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Recent Challenges in Condition Monitoring of Industrial Electric Machines 

Abstract  

The limitations of thermal, vibration, or electrical monitoring of electric machines such as false indications, low 

sensitivity, and difficulty of fault interpretation have recently been exposed. This has led to a shift in the direction 

in research towards applying new techniques for improving the reliability of condition monitoring. With the 

changing environment, the purpose of this article is to provide an overview of the recent trend in the industrial 

demand and research activity in condition monitoring technology. The new developments in insulation testing, 

electrical testing, flux analysis, transient analysis, and fault prognostics are summarized. The future challenges 

and recommendations for future work for the new technologies are also stated to support researchers target 

research/development efforts according to industrial needs. 

I. Introduction 

Reliable operation of medium-high voltage electric motors and generators is critical for maintaining the 

productivity, efficiency, and safety of the industrial facility. Surveys on the reliability of electric machines have 

identified that failures can occur in all the motor components, where the risk of failure depends on the type and 

design of the machine, operating conditions, and application [1]–[2]. For a long period of time, condition 

monitoring of electric machines relied on off-line testing/inspection and thermal/vibration monitoring. Since the 

1980s, there has been a significant amount of research effort towards developing electrical monitoring tools for 

preventing in-service failure of the machine and process, as it can provide remote monitoring at low cost. A 

number of literature surveys summarize the work on electrical detection of machine faults, as it has been the 

main focus of research [3]-[5]. With the technology applied in the field for 20+ years, the limitations of electrical 

monitoring such as false indications, low sensitivity, and difficulty of fault interpretation have been exposed. In 

addition, there are difficulties that arise from variable frequency drive (VFD) operation with the increase in the 

number of inverter-fed motors. This has led to a recent shift in the direction in research towards applying new 

techniques such as airgap and stray flux monitoring, transient analysis, intelligent algorithms, and fault 

prognostics for improving the reliability of condition monitoring and for providing a clear course of action for 

maintenance. With the changing environment, the purpose of this article is to provide an overview of the recent 



trend (last 5 years) in the industrial demand and research activity in condition monitoring technology for induction 

and synchronous machines [6]-[7]. The future challenges and recommendations for future work are also stated 

for each topic to support researchers target research and development efforts according to industrial needs.  

II. Insulation testing 

Industrial surveys have consistently shown that the electrical insulation used in stator and rotor windings is 

one of the components most likely to cause motor failure [1]-[2], [6]-[7].  This is because organic materials 

included in the insulation system such as polyamide-imides, polyesters, and epoxies tend to have much lower 

mechanical strength and thermal capability compared to the metals that form the bulk of an electrical machine. 

Failure in the strand insulation of stator and rotor windings or failure in the turn insulation of rotor windings, does 

not directly lead to machine failure. However, failure of the groundwall (GW) insulation in both rotor and stator 

windings, or failure in the turn insulation in stator windings, leads to an overcurrent that rapidly fails the machine. 

The strand, turn, phase, and GW insulation components shown in Fig. 1 degrade slowly over time due to 

oxidation (thermal aging), thermo-mechanical aging (load changes and on/off cycling), mechanical aging if the 

conductors or coils vibrate due to magnetic forces, and/or contamination by moisture or oil combined with 

particulates [6]-[8]. In addition, for conventional machines rated 3.3 kV and above or inverter-fed motors rated 

400 V and above, small electrical sparks called partial discharges (PD) can also age and fail the insulation [7]. 

Therefore, insulation testing is performed to identify machines with weak insulation to prevent in-service failure.  

There is a long history of performing off-line insulation tests such as insulation resistance (IR) and dissipation 

factor (DF) to determine if the machine windings are at a high risk of failure. The dc resistance of the insulation 

and the ratio between the capacitive and resistive components of the leakage current are measured with the IR 

and DF tests, respectively. The IR test is only capable of detecting severe problems in the GW insulation in 

stator and rotor windings, and is insensitive to thermal and mechanical aging. The DF test has mainly been used 

for detecting thermal aging and contamination, but many end-users have stopped using it, as it is costly to 

perform and can only measure the average condition of the GW insulation. For windings rated 3.3 kV and above, 

off-line measurement of PD pulses is often performed, as it can give an indication of the weakest part of the 

insulation that is likely to fail. However, it is not as preferred by end-users as on-line PD testing that is capable 



of performing testing under realistic thermal and mechanical stresses without motor shutdown [9]. The only on-

line test for GW insulation condition assessment in stator windings that has achieved widespread application is 

the on-line PD test. This test requires the installation of capacitive PD sensors on each phase during 

manufacturing or shutdown, and they have been installed on over 20,000 machines rated 6 kV and above. The 

principle challenge with on-line PD testing has always been the separation of stator PD from other pulse-like 

electrical “noise” that can be produced by power line corona, inverters, power tool operation, etc., as shown in 

Fig. 2. If the noise is greater than the stator PD signal, the risk of false indications is increased. Most of the 

effective techniques for separating PD from noise such as pulse shape analysis, time-of-pulse travel between a 

pair of sensors, and/or time-frequency maps were developed more than a decade ago [7]. Although pattern 

recognition based on AI methods have been attempted by researchers to help separate stator PD from noise 

and identify the PD source location [10], they are yet to be accepted in the field due to reliability issues. Another 

challenge for on-line monitoring of PD is detecting PD on windings fed by fast rise-time voltage source VFDs. 

The voltage impulses have frequency content (and pulse shapes) similar that of the PD itself, which makes 

separation of PD from switching noise challenging [11]. The problem is becoming greater with increase in DC 

bus voltages levels and decrease in rise- and fall-time with wide bandgap (WBG) switching devices such as 

silicon carbide, and it is not yet clear whether on-line PD detection with VFDs employing WBG devices will be 

practical.  

Stator turn insulation failure leading to GW insulation breakdown and forced outage of the machine is 

commonly observed in the field [12]. The surge test, which is the only off-line test available for turn insulation, is 

somewhat controversial, as it applies a high voltage impulse to the windings that may cause the failure of good 

turn insulation [7]. Although on-line methods for detecting turn insulation failure have been developed [3]-[5], 

there currently is no test method accepted in the field for reliable assessment of turn insulation condition [7]. 

Shorted turns in synchronous motor (SM) rotor windings rarely causes motor failure as in stator windings, but it 

is monitored as it can give an indirect warning of GW insulation aging that has a high risk of tripping the machine. 

The pole drop or recurrent surge oscillography tests are used to detect and locate shorted turns off-line [7]; 

however, they tend to yield false indications since shorted turns that occur in service may not be observable at 



standstill when the centrifugal force disappears (and vice versa). Researchers have developed on-line IR testers 

for the GW insulation, but they have not been adopted by industry, possibly since they seem to be preferentially 

sensitive to brush gear and inverter condition, rather than the rotor winding condition. Airgap flux monitoring is 

commonly used to detect shorted turns in the rotor winding [13], but there currently is no on-line test method 

that can detect rotor winding turn insulation aging before turn shorts occur.  

With regard to advances in off-line testing, DC polarization/depolarization testing has shown the potential of 

obtaining more information on the insulation condition [14], but it has not been applied widely by industry or 

utilities to date. UV imaging has recently been widely adopted in recent years for detection of surface PD activity 

after rotor removal with the recent introduction of cost-effective ultraviolet imaging cameras. For insulation testing, 

a new test method for assessment of turn insulation condition before failure occurs would be a valuable test for 

improving the reliability of machines in the field. Monitoring of VFD motor insulation have also become important 

fields for further research with the advent of fast risetime WBG devices in electric propulsion applications. For 

rotor field winding insulation failure, a non-invasive on-line test that does not require installation of airgap flux 

sensors can find widespread application to SMs. 

III. Electrical testing  

Faults in the rotor or bearings can also cause failure of electric machines, and testing relies on detecting the 

asymmetry produced by these defects [3],[5]-[7]. Cracks, open circuits, or high resistance contacts in the rotor 

conductors of IMs and SMs are often observed in applications with frequent starts or load transients. The 

thermomechanical stress imposed due to the abrupt current variation is the main cause of failure in addition to 

mechanical stress and manufacturing defects. Rotor winding faults must be detected and corrected to prevent 

secondary damage caused by bar protrusion or arcing between the cage and core that can cause permanent 

irreversible damage. Rotor eccentricity refers to a condition with non-uniform airgap distribution in the machine, 

and can be caused by bearing wear, rotor deflection, manufacturing imperfections, etc. Eccentricity causes 

unbalanced magnetic pull at the minimum airgap position and leads to increase in vibration and mechanical 

wear. This condition must be detected to prevent accelerated aging and, in the worst case, stator rotor contact. 

Bearing degradation can be caused by a number of different mechanical, electrical, and thermal stresses, and 



leads to increased vibration and heating, and accelerates mechanical wear. The condition of the bearing needs 

to be monitored as it is the leading root cause of motor failure.  

A fault in the electric machine creates an asymmetry in the rotating magnetic field, which induces a voltage 

in the stator winding at the characteristic frequency that depends on the type of fault. This results in a current 

flow at the fault induced frequency and distorts the current, making the fault observable in the time and/or 

frequency domain. Electrical monitoring has gained popularity since the 80s as a means of motor testing due to 

its low cost, non-intrusive, and remote nature [3]-[7]. A variety of fault detection methods based on the analysis 

of symmetrical components, real and reactive power, and space vector trajectory have been studied and applied 

in the field. The most popular method widespread in the field is motor current signature analysis (MCSA), where 

Fourier transform is applied to the stator current in steady state to observe the frequency components produced 

by the faults. Each type of fault produces a different characteristic frequency as summarized in Table I for 

induction (IM) and synchronous motors (SM) [3]-[5]. The fault frequency components for SMs in steady state 

can be found by substituting slip=0 (fr=fs/p). 

Although it has been shown that all the frequency components in Table I increase with the severity of the fault  

[3], [5], [15]-[16], only the detection of IM broken bars detected through the rise in the twice slip frequency 

sidebands as shown in Fig. 3, has been widely accepted and applied in the field. For mechanical defects related 

to the bearing, eccentricity, or load, vibration analysis is considered to be more reliable. MCSA based detection 

may not be practical for these mechanical defects, because it is difficult to establish a universal fault severity 

threshold as the increase in the magnitude of the fault frequency components are dependent on the machine 

design and operating conditions. In addition, the relatively low sensitivity due to attenuation of the fault signature 

at higher frequencies is another limitation for detecting eccentricity or bearing failures, especially in noisy field 

environments. For detection of IM and SM faults that produce rotor rotational frequency, fr (or 1x), sidebands, 

the main limitation is due to the interference from mechanical load defects. Load unbalance and misalignment, 

which are the most common load defects, produce fr sideband components that are comparable to or larger than 

that produced by motor faults, making MCSA unreliable [17]. Detection of SM faults (slip=0) is even more 

challenging as all motor and load defects produce the same frequency component that interact with each other 



potentially producing false indications [18].  

For MCSA based IM rotor fault detection widely applied in industry, improving the reliability is the main 

concern. Many cases of false positive (false alarm) and negative (missed fault) MCSA indications due to the 

influence of rotor structural or load asymmetries have been identified, as summarized in Table II [17]. 

Development of test methods immune to the false indications are being actively studied, since an incorrect 

diagnosis can compromise the reliability of the MCSA and lead to unnecessary maintenance and unscheduled 

interruption of production. It has been shown in a number of studies that testing under high slip (motor standstill 

or starting) conditions is immune to most of the false indications, as highlighted in Table II, since the flux 

distribution is such that rotor asymmetry does not influence fault detection, and/or the influence of load is minimal 

[9]. Despite these challenges, there is active on-going research on improving the diagnostics capability of MCSA 

due to its distinct remote, low cost, on-line monitoring advantages. Further research on developing new fault 

indicators for improving the reliability of fault detection, and analysis for determining fault severity for providing 

a course of maintenance action is needed for extending the capabilities of MCSA. Intelligent algorithms that 

consider simultaneous detection of faults, variation of fault thresholds, or statistical analysis are examples of 

research making progress for improving the reliability of fault detection and fault prediction [19]-[21].  

IV. Airgap and Stray Flux Analysis  

Analysis of the airgap or stray flux measurement can provide direct indication of the asymmetry in the radial 

or axial flux of the machine produced by fault induced anomalies. The radial component of the airgap flux can 

be measured with a search coil or Hall sensor installed on the stator bore. The two stray flux components used 

for diagnostics are the radial leakage flux component outside the yoke, and axial leakage flux component that 

leaks through the rotor shaft. The stray flux components can be measured with the sensor installed on the frame 

outside the yoke or around the shaft or on the end bell surface, as shown in Fig. 4 [22]-[25].  

Airgap flux monitoring is being widely applied for detecting shorted field winding turns in synchronous 

generators, and also starting to be installed in SMs [7], [13], [26]. Since faults in the rotor conductors and airgap 

eccentricity cause distortion in the rotating MMF or airgap length distribution, they are directly reflected in the 

airgap flux of ac machines. [27]-[28]. Therefore, the sensitivity of airgap flux monitoring is superior compared to 



vibration analysis or MCSA that rely on detecting the effect of rotor faults indirectly. Another advantage of flux 

monitoring is that it is not influenced by load defects since they do not cause distortion in airgap flux [28], [31]. 

The potential of using airgap flux analysis for detecting rotor cage, damper bar, and airgap eccentricity faults 

have recently been shown for IMs and SMs [26]-[28]. Although airgap flux-based fault detection is capable of 

reliable and sensitive detection of rotor related faults, the requirement of sensor installation inside the machine 

is the main limitation.  Some concerns on the sensitivity degradation due to inherent asymmetry between poles 

for small number of shorted turns have been raised, and cases of the fault being observable only under standstill 

and not during operation have also been reported [7], [13], [26], [35]. 

Most of the research on flux monitoring is based on stray flux measurement, as it is easier to install the sensor 

on the machine frame. The underlying principle and advantages of radial and axial stray flux monitoring are 

similar to that of airgap flux monitoring in that the asymmetry in the leakage flux produced due to electrical or 

mechanical asymmetry in the MMF or airgap is measured. The feasibility of detecting rotor cage, PM 

demagnetization, eccentricity, stator winding, stator core, and bearing faults have been shown in [23]-[25], [27]- 

[29], where the sensitivity to faults is lower than using airgap flux. The main focus of stray flux monitoring was 

on the detectability and sensitivity aspects [24], but the recent focus has been shifted to improving the reliability 

of fault detection and classifying the type of fault [28], [30]-[31].  

One of the main reasons flux monitoring has not received as much attention as MCSA is because it does not 

provide remote monitoring. However, there recently has been increasing interest in flux monitoring since it could 

be a low cost option for complementing the limitations of electrical, mechanical, and thermal monitoring in terms 

of the reliability and diversity of fault detection. There is also a trend where motor manufacturers are providing 

self-diagnostics capability through integrated sensors embedded on the motor frame with intelligent algorithms 

for technological differentiation and improved reliability [32]-[33]. Flux monitoring can be justified if it can provide 

advanced warning of failure in reliability critical applications for cases where other monitoring techniques fail.  

There are many research topics to be explored in the under-researched area of flux monitoring, where the 

first step would be to identify the detection and sensitivity capabilities of airgap and stray flux monitoring. A 

comparative evaluation with MCSA and vibration analysis under the different fault conditions, and identifying 



fault indicators with well-defined thresholds would be valuable for field application. There aren’t many test results 

reported on motors operating in the field, and there are a number of unexplored areas such as sensor size, 

location, and design that would be critical for deployment of the technology in the field. Since flux monitoring is 

effective for identifying faults in the rotor, unexplored rotor related defects in PMSMs, wound rotor IMs, and 

wound field SMs could be of practical value. 

V. Transient Analysis  

Analysis of current, flux, or vibration under transient operation has emerged as an alternative approach to 

overcome deficiencies of the conventional methods that rely on analysis of steady state data [31], [34]-[37]. The 

main idea behind this approach is to track the change in fault frequency components over time through time-

frequency transformations, which provide reliable evidence of the fault compared to monitoring the amplitude of 

a single component in the Fourier spectra of steady state data [34]-[35]. The different types of time-frequency 

transforms used are described in [5] with examples on applications to detection of motor faults [26], [31], [34]-

[37]. An example of time-frequency analyses of the starting current for a motor with and without broken rotor 

bars is illustrated in Fig. 5, where the evolution of the fault induced component is clearly noticeable. Research 

on transient analysis was focused on analyzing current or flux signals during the starting transient for detecting 

different types of faults. Active research has led to the recent development of commercial devices with transient 

analysis features. The technique has proven to provide reliable results for detecting rotor cage, eccentricity, and 

reactor starting defects in the field [31], [34]-[35].  

Transient analysis is performed when the motor is operating under extreme conditions of maximum current 

(starting) or zero current (shutdown) where the influence of certain faults are amplified or absent. In addition, the 

flux distribution and influence of load are different from that of steady state, making fault detection immune to 

the interference due to the structural asymmetries and characteristics of the machine and load [17]. This enables 

sensitive and reliable detection of rotor faults for cases where false indications are produced with steady state 

analysis, as highlighted in Table II. False indications can also be reduced since time-frequency patterns shown 

in Fig. 5 are usually more reliable indicators than single spectral harmonics (Fig. 3) which can be easily masked 

by other phenomena or noise. The main drawback is that motor starting (³ 1 s) is required, which is difficult for 



applications that are operated continuously, and sophisticated signal processing tools with higher computational 

burden must be applied for analyzing the non-stationary signals.  

Current research work in the transient analysis area is focused on applying the techniques to the current, flux, 

or vibration signals under load/speed variations and motor shutdown in addition to motor startup. The advance 

in this direction is required in motors operating continuously under non-stationary conditions and motors that are 

operated continuously without starts/stops. Another line of research is related to the application of the 

methodology to the diagnosis of faults in the rotor windings of wound rotor IMs and SMs [26], [36]. Investigation 

of optimized signal processing tools for improved visualization and quantification of the fault harmonic evolution, 

as well as intelligent algorithms for automatic identification of the evolutions and fault indicators are also 

important research topics needed in the field. One of the most important challenges for massive adoption of the 

technology in the field, is its adaptation to VFD operation, where detection of the transient evolution of the fault 

components is very difficult especially for IM rotor faults. Some work has already demonstrated the feasibility 

and potential of the method in soft-started and VSD-driven motors [37]. The development of such methods is of 

great interest for VFD manufacturers and end users, as they could be imbedded in the drive to provide automated 

diagnosis of the motor-drive system.  

VI. Fault Prognostics  

The ultimate goal of electric machine testing and diagnostics is to predict the time of failure. The purpose of 

failure prognosis is not simply to know when a drive component will fail, but to know this time accurately, and 

thus take appropriate action necessary to continue operation with minimal disturbance. Prognosis of machine 

faliure can increase the reliability of the system and decrease cost of operation and chances of unexpected 

failure. The concepts and decisions associated with failure prognosis extracted from discussions in [39]-[40], 

[49]-[51] are aggregated in Fig. 6. As the state of the health approaches failure, the remaining useful life (RUL) 

estimate approaches zero, and the estimate of the confidence in it also increases. Action is decided when the 

threshold for decision (mitigation, shutdown, etc.) falls within this interval, and the decision should be made well 

ahead of failure, so that the time to act is adequate. If the decision threshold is well-defined in relation to the 

confidence interval, early decision for action at A or late decision at B followed by the necessary time to act, will 



be effective. If instead, this threshold is set too low, points A and B will move too close to time of failure (A’, B’), 

leaving insufficient time for action. If the threshold is set too high, the decision will cause early interruption of 

service.  

To predict the RUL with high precision, it is necessary to have the diagnostic tools in place first, from which 

the state of health of the device can be estimated. Beyond this, methods have been developed to identify trends 

of the features used for diagnosis based on Baysian statistics and AI. To identify trends in the degradation of a 

component or subsystem, it is necessary to have stored histories of similar components, and at least part of the 

history of the one that is being monitored. The establishment of the relationship between physical degradation 

and its manifestation gives validity to a prognosis technique.   

Assuming precise estimation of the RUL with sufficient time, maintenance can be scheduled. This may include 

a complete shutdown at a convenient moment before the anticipated failure for bearings, gears, couplings and 

decaying insulation. A prognosis tool can give adequate warning of an impending failure, but not the ability to 

recover or mitigate the fault. If the estimation of RUL leaves limited time for such action, redundancies such as 

the 1) use of a different motor or inverter, or 2) operation with reduced phases or a neutral inverter leg, should 

be utilized. Such failures can be at the VFD switches, windings, etc, and the control algorithm can be changed, 

for instance, to inject negative d-axis current to offset the effects of a short circuit fed by the rotating PM.  

To summarize, methods based on Baysian inference have been widely used and are still being developed. 

Hidden Markov Models [38] are based on recognizing a process of degradation, which is not directly observable, 

and hence trends cannot be directly developed. Kalman filter is the optimal linear estimator for linear system 

models. The Extended Kalman Filter [39]-[40] and the Unscented Kalman Filter linearize the model, but are not 

optimal. Particle Filters [41], a Monte Carlo method, is a Baysian model based estimation of internal states in 

dynamical systems when partial observations are made. In parallel to these, a large variety of methods and 

applications based on artificial neural networks [42]-[43] has been developed and utilized. 

Thanks to improved computational abilities and new theories, and to the increased needs in energy 

conversion and transportation, research and applications of prognosis have been rapidly expanding. There is a 

lot of demand in applying prognostics to mechanical subsystems and components, such as bearings, gears, 



insulation, batteries, power electronics and capacitors. For failure prognosis to become more widely applied, the 

open questions such as 1) how to decrease the amount of data used to train the algorithm, and 2) how to improve 

the confidence, giving adequate time for reaction, have to be further addressed. Methods being investigated 

include the use of translational models, adapting past results from similar systems without extensive new tests, 

and hybrid methods combining statistical methods with neural networks [44]. Another important line of research 

is in applying advanced algorithms to fault clasification and prognostics of electric machines [45]-[47]. As 

indicated earlier, prognosis is a natural and necessary step after most diagnosis cases. Since it is based on and 

requires some method to identify and utilize trends, it results in a further level of complexity. Physics-based 

methods, offer a direct connection between operation and degradation, but they often become too complicated 

and require more observed variables. Advanced data-based methods are evolving, tested, and proposed, and 

they offer accurate predictions, albeit often based on a long history of observations [45]-[48]. Fusion of sensed 

data and hybrid physical/data based systems also offer a promise.[26], [49]-[51].  

VII. Conclusion  

An overview of the recent trend in research activity in condition monitoring technology for electric machines 

has been given in this article. The research being performed on insulation testing, electrical testing, flux analysis, 

transient analysis, and fault prognostics according to the demand from the field have been summarized. 

Recommendations for future work and challenges for each research topic have also been provided to guide 

researchers towards practical work needed in the field. 
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Fig. 1 Cross section of a slot containing strand, turn, phase, and groundwall (GW) 

insulation components in a multi-turn form wound stator coil [5] 



  

 
(a) 

 
(b)  

Fig. 2 Phase resolved PD pattern of (a) typical PD activity from a stator winding and (b) 
similar plot of the power system noise that was separated from the stator PD using 
the “time of pulse arrival” noise separation method for one 50/60 Hz ac cycle.  



 
  

 
Fig. 3 Example of stator current spectra for induction motor with and without broken rotor bar 
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(b) 

Fig. 4 Airgap and stray flux measurement for motor condition monitoring: (a) internal radial airgap flux 
and external radial and axial stray flux coils; (b); external radial and axial stray flux coils  



 

  

 

 
 (a) (b)  
Fig. 5 Starting current time-frequency analyses for: (a) healthy induction motor, (b) Induction motor 

with broken rotor bars  
 



  

 
Fig. 6 Concepts and decisions associated with fault prognosis 



  

Table I Characteristic fault frequency components produced by faults in induction and synchronous 
motors (fs: fundamental frequency, fr: rotor rotational frequency, s: rotor slip, p: number of 
pole pairs, R: number of rotor slots, k: integer (=1, 2, 3,…), n: harmonic order (=1, 3, 5,…), 
nd: dynamic eccentricity order, N: number of balls, Db: ball diameter, Dc: ball pitch diameter, 
 b: ball contact angle) 

 



 
 

Table II Typical root causes of false positive and negative indications produced by MCSA-based 
rotor cage fault detection (false indications that standstill and starting transient testing are 
immune to are highlighted) 

 




