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Abstract: In this paper, a diagnostic procedure for rotor bar faults in induction motors is presented,
based on the Hilbert and discrete wavelet transforms. The method is compared with other procedures
with the same data, which are based on time–frequency analysis, frequency analysis and time domain.
The results show that this method improves the rotor fault detection in transient conditions. Variable
speed drive applications are common in industry. However, traditional condition monitoring methods
fail in time-varying conditions or with load oscillations. This method is based on the combined use of
the Hilbert and discrete wavelet transforms, which compute the energy in a bandwidth corresponding
to the maximum fault signature. Theoretical analysis, numerical simulation and experiments are
presented, which confirm the enhanced performance of the proposed method with respect to prior
solutions, especially in time-varying conditions. The comparison is based on quantitative analysis
that helps in choosing the optimal trade-off between performance and (computational) cost.

Keywords: electric machines; fault diagnosis; wavelet transforms

1. Introduction

Maturity, reliability, ruggedness and versatility make the induction motor one of the
most widespread electric machines in industrial applications [1]. Nevertheless, condition
monitoring is of primary importance. Early detection of incipient faults is essential to take
action in time. A fast, unscheduled maintenance can avoid more harmful consequences
in the machine, thus decreasing downtime and, ultimately, reducing financial loss. Motor
damage can happen at a mechanical level (bearing faults, air gap eccentricity, shaft bending)
or at an electrical level (stator and rotor faults).

Rotor faults, such as bar and end-ring breakage, only account for about 5% of induction
machine faults [2], but their detection is of primary importance. Stator design has been the
subject of large improvements over the years, and stator fault consequences are such that a
machine cannot last more than a few seconds with a fault. On the other hand, rotors still
maintain traditional structures, mostly the squirrel cage. Moreover, in case of rotor faults,
the machine operation is not restricted and it is still possible to save it from more serious
consequences, provided that unscheduled maintenance is carried out as soon as possible.
Thus, squirrel-cage rotor faults are the focus of the proposed analysis.

An ideal diagnostic procedure requires online implementation, with minimum impact
on machine operations, and should avoid additional sensors or estimation of several
quantities. Hence, traditional methods are based on signal processing of electrical quantities,
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such as stator currents. Signal processing includes frequency domain tools, time domain
tools and time–frequency analysis [3,4].

One of the most widespread diagnostic procedures is motor current signature analysis
(MCSA). MCSA investigates the signatures of the fault, which are specific components in the
stator current spectrum [5]. MCSA fails in time-varying conditions or at lower mechanical
loads when slip values are low, because rotor fault signatures depend on machine slip. In
the former case, the fault signatures are blurred and spread in a wide frequency bandwidth
as large as the speed range, and in the latter case, the fault signature is very close to the
fundamental component, related to electrical signal frequency. The amplitude of the fault
signature is typically several orders of magnitude lower than the fundamental component.
Hence, they can be properly distinguished only with a very high time acquisition window,
thus achieving very high-frequency resolution. Another classical frequency domain method
is extended park vector approach (EPVA) [6], which is affected by the same drawbacks as
MCSA. In [7], these shortcomings were addressed by the combined use of the maximum
covariance method for frequency tracking (MCFT) and ZFFT algorithm. Another method
is based on the current signal envelope [8] computed by the Hilbert transform [9,10]. This
method is very promising, as it moves the fault signatures away from the fundamental.
Still, its performances are poor in time-varying conditions.

The performances of methods based on time domain analysis are quite satisfactory
even in time-varying conditions. In [11,12], the rotor fault signatures in the stator current
were demodulated and the energy of the demodulated signal in a specific bandwidth was
used as a fault indicator. However, methods based on time domain are affected by a higher
level of noise. Moreover, it is quite difficult to achieve good results with low slip values.

To overcome these limitations, time–frequency approaches were largely investigated;
in fact, they are an optimal trade-off between frequency domain and time domain tech-
niques. One of the most-investigated methods is the discrete wavelet transform (DWT).
Thanks to DWT decomposition, a signal can be efficiently split into different bandwidths
with optimal resolution. In [13–15], DWT was used to perform a bandwidth decomposition
and to identify the details where the effects of faults show up in stationary conditions.
In [16–18], DWT was used to process start-up signals, thus allowing the detection of in-
cipient rotor bar faults, even in time-varying conditions. The presence of rotor faults is
assessed by checking the time evolution of these details. However, DWT could still be
ineffective at low load condition or with variable slip, because fault signature components
in the spectrum could be covered by the fundamental component.

This issue can be solved by more complex transforms, e.g., the Dragon transform
increases the frequency resolution around the fundamental [19]. However, they entail
a higher computational cost, while minimum complexity is a desirable requirement for
industrial applications.

The frequency resolution around the fundamental can be increased by combining two
methods, e.g., applying DWT to the envelope of stator current. This joint method was only
used in [20–23] for constant speed operations. In [24], it was applied also in time-varying
conditions. In this paper, this joint method is further investigated. Specifically, here, the sta-
tor signal envelope is computed by means of the Hilbert transform and then processed with
DWT, for both stationary and time-varying conditions with some innovative procedures.

All the aforementioned DWT-based methods rely on a qualitative analysis of the time
evolution of the details related to rotor faults. In this paper, the diagnostic procedure
is based on the energy of the details, not on their time evolution, as in [25]. A robust
diagnostic index is obtained using the energy that smooths the effects of non-precise
identification of the fault signature. Moreover, the energy is normalized to the value
obtained in healthy conditions, thus realizing a differential diagnosis that masks the effect
of aging and local noises.

In this paper, the bandwidth where the fault signature component is located as a
function of the slip value is identified, as in [26]. In contrast, in the previous literature, all
the levels were monitored. In summary, in this paper, the Hilbert transform and DWT are
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used to select an optimal bandwidth where fault components are located and to compute a
robust diagnostic index based on energy. In addition, this method could be applied to the
detection of other possible machine faults, such as bearings or stator faults, provided that
the frequency signature in the stator current spectrum is known.

A quantitative analysis of all methods was made to assess performances in different
operating conditions. The comparison between different methods can be used to select the
optimal solution in terms of computational cost and performance.

The paper is organized as follows. In Section 2, the theoretical background of the
proposed procedure are presented. In Section 3, the two methods typically used for
diagnosis, MCSA and demodulation, are briefly reviewed. In Section 4, the proposed
method is presented. Section 5 provides a comparison between MCSA, demodulation, the
DWT-based technique of [17] and the proposed method. The comparison is carried out
by numerical simulations, performed in stationary and transient conditions. In Section 6,
experimental results are presented that provide a validation of the assumptions and of
simulation results. Section 7 summaries the results of the different methods, and, finally,
Section 8 draws some conclusions.

2. Modelling of Induction Machine Rotor Faults

In squirrel-cage induction machines, rotor faults are mainly caused by bar or end-ring
breakage. These rotor asymmetries entail electrical signals asymmetries in the machine,
where the fault signatures are detectable even at an incipient stage.

Specifically, sideband components at (1± 2s) · f appear in the stator current spectrum,
where s is the slip and f is the fundamental component of the supply frequency [27].
Additional harmonics with lower amplitude appear at (1± 2ks) · f .

Fault severity can be linked to the amplitude of the sideband components with a
simplified relationship [28]:

Il + Ir

I f
' b

B
(1)

where I f is the amplitude of fundamental component in stator current spectrum; Il and Ir
are the amplitude of the left and right sideband components, respectively; b is the num-
ber of contiguous broken bars and B is the total number of rotor bars. Relationship (1)
does not include magnetic saturation, magnetic asymmetry or interbar currents. These
three phenomena have a significant impact on rotor asymmetry. Hence, this simplified
model can lead to false positive/negative fault alarms [3]. Dedicated analysis or spe-
cial rotor manufacturing can reduce the impact of these phenomena and improve fault
diagnosis efficacy.

In order to compare healthy and faulty conditions by means of numerical simulations,
an effective model of rotor bar breakage is required. Here, the approach presented in [24] is
used, which models rotor asymmetry as an increase in rotor resistance ∆Rr. This increase
is a function of the number of broken bars b and the total number of bars B [29]:

∆Rr =
3b

B− 3b
Rr (2)

The additional resistance affects dynamic model’s coefficients, resulting in sideband com-
ponents in stator currents.

Here, this motor model was implemented with numerical simulations, and was tested
by operating the machine in a open-loop voltage/frequency control.

3. Machine Diagnosis through MCSA and Demodulation
3.1. MCSA

The classic motor current signature analysis (MCSA) is a frequency analysis method
that relies on the amplitude of the spectrum components related to rotor faults. The sum of
the amplitudes of the left and the right sideband components is divided by the amplitude
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of the fundamental component at the supply frequency f . Then, the following parameter
is obtained:

iMCSA =
|I( fl)|+ |I( fr)|

|I( f )| (3)

where |I( f )| is the amplitude of the stator current spectrum at the fundamental component,
and fl = (1− 2s) · f and fr = (1 + 2s) · f are the left and right sideband components,
respectively. The diagnostic index based on MCSA is obtained by normalization:

IMCSA =
iMCSA,F

iMCSA,H
(4)

where iMCSA,F and iMCSA,H are the parameters computed by (3) in faulty and healthy
conditions, respectively. This normalization allows a comparison between MCSA and
the other diagnostic procedures, setting a differential index that smooths the effects of
parameter variation.

In stationary conditions, fl and fr are constant, while, in transient, conditions they
vary with slip. In transient conditions, the mean value of the sideband components is
computed, which is used to compute the diagnostic index. In transient conditions, the fault
detection capability of MCSA decreases.

Moreover, MCSA is strongly dependent on the frequency resolution of the acquisition:
at low slip, sideband components and the fundamental are quite close. Hence, the fault
detection capability decreases with low acquisition time.

3.2. Demodulation

This technique is a time domain method, where the stator current i(t) is demodulated
in order to obtain the fault signature components [11]. Specifically, the left sideband
component is moved to zero frequency by a frequency shift:

il(t) = i(t)e−j2π fl t (5)

The same procedure is applied to the right sideband component:

ir(t) = i(t)e−j2π frt (6)

Then, the amplitude of the fault signature components is the mean value (<>) of the
signals il(t) and il(t). The diagnostic index is obtained as:

idemod =
|〈il(t)〉|+ |〈ir(t)〉|

|〈i(t)〉| (7)

Finally, as for MCSA, the diagnostics index is computed by normalization:

Idemod =
idemod,F

idemod,H
(8)

where idemod,F and idemod,H are the parameters computed by (7) in faulty and healthy
conditions, respectively.

In transient conditions, the mean values of fl and fr in the time acquisition window
are used to perform the demodulation. Being a time domain approach, it is less dependent
on the acquisition time than MCSA. However, it is quite sensitive to the noise level.

4. Machine Diagnosis by Wavelet Transform
4.1. Hilbert and Wavelet Transforms for Signal Processing

The proposed method is based on a combination of the Hilbert and wavelet transforms,
in agreement with [20,21].
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Sideband components, related to the fault signature, can be seen as modulating signals
for the fundamental supply frequency. Hence, the fault signature can be obtained by signal
demodulation, implemented by the Hilbert transform that computes the signal envelope.
This operation mimics an amplitude demodulation, translating sideband components from
(1± 2ks) · f to 2s f . Specifically, by processing one of the stator currents i(t) using the
Hilbert transform, an analytic signal is obtained, whose amplitude a(t) and displacement
ϑ(t) are:  a(t) =

√
i(t)2 + HT{i(t)}2

ϑ(t) = arctan
(

i(t)
HT{i(t)}

) (9)

where HT{i(t)} is the Hilbert transform of the stator current signal. The square of a(t)
represents the stator current signal’s envelope and it can be proven that [25]:

a(t)2 ≈ I2
f + ∑

k

(
I2
l,k + I2

r,k

)
+ (10)

2I f ∑
k

√
I2
l,k + I2

r,k + 2Il,k Ir,k(2ϕ− ϕl,k − ϕr,k)

× sin
(
2ksωt + ϕ′

)
where I f , ω and ϕ are the amplitude, pulsation and displacement of the fundamental
component of stator current, respectively; Il , Ir,k, ϕl,k and ϕr,k are the amplitudes and
displacement of sideband components for the kth harmonic and ϕ′ is defined by:

ϕ′ = arctan
(u

v

)
u =[il,k cos (ϕ− ϕl,k) + ir,k cos (ϕ− ϕr,k)]

v =[il,k sin (ϕ− ϕl,k)− ir,k sin (ϕ− ϕr,k)]

In Relationship (10), the main components are at frequencies 2ks f and their amplitude
is related to fault severity. Therefore, by suppressing DC components, fault signature
components can be easily identified; the mean value is subtracted from the signal a(t)2,
obtaining the signal a′(t)2, which can be used to detect rotor faults.

After processing stator current signal using the Hilbert transform, the wavelet trans-
form comes into play to effectively compute fault signature amplitude. In time-varying
conditions, or with high noise or load oscillations, the identification of a single frequency
at 2s f in the spectrum is quite complex and can lead to false positive alarms. Moreover,
for low slip values, the components related to the fault can be covered by the fundamental.
A better approach is to extract the energy of the signal inside a frequency band that includes
2s f . Thus, DWT (discrete wavelet transform) is used to select an optimal bandwidth and
compute its energy.

DWT decomposes a signal into a number of time-scale atoms obtained through se-
quential application of dyadic filters that split the signal into different bandwidths. Thus,
for each bandwidth, a ‘set’ of signal samples is obtained. Each of these sets is a time series of
coefficients describing the time evolution of the signal in the corresponding frequency band.

A low-pass filter (LPF) and a high-pass filter (HPF) are applied to the signal in order
to compute ‘approximation’ and ‘detail’ atoms, respectively. This operation is repeated
at each level j on the approximation set, further splitting it. As a consequence, for each
decomposition level j, approximation aj and detail dj are bandpass signals in the following
frequency ranges, respectively:

BW
(
aj
)
=
[
0 , 2−(j+1) fs

]
(11)

BW
(
dj
)
=
[
2−(j+1) fs , 2−j fs

]
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where fs is the sampling frequency. The decomposition process is outlined in the tree
diagram of Figure 1.

Figure 1. Schematic diagram of DWT decomposition in approximations and details obtained by
dyadic filters. At each level the signal is down sampled by a factor of 2, (↓ 2 block). The red color
stands for approximation, obtained by low pass filters (LPF block); the blue color stands for detail,
obtained by high pass filters (HPF block).

Detail atoms include optimal time resolution information for the selected bandwidth.
In fact, the detail with higher peaks in the time domain corresponds to the bandwidth that
includes the largest share of signal energy. Wavelet transform is subject to the uncertainty
principle, but it allows the best time/frequency resolution for the detail’s bandwidth to
be obtained. High-frequency details are composed of a high number of samples: high
resolution in time domain, and low resolution in frequency domain. In fact, high resolution
in frequency domain is not of primary importance for high frequencies. On the other
hand, low-frequency details are made of a lower number of samples: frequency resolution
is favored over time resolution, which is fundamental to distinguish between different
frequency components at low frequency.

DWT provides optimal accuracy at low frequency and there is no redundant informa-
tion in the decomposed frequency bands, thus providing a suitable method to estimate the
energy associated with the rotor fault. Hence, the proposed method exploits DWT as an
efficient time domain algorithm to compute the energy in the frequency bandwidth where
the signature component 2s f is localized. Figure 2 reports the spectrum of a current signal
(black line) together with the bandwidth of approximations and details, according to (11).
In this example, the optimal decomposition is n = 3, since the detail for level 3 includes the
largest share of energy related to the fault signature.
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Figure 2. 3-level bandwidth decomposition performed by DWT dyadic filters, superimposed on the
spectrum of original current signal (black line).

4.2. DWT for Signal Processing

In order to provide a comparison with another wavelet-based technique, an additional
diagnostic index based on DWT was computed as in [17]. Here, the stator current signal
is not processed by the Hilbert transform. Wavelet decomposition is directly applied to
the signal and the index is computed from the energy of the approximation atom includ-
ing the left fault signature component. The optimal number of levels can be computed
using the upper boundary relationship for approximation bandwidth: 2−(n+1) fs < f ⇒
n =

⌊
log2

(
fs
f

)⌋
. Hence, the index is computed similarly to (15):

IDWT =
Eapp,F

Eapp,H
(12)

with Eapp,F and Eapp,H as the energy of the approximation atom in faulty and healthy
conditions, respectively.

4.3. Proposed Method (HILBERT–DWT)

By selecting the suitable detail from the signal a′(t)2, the wavelet transform can be
successfully used to detect rotor faults. The amplitude of the detail including the frequency
2s f increases with the fault severity (10). Thus, the energy inside this detail bandwidth is
chosen as the rotor fault indicator:

Ed =
1
N

N−1

∑
i=0
|d(i)|2 (13)

where N is the number of samples of the detail. In order to select the detail including
the frequency 2s f , the optimal decomposition level n must be computed using the lower
boundary relationship for detail bandwidth (11):

2−(n+1) fs < 2s f (14)

⇒ n =

⌊
log2

(
fs

2s f

)⌋
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where floor approximation is used to obtain an integer value for n [26]. The proposed
method can be summarized by the following steps:

• Hilbert transform of a stator line current in order to compute the magnitude of an-
alytical signal a(t). The DC component is suppressed from signal a(t)2, obtaining
signal a′(t)2;

• Discrete wavelet transform of signal a′(t)2 with n decomposition levels, where n is
computed by Relationship (14);

• Computation of energy associated with detail at decomposition level n (Ed), according
to (13). Ed is continuously monitored in order to check any variation. Variations are
most likely associated with a rotor fault event.

The condition monitoring is based on a diagnostic index IH−DWT , defined by the ratio
between the actual energy of wavelet detail at decomposition level n (EF) and the energy
of wavelet detail in healthy conditions (EH) used as a reference:

IH−DWT =
EF
EH

(15)

The normalization of (15) makes this method more robust towards parameter vari-
ations. It should be noted that Relationship (14) can be used for optimal level selection,
provided that the estimation of slip is available. In case of time-varying conditions, the mean
value of s f during the acquisition time will be used for the computation.

4.4. Drawbacks and Limitations

In order to achieve a robust machine diagnosis with the proposed method, typical
shortcomings of the Hilbert transform and DWT must be overcome.

For the Hilbert transform, the first and last samples of the output do not represent the
current envelope. These boundary effects must be erased, thus reducing the number of
samples with respect to the original current signal. In addition, time-varying conditions
cause transient noise in the signal envelope. In agreement with [24], a linear de-trending is
applied to the a′(t)2 signal in order to remove this noise component.

For the wavelet transform, at each decomposition level, the signal must be extended so
that the samples are exactly a power of 2. Here, the extension is performed using periodical
repetition. Wavelet filter coefficients vary according to different types; Daubechies-44 was
used, which has proven to be effective for rotor fault detection [20].

5. Simulation Results

The model was simulated and tested in open-loop conditions with constant volt-
age/frequency speed control. The induction machine model parameters are reported in
Table 1. The simulation results were computed with a time acquisition period of tobs = 4 s
and a sampling frequency of fs = 10 kHz in different conditions: (1) stationary conditions
at constant speed for different values of the supply frequency f and requested torque T,
and (2) transient conditions with a linear ramp of requested torque T. Healthy and faulty
conditions were simulated according to the bar breakage model of Section 2.

Table 1. Diagnostic indexes at constant speed—experimental acquisitions.

Motor Parameter Value Unit

Rated frequency f 50 Hz
Rated voltage V 220 V
Rated power P 2.1 kW

Stator phase resistance Rs 4.9 Ω
Rotor phase resistance Rr 3.5 Ω

Stator inductance Ls 3.56 mH
Rotor inductance Lr 3.56 mH

Magnetizing inductance M 3.36 mH
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Table 1. Cont.

Motor Parameter Value Unit

Pair poles number P 2
Rotor bars number Nb 50

Viscous friction coefficient F 0 Nm/(rad/s)
Inertia J 0.05 kg/m2

5.1. Stationary Conditions

The spectrum of one stator current in faulty conditions is reported in Figure 3, with a
constant speed at f = 50 Hz and T = 11.5 Nm. The left sideband is clearly visible at
fl = (1 − 2s) · f and the right sideband component at fr = (1 + 2s) · f has a lower
amplitude. Figure 4 reports the spectrum of the signal a′(t)2 in the same conditions. As the
fundamental component is suppressed, the main component is located at 2s f , allowing an
accurate fault detection with suitable filtering or energy analysis. The detail of the optimal
decomposition level, computed with (14), is confined within the vertical bars shown in the
graph. The bandwidth includes 2s f .

Figure 3. Spectrum of a stator current in case of one broken bar, constant speed at 1500 rpm and slip
6%, with fundamental component located at f , left sideband component located at fl = (1− 2s) · f
and right sideband component located at fr = (1 + 2s) · f .

Figure 4. Spectrum of the square of the analytical signal a′(t)2 of a stator current in case of one broken
bar, constant speed at 1500 rpm and slip 6%. The main component is located at 2s f .

The energy of the selected wavelet detail was computed according to (13) in both
faulty and healthy conditions. Then, the diagnostic index Iw was computed using (15).
Figure 5 reports Iw as a function of the supply frequency, while Figure 6 reports it as a
function of the requested torque.

MCSA and demodulation diagnostic indexes IMCSA and Idemod were computed for the
same simulations and the results are reported in Tables 2 and 3. Demodulation and MCSA
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appear less effective than the proposed approach for fault detection, in particular for low
values of frequency and torque.

Simulations were repeated in the same conditions, showing a significant change in the
value of the indexes, but for the proposed method. This behavior shows that the diagnostic
index is strongly affected by noise. The diagnostic index based on the proposed method,
on the other hand, is quite robust and reliable for rotor faults, even if its values decrease for
low supply frequency or torque.

Figure 5. Value of the proposed diagnostic index IH−DWT in stationary conditions as a function of
the supply frequency, with T = 11.5 Nm. The stars state the simulated points, the blue line is the
linear interpolation.

1 

 

 

Figure 6. Value of the proposed diagnostic index IH−DWT in stationary conditions as a function of
the requested torque, with f = 50 Hz. The stars state the simulated points, the blue line is the linear
interpolation.

Table 2. Diagnostic indexes at constant speed—variations in supply frequency.

f [Hz]

30 40 50

MCSA (IMCSA) 0.6992 1.5615 0.4898
Demodulation (Idemod) 4951.8 34.6 3.1

DWT (IDWT) 1.0286 1.115 1.0175
HILBERT–DWT (IH−DWT) 164.22 217.07 308.94
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Table 3. Diagnostic indexes at constant speed—variations in requested torque.

T [Nm]

1 3 8 11.5

MCSA (IMCSA) 1.5823 1.1675 0.9024 0.4898
Demodulation (Idemod) 0.4079 19.258 14.767 3.0821

DWT (IDWT) 1.1379 1.0391 1.2821 0.8911
HILBERT–DWT (IH−DWT) 11.91 39.74 72.35 308.94

5.2. Transient Conditions

In transient conditions, the spectrum of the stator current is blurred near the sideband
components. This effect is visible in (Figure 7), which reports the spectrum of a stator
current in faulty conditions with a linear ramp of requested torque from 8 Nm to 11.5 Nm.
In this condition, the supply frequency remains constant while the slip varies, thus resulting
in a blurred spectrum. Hence, detection with MCSA or demodulation is more difficult.
Furthermore, the main component at 2s f in the spectrum of a′(t)2 is blurred, as shown
in Figure 8, which depicts the spectrum of the square of the analytical signal of a stator
current in the same conditions. In addition, significant components at low frequencies are
visible, related to the slow variation in the slip value.

Figure 7. Spectrum of a stator current in case of one broken bar and linear ramp of requested torque
from 8 Nm to 11.5 Nm (increasing slip). Fundamental component is located at f , left sideband
component is located at the mean value of fl = (1− 2s) · f and right sideband component is located
at the mean value of fr = (1 + 2s) · f .

Figure 8. Spectrum of the square of the analytical signal a′(t)2 of a stator current in case of one
broken bar and linear ramp of requested torque from 8 Nm to 11.5 Nm (increasing slip). The main
component is located at the mean value of 2s f .

With the proposed method, it is possible to overcome this problem by computing the
energy in the bandwidth around the fault signature. The optimal decomposition level n is
computed using (14), with the mean value of the slip during the transient. Figure 9 reports
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the index IH−DWT as a function of the requested torque ramp, allowing the method’s
performances to be assessed. The proposed diagnostic index is still reliable in variable
speed conditions, even if its values are slightly lower when low values of torque are
involved, as observed in the stationary case.

Table 4 reports a comparison of the indexes computed with the four different methods
in transient condition simulations. The results show that fault detection with MCSA or
demodulation is unfeasible in cases of variable speed. The higher demodulation index
values in cases of torque ramp from 8 Nm to 11.5 Nm are caused by the noise level
only. Similarly, the proposed approach outperforms the method based on DWT without
the Hilbert transform. This is because the proposed method moves the fault signature
component away from the fundamental component, avoiding overlaps in the spectrum in
cases of variable frequency or variable load.

Figure 9. Value of the proposed diagnostic index IH−DWT in transient conditions as a function of
the requested torque ramp, with f = 50 Hz. The stars state the simulated points, the blue line is the
linear interpolation.

Table 4. Diagnostic indexes at variable speed—linear ramp in requested torque.

T [Nm]

8-11 11.5-8 3-11.5 11.5-3

MCSA (IMCSA) 0.13955 0.63367 2.771 0.75373
Demodulation (Idemod) 8.9401 1.013 0.33127 0.4093

DWT (IDWT) 0.8854 0.8127 1.0572 0.6502
HILBERT–DWT (IH−DWT) 68.755 68.553 52.014 56.765

6. Experimental Results

In order to obtain an experimental validation, the four methods were applied to a
series of experimental acquisitions from the testbed realized in [11]. Experiments were
performed on a induction machine whose parameters are reported in Table 5, for which two
rotors were available: one healthy and the other with one drilled rotor bar. The acquisitions
were all performed in stationary conditions, with a time acquisition period of tobs = 10 s,
sampling frequency of fs = 10 kHz, supply frequency of f = 25 kHz and requested torque
of T = 3.3 Nm. The load torque level is fairly low, at about one tenth of rated torque.
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Table 5. Induction motor parameters.

Motor Parameters Value Unit

Rated frequency f 50 Hz
Rated voltage V 380 V
Rated power P 7.5 kW

Stator phase resistance Rs 0.54 Ω
Rotor phase resistance Rr 0.58 Ω

Stator inductance Ls 88.4 mH
Rotor inductance Lr 83.3 mH

Magnetizing inductance M 81.7 mH
Pair poles number P 2

Rotor bars number Nb 28

The spectrum of a stator current is reported in Figure 10 in both healthy (blue)
and faulty (red) conditions. The fundamental component is located at f , left sideband
component is located at fl = (1 − 2s) · f and right sideband component is located at
fr = (1 + 2s) · f . Figure 11 depicts the spectrum of the square of the analytical signal a′(t)2

with the fault signature component located at 2s f .

Figure 10. Spectrum of a stator current signal from experimental acquisition in healthy (blue) and
faulty (red) conditions, with fundamental component located at f , left sideband component located
at fl = (1− 2s) · f and right sideband component located at fr = (1 + 2s) · f .

Figure 11. Spectrum of the square of the analytical signal a′(t)2 from experimental acquisition in
healthy (blue) and faulty (red) conditions. The fault signature component is located at 2s f .

Table 6 reports the results for the four methods: index values between two acquisitions
in the same conditions do not show significant variation. Therefore, the results can be
considered reliable. In stationary conditions, MCSA and demodulation techniques show a
satisfying behavior while the performances of the method based only on DWT are low. In
any case, the fault detection capability for the proposed method is the highest.
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Table 6. Diagnostic indexes at constant speed—experimental acquisitions.

Acquisition n.1 Acquisition n.2

MCSA (IMCSA) 8.5718 10.9707
Demodulation (Idemod) 5.7109 4.3871

DWT (IDWT) 1.0296 1.0097
HILBERT–DWT (IH−DWT) 13.9603 14.7246

7. Comparison of Different Diagnostic Methods

Thanks to numerical simulations and experimental acquisitions, it was possible to
compare the efficiency of the proposed technique to three other methods: the classic MCSA
(frequency domain approach), the demodulation technique (time domain approach) and
another DWT-based approach presented in [17].

Regarding stationary conditions:

• MCSA, demodulation and DWT-only techniques are capable of detecting rotor faults
but are highly dependent on the noise level. In fact, the values of the computed
indexes vary significantly at each simulation in the same condition.

• The proposed method appears more robust than the other techniques, even if the
values of the indexes decrease for low load or low supply frequency conditions.

Regarding transient conditions:

• Fault detection is not possible with MCSA, demodulation or DWT-only techniques.
Variation in the indexes’ values is completely random and only due to the noise level.

• Even if the proposed technique is less effective here than in the stationary case, it is
still capable of detecting rotor faults. Similar to stationary conditions, its effectiveness
decreases for low load conditions.

Experimental results confirm the above items.
In summary, the proposed method appears the best tool for diagnosis because the

values of its indexes are less dependent on the variation in the conditions and on the noise
level. Its main advantage is the use of a diagnostic index based on the computation of
the energy in a bandwidth rather than trying to identify a single frequency. In addition,
the demodulation of the signal with the Hilbert transform allows to move the fault signature
away from the fundamental component, improving the fault detection capability.

8. Conclusions

Preventive and reliable fault detection for induction machines is a topic of increasing
importance and interest. State-of-the-art techniques are based on the analysis of the fault
signatures in the current spectrum (MCSA) or rely on a time domain approach (demodula-
tion technique). Time–frequency approaches have been also largely investigated, especially
methods based on the discrete wavelet transform (DWT). The spectrum components related
to faults are blurred during time-varying operation, since they are a function of slip. Thus,
these methods fail in transient conditions and are highly dependent on the noise level.
Here, a method based on the Hilbert transform and DWT is proposed that significantly
improves fault detection accuracy in time-varying conditions. This combination uses the
Hilbert transform to demodulate the fault signature components, distancing them from
the fundamental, and exploits the high-frequency resolution of DWT at low frequencies to
compute an optimal bandwidth with which the fault signature is associated.

The variation in energy of the selected decomposition level is used as a differential
diagnostic indicator. Thus, the proposed procedure is less dependent on the noise level or
operating conditions than MCSA, the demodulation technique or other methods based on
DWT only.

The simulation results show that the proposed method can be effectively used to
detect rotor faults in a induction machine with variable speed, using an open loop V/f
control. Simulation results were further confirmed by a series of experimental acquisitions.
In both cases, comparison with MCSA, demodulation and DWT-only techniques proved
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that the proposed method is the most robust, because of the large gap between healthy and
faulty conditions. A quantitative analysis of all methods was made based on diagnostic
indicators. The comparison between the different methods show that the proposed method
is a good solution in terms of computational cost and performance.

This technique can be applied not only to the detection of rotor bar faults, but it
can also be extended to the detection of other possible machine faults, provided that the
frequency signature in the stator current spectrum is known. In addition, thanks to the
improved frequency resolution, the proposed method could be of help in the detection of
multiple different combined faults.
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