(t) and y(t) be
the control signal as calculated by the controller and the measured process
output respectively. Assume that v(t) and v(t) are uncorrelated.

Then the closed-loop data set Z = {y(t),w(t)}t=1,... N is informative if
and only if a persistently exciting signal (of sufficient order) enters the loop

outside the shaded area in Figure 6.1, i.e. between y—u. |
v
T u
—¢— Fla) G(q) HT
= y
L]

Figure 6.1: A general control loop.

Proof: Let W(q) = Wy(q) Wy(q)] = [H '(q)G(q) (1 —H '(q))] and
z(t) = [u(t) y(t)]T. Consider then Definition 6.1. Using

W](q) —Wz(Q) = [AWy(q) AWu(Q)] ’
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(6.1) can be re-written as
E[AW,(q)y(t) + AW, (q)u(t)]? =0 (6.2)

Here, AW,.(q) and AW,,(q) are filters that are not both zero and that are of
about the same complexity as the models in the model set. For the regulator
u(t) = F[r(t) — y(t)] this would mean that

0 = E‘[AWy AW, ] m : (6.3)
- E‘[Awy AW [G10 igo] [FSVOT] 2’ (64)

where y(t) = GoSor(t) + Sov(t) and u(t) = Sor(t) — FSov(t) were used.
Let

W=[W, W,]=[aw, aw,] [G]O SF‘; ] : (6.5)
—FS9
The determinant of the last matrix is —GoFSyp — Sp = —1, so it is always

invertible, which means that W = 0 will imply that both AW, and AW,
are zero. Recall that r and v are uncorrelated by assumption, so

. 2. 2 _y . 2
0—F W[Fs\f‘”] :E‘WyFSoT‘ +E‘Wuv‘ (6.6)

The filtered noise v is persistently exciting, and if Sor is that too, then the
conclusion is that W = 0. Under that assumption it is thus shown that
Equation (6.2) implies AWy, = 0 and AW,, = 0. Note also that FSor will
be persistently exciting if r is, since the analytical function FSy can be zero
at at most finitely many points.

Up to this point the proof followed closely the derivation in (Ljung, 1999)
where a different block diagram for the closed-loop system was used.

Signal entering outside the shaded area. Consider now the case when
an exciting signal enters outside the shaded area in Figure 6.1. Wherever
the signal enters, it can always be expressed as a filtered setpoint signal.
Therefore, the first part of the proof can be used in exactly the same way
when 1(t) is replaced by H(q~")r(t) instead. For instance when the exciting
signal is inserted after the controller, then the filter H is FI.
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Signal entering inside the shaded area. In this case, all signals entering
between u—y can be expressed as a filtered signal which enters the loop
at the process output (where v(t) already enters the loop). Let the new
exciting signal be denoted by d(t) and its filtered version as H(q')d(t).
Now, both exciting signals, v(t) and H(q~")d(t) (r = 0 in this case) enter
the loop at the same place. Then Equation (6.4) trivially becomes

2

= So So Hd
o=llaw, aw |35 %[V

The determinant of the matrix in the middle is zero. This means that the
new signal will not yield an informative data set. O

Remark 6.1. From the condition monitoring point of view the only realistic
event in order to obtain informative closed-loop data is really to wait for
setpoint changes.

Remark 6.2. Another reasoning can enlighten why some process distur-
bances do not give sufficiently informative data to identify the process. Con-
sider the case of a persistently exciting incoming disturbance at the process
output. Assume that the reference signal is constant and no extra signal is
added to the control signal. Then the relation between control signal w(t)
and measured process output y(t) is always determined by the controller,
i.e.

This means that no matter how much u and y vary, as long as the exciting
signal enters the loop in the shaded box in Figure 6.1, only the controller can
be identified. The same is true if the loop is oscillating. See also Section 6.3
for further discussion.

6.2 Identification in cascaded loops

Consider now a cascaded control structure, see Figure 6.2. For the identifi-
cation of the dynamics of the outer loop (G,), Theorem 6.1 applies directly.
For a better understanding consider the re-written block diagram as shown
in Figure 6.3. There, S; and T; are the sensitivity and the complementary
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Figure 6.2: Example of a cascaded control loop.

Figure 6.3: Example of a cascaded control loop.

sensitivity function of the inner loop respectively. It can now be seen that
the disturbance v; enters the loop before y; is measured. That means — in
terms of Theorem 6.1 — that it enters the loop outside the shaded area. A
disturbance in v; will hence yield informative data [y;y,] for identification
of Go.

The identification of the dynamics of the inner loop (Gi) raises some
interesting questions. In this case, any exciting signal within the cascaded
control loop will result in an exciting setpoint of the inner loop (u1,). One
could hence conjecture that it is possible to identify the inner process G;
without requiring that v is exciting. A potential problem is that ugy will
always be correlated with the exciting signal. The results from Theorem 6.1
will now be applied in order to confirm the conjecture.

First we need to express both u; and y; in terms of v; and v,:

W= — Fi(1+F,Go) . EF, y
COTERGIHRG) T THRG 4G
! GiFiFo '
Yi vi

TITTRGL (1 +F0Go) Y T+ FG; (1+F0Go) o

These expressions are then used to replace u and y respectively in (6.3)
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yielding

2

0=E|[AW, AW,] ! ! _Gi”"] ["i

F —Fl(] + FoGo) _FiFo Vo

z

] . (68)

vl

where ' =1+ F;Gi(1 + F5Gy). It can then be seen that

_FiFo

det X = .
S T T TG (1 + FoGo)

It is hence concluded that — theoretically — for cascaded loops the setpoint
does not need to be exciting in order to be able to obtain informative identifi-
cation data for both the inner (G,) and the outer loop (G,). Interestingly, if
identification of the inner loop is considered, v; represents the noise whereas
Vo plays the réle of the exciting signal. If one aims to identify the outer loop,
the disturbances v; and v, change their meanings.

However, from a practical point of view there is a problem since the
noise cannot — at the same time — be disturbance and excitation signal.
Hence, realistically one can only identify either the inner or the outer loop,
depending on how the ratio of v; and v, is. For identification of G; a
significant event in v, is needed whereas the noise level of v; has to be
modest (compared to v,). Then, however, G, cannot be identified, even if
the data is — theoretically — informative. The same reasoning can be applied
vice versa for the identification of G, is there is an event in vi. An example
for identification in a cascaded loop will be discussed in Chapter 8.

6.3 Controller identification

Knowledge of the controller parameters can be important for a supervision
system. If the control structure and/or the controller parameters are un-
known one has to identify the controller. This section deals with the ques-
tion what the necessary conditions for the event-triggered identification of
the controller are.

For that purpose, the same reasoning as in Section 6.1 will be used.
Consider the block diagram of a normal control loop in Figure 6.4a. A
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Figure 6.4: Original SISO control loop and its re-arranged version.

simple rearrangement of the blocks yields the block diagram in Figure 6.4b.

Two things can be seen from the figure: Firstly, the setpoint signal r(t)
enters the loop in the same way as the disturbance d(t). Secondly, applying
the same theory as was used in Section 6.1, one can see that one obtains
informative data when one of the inputs (d or 1) is exciting. The transfer
function that can be estimated is

u(t) = Clqe(t) = Clq ") [r(t) —y(t)].

It can hence be concluded that it is possible to estimate the controller transfer
function whenever there is some excitation in the loop, no matter what the
source is. Furthermore, contrary to the identification of the plant, controller
identification is noise-free! Hence it should always be possible to obtain
accurate models.

An example. Consider data from a level control loop shown in Figure 6.5.
The setpoint is constant and the loop is excited by disturbances only. When
fitting an ARX(1,2,0)-model to the data, the model obtained is

,. 3.16-3.14q""
Ty _
Cla == ~0.99)

Comparing this to the discrete-time version of a Pl-controller yields the con-
troller parameters KC = 3.16 and ?i = 129. The real values are K, = 3.44
and T; = 200. Even though the value of Tj is not correct, it is high compared
to the controller gain. Both controllers are almost purely proportional. The
validation of the estimated controller model can be seen in Figure 6.6.
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Figure 6.5: ldentification data. Top: controller output, bottom: controller
input (control error).
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Figure 6.6: Validation of the estimated controller. Measured and simulated
controller output.

Summary

Assuming that a monitoring tool is restricted to normal operating data, the
only realistic event to hope for is setpoint changes. Disturbances that upset
the system cannot be used since they typically enter in the shaded region
of Figure 6.1. Luckily, many processes change operating points regularly in
order to produce for example different qualities. A second reason for setpoint
changes is if the loop is located in a cascade structure. Note that this is
very likely in processes where the setpoints of low-level loops are controlled
by high-level controllers like model-predictive controllers for example.

The identification of the controller may be necessary if the controller
parameters are not available in a supervision system. Fortunately, the iden-
tification of the controller is always possible since the excitation originating
from disturbances yields informative identification data.



Chapter 7

Segmentation of data for
dead-time estimation

This chapter deals with the automatic selection of data for estimation of the
process dead-time from a batch of operating data. As described in Chapter 2,
the dead-time is a prerequisite for evaluating the minimum-variance based
control performance index. For an automatic supervision tool, it is desirable
that the dead-time is estimated automatically on a regular basis rather than
specifying a value when commissioning the tool. The two main reasons for
this are that the dead-time may be time-varying and that it is often unknown.

The kind of data which is suitable for event-triggered dead-time estima-
tion has been discussed in Chapter 6, see also (Isaksson et al., 2001). The
main finding was that, in order to estimate the dead-time from normal oper-
ating data, the only excitation which one can expect is a change in the loop
setpoint.

7.1 Description of the algorithm

The selection of informative identification data is done by selecting the tran-
sient parts of the data which are caused by setpoint changes. The selection
criterion is as follows:

Start selecting data after each significant setpoint change
and continue until the data has reached steady-state again.



84 7 Segmentation of data for dead-time estimation

In order to do that, two different tasks have to be solved. Firstly, one has
to detect significant setpoint changes, i.e. changes which are significantly
larger than the noise level of the process output. This guarantees that only
setpoint changes which are noticeable in the process output are chosen.
Once an estimate of the noise variance of the process output is available,
the detection of setpoint changes is a simple task.

The second problem to solve is the assessment whether or not the data
has reached steady-state. For this, a method proposed by Cao and Rhinehart
(1995) is used. It detects intervals of steady-state in data and estimates the
noise variance as a by-product.

The main idea by Cao and Rhinehart (1995) is to consider the ratio of
the noise variance, calculated in two different ways. First, one calculates
the variance as the mean-square deviation from average for windowed data.
The second way is to calculate the mean of squared differences of successive
data. The ratio of these variance estimates will be close to one if the data
is approximately steady-state. It will be larger than one otherwise. Let the
control error be denoted as e(t), then the method can be written down
recursively:

ef(t) = Ave(t)+[1—Ales(t—1)
Vi) = Azle(t) —ee(t— 12+ 1 —AvE(t—1)
§#(1) = Asle(t) —e(t—1)1% + [1 =318 (t —1).

The two mentioned estimates of the noise variance are

8% (t)
=22

stt) = =5V, s3()

The ratio of the two variance estimates gives the decision function:

ey ST (2=M)vE()
Ri(t) = S%(‘t) = 5%(’() . (7.1)

This function is computed for each sample as the filtering is recursive and
updated for each sample. The signal under investigation is decided to be
in steady-state as long as R; < R. Cao and Rhinehart (1995) R suggested
R = 2 and the for filter constants A7 = A, = A3 = A = 0.1. The authors also
show that this detection algorithm works well over a large range of cases.
However, in this work we have chosen A = 0.05 in order to guarantee that a
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sufficient amount of data is selected. A smaller A is chosen, the more data
will be selected using the proposed algorithm. This is because a low value
of A will be more “critical” to accept data as stead-state.

Once stationary parts of the data are identified, the determination of the
estimation data is straight forward as already described above. A significant
setpoint change is detected when a setpoint change which is larger than
for example three times the estimated noise standard deviation. From each
detected setpoint change, data will be collected until the control error reaches
steady-state again.

If a sequence of steps occurs, scattered parts of data have to be used for
identification. How to do this properly is described in Chapter 14 of (Ljung,
1999). Combining the estimates for each interval may be difficult since the
excitation in single intervals may be poor. A better way of estimating a
model is to fit parameters which minimise the criterion

V)= Y bO-gaet -+ Y ) -guen?,  (7.2)

teT, teT,

where T; is the index set of the i-th segment and y(t) and {j(t/0) are the
measured and the predicted process output respectively . One way of doing
this is to build up the regressor matrix for the least-squares problem and then
remove all rows which correspond to discarded data. This — theoretically
sound — way may be difficult if the data batch in question is very large.
In that case one may rather estimate models for each segment and merge
these afterwards. This is properly done by weighting them according to their
inverse covariance matrices, see (Ljung, 1999). Let the parameter estimate
for segment i be denoted @i, and let the estimated covariance matrix be P;.
The resulting estimate is given by

n —1
6=P)> P "0, P:<ZP11> . (7.3)

7.2 Examples

The proposed algorithm will now be illustrated for some examples.
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Simulated examples

Data with different amount of excitation will be used here. The data are
generated from simulation of a control loop with plant transfer function

1 —15s

Cls)=Tos71¢
The controller is of Pl-type with K, = 0.44 and T; = 13.75. Noise is added
to the process output as filtered (first-order low-pass filter with discrete-time
pole in 0.8) white noise. In the first example the setpoint is constant and in
the following examples, setpoint steps with increasing length are used. The
results are shown in Figures 7.1 to 7.3. The upper plot in each figure is the
original data. The light-grey bars denote the detected steady-state intervals.
The dark-grey bars denote the selected data. The estimated noise standard

deviation is compared with the real one in Table 7.1. In Figure 7.1 no
0.7
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Figure 7.1: Results of the data selection for the data with constant setpoint.

data will be selected since the setpoint is always constant. The selection
algorithm will never be triggered to start. Figure 7.2 contains a sequence
of three steps in the setpoint. As a consequence the selection is started at
each of these steps' and continues until the data has reached steady-state

1As a matter of fact, the selection does also include a fixed number of samples (here
10) before the step.
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Figure 7.2: Results of the data selection for the data with several steps (I).

example noise std.dev. | real

no setpoint change 0.09 0.06
several steps | 0.10 0.06
several steps |l 0.10 0.06

Table 7.1: Real and estimated noise standard deviations for the simulated
examples.

again. The steps are so sparse that there are areas of steady-state between
them. The last example, Figure 7.3 is very similar but contains more frequent
setpoint changes such that the process output does not reach steady-state
in between. The selected data set in this case is therefore not scattered.

Industrial examples

Here several examples using industrial data are shown. All loops are flow
control loops in the stock preparation section of a paper mill. The results
are shown in Figures 7.4 to 7.7. The estimated noise standard deviations can
be seen in Table 7.2.  The examples in Figures 7.4, 7.5 and 7.6 are very
similar to the simulated ones, i.e. single or a series of steps in the setpoint,
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Figure 7.3: Results of the data selection for the data with several steps (11).

data set | noise std.dev.
Ex | 1.69
Ex Il 1.04
Ex Il 0.94
Ex IV 5.53

Table 7.2: Estimated noise standard deviations for the industrial examples.

thus yielding scattered or coherent selected data sequences. Figure 7.7 shows
the more special case of a cascaded loop, i.e. the setpoint of the loop in
question is the controller output of an outer loop. As a consequence, the
setpoint changes continuously. Notice however that the data selection is
not started until a change larger than the noise dependent limit has been
occurred (happens at t = 550 seconds).
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Figure 7.4: Results of the data selection for Example I.
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Figure 7.5: Results of the data selection for Example II.
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Figure 7.6: Results of the data selection for Example Ill.
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Figure 7.7: Results of the data selection for Example IV.



Chapter 8

Dead-time estimation

Assume that suitable identification data have been selected using for example
the method proposed in Chapter 7. The problem dealt with in this chapter is
the estimation of the process dead-time given an informative measurement
data set. This question has also been addressed in (Isaksson et al., 2000).
There, several dead-time estimation algorithms have been compared for the
use in a monitoring tool using Monte-Carlo simulations. The problem treated
was the estimation of the dead-time k in a linear discrete-time model

y(t) = Gq u(t —k) + H(q "v(t)

where g~ denotes the backward shift operator, and v(t) is zero-mean white
noise. The methods tested there are briefly listed here:

1. ARX-model: Fit fixed-order ARX-models for different time-delays to
the data. Choose the time-delay which gives minimal prediction error.

2. OE-model: Same as above but using an output error (OE) model
structure, see also (Swanda, 1999).

3. Laguerre-model: Fit a Laguerre-network to the data. The time-delay
has to be described by unstable zeros. This method will be described
in more detail later on,see also (Isaksson, 1997).

4. Variable regression: At the time-delay the correlation between control
signal and change of the process output signal is maximal (Elnaggar
et al., 1991) .
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5. Extended numerator: Fit an ARX-model with a large number of
numerator parameters. Small values of these parameters correspond
to time-delay steps,see (Kurz and Goedecke, 1981), (Kurz, 1979).

Note that one can either use the setpoint r or the control signal u as input
data because the dead-time from r to y is the same as from u to y. Except
that in some cases the controller may introduce an extra delay of one sample.
Hence, using the five mentioned estimation methods and two different data
sets, one has ten approaches to choose from. In (Isaksson et al., 2000), it
was concluded that the most reliable method is the one based on Laguerre
models when estimating a model using control signal u and process output y.
This method will be used in the following.

The chapter is organised as follows: Section 8.1 gives a brief description of
the Method 3. Section 8.2 presents a modification of that method. Examples
and comparisons are shown in Section 8.3.

8.1 Laguerre model and Padé approximation

Assume that a Laguerre model has been fitted to the identification data.
Then, one has obtained a parameterisation of the plant in so-called Laguerre
filters, see e.g. (Wahlberg, 1991):

y(t) = ZCiLi(q”)u(t) +v(t) (8.1)
i=1
where

Lia ") = (8.2)

VI—o2q™" [—a+q "\
1—oag! 1—oag! '

The model is linear in the coefficients c; which can be estimated using the
least-squares method on data filtered through the Laguerre filters L. It can
be viewed as a generalised finite impulse response (FIR) model, where g~ is
replaced by the Laguerre filters instead. This parameterisation of the plant
has the advantage over, for example, Output Error (OE) and ARX that it can
well describe time-delays as part of the model, without choosing an explicit
delay variable k. In the following examples ny = 10 and &« = 0.8 are used.
It was found that the resulting dead-time estimate is relatively insensitive to
the choice of these design parameters.



8.1 Laguerre model and Padé approximation 93

The original approach described in (Isaksson, 1997) is to first estimate
the Laguerre model (8.1), followed by a calculation of the zeros z;. The
discrete-time zeros are then converted to approximate continuous-time zeros
as

1
s; &~ — log(zi), (8.3)
Ts
where Ty is the sampling interval. Finally, a comparison is made to a con-
ventional Padé approximation, (Padé, 1892), of the continuous-time dead-
time Tg.

(8.4)

If the rest of the plant has no non-minimum phase zeros, then all right-
half plane zeros of the estimated process model originate from the Padé
approximation. Hence

Ta 1
5 = o (8.5)
RHP
The estimate of the discrete-time dead-time k is then obtained as
T 1 2
k=1+2=1+=Y =. (8.6)
Ts Ts G st

A weakness of the above method is that it makes use of two different approx-
imations. Firstly, the conversion of discrete-time zeros to continuous-time
introduces an error if the sampling interval is large enough. Secondly, by
comparing the continuous-time zeros with a Padé-approximation which itself
is an approximation of the true dead-time element. Another problem which
may occur is the presence of unstable discrete-time zeros on the negative
real axis. These will lead to a complex dead-time estimate if no remedies are
taken.

Therefore, in the next section, an alternative method is presented which
avoids such problems by directly estimating the dead-time from the discrete-
time zeros.
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8.2 Laguerre model and rational allpass filter

An alternative way to estimate the dead-time directly from the discrete-time
zeros of the plant model without converting them to continuous-time zeros
will be presented now.

Consider the factorisation of the estimated Laguerre model into two parts:
a minimum phase (mp) part and an allpass (ap) part

G(z) = Gm‘p(Z) Ga'p(z)-

Such a factorisation can be done for any linear, time-invariant dynamic sys-
tem, see Figure 8.1 for an example. The allpass part has unit gain for all

original = min.phase *  allpass
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05 A osf - o5 .o
: | E B | ’ E ! :
0F “@- -+ - - %0 of o — - + - — o% o ———-t- %o
- | : B | - - | B
-05 x : 05 D s
: 0 -0.5 : * o )
1 o y | . 1 ‘
X -15 |
-1 0 1 -1 0 1 -1 0 1

Figure 8.1: Pole(x)-zero(o) distribution when factorising a linear system
into a minimum phase and an allpass part.

frequencies and contains all unstable zeros of the original model. The poles
of the allpass filter are the unstable zeros mirrored into the unit circle.

Hence, it is reasonable to compare G4 (2) with a good approximation for
the dead-time. Note that for discrete-time models a dead-time approximation
is usually not necessary since — at least when the dead-time is a multiple of
the sampling interval — there is an exact representation in z—%. By the nature
of Laguerre filters G4y, (z) is, however, a rational transfer function with equal
numerator and denominator degrees.

Consider then the following straightforward result.

Theorem 8.1. Assume that G oy, (z) is a discrete-time Padé approximation
of the dead-time T4, and

@(w) = arg{Gap(e™ )},
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Then

—

Ta= lim (‘p(—w) . (8.7)

w—0

Proof: See Appendix C.

Remark 8.1. The expression (8.7) can of course not be evaluated for w = 0.
For implementation on a computer, a value of e.g. w ~ 104 rad/s has been
found to be sufficiently small when using typical industrial data.

Remark 8.2. In order to obtain the number of samples of dead-time one
has to add one sample to the estimate. Then the number of samples of
dead-time is calculated as

Ta

E:] 4y —p(w)
LG A o

. (8.8)
w1
Remark 8.3. As noticed already above the estimation method advocated
here assumes the system to be minimum phase, save for the dead-time. In
a situation when it is important to distinguish between non-minimum phase
zeros and dead-time this may be a concern. Since the intended use here is
performance monitoring, it is not all that critical if one performance limiting
factor is mistaken for another. The calculated achievable performance will
still be accurate enough. Swanda and Seborg (1997) designate the described
phenomenon as “apparent dead-time”.

The main potential disadvantage with this estimation method is that,
due to the inherent approximations, it will never give completely unbiased
estimates even in the absence of noise. Moreover, it yields non-integer dead-
time estimates. The latter may, however, also be viewed as an advantage,
since contrary to most other methods it in fact makes an effort to estimate
the true continuous-time dead-time.

8.3 Examples

The methods described in Sections 8.1 and 8.2 will be denoted Method |
and |l respectively.
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Simulated examples

Some simulated examples where the exact dead-time was known will be
presented now. For these examples, Monte-Carlo simulations were made.

Example 1. Consider open-loop data from an over-damped process with
dead-time,

e79s

Gl = AT

In order to generate identification data, the transfer function was transformed
to discrete-time using zero-order hold and a sampling time of Tg = 1. Zero-
mean white noise with standard deviation o = 0.05 was added to the process
output. The input was a series of three steps, see Figure 8.2. The results of a

ident. data
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Figure 8.2: Top: Identification data for Example 1. Bottom: dead-time
estimation results for both methods. The correct number of samples of
dead-time is marked by a vertical line.

Monte-Carlo simulation with N = 10000 different noise realisations are also
shown in Figure 8.2. It can be seen that Method Il yields a lower RMS-value
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which is defined as

RMS =

where k; is the estimated number of samples of dead-time from the i-th data
set and k is the correct number.

Example 2. Consider a similar case as in Example 1 but now with a dead-
time of Tq = 10 seconds. Using a sampling rate of T = 5 seconds results
in three samples of dead-time (including one sample due to the discretisa-
tion). The noise variance was increased to 0 = 0.15. One realisation of the
identification data and the results of the Monte-Carlo simulation are shown
in Figure 8.3. Again, a better RMS value was found for Method II.

ident. data
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Figure 8.3: Top: ldentification data for Example 2. Bottom: dead-time
estimation results for both different methods. The correct number of samples
of dead-time is denoted by a vertical line.
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Industrial examples

Data from industry will be used now to illustrate and compare the two de-
scribed methods.

Example 3. Consider data from a flow control loop in a paper mill, see
Figure 8.4. When estimating the dead-time from this data values of 7.79
(Method 1) and 8.27 (Method Il) were obtained. From visual inspection of
the data it can be stated that the “correct” dead-time should be 5-6 samples.
Figure 8.4 also shows the dead-time estimate using Method |l for different
frequencies (i.e. Equation (8.8) as a function of frequency). Remember that
the value for the lowest frequency is chosen since the true phase curve error
decreases for decreasing frequency. This can clearly be seen in the bottom
plot of Figure 8.4 where the allpass phase curve and the phase curve of a pure
dead-time element (with the “correct” dead-time) are plotted as a function
of frequency.

Example 4. Consider yet another flow control loop. The “correct” dead-
time is known to be 5 samples. The identification data and the estimation
results are shown in Figure 8.5. The calculated dead-times in this case where:
5.72 (Method I) and 5.79 (Method II). Again, the values are rather close.

8.4 Data segmentation and dead-time estima-
tion

For the use in an autonomous monitoring tool, the data selection method
described in Chapter 7 has to be combined with the dead-time estimation
presented in this chapter. The quality of the estimate depends on a number
of factors. Sampling frequency, loop bandwidth, controller tuning, process
dynamics are such factors. The effects of some of these factors on the
properties on the estimate have also been investigated (for different dead-
time estimation methods) in (Isaksson et al., 2000).

In the following, the effect of selecting data out of a long data set with
a few setpoint changes on the estimate will be investigated via Monte-Carlo
simulations.
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Figure 8.4: Example 3: Top: Identification data, process output y, control
signal u and model prediction {j. Middle: Dead-time-estimate for different
frequencies. Bottom: Phase curves for allpass part and “correct” dead-time
element.

The models and controllers used for simulation are shown in Table 8.4.
The sampling interval was Tg =1 for all cases. The noise-free step responses
are shown in Figure 8.6. Note the different time-scales! The models and
controllers were chosen in order to illustrate the effect of the process time-
constant (fast—slow), the controller tuning (tight—sluggish) and the type of
process noise assumed (filtered by the process denominator — partly filtered
by the process denominator — not filtered at all). For each of the twelve
cases a rather long data set was generated (denoted below as the original
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Figure 8.5: Example 4: Top: Identification data, process output y, control
signal u and model prediction {j. Middle: Dead-time-estimate for different
frequencies. Bottom: Phase curves for allpass part and “correct” dead-time
element.

one. Then the segmentation method from Chapter 7 was used to select a
shorter data set, denoted below as the selected data set.

Results

The complete results for all twelve cases are listed in Table 8.2. Typical data
and the resulting histograms for ARX I, FILT 1l and OE IV are shown in
Figures 8.7, 8.8 and 8.9 respectively. From Table 8.2 the following con-
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model | gain poles Ta noise model o2 K T;
ARX | 5 [[1-01] | 9 1/A(q ") 01 | 072 | 6
ARXIl | 0.05 | [-10,-1] | 9 1/A(q ") 0.01 | 0.612 | 51
ARX Il | 0.05 | [-10,-1] | 9 1/A(q~") 0.02 | 0.975 | 13
ARX IV 5 [1-01] | 9 1/A(q ") 01 0.3 6
Filt | 5 [1-0.1] | 9 | 0.98q/(q—0.2) | 0.1 | 0.72 | 6
Filt I | 0.05 | [-10,-1] | 9 | 0.71q/(q—0.7) | 0.05 | 0.612 | 51
Filt 1l | 0.05 | [-10,-1] | 9 | 0.71q/(q —0.7) | 0.05 | 0.975 | 13
Filt IV 5 [[1-0.1] | 9 | 0.98q/(q—0.2) | 0.1 03 6
OE I 5 [1-0.1] | 9 1 01 | 072 | 6
OEIl | 005 | [[10,-1] | 9 1 0.02 | 0.612 | 51
OEIIl | 0.05| [-10,-1] | 9 1 0.1 | 0.975 | 13
OE IV 5 [1-01] | 9 1 01 0.3 6

Table 8.1: Models and controllers used in the Monte-Carlo simulations.
A(q~") denotes the process denominator.

clusions can be drawn: The estimation based on the short data set usually
exhibits a larger variance but the bias is much smaller.
smaller that the RMS error sometimes becomes significantly smaller for short
(segmented) data than long data sets. This fact has been noted before and

is discussed in, for example, (Carrette et al.,

ARX-modelling.

In fact so much

1996) for the framework of
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RMS mean std
noise sel.  orig. sel. orig. | sel. orig.
ARX1 | 154 1.01| 945 10.79 | 1.44 0.62
ARXIl | 2.31 4.61 | 10.69 1421 | 2.20 1.88

ARX Il | 2.45 427 | 10.85 13.82 | 231 1.90
ARX IV | 241 214 | 9.85 1196 | 240 0.86
Filt | 148 0.90| 916 9.28 | 1.22 0.55
Fit Il | 3.53 8.79 | 12.08 18.70 | 2.85 1.24
Filt i | 1.80 3.26 | 10.71 13.13 | 1.66 0.91
Filtlv | 263 144 | 867 890 | 2.27 0.94
OE | 1.61 229 | 878 7.79 | 1.04 0.60
OEIl | 087 0.78 | 986 959 | 0.86 0.66
OENlI | 1.72 1.03 | 10.73 10.10 | 1.56 1.03
OEIV |3.04 502 | 763 510 |190 1.09

Table 8.2: Results of the Monte-Carlo simulations. The bold style denotes
the better value, i.e. if the estimation was better for the original or the

selected data set.
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Part 11l

Oscillation diagnosis






Chapter 9

Oscillations in process
control loops

Oscillations in process control loops are a very common problem. In Canadian
studies it was found that up to 30% of all loops may be oscillating in typical
pulp and paper processes, see (Bialkowski, 1992) and (Ender, 1993). The fact
that some loops oscillate is often known to the operators. However, since
the cause is usually unknown, appropriate measures may not be obvious.
Therefore, oscillating loops tend to be neglected or be put in manual mode.
Unfortunately, none of these measures maintains the benefit of control.

It is therefore important that a monitoring tool can do more than pure
oscillation detection. It should also be able to indicate likely causes. A third
(and very desirable) step would be to indicate measures in order to remove
the oscillation like ‘“de-tune the controller”, “valve maintenance needed”,
“check neighbouring loop”, etc.

However, the automatic diagnosis of oscillations without performing any
experiments is a difficult task and may often not even be possible for some
causes. In this chapter the most important reasons for oscillation in process
control loops are briefly discussed. However, first methods for automatic
detection of oscillations are reviewed.
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0.1 Automatic detection of oscillations

Before being able to diagnose different oscillations, an automatic monitoring
tool has to detect oscillating signals. Even though a simple task for the
human eye, it is not trivial for a computer to perform. One of the problems
is the lack of a simple mathematical definition of an oscillation which can be
checked automatically.

Textbooks often discuss spectral analysis in connection with oscillations.
Again, for the human eye a peak in the spectrum of a signal is simple to
detect. Making this process automatic is non-trivial however. The existence
of several peaks or very broad maxima are difficult to handle automatically.

Hagglund (1995) has proposed a method in the time-domain which con-
siders the integrated error (IE) between all zero-crossings of the signal. If
the (IE) is large enough, a counter is increased. If this counter exceeds a
certain number, an oscillation will be indicated. In order to quantify what
large enough means, the ultimate frequency of the loop in question (as may
be known from identification using relay-experiments) is used. Alternatively,
one may use the integral time of the controller, assuming that the controller
is reasonably tuned. This method is very appealing but has two disadvan-
tages: Firstly, it is assumed that the loop oscillates at its ultimate frequency
which may not be true, e.g. in the case of stiction. Secondly, the ultimate
frequency is not always available and the integral time may be a bad indi-
cator for the ultimate period. A strength of the method is that it quantifies
the size of the oscillation.

A very similar idea was used in the detection method by Forsman and
Stattin (1999). There, the time instants of all zero-crossings and all IEs are
computed and compared pairwise, see Figure 9.1. Then, all IEs and zero-
crossings which are pairwise approximately equal are counted. This number
is divided by the total number of half-periods yielding an index between 0 (no
oscillation) and 1 (perfect oscillation). A reasonable threshold was found to
be 0.3. An advantage with this method is that an estimate of the frequency
and oscillation amplitude are computed as a by-product. There are some
tuning parameters which determine what approximately equal means but
these do usually not have to be changed.

Yet another method was presented by Seborg and Miao (1999). Here
the auto-correlation function of the signal in question is estimated. Then a
measure similar to the damping ratio is computed. If this measure exceeds
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Figure 9.1: Definition of time-domain variables for oscillation detection.

a certain threshold, an oscillation is indicated.

Note that only the method by Hagglund (1995) makes an attempt to
quantify the oscillation amplitude. The other two mentioned approaches
may be fooled by very small oscillation amplitudes. The question whether
such oscillations should be detected or not is a bit philosophical. There must
be a reason for the oscillation, on the other hand, even if it does not do any
harm.

0.2 Reasons for oscillations

Static friction

High static friction (stiction) in a control valve often causes oscillations. The
mechanism is simple: Assume that a valve is stuck (stick-phase) in a cer-
tain position due to high static friction. The (integrating) controller then
increases the setpoint to the valve until the static friction can be overcome.
Then the valve breaks off and moves (note that the dynamic friction is smaller
than the static friction) to a new position (slip-phase) where it sticks again.
The new position is usually on the other side of the desired setpoint such that
the same process starts again in the opposite direction. A very simple simu-
lation model, based on the work by Olsson (1996) was presented in (Horch
and Isaksson, 1998). Typical stick-slip behaviour results in a rectangular pro-
cess output and a triangular control signal, see Figure 9.2 for an industrial
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example. Oscillations due to stiction are mostly tuning-independent as long
as there is integral action. Oscillations due to stiction can hence usually
not be removed by re-tuning the controller. An ad hoc control strategy —
which could be used until the next maintenance stop — could be the use of
a dead-zone in the controller as suggested by Ender (1997). The tuning of
Pl-controllers in loops with stiction was also discussed by Piiponen (1998).

50 100 ISOti mZéO [S] 250 300 350
Figure 9.2: Typical behaviour of a control valve with stiction. Top: mea-
sured flow (solid) and flow setpoint (dashed). Bottom: control signal.

Dead-zone

Dead-zone is the combined nonlinearity that represents the amount the input
signal needs to be changed before the actuator actually moves. This kind of
nonlinearity can for example occur in the control system software. For the
analysis done in this chapter, the concept of the describing function will be
used. The describing function method is a standard analysis tool for control
loops containing static nonlinearities, see for example Atherton (1981). The
describing functions used in the following can be found in most textbooks
about nonlinear control.

Figure 9.3 shows the time-domain behaviour of a dead-zone element.
The describing function is given by
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Figure 9.3: Time-domain characteristic of a dead-zone element.
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Figure 9.4: Describing function for a dead-zone nonlinearity with D = 0.5.

covers the negative real axis to the left of -1. A stable limit cycle can
only be obtained if the closed-loop without the nonlinearity itself crosses the
negative real axis left of the critical point -1 without being unstable at the
same time. A possible scenario to satisfy such a condition can for example be
a PID-controlled plant which contains a fist-order dynamics and an integrator

(e.g. a level control loop).

An industrial example of a level control loop where an oscillation is caused

by a dead-zone in the control system is shown in Figure 9.5.
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Figure 9.5: Example of a level control loop which oscillates due to dead-
band.

Backlash
Backlash is present in every mechanical system where the driving element is

not directly connected with the driven element. Figure 9.6 shows the time-
domain behaviour for a backlash element. Backlash is a dynamic nonlinearity,

 flu)

Figure 9.6: Time-domain characteristic of a backlash element.

i.e. its state depends on the input and past states. The describing function
for the backlash is therefore a complex valued function. Assuming a unit
slope in the input-output relation, the describing function for C > D where
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D is the width of the dead-band is given as

Re(N(C)} = %(;—t—l—arcsin(]—%))q—z(]_%)) %(]_%))

ImN(C)} = D (1—9>.

~nC C
It is not possible — for general process models — to state simple conditions
for a limit cycle to occur. Clearly, the loop without the nonlinearity may be
stable or unstable. For a limit cycle to occur it must be higher than first
order, which is always true for a first-order plus dead-time process controlled
by a Pl-controller. An example of the negative inverse of the describing
function is shown in Figure 9.7. As can be seen, de-tuning of the controller

~ L L L L L L L L
15 145 14 135 -1.25 45 -115 11 105 -1

MeN(C
Figure 9.7: Plot of the negative inverse of the describing function for a
backlash nonlinearity with unit slope.

will probably remove a backlash-induced oscillation in many cases.

Saturation

Real control signals do always have constraints. Therefore, alarm limits are
set for each control signal. If the controller is tuned such that the loop
is unstable, there will be an oscillation due to the saturation nonlinearity.
Figure 9.8 shows the time-domain behaviour for a backlash element.

The negative inverse of the describing function for a saturation nonlin-
earity is located on the negative real axis left of the critical point. For an
oscillation due to saturation, the phase difference between control signal
and the process output will therefore ideally be 180 degrees. An industrial
example is shown in Figure 9.9.
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Figure 9.8: Time-domain characteristic of a saturation element.

Quantisation

Quantisation is always present in modern control systems since analog values
have to be discretised and vice versa. Especially in older systems where the
converters have a relatively low resolution this may become a problem. Since
oscillation due to quantisation is less known, it will here be discussed in some
more detail.

The input-output characteristic of a quantiser with a quantisation level
of q is given by

Q(x) = q round (x/q). (9.1)

This nonlinearity is plotted in Figure 9.10. The describing function for this
nonlinearity can be found by either extrapolating results for the three-point
and five-point nonlinearities or by considering the addition of signum-with-
dead-zone functions (Franklin et al., 1998). The describing function is

0 0<C<$
NIC) =4 225 \1-(B&q)” (n—3)a<C (92)
<(n+3)d

and is plotted in Figure 9.11. The variable n denotes the number of the
step in the quantisation curve (Figure 9.10) which corresponds to the actual
value of the amplitude C. It is noteworthy that the maximum of N(C) does
not change with the quantisation level q. It can be calculated as

4
rnéaxN(C) =N(q/V2) = ~
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Figure 9.9: Data from a preheater level control loop. The oscillation is due
to tight tuning in connection with saturation.

The fact that the maximum of N(C) is constant even for ¢ — 0 reminds of
the Gibbs phenomenon, since the describing function is based on a truncated
Fourier series. This has an interesting implication on the analysis using
the describing function method. Since N(C) is purely real, the negative
inverse of N(C) will be on the negative real axis only. It starts in —oo when
0 < C < q/2. The maximal value is then given by

—1

max — =~ = —
C

T
N = 3~ 0785, (9.3)

Note that the function —1/N(C) alternates around the critical point —1
which can lead to ambiguities in the estimation of the oscillation amplitude.

If remains to discuss what happens for ¢ — 0, i.e. when the quantisation
nonlinearity vanishes completely. As can be seen from Figure 9.11, if ¢ — 0,
the function N(C) will be squeezed together without changing its shape
in the vertical direction. For the negative inverse, —1/N(C), this means
that the complete curve will not change with q but so does the amplitude
dependence. Assume that there is an intersection between the Nyquist curve
and the describing function for some finite q. Then there will still be an
intersection no matter how much q is decreased. The amplitude of the
oscillation will, however, tend to zero.

For applying describing function analysis to a loop with quantization,
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Figure 9.10: Time-domain characteristic for a quantiser.

assume that the controller F(s) stabilises the linear part of the loop. In-
tersection of —1/N(C) and the frequency function L(iw) = Fiw)G(iw)
can then occur in several ways. Firstly, if <L(iw) is smaller than —180° for
small frequencies. In that case, the intersection lies in the interval [—oo, —1].
Secondly, if L(iw) crosses the negative real axis in the interval [—1, —7mt/4].

Simulated example. Consider an example where

_ 10 —10s
G = BT naesTne

1
05 (14—
005( +]Os>’

and the quantisation level is g = 0.05. The resulting simulation is shown in
the upper part of Figure 9.12. The intersection of L(iw) with the negative
real axis is at s = —0.33 at a frequency of 0.156 rad/s. As can be seen, there
is no limit cycle. When the controller gain is changed from 0.05 to 0.13,
it can be seen that a limit cycle is present. In this case, the intersection
of L(iw) with the negative real axis is at s = —0.84 at a frequency of
0.156 rad/s yielding an oscillation period of about 40 seconds.

mal
—
[%)
=

Il

Industrial example. Consider a flow control loop which is oscillating, see
left part of Figure 9.13. The reason for this oscillation was found to be an 8-
bit resolution in the D/A-converter, yielding a quantisation level ¢ = 0.5%of
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Figure 9.11: Describing function of a quantiser for different levels of quan-
tisation.

the control signal. After a 12-bit converter was installed, the oscillation has
decreased drastically, see right part of Figure 9.13. The explanation is that
the quantisation level was now decreased to q = 0.06%. The theory then
predicts that the amplitude should decrease to 0.06/0.5 = 0.12 times the
original amplitude.

External oscillating disturbances

Despite the use of single-loop controllers in the process industry, many basic
control loops are coupled. Therefore, if one loop is oscillating, it will likely
influence other loops too. In many cases the oscillations are in a frequency
range such that the controllers cannot remove them. Then an oscillation is
present even though the controller is well tuned (it might have been tuned
for some other control task). Industrial data for this kind of root cause will
be shown later, see Figure 10.9.

External disturbances are a challenge for an automatic monitoring system.
When having detected an oscillation, it is important to distinguish between
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Figure 9.12: Simulation of a loop with a quantiser. Top: no intersection
with describing function. Bottom: intersection.

internally and externally caused oscillation.

Other reasons

There are of course other reasons for oscillations. It is for example possi-
ble that two well-tuned single loops start oscillating when they are coupled
(e.g. due to nonlinearity or multivariable effects). However, using normal
operating data and without any process knowledge it seems to be almost
impossible to diagnose such a cause.

Another cause which has not been mentioned so far is an oscillating loop
setpoint. This problem has been analysed by Ettaleb et al. (1996) and will
typically only appear in cascaded control loops.

Of course, often there may be several causes at the same time responsible
for a certain oscillation, as Figure 9.14 tries to illustrate. This makes the
diagnosis even more difficult.

9.3 Signal-based diagnosis

The purpose of this section is to try to motivate — by means of a simulated
example — that some causes of oscillations may be impossible to distinguish
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Figure 9.13: Data from a flow control loop. Left: Oscillation due to quan-
tisation in the D/A-converter. Right: Same loop with higher resolution in
D/A-converter. Top: control error, bottom: control signal.

between when no process knowledge is available. It is important to recall
the assumptions used in this chapter. We assume that

1. the available signals are setpoint, process output and control signal,
2. no specific process knowledge is available,

3. the setpoint is constant,

4. no experiments are made.

In the following, a simulated example will be presented using three differ-
ent causes for oscillations, namely, saturation, backlash and external distur-
bances. It will be shown that they lead to signals which are almost identical.
It will therefore be very difficult (if not impossible) to distinguish between
these cases simply by using normal operating data without any process knowl-
edge.
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Figure 9.14: Typical reasons for oscillations in process control systems.

A simulated example

Consider a single-input single-output (SISO) loop as shown in Figure 9.15.
v

G(s) —O—2-

T o F(s) Y NL|MNE

Figure 9.15: A simple SISO-control loop with actuator nonlinearity

Let then the process be described by

2
Bs+1)(10s+1)°¢

F(s):2(1+]]§>.

Consider first the case when the time-delay is T4 = 3 and the actuator
nonlinearity (NL) is pure backlash (dead-band = 1). A simulation of the
control loop in Figure 9.15 is shown in Figure 9.16. Then consider the case

—sTg

G(s) =

and the Pl-controller as
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Figure 9.16: Simulation with backlash. Process output (solid) and control
signal (dash-dotted).

where the actuator nonlinearity is a saturation (limit =1). The controller gain
was increased to K. = 3, making the loop unstable. The resulting simulation
is shown in Figure 9.17. Finally, consider the case where the actuator is linear

L
\

L L L L L L
0 100 200 300 400 500 600 700 800

time [s]

Figure 9.17: Simulation with saturation. Process output (solid) and control
signal (dash-dotted).

(= 1) and there is an oscillating load disturbance v(t) = sin(0.25t). The
time-delay is again T4 = 3. The resulting simulation is shown in Figure 9.18.
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It can be seen from the three simulations that the different scenarios result

-6

0 10 20 30 40 , 50 0 70 80 90 100
time [s]

Figure 9.18: Simulation with oscillating load disturbance. Process output
(solid) and control signal (dash-dotted).

in almost equal signals. All of them are almost purely sinusoidal and both
the phase shift and the amplitude ratio between 1(t) and y(t) do not differ
significantly.

Conclusions

Using a simulated example, it was argued that it may in fact be impossible to
distinguish between certain causes of oscillations based on normal operating
data unless some process knowledge is available.

For diagnosis, it is necessary to be able to extract some feature which
is unique for a certain cause of oscillation. For the case of static friction
(stiction) in control valves, there is such a feature, see Chapters 10 and 11.

In practice it may not be very important to distinguish between for ex-
ample backlash and dead-band. A more relevant distinction would be if an
oscillation is generated internally or externally. This gives an indication in
which loop to look for a problem. As a matter of fact, such a distinction
can be made if one assumes that the process dead-time or a simple process
model (see Chapter 12) are available. If such information is not available, it
may be obtained by event-triggered estimation



Chapter 10

Detection of static friction
for self-regulating plants

Oscillations usually indicate a severe deterioration of performance in process
control loops. When an oscillation has been detected, one would like a
monitoring system to indicate the possible cause of the problem in order
to enable the operators to alleviate the problem. Only few methods to
solve this task have been proposed, see e.g. (Deibert, 1994), (Ettaleb et
al., 1996), (Hagglund, 1995), (Horch and Isaksson, 1998), (Taha et al,
1996) or (Wallén, 1997). Unfortunately all the approaches mentioned require
either detailed process knowledge, user-interaction or rather special process
structures.

It has been motivated in Chapter 9 that it might be impossible to dis-
tinguish between certain oscillation causes based on signal information only.
However, in this chapter it will be shown that the measurements in the
case of static friction (stiction), see also Chapter 9.2, show a rather unique
behaviour. This fact will enable a simple diagnosis procedure.

Ideally, the stiction phenomenon results in signals as shown in the left
half of Figure 10.1. In basically all other cases, the signals are more or
less sinusoidal, as indicated in the right half of Figure 10.1. In practice,
of course, the signal shapes do vary quite a lot. This is a dilemma for
all methods which use the signal shape itself for diagnosis. A very robust
property of the signals in the stiction case is the following: If the left signals
in Figure 10.1 are multiplied for all samples and added up, the sum will be
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Figure 10.1: Ideal signals. Stiction (left), no stiction (right), process output
(top) and control signal (bottom).

exactly zero. If then the same thing is done for the signals on the right
hand side of Figure 10.1, the sum will be different from zero (in this case
negative). Then, consider the case where the signals are shifted against each
other prior to multiplication and summation. This procedure will yield the
cross-correlation function between the two signals. Doing this for both cases
in Figure 10.1, the (ideal) cross-correlation functions as shown in Figure 10.2
are obtained. Now, one can define a simple strategy to diagnose stiction:

Figure 10.2: Cross-correlation between process output and control signal.
Stiction (left), no stiction (right).
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If the cross-correlation function (CCF) between controller out-
put and process output is an odd function (i.e. asymmetric
w.r.t .the vertical axis), the likely cause of the oscillation is
stiction. If the CCF is even (i.e. symmetric w.r.t .the vertical
axis), then stiction is not likely to having caused the oscilla-
tion.

Note that the proposed method will work under the following assumptions
which will be discussed later on.

1. An oscillation has already been detected

2. The plant itself is not integrating

3. The controller has (significant) integral action
4. The loop does not handle compressible media

Note that the method may give questionable results if any of these assump-
tions are violated.

The remainder of this chapter is organised as follows: First, the algorithm
based on the CCF between process output and control signal is presented.
The method has been extensively tested on industrial data. Examples where
the cause of the oscillation was known are presented in Section 10.2. After
a theoretical motivation in Section 10.3, some conclusions are given.

10.1 The cross-correlation function

In this section, a simple algorithm is described that allows diagnosis of stiction
as motivated in the last section. As mentioned there, this will be done by
calculating the CCF between the process output y(t) and the control signal
u(t). The CCF between the discrete-time stationary (ergodic) signals u(k)
and y(k) is defined as

Tuy (T) = Bu(k + tly(k)}. (10.1)

Assume furthermore that the data is pre-treated so that it is zero mean.
Since the available data sets are of a finite length N, the correlation function
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cannot be calculated exactly and the computation has to be done from finite
data. The estimate of T, (T) can be obtained by

)y uk+1)yk) fort>0
ru (T { o Tyu(T) for t < 0. (10.2)

Note that for the purpose of this paper normalisation is not important and
can be chosen arbitrarily.

For automatic distinction between odd and even correlation functions, it
would be sufficient to consider the CCF at lag zero. However, for a practically
working algorithm it was found to be better to make use of the CCF up to
the first zero-crossing in each direction.

For a human it is simple to tell whether or not a function is odd or even.
For automatic diagnosis, one can define different measures to distinguish
between odd and even functions. Note that it is important that a procedure
for automatic distinction between odd and even functions needs to have a
dead-zone. That means that the method must not give any indication if the
CCF is neither odd nor really even. This may for example be the case when
there is a compressible medium in the loop.

For (one possible) automatic distinction of odd and even CCFs, define
the following measures:

T, = zero crossing for positive lags
—T1 = zero crossing for negative lags
1o = CCFatlag0
Topt = sign(ro)- max [ryy(T)|
T€[—T1,Tr]
AT — ‘Tl - TT‘
T+ Tr
Ao — To — Toptl
- IR
ITo + T'opt|

see also Figure 10.3. Theoretically, it would be sufficient to consider either
AT or Ap. However, the use of both variables will result in a more reliable
procedure. For automatic distinction between the two mentioned oscillation
cases, one has to set up limits for At and Ap. Note that both test variables
are bounded in the interval [0 ... 1] where 0 corresponds to an even CCF
and 1 to an odd one.
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Figure 10.3: Definition of key variables for the correlation function.

Let now A¢ denote the deviation of the CCF from the “ideal” position
as was shown in Figure 10.2. Of course, one has to allow a certain deviation
range for both cases. In between, however, it is important to have an interval
where no decision is taken. This interval corresponds to a CCF which is
neither odd nor even. This will typically happen when the oscillation is
strongly asymmetrical. It may be an indication of a more unusual problem
like for example sensor or other equipment faults.

If all three intervals are defined equally large, we allow a deviation of
1/12th of the period (T;) of the CCF for each case. See Figure 10.4. Using

Figure 10.4: Allowed deviation (Ad = £T,/12) of the CCF from the ideal
positions. Stiction (left) and non-stiction case (right).
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these allowed deviation intervals, the values for AT and Ap are related to the
diagnosis as follows:

_2+\/§} = no stiction

1
3} = nodecision  (10.4)

} =  stiction

Note that these results are derived assuming a pure sinusoidal CCF. The
rules are also illustrated graphically in Figure 10.5.

It may be interesting to know what the limits of At and Ap are if no
dead-zone is used. In that case, the deviation from each ideal CCF is allowed
to be 1/8th of a period. The limits for AT and Ap are then as depicted in
Figure 10.5.

10.2 Industrial examples

In this section, the new method will be evaluated on real-world data sets,
collected from different pulp and paper mills. In the following, for each data
set, the control signal (dashed) - process output (solid) are plotted (top plot)
together with their CCF estimate (bottom plot).

Loop interaction | Consider two coupled oscillating loops from a paper
mill. Figure 10.6 shows a process schematic. Pulp is diluted with water in
order to obtain a desired consistency. The water flow is controlled by one
control valve and the pulp flow by another. The water valve is known to have
static friction that is too high, whereas the pulp valve performs satisfactorily.
The measured data and the CCF for the consistency control loop are shown
in Figure 10.7. The CCF here is clearly odd. Note that the data does not
have the “ideal” stiction behaviour with the typical rectangular and triangular
shapes.
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Figure 10.5: The decision rules with (top) and without dead-zone (bottom).
The limits for non-stiction are marked in light-grey, the ones for stiction are
marked in dark-grey. The dead-zone is the interval between the light- and
the dark-grey bars.

Now, consider the flow control loop in Figure 10.6. Since the consistency
loop oscillates, the flow control loop does so too. Thus there is a situation
of an oscillating load disturbance. Data and CCF patterns are shown in
Figure 10.8. As can be seen, the CCF is approximately even and the result
is in agreement with the knowledge about the loop.

Loop interaction Il Consider a two-by-two system similar to the one in
Figure 10.6. It is known from experiments that both loops oscillate because
the Pl-controller in the consistency loop was too tightly tuned. The oscilla-
tions have been eliminated by re-tuning the controller. The oscillation in the
flow control loop was also stopped by this. Hence, the correlation functions
for both loops are expected to be even functions. Figures 10.9 and 10.10
show that this is actually the case.  Note that the CCFs at lag zero are
positive and negative respectively. This is because the consistency loop has
a negative gain.

In this example we obviously have a situation where the root cause of
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Figure 10.6: Two coupled loops from a consistency control loop.
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Figure 10.7: Consistency loop (Loop interaction I).

the problem cannot be diagnosed using the CCF. Another way of attacking
this problem — based on some process knowledge — will be described in

Chapter 12.
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Figure 10.8: Flow loop (Loop interaction I).

100 150 200 250 300 350 400

Figure 10.9: Flow loop (Loop interaction Il).

Flow control loop |

Another example for an oscillating flow control loop

is considered here. From experiments it is known that interaction with other
control loops is not very likely. Also the controller re-tuning did not remove
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data

Figure 10.10: Consistency loop (Loop interaction II).

the oscillation. One likely explanation is a sticking control valve. There
are data sets available for this loop that were collected daily over a period
of several months. The oscillation is mostly present but it changes shape
dramatically on different days. The correlation result for a case that is not
easily diagnosed by visual inspection is shown in Figure 10.11.

This can be compared with another data set from the same control loop
shown in Figure 10.12. It can be seen that the CCFs are odd functions in
both cases. Even though the signal shapes are different, there is almost no
difference in the CCF pattern. Hence, one may (correctly) conclude that the
loop exhibits stiction behaviour.

Flow control loop Il  For this example it is known that the loop in question
has problems with valve stiction. Apart from that, the flow measurement is
very noisy. If one assumes that the oscillation has been detected, the CCF-
method will easily diagnose stiction. The results from correlation analysis
are shown in Figure 10.13a. Note that the measured process output does
not have a pronounced rectangular shape as stiction often has. However, it
does if one filters the data, but this is not necessary when using the CCF.
It will yield the same results in either case. Note also that the length of
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Figure 10.12: Flow loop | (b).

the data batch can be very short. As an illustration consider Figure 10.13b
where very little data from the same loop was used. The interesting result is
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that the CCFs are very similar (at least concerning the asymmetry w.r.t the
vertical axis), no matter how much data one uses.

0
lags

Figure 10.13a: Long data set. Figure 10.13b: Short data set.

Figure 10.13: Flow loop Il. Cross-correlation for long and short data set.

Level control Consider now an example of a level control loop which is
known to oscillate due to stiction. As can be seen in Figure 10.14, the CCF
is even which would result in a deceiving diagnosis. The problem of diag-
nosing stiction in control loops with integrating processes will be discussed
in Chapter 11. There, a new method — based on the detection of abrupt
changes in the process variable — will be proposed in order to cover the case
of integrating plants.

10.3 Theoretical explanation

The aim of this section is to motivate the diagnosis procedure described
earlier in this chapter. Consider a control loop which oscillates with constant
amplitude and frequency, i.e. all transients have vanished. Assume that the
reference value is constant, see Figure 10.15. Then, the relationship between
controller output u(t) and process output y(t) is completely described by
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time

Figure 10.15: A general control loop.

the controller F(s),

where U(s) and Y(s) are the Laplace transform of process output y(t) and
control signal u(t) respectively. This relation will be used frequently in the
following where the theoretical CCF for different possible root causes of
oscillations are discussed.
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Correlation for oscillating external disturbances

Assume that the process in question is controlled by a Pl-controller, i.e.

F(s) =K, (] +%>

Since one is interested in the phase-shift between u(t) and y(t), consider
the Bode plot of —F(s). The phase curve of —F(s) is obtained as

Ad = arg{—F(iw)} = 7%7’[ + arctan(T;w). (10.5)

The Bode plot for —F(s) is shown in Figure 10.16 where the break frequency
is we = 1/Ti. In general low-frequency disturbances will be eliminated

S

CWe

B

magnitude

e

Figure 10.16: Bode diagram for —F(s). Exact (solid) and asymptotic (dash-
dotted).

efficiently by the Pl-controller since a controller with integral action yields
high loop gain at low frequencies.

On the other hand, if a medium or high frequency oscillating disturbance
enters the loop, it may not be attenuated sufficiently so that an oscillation
will be detected. However, in that case the phase-shift will typically be
approximately 7t and thus be classified correctly by the algorithm®. This is
because the second term of (10.5) approaches 7t/2 for high frequencies.

Lif the phase shift if exactly —m, the deviation of the CCF from the ideal position, see
Figure 10.2, will be zero.
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It is therefore important that only signals which are clearly oscillating are
used. Therefore, one of the detection methods described earlier must have
detected an oscillation.

Tight tuning

Oscillation may also be caused by tight controller tuning in connection with
some nonlinearity (except for stiction), typically backlash or dead-zone. In
such a case, the CCF will typically be even.

The following reasoning can be used: When a loop oscillates due to any
of the reasons mentioned above, it will do it at (or close to) its critical
frequency wy,, i.e. when the phase-shift between control error and process
output is (approximately) —7. Hence the CCF will be approximately even.
Therefore, as mentioned before, the CCF-method cannot be used to dis-
tinguish between external load disturbances and oscillation caused by tight
control in connection with some nonlinearity.

Correlation in the presence of stiction

For ideal stiction one can calculate the CCF analytically. Stiction implies
that the valve piston periodically pops from one position to another. This,
together with the assumption of a Pl-controller results in the typical stic-
tion pattern (see Figure 10.12), i.e. a square wave (process output) and a
triangular wave (control signal).

Expressions for the CCF in the stiction case will now be derived. Then,
let each of the signals y(t) and u(t) be expanded in a Fourier series

+ Z ak cos[kt] + by sin[kt]) . (10.6)
k=1

g0
2

Assume that the signals considered here are described such that they are
asymmetric with respect to the origin?, see Figure 10.17. This implied that
a; =0,V1iin (10.6). The key point of the new method is to look whether
the CCF is odd or even. This is the same as determining whether the phase
shift between both signals is —7t or —7t/2 respectively. Let the signals hence

2Here it is assumed — without loss of generality — that the signals are periodic with
period 27t.
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be described by their Fourier series expansion as

ut+T) = by sin[k(t + T)] (10.7)

™M

T
L

I
[Vlsz

y(t+ Ad) ck sin[l(t + Ad)], (10.8)

where T is the lag of the CCF. Inserting these in the continuous-time defini-
tion of the cross-correlation

gives

[e]

00 T
Tuy (T, Ap) = lim lT D> ) b L sin[k(t + )] sin[l(t + Ad)] dt

k=11=1

After some tedious but straight forward calculations this is evaluated to be

Tuy (T, Ad) = Z rCr coslk(T — Ad)] (10.10)
where
br = l J u(t)sinfkt] dt
) _n
1 (10.11)
Cx = T—[J y(t) sin[kt] dt

There u(t) and y(t) are as shown in Figure 10.17. For the case of a rectan-
gular signal y(t),

ac ey
{kn ifk=1,3,5,... (10.12)

0 if k=2,4,6,...

4m H —
e = m( ]) 2 |fk—],3,5, . (1013)
0 if k=2,4,6,...
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Figure 10.17: ldeal control signal u(t) (right) and process output y(t) (left)
signal in the presence of stiction.

Inserting (10.12) and (10.13) into (10.10) yields

8 o cos[(2i — 1)(T — Ad)] i
Tuy(T,A0) = — ; FE (-, (10.14)

Y

Figure 10.18 shows® Ty, (t,—7%) in (10.14) using only the first element and
after having used the first 50 elements of the sum in (10.14). It can be

Figure 10.18: Approximation of Ty (t,—%). Truncation after first term
(dashed) and after 50 terms (solid).

seen that it is sufficient to truncate the infinite sum after the first element.

3Note that A¢ = —/2 corresponds to the ideal stiction signals as shown in the left
part of Figure 10.1.
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Truncating this series after the first element and with Adp = —7t/2 gives

T 8 .
Tuy (T,—E) o) sin(T). (10.15)

Now it can easily be seen that the CCF for u(t) and y(t) for the case of
stiction is in good agreement with the empirical results described above.



Chapter 11

Detection of static friction
for integrating plants

As already pointed out, a weakness of the CCF-method described in Chap-
ter 10 is that it cannot be used for integrating processes. The reason being
the fact that the integrator in the process changes the correlation structure
differently for the stiction and the non-stiction case. An ad hoc remedy would
be to try re-calculate the valve position signal, i.e. to differentiate the process
output. Unfortunately, this does not work as is motivated in Appendix D.

A new method will therefore be introduced in Section 11.1. The main
idea is to check whether the process output exhibits regular abrupt changes
or not. These abrupt changes will be detected by considering the second (fil-
tered) derivative of the process output y(t). If y(t) is triangular (perfectly
and without noise), the second derivative will be a pulse train only. Then,
neglecting the pulse train and assuming additional Gaussian noise the second
derivative will have a probability distribution which is normal. On the other
hand, in the non-stiction case, the (oscillating) process output and its second
derivative are usually relatively sinusoidal. Hence the probability distribution
has two separate maxima. The proposed detection algorithm tests which of
the two distributions is more likely to fit the data. Examples using industrial
data are presented in Section 11.2. Since one has to be careful when differ-
entiating noisy signals, the signals will be filtered before. The filter constant
can be chosen dependent on the oscillation frequency.

As a matter of fact, the idea of considering the distribution of the second
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derivative of the process output can also be used for detection of stiction in
self-regulating processes (for which the CCF-method usually works well). The
only difference is that one has to consider the first (instead of the second)
derivative of the process output since there is no integration in the process.

11.1 A new detection method

In this section, a simple method is described which detects abrupt changes
in the process output. The main idea is to fit two different distribution
functions (one corresponding to the stiction case and one to the non-stiction
case) to the sample histogram of the second derivative of the measured
process output. For ideal signals and pure differentiation (without filtering)
the second derivatives (of the process output), and their sample histograms,
are shown in Figure 11.1. The decision procedure can now be summarised
as follows.

Consider the second (filtered) derivative of the process output.
Check whether the probability density function fits better to
the top or the bottom distribution in Figure 11.1. A better fit
to the first distribution will indicate stiction, a better fit for
the second one non-stiction.

As a motivation consider Figure 11.2 where ideal signals for the stiction and
the non-stiction case are shown. It can be seen that if the process output is a
sinusoid, the second derivative is a (negative) sinusoid as well. For the ideal
stiction case, the second derivative is a pulse train with alternating sign.

In the following, first the filtering and the differentiation of the process
output will be discussed. Then, it will be described how to obtain the sam-
ple histogram of the second derivative. Finally, in order to be able to fit
distribution functions to the sample histograms, the theoretical, expected
distributions have to be derived.

Differentiation and Filtering

It is well known that differentiation of noisy signals is a trade-off between
accuracy and noise amplification. The choice of the filter bandwidth can
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ANAAAN =
VYUY

Figure 11.1: Ideal second derivatives of the process output and their sample
histograms for the stiction case (top) and the non-stiction case (bottom).

be done using information of the oscillation frequency which can easily be
obtained, for example as a by-product from the oscillation detection. The
filter constant has to be chosen such that the noise is filtered out without
affecting the shape of the oscillation too much. In this work, a first-order
discrete-time low-pass filter,

1T—«
Hi(q ") =

—_ W, (11.1)

was used before each differentiation. The cut-off frequency of the filter is
chosen as wW¢ = 3% Wosc, Where Wy is the oscillation frequency. Note that
the choice of the filter cut-off frequency is very important. If it is too small,
the form of the oscillating signal will become too smooth (yielding almost
surely a Gaussian distribution). If it is too large the noise will be amplified
too much by the differentiation. The filter pole in (11.1) is determined as

x=e @els, (11.2)

where T is the sampling interval. The whole filtering and differentiation
procedure can be summarised in the filter

(1—a)(1—q")\*
(T—aq 1) )

Ha(q") = ( (113)
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Figure 11.2: Motivation of the proposed detection mechanism. The process
output and its first and second derivatives are shown for the stiction case
(right) and the non-stiction case (left).

v

yielding the second (filtered) derivative of the process output as

yar(t) = Ha(q ) y(t). (11.4)

The sample histogram

The sample histogram of the second derivative of the process output can
easily be obtained. The only choice one has to make is the number of
classes. In the statistical literature guidelines for this choice are given when
one wants to perform a goodness-of-fit test. A suitable number of classes
K for data batches up to N = 2000 samples has been proposed by Williams
(1950). For batches with more samples, Bendat and Piersol (1967) propose
to use K = 1.87 (N — 1)%4, The combination of both suggestions is shown
in Figure 11.3!. The values in Figure 11.3 have been found to fit well for

1 These rules were developed for a x*> Goodness-of-fit test with a 5% level of significance.
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Figure 11.3: Recommended number of histogram classes K for use in
goodness-of-fit test.

the purpose of this chapter.

Of course, the raw histogram has to be normalised for comparison with
theoretical probability density functions. This is achieved as follows. Let Nj,
N and Ax denote the number of elements in class i, the number of samples
of data and the width of each class respectively. Then the probability p;(x)
that a data sample is an element of class 1 is obtained as

. N;
pilx) = i AN (11.5)
N—ooo

In practice one cannot reach the limit and once N is determined, one has to
divide Ni by the number of samples N and the class width Ax in order to
obtain an estimate of p;(x).

A note has to be made here about the length of the data batch. Assuming
a reasonable sampling frequency (i.e. fast enough to cover the oscillation
well), one has to make sure that the data contains only a small amount of
oscillation periods. This is especially important if the signal shape changes
a lot over time. It has been found that a value of 5-10 oscillation periods is
a reasonable value.

Distribution for the stiction case

As can be seen from Figure 11.1, for ideal stiction the sample histogram
of the second derivative of the process output will be purely white noise
with a pulse train (assuming Gaussian measurement noise). The distribution
will thus mainly be Gaussian if we assume that the number of oscillation



146 11 Detection of static friction for integrating plants

periods is small compared to the number of samples?. The ideal probability
distribution for the stiction case is hence normal, i.e.

1 —(x—p)?

5a7 (11.6)

This distribution can easily be fitted to the sample histogram since the data
mean p and standard deviation ¢ can be computed directly from the data.

However, for real data, the peaks in the second derivative will not be
infinitely narrow. The sample histogram will therefore have significant tails
on both ends which will typically increase the variance. The same effect has
the — already mentioned — filtering which is necessary prior to differentia-
tion. The choice of the filter bandwidth will of course influence the resulting
distribution.

Therefore, the distribution (11.6) will now be modified. One alternative
being the computation of the theoretical probability distribution when filter-
ing and differentiating a triangular signal with additional white noise. This
may be possible but will lead to very complicated expressions. Therefore,
another approach is chosen here. Consider a noise-free triangular signal and
its second (filtered) derivative. Let the filter pole be chosen from (11.2).
Figure 11.4 shows the (noise-free) data and the resulting sample histogram.
It can clearly be seen that the peaks in the second derivative have now a sig-
nificant contribution to the sample histogram (compare with Figure 11.11).
A simple way of approximating the histogram in Figure 11.4 would be to
combine a Gaussian distribution with a uniform distribution, i.e.

fe(x) = (1 —e)fg(x) + efu(x), (11.7)

where

1
= [x|<A
_) ZA >
fu(x) { 0 ‘X| >A )

where A is the amplitude of d?y(t)/dt?. Note that the integral of (11.7) is
J fe(x)dx =1

as required. It was found that this modification is sufficient for real data.
Finally, see Figure 11.5 for a plot of fg(x) as a function of x. Of course,

2This is an implicit assumption that the data has to be sampled sufficiently fast such
that the oscillation has an reasonable (e.g. > 30) amount of samples per period.
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Figure 11.4: Noise-free (ideal) signals in the stiction case. Process output
(top) and second (filtered) derivative with its sample histogram (bottom).

one has to choose the parameter €. It could be estimated together with
the variance of the distribution. However, as will shown later, for the non-
stiction case, there is only one parameter to be estimated. We therefore
chose to fix the parameter ¢ to a pre-defined value of 0.3. This choice has
been found by extensive tests on both real and simulated data. Note that
¢ = 0 corresponds to a pure Gaussian distribution and ¢ = 1 to a pure
uniform distribution. In no case it was found that the diagnose was changed
for reasonable variation of €. Even a choice of ¢ = 0 has been tested on
data without problems. However, using the proposed choice will make the
decision more unique. Although modified, the distribution (11.7) will be
referred to as the Gaussian distribution in the following.

The variance o2 in (11.6) will hence be estimated using a nonlinear least-
squares algorithm. If it is assumed that de-trended data is used such that
we have u = 0. The estimation of the standard deviation may improve the
fit compared to using the variance as calculated directly from data. In order
to avoid local minima, the standard deviation obtained directly from data is
used as an initial guess. The estimation will be done in the same way as for
the non-stiction case described below.
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0.5 i

Figure 11.5: Combined Gaussian and uniform distribution fg (x) from Equa-
tion (11.7).

Distribution for the non-stiction case

Consider the bottom plot of Figure 11.1. As motivated earlier, in the non-
stiction case, the signal in question is assumed to be a sinusoid with additional
white noise. It is assumed that the noise is independent of the sinusoid. In
order to justify to describe a sinusoid in probabilistic terms, the initial phase
can be thought of as being a random variable. The problem is then to find the
probability function for the signal z(t) = x(t)+e(t) = Asin[wt+y(t)]+e(t)
where e(t) is zero mean white noise and y(t) is uniformly distributed.

The resulting probability density function when considering the sum of
two stochastic variables x(t) and e(t) is given by the convolution of their
individual density functions, i.e.

o0
fz(z) = J fx(x)fg(z —x) dx. (11.8)
The density function for a sinusoid with random initial phase can be found us-
ing the following result from the statistical literature, see for example (Hines
and Montgomery, 1990).

Theorem 11.1. IfY is a continuous random variable with probability density
function fv(y) that satisfies fy(y) >0 fora <y < b, and x = H(y) is a
continuous strictly increasing or strictly decreasing function of y, then the
random variable X = H(Y) has the density function

H (%)

dx
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For the case of a sinusoid, x(t) = A sin[wt + y(t)], we have H'(x) =

—wt + arcsin % and

fy(H™'(x)) =

)

1/ for H(—=F) <x < H(%)
0 else

and for x| < A,

Then, it follows that

(7’[ AZ — xz) B for x| < A

0 else

fx(x) = , (11.9)

where fiooo fx(x) dx = 1 is satisfied. Figure 11.6 shows a plot of (11.9) as a
function of x. Then, with fg(x) from (11.6) the convolution integral (11.8)

1.2

T T T T T T T T T
1
0.8

0.6 b

04F B

0.2 q

L L L L L L L L L
1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

Figure 11.6: Probability density function fx(x) of a pure sinusoid with
stochastic initial phase (A =1).

becomes

(z—x—p

A 7]2
fr(z) = — J i (_ 2 ) dx. (11.10)
ov2md J_a A2 —x2

Figure 11.7 shows a plot of the distribution fz(z). The distribution (11.10)
exhibits a certain amount of camelicity®. It will therefore be referred to as

3This term was coined by Dr. Krister Forsman from ABB Automation Systems AB,
Sweden.



150 11 Detection of static friction for integrating plants

0.7

06
051+
041
0.3
0.2
0.1

-2

Figure 11.7: Probability density function of a sinusoid (A = 1) with addi-
tional zero-mean white noise (o = 0.1).

the “Camel distribution” in the sequel. Unfortunately, there is no analytic
solution to (11.10) and it has therefore to be evaluated numerically. There
are three unknowns in (11.10), two of which can easily be determined. Since
the data used is assumed to be de-trended we have © = 0. The amplitude A
can easily be estimated from data. Then the parameter ¢ is used to fit the
distribution (11.10) to the sample histogram:

6:argm§nZ[fz(z, o) — Y (11.11)

where Y is the data from the sample histogram. The optimisation can be
done using a standard non-linear least-squares fit algorithm (i.e. 1sqcurve-
fit in MATLAB). A disadvantage is that the integral (11.10) has to be eval-
uated numerically during the fitting procedure. This will, however, be very
fast since the limits of the integral are finite.

Note also that one has to make sure that the fitting algorithm does not
find a solution which is very similar to a normal distribution (i.e. that the two
maxima in Figure 11.7 are merged into one). This may happen when the
estimated value of o is “too large” compared to A. The disappearance of
the two maxima can be avoided by for example constraining the admissible
values for o to be significantly smaller than A when running the nonlinear
least-squares algorithm (here we chose 0 < 0.4 A).

To summarise: With some additional white noise, one may have a sit-
uation as shown in Figures 11.8 and 11.9. There, the measured process
outputs are shown in the top left plot, the (filtered) second derivative in
the top right plot and the sample histogram with the best fit of Gaussian
and Camel distributions in the bottom left and right plot respectively. The
results from all examples will be shown in plots with the same layout.



11.2 Examples 151

(j-i 0.5
0.5 "CS -
—_— ~
-+ —_ 0o
Z o -
= = -0.5
-0.5 o~
<
-1
- 100 200 .300 400 500 600 100 200 .300 400 500
time time
1.5 1.5
o N
Y= Y=
0.5 0.5 H
0 H o i
_2 -1 0 1 2 -2 -1 [ 1 2
classes classes

Figure 11.8: The stiction case, ideal data.

The algorithm for diagnosing stiction in integrating control loops is sum-
marised in Figure 11.10 It is worth mentioning that for each distribution,
one single parameter is estimated (standard deviation of the noise). It is
therefore fair to compare the resulting MSEs directly. The MSE is calculated
from

MSE = ) [f(6) — YI*. (11.12)

where Y is the data from the sample histogram and f(6) is the distribution
function for the case in question using the standard deviation which gives
the best fit to the data. The MSE can be obtained as the value of the loss
function from the numerical optimisation (11.11).

11.2 Examples

The method is now demonstrated on two examples.

A level control loop with stiction. Consider a level control loop which
is known (from experiments) to oscillate due to stiction. When applying the
decision algorithm to the process output, the results shown in Figure 11.11
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Figure 11.9: The non-stiction case, ideal data.

are obtained. The mean square error (MSE) for the Gaussian distribution is
0.97 compared to 2.01 for the Camel distribution. It can hence be (correctly)
concluded that the oscillation is due to stiction.

A level control loop without stiction. Consider a level control loop which
is known to oscillate for a reason other than stiction. The oscillation could in
this case be removed by re-tuning the controller. The results when applying
the diagnosis algorithm are shown in Figure 11.12. The fit for the Gaussian
distribution is 1.17 compared to 0.46 for the Camel distribution. It can hence
be (again correctly) concluded that the oscillation is not due to stiction.

A level control loop with dead-band. Consider another level control loop
which is known to oscillate due to dead-band in the controller software. The
oscillation could in this case be removed by re-tuning the controller. The
results when applying the diagnosis algorithm are shown in Figure 11.13.
The fit for the Gaussian distribution is 1.52 compared to 0.70 for the Camel
distribution, therefore yielding a correct diagnosis, namely non-stiction.
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1. Check if the loop is oscillating and determine the frequency of
oscillation (Forsman and Stattin, 1999).

2. Compute the filtered second derivative y¢(t) using (11.3).
3. Compute the sample histogram (11.5) of the second derivative.

4. Estimate the standard deviation in (11.7) in order to fit the
sample histogram as well as possible.

5. Determine the (approximate) amplitude of the second filtered
derivative y¢(t).

6. Estimate the standard deviation in (11.10) in order to fit the
sample histogram as well as possible.

7. If the fit for the Gaussian distribution is significantly better than
the fit of the Camel distribution, conclude stiction. In the op-
posite case, conclude no stiction. If both fits are approximately
equal (e.g. difference smaller than 10%), no decision is made.

Figure 11.10: Diagnosis algorithm.

11.3 Self-regulating processes

As mentioned in the introduction, oscillation in self-regulating processes due
to stiction can very conveniently be detected using the CCF-method. How-
ever, the same idea as presented in the previous section can also be used on
self-regulating processes. The only difference is that one makes use of the
first derivative of the process output instead of the second. The method is
now demonstrated on two examples.

A flow control loop with stiction. Consider a flow control loop which is
known to oscillate due to stiction. The results of the diagnosis algorithm are
shown in Figure 11.14. The mean square error for the Gaussian distribution is
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Figure 11.11: Level control loop with stiction.

0.80 compared to 1.36 for the Camel distribution. It can hence be concluded
that the oscillation is due to stiction.

A flow control loop without stiction. Consider a flow control loop which
is known to oscillate due to interaction with another loop. The results when
applying the diagnosis algorithm are shown in Figure 11.15. The fit for the
Gaussian distribution is 2.44 compared to 1.47 for the Camel distribution. It
can hence be concluded that the oscillation is not due to stiction.

Loops with dominant P-control. There may be cases where the CCF
method gives no (or possibly a wrong) indication. One of them is when the
controller is basically proportional. Then the control signal has a very steep
initial phase after each peak, see Figure 11.16. These potential problems
were also discussed in (Forsman, 2000). In such a case the CCF is neither
even nor odd. See Figure 11.17 for an illustration. See Figure 11.3 where
the method described in this chapter is used on the above data. The MSEs
are 0.77 and 1.87 for the Gaussian and the Camel distribution respectively.
It can hence (correctly) be concluded that the loop oscillates due to stiction.
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Figure 11.12: Level control loop without stiction.
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Figure 11.13: Level control loop with dead-band.
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Figure 11.16: Typical control signal from a loop exhibiting stiction when
the proportional part dominates the controller.

Figure 11.17: Example of a flow control loop with stiction. The CCF-

method is used for detection. Top: control signal (solid) and process output
(dash-dotted).
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Figure 11.18: Example of a flow control loop with stiction and dominant
P-control.



Chapter 12

Diagnosis using process
knowledge

As a motivation re-consider a typical scenario in the process industry, see
Figure 12.1. If both process outputs, y1 and ya, are oscillating (and none

U
Q¢
Water ><
Vi
@
V3 AU
Pulp T
uz

Figure 12.1: System of two coupled control loops. Which loop is likely to
cause the oscillation?

due to stiction), it is of interest to have an indication which of the loops
needs maintenance. In Chapter 9 we tried to argue that this may not be
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possible based on the measured signals only. In this chapter two methods
are proposed in order to solve the stated problem, assuming some process
knowledge.

In Section 12.1 diagnosis is discussed assuming that the process dead-
time is known. The idea is to make use of the Harris index after having the
removed the oscillation in the time domain. Then in Section 12.2 the avail-
able process knowledge is assumed to be a simple process model. Using that
model and an estimate of the controller, the ultimate frequency is calculated
and compared to the actual oscillation frequency.

12.1 Process dead-time

This section deals with the diagnosis of oscillations when the process dead-
time is assumed to be known. It can be known a priori or be estimated using
the method proposed in Chapter 8. As a matter of fact, the Harris index —
which requires knowledge of the dead-time — will be used in this section for
the purpose of oscillation diagnosis.

Lin et al. (1998) and Owen (1997) proposed to remove the oscillation
contribution in the variance expressions when computing the Harris perfor-
mance index for oscillating signals. The motivation for such an approach
appears to be the following: If a loop is badly tuned such that it oscillates,
it is likely that the control performance is bad also at other frequencies than
the oscillation frequency. Hence after removing the contribution of the oscil-
lation to the performance index, one should still obtain a “high” index. On
the other side, for a loop which is well tuned but oscillates due to interaction,
the performance index should be small when the oscillation contribution is
removed. In such a way one could tell apart two interacting oscillating loops.

In Chapter 5 the evaluation of the Harris index using oscillating signals
was discussed. The conclusion there was that one should avoid to evaluate
the Harris index for oscillating signals. In order to circumvent potential
problems, an alternative method is proposed here: Remove the oscillation
contribution before the performance index is calculated. This can be done
by applying a notch filter to the process output. Then the Harris index can
be evaluated on the filtered signal as usual.

Note that the case of stiction in valves needs special attention. When
a control valve exhibits stiction, the loop may oscillate, no matter if the



12.1 Process dead-time 161

Pl-controller is well tuned or not. Hence, the evaluation of the Harris index
will usually not give any interesting information. Therefore, prior to using
the method proposed in this chapter, one should test the (oscillating) data
for stiction as described in Chapters 10 and 11.

A motivation in the frequency domain

In Chapter 2, the Harris performance index was derived in the time-domain.
It is of course also possible to evaluate the index in the frequency domain.

Start therefore with some definitions: The auto-covariance function of
the (zero-mean) process output y(t) is

Ty (1) = Ely(thy(t + 7L (12.1)

Then the power spectrum of y(t) is determined by

Oy(w) = Z Ty (T)e T, (12.2)

T=—00
Using the inverse Fourier transform,

1

Ty(T) = I J, Dy (w)e T dw. (12.3)

Thus, the variance of y(t) can be expressed as

o2 = T4(0) = 2]_7r Jn Oy (w)dw (12.4)

—T7T
and consequently the performance index can be calculated as

L 7 0y(w)dw
P Oy (w) dw

(12.5)

Here @y (w) and @, (w) are the process output and minimum-variance
spectra respectively, and are given by

C(eiw) 2
A(eiw)

2

e)

(Dy(w) = ‘
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where C/A is the time-series model from noise to process output, cf. (2.2)
and

(Dmv(w) = |va(eiw]|2 0%,

where Gy (q7") = [ho+hiq™ "+ --+ha 1q7(471V], cf. (2.4). Note that
the performance index (12.5) contains information for all frequencies. As an
alternative to the Harris index which concentrates all information into a single
number, one could compare the control performance in different frequency
regions. Such an approach is difficult to handle automatically but offers of
course more information to the user. A similar idea was also discussed by
Huang and Shah (1999). As mentioned above, Lin et al. (1998) proposed
the exclusion of a small interval around the oscillation frequency wosc. If
such an interval is denoted [w1, W3] where w1 < Wese < W2, a modified
index could be defined as

[T ®y(w)dw 72I$f Oy (w) dw

- . 12.6
(I)m\,(cu)dw—2j‘$12 Dy (w) dw (12:6)

Imod = J‘

—TT

However, this approach still involves oscillating signals when fitting a time-
series model. Regarding the results from Chapter 5, it is therefore proposed
to remove the oscillation contribution before a time-series model is estimated.
That means that the oscillation will be removed in the time-domain rather
than in the frequency-domain. For the filtering a band-stop (Butterworth)
filter was chosen. For the industrial data used in this work, a filter-order of
four was found to be sufficient, i.e.

4y _bo+big ' +...+bsq?
H = 12.7
ala™) T+a1q ' +...+asq 2"’ (12.7)

and the filtered process output will be y¢(t) = Ha(q " uy(t).

The diagnosis procedure can now be summarised:
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1. Exclude valve stiction as a likely cause.

2. Determine the oscillation frequency wosc (e.g. by-
product from the oscillation detection).

3. Design the band-stop filter (12.7) with stop-band around
the oscillation frequency.

4. Filter the process output.

5. Evaluate the Harris index as usual using the filtered data.

Examples
Numerical example: Filtering.

Consider a discrete-time ARMA model y(t) = G(q~')e(t) with

-1 _ -2 -3
Glq ") = 0.068 q 0.26q - +0.26q '
1-251q1+224q-2—-0.67g3

The noise variance is 62 = 2 and the sampling rate is T¢ = 0.2. The
model has two complex poles on the unit circle and a realisation is shown
in Figure 12.2. The effect of filtering can be seen in Figure 12.3. The

50 100 150 200 250 300 350 400
time

Figure 12.2: Realisation of the ARMA process.

Butterworth filter had a band-stop interval between 0.11 and 0.15 rad/s
and the time-series model used was an auto-regressive model of order 25.
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Figure 12.3: Output (top) and minimum-variance (bottom) spectrum be-
fore (solid) and after (dash-dotted) filtering.

Simulated example: coupled system

Consider the following multivariable system (cf. Figure 12.1)

2e 4s 0.5e 3%
G(S) _ (35-5_15]2(19tss+1] (5$+212£13()Ss+1)
(5s+T1)(10s+1)  (3s+T1)(10s+1)

It is controlled using two Pl-controllers with gains K1, K¢2 and integral time
Ti1 = Tiz = 15. The system is simulated in discrete-time with a sampling
time of Tg = 0.5.

Badly tuned Loop I. Let K1 = 2, K2 = 0.6 and add a dead-zone
(width 0.5) in valve V7 in Loop |. The resulting simulation (assuming white
measurement noise in both loops) is shown in Figure 12.4. Application of
the proposed algorithm, i.e. band-stop filtering and evaluation of the Harris
index using the filtered data yields an index of 2.95 for output y; and 1.16
for output y>. The conclusion would (correctly) be that Loop | causes the
oscillation.
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Figure 12.4: Coupled 2 x 2-system. Loop | (top) is causing the oscillation.

Badly tuned Loop Il. Let Ko7 = 0.5, K¢z =2 and add a backlash element
(dead-band 5) in valve V3 in Loop Il. The resulting simulation (assuming
white measurement noise in both loops) is shown in Figure 12.5. Application
of the proposed algorithm, yields an index of 1.67 for output y; and 5.87 for
output Y. The conclusion would (again correctly) be that Loop Il causes
the oscillation.

Industrial example: coupled system

Consider a similar case as in the previous subsection, i.e. a two-dimensional
system with two decentralised Pl-controllers. The process outputs are flow
and consistency respectively and the same data was already used in Chap-
ter 10.2 (Figures 10.9 and 10.10). Both process outputs are shown once
again in Figure 12.6. The filtering approach described above is now used
on that data yielding the filtered signals in Figure 12.7. The dead-times are
3 (flow) and 12 (consistency) seconds and the Harris index for the filtered
signals are 1.67 (flow) and 3.50 (consistency). The (correct) conclusion is
here that the consistency loop is likely to having caused both oscillations.
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Figure 12.5: Coupled 2 x 2-system. Loop Il (top) is causing the oscillation.
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Figure 12.6: Measurements from an oscillating flow-consistency loop. The
loop oscillates due to tight tuning in the consistency loop.
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Figure 12.7: Filtered data from the oscillating flow-consistency loop.

12.2 Process model

In this section, oscillation diagnosis will be discussed based on the knowledge
of a simple process model. Such a knowledge may be available from model-
based controller tuning or by applying the automatic dead-time estimation
procedure described in Chapter 8. The latter will provide the dead-time as
well as the rest of the process dynamics.

The problem to solve is very similar to the one discussed in the previ-
ous section. Given oscillating data, it is of interest to know whether the
oscillation is generated internally or externally. Recall that one can estimate
the controller transfer function easily using any data set from the loop in
question, see Chapter 6. Having process and controller transfer function, it
is possible to estimate the ultimate frequency of the loop. By comparing
the actual oscillation frequency to the ultimate frequency, one can separate
external from internal oscillations. The actual oscillation frequency can be
estimated as a by-product using one of the methods discussed in Chapter 9.1.
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The diagnosis algorithm

The process model as estimated from a dead-time estimation procedure or
available from some model-based control procedure may be given as
Kp

K
Gi(s) = = i ] e % Gy(s) = ?e_es (12.8)

for self-regulating and integrating processes respectively. Both transfer func-
tions can well describe a large amount of basic control loops in the process
industry.

As discussed in Chapter 6, one can always easily identify the controller
transfer function F(s), no matter if the loop is oscillating or not. Using both
the controller and the process transfer function (F(s) and G(s) respectively),
one can calculate the ultimate frequency w,,, i.e. the frequency w for which

arg G (iw)F(iw) = —180°. (12.9)

When the oscillation is internally caused (and stiction is excluded!), the
oscillation frequency will typically be near the ultimate frequency. In that case
the phase shift between controller output and process output is approximately
180 degrees. Then, by comparing the estimated ultimate frequency w,, to
the actual frequency wesc, it is possible to make the diagnosis as follows:

1. Exclude valve stiction as a likely cause.
2. Compute the oscillation frequency wesc.
3. Compute the ultimate frequency w,, (12.9).

4. Define a dead-zone, i.e. an interval where both frequen-
cies are considered to be equal.

5. Decision:

Wy R Wese = internally caused

Wy 2 Wesc = externally caused.
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It is of course possible that some external disturbance happens to have a
frequency close to the ultimate frequency of the loop in question. In such a
case one might wrongly indicate internal problems. However, it seems more
likely that the problem is internal in such a case rather than external.

Examples

Consider some examples where the true cause of oscillation is known.

Simulated examples
Let the process be modeled by

_ 2 —3s
G = Gernaos 11)°

which is controlled by a Pl-controller with K. = 1 and T; = 15. The
closed-loop is stable and an oscillating load disturbance enters at the process
output. For simulation, the system was discretised using a sampling rate of
Ts = 0.5 seconds. The disturbance has a frequency of 0.25 rad/s and is a
square wave. Zero-mean white noise with unit variance is also added. Before
entering the loop, the sum of both signals passes a filter

0.2

Hla =38

Using the simple diagnosis algorithm described above leads to the results
presented in Table 12.1 (Case |). Simulated closed-loop data is shown in
Figure 12.8. Another experiment (Case Il) is then made by increasing the
controller gain to K = 3 and removing the load disturbance. The closed-
loop is now unstable and in connection with a saturation element (saturation
limit = 10), a stable oscillation is obtained, see Figure 12.9. The diagnosis
for this case (I1) is also shown in Table 12.1. As can be seen the diagnosis
is correct in both cases. The comparison of the frequencies was allowing a
15% variation around the calculated ultimate frequency.

Industrial examples

Flow control loop. Consider a flow control loop. From experiments it is
known that this loop oscillates due to external oscillating load disturbances,
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Figure 12.8: Process output and control signal when the loop is externally
excited (Case I).

case | K [R [T ] T Wy | Wose | diag.
I 10|10 |15 | 134 | 031 | 0.24 | ext.
I 30(3.0|15(11.4 | 030 | 0.29 | int.

Table 12.1: Results from the diagnosis for the two simulated examples. The
frequencies are expressed in [rad/s].

see Figure 12.10. A discrete-time process model has been identified from
another data batch where the loop was not oscillating and a setpoint step
was performed. These data are shown as the bottom plot of Figure 12.10.
The (continuous-time) process model was estimated to be

30 .

Gels) = 555 7°

The identified and the real (known) controller parameters, the estimate of the
ultimate frequency and the resulting diagnosis are presented in Table 12.2.

Consistency control loop. Consider now an oscillating consistency control
loop. This loop is known to be too tightly tuned and oscillates due to
some static nonlinearity. For this loop some identification data is available
from a series of open-loop PRBS experiments. Both data sets are shown
in Figure 12.11. From the identification data, a simple process model was
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Figure 12.9: Process output and control signal when the loop is internally
excited (Case Il).

estimated and the continuous-time transfer function is given by

—0.05
GC()_283—|—16 '

Then, oscillating data was used to estimate the Pl-controller parameters and
hence the ultimate frequency w,,. Using the diagnosis algorithm, the results
presented in Table 12.2 are obtained. For the diagnosis, again a deviation
of £15% from the ultimate frequency was allowed to conclude that the
two frequencies are equal. As can be seen, the algorithm gives the correct
diagnosis also in this case.

case Ke Kc T ‘fi Wy Wosc | diag.
flow | 0.06 | 0.06 | 6.0 | 5.95 | 0.203 | 0.354 | ext.
cons. -7 | -6.75| 30 | 22.4 | 0.233 | 0.208 | int.

Table 12.2: Results from the diagnosis for the two industrial examples. The
frequencies are expressed in [rad/s].
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Figure 12.10: Flow loop data. Top: Oscillating process output, middle:
oscillating control signal. Bottom: identification data. Setpoint (dashed),
process output (solid) and control signal (dash-dotted).
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Figure 12.11: Consistency loop data. Top: Oscillating process output,
middle: oscillating control signal. Bottom: identification data. Setpoint
(dashed), process output (solid) and control signal (dash-dotted).



Chapter 13

Summary and conclusions

Part |

The concept of the minimum-variance based performance index is very pop-
ular due to its conceptual and computational simplicity. However, in some
cases one has to be aware of the limitations of this approach. Therefore, a
modification has been proposed in order to achieve a more realistic perfor-
mance assessment in these cases.

It has also been discussed how the same approach can be used when
additional process knowledge is available. If process and controller models
are available, one can assess the performance for other than the stochastic
control task or restrict the assessment to certain controller structures.

Care has to be taken when dealing with oscillating loops. The Harris
index should not be used for these loops directly. A better alternative is to
detect oscillations prior to evaluating the Harris index.

It has also been shown that the Harris performance index can be com-
puted even for other than the actual sampling rate. In that way it is possible
to quantify the potential benefit of faster sampling.

Part 11

Dynamic models of the controlled processes are usually unavailable for control
performance assessment. However, described in this thesis, the availability
of models is of great advantage.
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Still, a process or controller model should not be a prerequisite for the use
of a monitoring tool. Therefore, the concept of event-triggered estimation
was introduced: whenever there is a possibility to estimate either the process
or the controller, a monitoring tool should do so.

The estimation of the controller transfer function is always possible since
excitation conditions are satisfied for any disturbance. However when one
wants to identify the process model or estimate the process dead-time, the
only possibility is to wait for setpoint changes. The presence of disturbances
is not sufficient in that case.

When using a monitoring tool which continuously collects data, some
screening and data selection has to be done prior to estimating the process
model. A method which selects informative identification data from normal
operating data has been presented. The method is of low complexity and can
be implemented on-line. It makes use of a steady-state detection algorithm
in connection with the detection of significant setpoint changes.

Dead-time estimation can be carried out by fitting Laguerre models to
the identification data. The dead-time can then obtained by comparison of
the phase curve of the allpass part of the Laguerre model and that of a pure
dead-time.

Part 111

Oscillations are a very drastic form of performance degradation. The benefit
by using feedback is lost and in many cases the oscillation is only possible
due to the feedback mechanism.

The automatic detection of oscillating control loops is a relatively simple
task whereas the diagnosis of the root cause is much more difficult. The
success of such an undertaking is very much dependent on the available
information about the loop in question.

It has been shown that oscillations caused by valve stiction can be easily
diagnosed. The required information is whether or not the process in the
loop is integrating. For self-regulating processes two different methods have
been proposed, one of which also can be used for integrating processes.

If the process dead-time is also known (or being estimated), one may use
the concept of the Harris index in order to distinguish between internally and
externally caused oscillations. If a simple process model is also available, the
same task can be solved by studying the ultimate frequency



13 Summary and conclusions 175

The task of distinguishing causes like dead-band, backlash or quantisation
has not been addressed. Firstly because is may be impossible, secondly be-
cause the mentioned distinction between internal and external causes seems
much more relevant. The diagnosis of backlash and other nonlinearities can
probably more easily be solved using intelligent, self-diagnosing actuators
and sensors.

Final remarks

The starting point of this thesis was the use of indices for performance
assessment. During the work reported here, it became evident, that one of
the most important problems in process industry is the widespread presence
of oscillations. It is therefore my belief that these problems have to be the
primary target for a monitoring tool. The tuning of the controller may be of
secondary interest if the control equipment itself does not work properly.

Of course, the methods presented here do not solve all diagnosis prob-
lems in connection with oscillations. It is difficult to assess to what extent
diagnosis can be done given only normal operating data.

When the problem of oscillations is dealt with as well as possible, however,
the next step should be the use of performance index-like methods which
assess the tuning of single controllers. Many methods for this purpose are
available some of which have been discussed and proposed in this thesis.

It is my belief that automatic performance monitoring tools can be of
great help. However, there is no doubting the fact that at some point the
presence of a human being with a considerable amount of process under-
standing is unalterable.






Appendix A

Proof of Theorem 3.1

Let the true process transfer function G(q~') and its model G(q ') be given
by (3.18) and (3.19). Assume that deg(B) < deg(A) and that all poles and
zeros are stable. The controller design will not be done using minimum-
variance control since we are to place one of the poles arbitrarily. We will
therefore make use of the Internal Model Control (IMC) concept, which is
very close in spirit to minimum-variance control, see (Morari and Zafiriou,
1989). Factor therefore the process model as

-1
Glq ") = &))-q*a. (A1)

In order to place one pole in g = u, using IMC we need a filter
T—u
Flqg )= +——.
(@) =5 —y—

The IMC controller written down for a conventional control loop reads as

4, Fg HE (@M
R PPl (A2

and results in the following open-loop transfer function

_ —d
L@ = Cla)G(g™") = -1

= A3
T—pg ' —(1T—wq- (A3)

R
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The closed-loop transfer function from setpoint to output is then obtained
as

_ Lg ")
Galg™) = TEL ")

_ (1—wq ¢ (A4

1—ug ' —(1—pqd+(1—pjqgd

We now want to consider the robustness properties of this system. Let us
therefore introduce a process gain margin K such that the new characteristic
equation becomes

P(a ) =T—pqg '—(1—p)q 4 +K(1—p)q ¢ (A5)

Two cases have to distinguished depending on if we assume the real time-
delay to be d =d + 1 (Case 1) or d = d — 1 (Case 2).

Case 1

If we rewrite (A.5) in terms of g, using the values for K = 2(1 — ¢) and
n=0.5, we get

Pi(q) = g —05q% — 0.5 + (1 —¢) =0 (A.6)

We will show that this equation has at least one root on the unit circle by
using Jury’s stability criterion which is for example described in Astrém and
Wittenmark (1997). The coefficients of (A.6) can be written as

a;=1[1,-05,0,0,...,0,0,—-05, (1 —¢)l.

If we set ¢ = 0, we get a symmetric coefficient scheme. The stability test
then ascertains that the system does not have all roots strictly inside the
unit circle. For the case of € > O the test states that all roots lie strictly
inside the unit circle. The implication of this is that for ¢ = 0 there is at
least one root that lies on the stability boundary. As a matter of fact, all
roots of Equation (A.6) lie exactly on the unit circle for K =2 and p = 0.5,
no matter what d is.

To summarise, for the values given above, the closed-loop system is ex-
actly on the stability boundary if the controller gain is increased by a factor
of two. Hence the gain margin is two.
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Case 2

Using Equation (A.5) and K = 2, we can write down the characteristic
equation for this case.

P2(q) = q¢ — 059" +q— 05 =0.

It can immediately be seen that g = 0.5 is a root of P(q). Applying polyno-
mial division by (q — 0.5) gives

P2(q) = (g —0.5)(q4 " +1) =0.

Since (qa_1 +1) has all its roots on the unit circle, we proved that for K = 2
and p = 0.5, the system has reached the stability boundary.
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Appendix B

The adjustment of the
noise covariance

Consider the continuous-time system

x(t) = Ax(t) + Bv(t)
y(t) = Hx(t) (B.1)
R. = E{Bv?(k)BT} = Bn?B".

Let this system be sampled with sampling rate h. Then the covariance matrix
of the sampled noise becomes

h
Rq = J eAtBn2BTeA  dt. (B.2)
0

Even though this quantity can be calculated, see e.g. Séderstrom (1994),
consider the approximation

1
Rd ~ }—LGHZGT, (83)

where

h
G= J eAtB dt (B.4)
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which can be calculated using the matrix exponential. Equation (B.3) can
be motivated as follows. It holds that

h h
G = J eAtht:J (I+At+---)Bdt

0 0
h? 3
= hI+7A B+ O(h?) (B.5)
and hence
2
Gn’G" ~h <h1311213T+h7 (ABn?BT + BnZBTAT)) +0O(h*) (B.6)

Furthermore, from (B.2) one gets for the exact covariance

h
Ry — L eAtBn2BTeA t dt (B.7)

h
= J (Bn’B" +t(ABn’B" +Bn’B'AT) +---) dt
0

2
= hBn?B' + h? (ABn?BT +Bn?BTAT) + O(h®).
From (B.6) and (B.7) it can be seen that (B.3) is exact up to the order of h?.

When using deterministic re-sampling, converting from one discrete-time
process with sampling interval h; to another one with sampling interval h;,
a compensation of the kind (B.3) has to be made twice. For the sake of
the argument assume that the re-sampling is made by first converting to a
continuous-time model.

The first step is then to transform the original ARMA process

x(khy +h1) = Fa1 x(kh1) + Gga1 €1 (khq)
Ra1 = E{Gq1 €?(kh1) Gy} = Ga1 02 G ;.
to a continuous-time counterpart. Assume that this is done using deter-

ministic sampling, i.e. by inverting the relationship (B.4) to find B. The
continuous-time model thus obtained has the noise covariance

R.=Bo’B". (B.9)
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As shown by (B.6) and (B.7), the approximate way of calculating R from
the given R4 is off by a factor hy, i.e. were one to complete the loop by
converting back to discrete-time using exact sampling the resulting noise
covariance would be approximately Rq1/h1. Hence, the continuous-time
covariance needs to be multiplied by hy (or equivalently B substituted by
v/h1B) to more accurately represent the discrete-time covariance.

The second step would then be to apply deterministic sampling to the
continuous-time model. This yields

x(khz +hz) =Faz2x(kh2) + Gaz e2(kh2)
y(khz) = Hx(kh3)
Rdz = E{Gdz e%(khz) Glz} = Gdz O'2 ng.

Again, as shown above in (B.3), the approximate way of calculating Rg42
from R needs correction by dividing by h;, or equivalently G471 substituted
by Gai/vhaz.

The presented method in fact calculates the new G4 directly from Gg;.
Combining the two steps described above means that the vector G4; has
to be substituted by \/::;Gdz- Note that the substitution does not yield a
perfect compensation. It will be a good approximation for small sampling
intervals and get worse when the sampling interval increases.
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Appendix C

Proof of Theorem 8.1

In the Laplace domain we have the Padé approximation, which is often de-
rived based on a series expansion of the exponential. There is however an
alternative derivation based on a phase curve argument, see Cunningham
(1954) or Giloi and Lauber (1963), which is briefly summarized below.

Consider a continuous-time n-th order rational allpass element which
satisfies the condition |Gqp (iw)| = TVw,

1 —arsTat+az(sTa)* F... (D) an(sTa)"™

Gap(s) = T+aisTa+ax(sTa)?2+...an(sTq)™ (C.1)
Let the phase curve of (C.1) be described by
@(w) = arg{Gap(e )}, (C.2)
The phase curve of a pure dead-time element G(s) = e 574 is
o7, (W) =—wTg. (C.3)

The parameters a; shall be chosen such that (C.1) approximates e "¢ as
well as possible. This can for example be done by choosing a; such that the
phase error Ap(w) = @(w) — @1,(w) goes to zero for low frequencies.

From (C.3) it is obvious that the phase is a linear function in the fre-
quency, therefore

do
_— = — . 4
dw Ta (C4)
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Then, require (C.4) to hold at least at frequency zero, i.e.
de
dw
die
dwt

= Tq (C.5)

w=0

0, i=3,...,2n—1.

w=0

Note that even though the allpass element (C.1) is of order n, it is possible
to set the first 2n — 1 derivatives of (C.4) equal to zero (when evaluated at
zero frequency). The reason for that is the fact that the phase curve of (C.1)
is an odd function in the frequency and therefore, all even-order derivatives
of (C.2) are zero for any frequency.

Using this alternative derivation, the limit

o e(w)
Ta= ilino ( w0 ) (C.6)
follows immediately from a Taylor series expansion of @(w) around w =0,
de(w) 2
o(w) =(0) + w+ O(w?)
dw w=0 (C7)
=—wTg+ O(wz)

Even though the derivation was done for a continuous-time allpass element,
the same reasoning holds for a discrete-time rational allpass filter
T+aiqg ' +ag?+...+anqg™

Hap(q ') = , C.8
ap(d) an+an 197" +...+ajg ™t g (C8)

as obtained from the factorisation of the estimated (discrete-time) Laguerre
model.
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Differentiation of the
process output

An ad hoc remedy to overcome the problems with the CCF-method for
integrating processes would be to differentiate the process output in order
to compensate for the integration in the process. In this section, it will be
motivated why such an approach would not work.

The stiction case

In the case of stiction the process output is triangular due to the integration
in the process. The controller output will — as a consequence — not be ideally
triangular (as it is for self-regulating processes) but rather be a smoothened
triangular signal. However, the valve position will still be a rectangular signal
due to the stiction phenomenon, see Figure D.1. Note that the control signal
is plotted as perfectly triangular rather than smoothed which will not change
the reasoning. Obviously the CCF between process output y(t) and control
signal u(t) is an even function. When the process output is differentiated?,
the (rectangular) derivative can be obtained. Hence, one could — after dif-
ferentiation (and filtering) of the process output — use the CCF method in
the same way as was described for self-regulating processes.

1Since the signal in question is noisy, some filtering would have to be used. The filter
must not change the phase of the signal.



188 D Differentiation of the process output

A
y(t) ¢
dy(t)

dt ¢
u(t) g

Figure D.1: Ideal signals in the stiction case. Process output (top), deriva-
tive of the process output (middle) and controller output (bottom).

The non-stiction case

Consider an oscillating control loop where stiction is not the main cause. In
the non-stiction case, a control loop oscillates approximately at its ultimate
frequency. This means that the process output and the control signal are
shifted against each other by approximately —.

Now, if the process output is differentiated in order to obtain compensate
for the integration, its phase will be shifted by —7t/2. Let the process output
be described as y(t) = sin(wt). The derivative of the process output is then
%y(t) = cos(wt) = sin(7t/2 — wt). At the same time the controller output
is basically? u(t) = —sin(wt), see Figure D.2.

Then, when using the CCF-method — for the derivative of the process
output y(t) and control signal u(t) — the CCF is obviously an odd function.
As this is the same result as for the stiction case, there is obviously a problem
with this way of dealing with integrating processes.

2The controller does of course more than a simple negation. If the input to a PI-
controller is triangular, the controller output will typically be a smoothed triangular signal
(resembling a sinusoid). However, for the problem considered here, this assumption is
sufficient.
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>

AN ANANA

Figure D.2: Ideal signals in the non-stiction case. Process output (top),
derivative of the process output (middle) and controller output (bottom).

Conclusions

Summarising the discussion above the following conclusions can be stated:
When dealing with integrating processes,

e the CCF-function between process output y(t) and control signal u(t)
is even no matter what the root cause of the oscillation is,

e the CCF-function between the derivative of process output y(t) and
control signal u(t) is odd no matter what the root cause of the oscil-
lation is.

Hence, the ad hoc idea of using differentiation does not solve the problem.
This is a somewhat surprising result and can be explained as follows: The
reason why the CCF-method does work is that the correlation structure
between process output and control signal is also determined by the special
signal shapes in the stiction case. (Even though it can allow rather large
deviations from the ideal shapes!). If there is integration in the process, this
advantage of the CCF-method is destroyed and cannot be retrieved.

Example

Consider finally two simple examples (stiction and non-stiction respectively)
where both the process output itself and its derivative are used for the CCF-
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method. In Figure D.3 it can be seen that in both the stiction and the non-
stiction case the CCF-method yields identical results. Hence no diagnosis
can be made. This result illustrates the conclusions given above.
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Figure D.3a: Stiction. Figure D.3b: No stiction.

Figure D.3: The plots in (a) and (b) are: Top right: original process output.
Top left: filtered and differentiated process output. Middle: control signal
(unchanged). Bottom left: CCF-function for the original data. Bottom right:
CCF-function for the filtered data. Note that the process gain in the stiction
case is negative why the CCF is inverted.
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A graphical software tool

Most of the work reported in this thesis and some published algorithms for
performance monitoring have been implemented in MATLAB™ for testing
on real data. Furthermore, a graphical software tool was developed which
facilitates the handling of large amounts of data and the evaluation of dif-
ferent algorithms for performance monitoring. Figure E.1 shows the main
functions implemented in the tool. The terms used in the figure refer to

Harris
Performance indices [~ Idle ;
Stattin
Auto-correlation ‘ Hagglund
A - Seborg
Oscillation detection
data : T Laguerre
selection Dead-time estimation g ARX
Data selection ‘ OE
Identification ‘ stiction, self-reg.
A - : stiction, int.
Oscillation diagnosis ;
int./ext. osc.
histogram /spect.
modified Harris

Figure E.1: Functionality of the graphical software tool for performance
monitoring.

the algorithms as shown in Table E.1. For the algorithms which relate to this
thesis, the examples of the user interface are shown in the Figures referred to



192 E A graphical software tool

in Table E.1. Note that this tool was designed for research purposes mainly.

feature reference figure location
data selection — page 193, top
identification Chapter 6,7 page 195, top
Harris Chapters 3 and 4 pages 193 bot-
tom, 194 bottom
idle idle index (Hagglund, 1999) | -
Stattin (Forsman and Stattin, 1999) | —
Hagglund (Hagglund, 1995) -
Seborg (Seborg and Miao, 1999) | -
Laguerre Chapter 8 page 195 top
ARX (Isaksson et al., 2000) -
OE (Isaksson et al., 2000) -
stiction, self-reg. Chapter 10 page 195 bottom
stiction, int. Chapter 11 page 196 top
int./ext. oscillation Chapter 12 page 196 bottom
modified Harris Chapter 12 page 194 top

Table E.1: Reference and location of the GUl-examples for the implemented
algorithms.

This implies that some design parameters which easily can have default val-
ues in a commercial tool still can be changed by the user. Furthermore, the
tool is not supposed to work in an autonomous manner (with the exception
that for example some of the indices may be calculated for all available data
sets).
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