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ABSTRACT 
 It has been widely recognized that the changes in the 
dynamic response of a rotor could be utilized for general fault 
detection and monitoring. Current methods rely on the 
monitoring of synchronous response of the machine during its 
transient or normal operation. Very little progress has been 
made in developing robust techniques to detect subtle changes 
in machine condition caused by rotor cracks.  It has been 
demonstrated that the crack-induced changes in the rotor 
dynamic behavior produce unique vibration signatures. When 
the harmonic excitation force is applied to the cracked rotor 
system, nonlinear resonances occur due to the nonlinear 
parametric excitation characteristics of the crack. These 
resonances are the result of the coexistence of a parametric 
excitation term and different frequencies present in the system, 
namely critical speed, the synchronous frequency, and 
excitation frequency from the externally applied perturbation 
signals. This paper presents the application of this approach on 
an experimental test rig. The simulation and experimental study 
for the given rig configuration, along with the application of 
active magnetic bearings as a force actuator, are presented.  
 

1 INTRODUCTION 
 Many critical rotating machines such as compressors, 
pumps, and gas turbines continue to be used beyond their 
expected service life despite the associated potential for failure 
due to damage accumulation. Therefore, the ability to monitor 
the structural health of these systems is becoming increasingly 

important, and the term structural health monitoring can be 
defined as the process of implementing a damage-detection 
strategy. This strategy involves the observation of a structure 
over a period of time, the identification of features from 
measurements, and the analysis of these features to determine 
the current damage state of the system. 
 

The area of damage detection and location using measured 
low frequency vibration data has attracted considerable 
attention recently. Doebling et al. [1] have presented an 
extensive survey of the field which should be consulted for 
further details. Health monitoring of structures and machinery 
is a major concern of the engineering community. Early 
damage detection, flaw identification, and failure prevention 
have far reaching implications in the management and 
preservation of any equipment. Machinery failure prevention is 
a complex activity that requires the interaction of several 
concurrent factors. Critical among them is the ability to detect 
the appearance and propagation of structural damage in vital 
machinery parts. The detection of damage (e.g., cracks, de-
laminations, de-bonding, etc.) is crucial in any failure 
prevention technology [2]. 
 
 Today, monitoring and diagnosis systems are normally not 
an integral component of turbomachinery. These fault detection 
and diagnosis systems mainly measure the output signals; the 
relative and/or absolute motions of the rotor. After signal 
processing, certain features (threshold values, orbits, frequency 
spectra, etc.) are presented from the measured data. Based on 
the deviations of these features from a non-faulty initial state, 
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faults are detected. Subsequently, the diagnosis attempts to 
recognize possible faults. The difficulty with these procedures 
is that the causes of the variations in the output signals cannot 
be detected clearly. The reason might either be a change of the 
process (i.e., input) or a modification of the system itself (e.g., 
shaft crack). In addition, the measured vibration signals fail in 
revealing a minor change in system parameters because all the 
excitations are due to shaft rotation. Therefore, it should not be 
a surprise that a carefully designed externally applied excitation 
can extract more information of the system than a natural, 
rotation-related, synchronous excitation. 
 
Morton [3] was one of the first who identified dynamic 
properties of a full operating turbomachine by means of a 
broadband excitation technique. The rotating shaft was 
preloaded with a static force via an additional foil bearing.  The 
excitation force was created by a sudden release of the preload 
due to the use of a breaking link, while the applied forces were 
measured with strain gauges. The method was used for the 
identification of rotordynamic coefficients of oil film bearings. 
Nordmann and Schollhorn [4] and Tonnesen and Lund [5] 
excited a rotating Jeffcott rotor supported on oil film bearings 
by a hammer. The impact force and displacement signals were 
used for identification of the modal parameters of the rotating 
system. One of the disadvantages of the broadband excitation 
in general is the distribution of the energy over a certain 
frequency range, which may cause a poor signal to noise ratio. 
Iwatsubo et al. [6] used external excitation technique to analyze 
the response of the cracked shaft. He showed the presence of 
combination harmonics due to interaction between impact force 
and rotation of shaft as the crack indicators. 

 
The topic of cracked rotor vibrations has been analyzed in 

a great number of published works, for example [7-14]. They 
have been focused on the study of dynamic behavior of rotors 
with the so-called breathing type of crack during the passage 
through a critical speed at constant angular acceleration or 
deceleration. For example, Sawicki et al. [7-10] studied the 
dynamics of accelerating cracked rotors, the crack-induced 
coupling between the torsional and lateral vibrations, and the 
application of nonlinear dynamics tools for crack diagnosis. 
Gasch [10] provided a comprehensive investigation of the 
stability behavior of a cracked Jeffcott rotor. The cracked shaft 
analysis of Gasch assumed a constant rotational speed and a 
forced vibration resulting from the system’s residual unbalance. 

 
Recently active magnetic bearings (AMBs) have been 

proposed as actuators to apply force to the shaft of a rotating 
machine [15-18]. This paper discusses some of the issues to be 
addressed to enable this approach to become a robust condition 
monitoring technique for cracked shafts. The modeling of 
cracked rotor is presented along with the results of the 
simulated cases involving the configuration of experimental 
test rig employed for crack detection study. The description of 

the rig, experimental approach and experimental results for 
undamaged and damaged rotors are presented. 

 

EQUATIONS OF MOTION OF CRACKED ROTOR 
 The analysis of a rotor-bearing system may be performed 
in fixed or rotating co-ordinates. If neither the bearings and 
foundations nor the rotor is axi-symmetric then the resulting 
differential equations, whether described in fixed or rotating 
coordinates, will be linear equations with harmonic 
coefficients. Typically foundations of a large machine will be 
stiffer vertically than horizontally and in this case the cracked 
rotor will not be axi-symmetric when the crack is open. Thus 
there is no compelling reason to used fixed or rotating 
coordinates for the analysis. To determine the stiffness of the 
rotor as the crack opens and closes it is easier to work in co-
ordinates that are fixed to the rotor and rotate with it. The 
reduction in stiffness due to a crack is then calculated in 
directions perpendicular to and parallel to the crack face, and 
these directions will rotate with the rotor. Having determined 
the rotor stiffness in rotating coordinates we transform the 
stiffness matrix to fixed coordinates and join the stiffness to the 
system inertia to obtain the equation of motion in fixed 
coordinates. 
 
 Let the stiffness matrix in rotating co-ordinates for the un-
cracked rotor be  and the reduction in stiffness due to a 

crack be 
0K�

( )c θK� , where θ is the angle between the crack axis 
and the rotor response at the crack location and determines the 
extent to which the crack is open. Thus the stiffness of the 
cracked rotor is 
 

( )0cr c= − θK K K� � � .                           (1) 
 
This stiffness matrix is transformed from rotating to fixed co-
ordinates using the transformation matrix ( )tΩT , to give, 
assuming the un-cracked rotor is axi-symmetric, 
 

( ) ( )T T
0 0 ,cr c c t= − θ = − θK T K T T K T K K� � .          (2) 

 
Let the deflection of the system be st dy= +q q q  where stq

dy

 is 
the static deflection of the un-cracked rotor due to gravity, and 

 is the dynamic deflection due to the rotating out of balance 

and the effects of the crack. Thus,  and , and 
the equation of motion for the rotor in fixed co-ordinates is 

dyq

dy=q q� � =q q�� ��

 
( ) ( )( ) ( )0 ,dy dy c st dy ut+ + + − θ + = +Mq D G q K K q q Q W�� �    (3) 

 
where  and  are the out of balance forces, and the 
gravitational force respectively. Damping and gyroscopic 

uQ W
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effects have been included as a symmetric positive semi-
definite matrix  and a skew-symmetric matrix G , although 
they have little direct bearing on the analysis. If there is axi-
symmetric damping in the rotor then there will also be a skew-
symmetric contribution to the undamaged stiffness matrix, . 
We refer to Equation (3) as the “full equations”. 

D

0K

 
 The steady state deflection of the rotor varies over each 
revolution of the rotor since  varies. However, the stiffness 
reduction due to the crack is usually small, and we may make 
the reasonable assumption that 

cK

( )0 ,c tθK K� . With this 
assumption the steady state deflection is effectively constant 
and equal to the static deflection, stq , given by 
 

0 st =K q W .                                        (4) 
 
Equation (3) then becomes 
 

( ) ( )( )0 ,dy dy c dy ut+ + + − θ =Mq G q K K q Q�� �D .      (5) 
 
 The second approximation commonly used in the analysis 
of cracked rotors is weight dominance. If the system is weight 
dominated it means that the static deflection of the rotor is 
much greater than the response due to the unbalance or rotating 
asymmetry, that is st dq q� y . For example, for a large 

turbine rotor the static deflection might be of the order of 1 mm 
whereas at running speed the amplitude of vibration is typically 
50 μm. Even at a critical speed the allowable level of vibration 
will only be 250 μm. In this situation, the crack opening and 
closing is dependent only on the static deflection and thus 

, where Ω is the rotor speed and  is the initial 
angle. Thus Equation (5) becomes 

0tθ = Ω + θ 0θ

 
( ) ( )( )0dy dy c dy ut+ + + − =Mq G q K K q Q�� �D          (6) 

 
where  is now independent of θ. cK
 

MODELS OF A BREATHING CRACK 
 The breathing crack was initially studied by Gasch [10] 
who modeled the crack as a “hinge”. In this model the crack is 
open for one half and closed for the other half a revolution of 
the rotor, and the transition from open to closed (and vice-
versa) occurs abruptly as the rotor turns. Mayes and Davies 
[11-12] developed a similar model except that the transition 
from fully open to fully closed is described by a cosine 
function, that will be used in this paper. Penny and Friswell 
[13-14] compared the response due to different crack models 
and considered the effect on the dynamic response of the rotor.  
 

 In this paper the fully open crack is modeled by reducing 
the element stiffness in orthogonal directions (parallel and 
perpendicular to the crack face). The stiffness matrix of the 
machine when the crack is open, in rotating co-ordinates, is 
then . If weight dominance is assumed, then the opening 
and closing of the crack is periodic at the rotor spin speed. In 
the Mayes model the time dependent stiffness matrix in rotating 
coordinates is 

1K�

 
( ) ( )( )1 0 10.5 1 cosc t t ⎡= × − Ω + θ −⎣K K� � ⎤⎦K�            (7) 

where 1θ  depends on the crack orientation and the initial angle 

of the rotor. When ( )1cos 1tΩ + θ =  the crack is fully closed 

and ( ) 0=cr tK� K�

(

, the un-cracked rotor stiffness, where  is 
defined in Equation (1). Thus the rotor is axi-symmetric when 
the crack is closed. When 

crK�

)1cos tΩ + θ 1= −  the crack is fully 

open so that ( ) 1= K�cr tK� . Note that when the crack is open the 
rotor is asymmetric.  
 
 Converting from rotating to fixed co-ordinates is 
performed using the transformation given in Equation (2). The 
stiffness matrix in stationary co-ordinates, ( )c tK , is a periodic 
function of time only and the full non-linear Equation (3) 
becomes a linear parametrically excited equation. Penny and 
Friswell [14] showed that the model generates a constant term 
plus 1X, 2X and 3X rotor angular velocity components in the 
stiffness matrix.  
 
CONDITION MONITORING USING ACTIVE MAGNETIC 
ACTUATORS 
 Active magnetic bearings (AMB) have been used in high-
speed applications or where oil contamination must be 
prevented, although their low load capacity restricts the scope 
of applications. Recently a number of authors have considered 
the use of AMBs as an actuator that is able to apply force to the 
shaft of a machine [15-18]. If the applied force is periodic, then 
the presence of the crack generates responses containing 
frequencies at combinations of the rotor spin speed and applied 
forcing frequency. The excitation by unbalance and AMB 
forces produces combination resonances between critical speed 
of the shaft, the rotor spin speed and the frequency of the AMB 
excitation. The key is to determine the correct excitation 
frequency to induce a combination resonance that can be used 
to identify the magnitude of the time-dependent stiffness 
arising from the breathing mode of the rotor crack. 
 
 The force applied on the rotor by the AMBs must be 
included in the equations of motion. Thus Equation (6) 
becomes 
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( ) ( )( )0dy dy c dy ut+ + + − = +Mq D G q K K q Q Q�� � AMB     (8) 

where  is the external forces applied to the rotor by the 
active magnetic bearing. This force will probably be chosen to 
be harmonic, either in one or two directions. Other waveforms 
would be possible if they were perceived to offer some 
advantage. 

AMBQ

 
 The key aspect of the analysis is that the system has three 
different classes of frequencies, namely the natural frequencies 
(or critical speeds), rotor spin speeds, and the forcing 
frequencies from the AMB. The parametric terms in the 
equations of motion (or non-linear terms in the full equations) 
cause combinational resonances in the response of the machine. 
Mani et al. [16, 18] and Quinn et al. [17] used a multiple scales 
analysis to determine the conditions required for a 
combinational resonance, which occurs when 
 

2 , for 1, 2,in nΩ = Ω −ω = ± ± ±3           (9) 
 
where Ω is the rotor spin speed,  is the frequency of the 
AMB force, and  is a natural frequency of the system. This 
analysis was based on a two degree of freedom Jeffcott rotor 
model with weight dominance, equivalent to that described in 
this paper. Mani et al. [18] also considered the effect of 
detuning, that is when the excitation is close to this exact 
excitation frequency for resonance, and investigated the effect 
on the magnitude of the primary resonance close to the natural 
frequency of the machine. In the examples the running speed of 
the machine was five times higher than the natural frequency. 
This ratio is not practical since there is likely to be a second un-
modeled resonance below the running speed. Indeed, the fact 
that higher resonances are not modeled is a serious omission, 
particularly as the combinational resonances are likely to excite 
any higher frequency resonances. 

2Ω

iω

 

THE TIME SIMULATION 
 The analysis thus far has indicated the combinational 
resonances that are likely to occur in a machine with a 
breathing crack, excited by a magnetic actuator. Most of the 
analysis in the literature has been performed on simple two 
degree of freedom models of the machine, with simplifying 
assumptions concerning the crack model, gyroscopic effects, 
higher modes and so on. In order to check the robustness of the 
frequency content of the machine response a time simulation 
will be performed on a detailed model of the machine. This will 
allow realistic features of the real machine to be easily 
incorporated. To ensure the transient response decays within a 
reasonable time, damping is added to the bearings and/or disks. 
The equations of motion are integrated using the Runge-Kutta 
method. However the number of degrees of freedom of a 
detailed finite model is likely to be large, requiring a long 
computational time to simulate the response. Thus the 

equations of motion in the rotating frame are reduced using the 
lower mode shapes of the undamped and undamaged machine, 
neglecting gyroscopic effects. A sufficient number of modes 
should be included to simulate the range of excitation 
frequencies, and also any significant combinational resonances. 
This reduction has two beneficial effects; not only are the 
number of degrees of freedom reduced, leading to a lower 
computational cost per time step, but also the higher 
frequencies are removed, thus allowing a larger time step. 
 
 The reduction procedure is to calculate the eigenvectors of 
the undamped and undamaged machine as 
 

2
0 0i i⎡ ⎤−ω + =⎣ ⎦M K 0φ                               (10) 

 
where 0iω  and iφ  are the i th natural frequency and mode 
shape. If the lower r modes are retained then the reduction 
transformation is 
 

[ ]1 2r =T …φ φ φr .                              (11) 
 

The reduced equations of motion, assuming the mode 
shapes are mass normalized, are then 
 

( ) ( )( )0 Ar r r r rc r ru rt+ + + − = +q D G q K q Q Q�� � Λ MB

,

    (12) 
 
where 
 

AMB AMB

, , ,

, ,

T T
dy r r r r r r r r r r

T T T
rc r c r ru r u r r

= = =

= = =

q T q D T D T G T G T

K T K T Q T Q Q T Q
    (13) 

 
and ( )2 2 2

0 01 02diag , , , r= ω ω ω…Λ 0

 The approach is demonstrated on a machine with the rotor 
supported on two ball bearings and one active magnetic 

 is the diagonal matrix of 

undamped and undamaged eigenvalues. 
 
 The equations are integrated until a steady state has been 
established and then the FFT is calculated. The steady state 
response should only contain the excitation and rotor spin 
frequencies, and the combinational resonances, and therefore 
the spectrum of the response should only contain discrete 
frequencies. However, leakage is likely to occur because of the 
difficulties in choosing a sample period so that every sinusoidal 
component in the response has an integer number of cycles in 
the sample. The effect of leakage may be reduced by using time 
window functions. Furthermore the sample period must be 
sufficiently long to ensure that the frequency increment is small 
enough to distinguish the individual frequency components. 
 

CASE STUDY 
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actuator. The simulated machine is based on the experimental 
test rig described in the next section. Fig. 1 shows a schematic 
of the machine and indicates the 30 finite elements used to 
model the rotor. The shaft diameter is 15.875 mm and the shaft 
length is 0.659 m. The diameter of the active magnetic bearing 
rotors and radial actuator is 47.625 mm. The disk has a 
diameter of 127 mm and a thickness of 12.7 mm. The shaft is 
running on single row deep groove ball bearings which are 
modeled as constant stiffness bearings with stiffness 3 MN/m at 
nodes 2 and 29, as shown in Fig. 1. Although the rotor is 
configured to be supported by conical AMBs, in this study for 
simplicity these are not activated. Fig. 2 shows the first two 
pairs of mode shapes at 10000 rpm, and Fig. 3 shows the 
Campbell diagram up to a rotor spin speed of 25000 rpm.  
 

 
 

Figure 1.  The finite element model of the test rig. 

 
 

 

 
 

Figure 2.  The first two flexible modes pairs of the undamage  
machine at 10000 rpm. 

 
 

d

 
 

Figure 3.  The Campbell diagram of the undamaged m hine. 
 

 
An unbalance of 1 kg-mm is assumed on the disk. The 

nusoidal force from the magnetic actuator is assumed to be 

200 

ac

 
si

N peak-peak. The crack is located between the disk and the 
active magnetic actuator, and in the simulation is assumed to be 
within the element nearest the disk. The stiffness reduction for 
the fully open crack is taken to be 30% and 20% in the two 
orthogonal directions. The rotor spin speed is assumed to be 
5400 rpm (90 Hz). To ensure the transient response decays 
within a reasonable time, the bearings are assumed to have a 
damping of 10 Ns/m, and, in addition, a damper with 
coefficient of 100 Ns/m is simulated between the disk and 
ground. The equations of motion in the rotating frame are 
reduced using the lower 12 modes. Fig. 4 shows the response 
of the rotor at the disk when the machine is undamaged, and 
the magnetic actuator is turned off. As expected, the steady 
state response is solely due to unbalance and occurs only at the 
rotor spin speed of 90 Hz.  

 
Figure 4.  The response of the undamaged machine. 

 
 
When the crack is introduced the harmonics of rotor spin 

speed also occur, as shown in Fig. 5. As expected, the crack 
induces frequencies being multiples of rotor speed. Fig. 6 
shows the response of the undamaged machine with the 
magnetic actuator excited the rotor at 55 Hz, which is close to 
the first resonance frequency of 48 Hz.  

 

 
Figure 5.  The response of the damaged machine. 
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Figure 6.  The response of the undamaged machine with a 

magnetic actuator frequency of 55 Hz. 
 
 
 Suppose now that the magnetic actuator is used to excite 
the machine with the cracked rotor. The first resonance occurs 
at approximately 48 Hz, and for a rotor spin speed of 90 Hz, 
and  in Equation (9), the excitation frequency is 42 Hz. 
Fig. 7 shows the response in this case. The increased response 
at the actuator frequency of 42 Hz is barely discernable due to 
the response at the first resonance at approximately  48 Hz. The  

1n =

 

 
Figure 7.  The response of the damaged machine with a magnetic 

actuator frequency of 42 Hz. 
 
 
response at the rotor spin speed (90 Hz) and its harmonics (180 
and 270 Hz) are clear. There are also peaks at 132, 138, 222, 
228 and 312 Hz due to combinational resonances. 

 
Figure 8 shows the response at the disk if the rotor is 

excited by the magnetic actuator with a frequency of 132 Hz 
(  in Equation (9)). Again the increased response at the 
actuator frequency of 132 Hz is barely discernable. The 
response at the rotor spin speed and its harmonics is again 
clear. In this case there are also clear peaks at 42, 138, 222 and 
312 Hz due to combinational resonances. 

2n =

 

 
Figure 8.  The response of the damaged machine with a magnetic 

actuator frequency of 132 Hz. 
 
 

EXPERIMENTAL FACILITY 
 The Center for Rotating Machinery Dynamics and Control 
(RoMaDyC) at Cleveland State University has recently 
acquired a rotor crack detection test rig, Fig. 9, with active 
magnetic bearings (AMB) shown in Fig. 10. The system was 
built by Revolve Magnetic Bearings Inc., a subsidiary of AB 
SKF, Sweden. Each AMB is an 8-pole radial or conical 
heteropolar design and is equipped with four variable 
reluctance type position sensors. Each magnetic actuator 
provides actuation in two perpendicular axes, which are rotated 
45° from the vertical.  In addition, using the conical design 
allows an axial and/or radial excitation to be imparted to the 
rotor, which might be essential for the development of health 
monitoring techniques for cracked disks. The actuators are 
axially adjustable, i.e., can be placed at almost any axial 
location. The actuators are calibrated and applied currents 
and/or fluxes are monitored to determine applied forces. The 
waveform of external excitation is introduced in 
MATLAB/SIMULINK and transferred to hardware via 
dSPACE DS1103 board.  
 
 

 
 

Figure 9.  Rotor crack detection rig.  
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Figure 10.  Active magnetic force actuator. 
 

  
 The 48 V DC, 0 to 15,000 rpm brush type motor is 
controlled by a digital controller. Rotor speed and motor torque 
are monitored and the controller will shut off the power to the 
motor in the event of a fault or alarm. The shaft is connected to 
the motor using a lightweight, flexible coupling that allows 
radial and axial movement of the shaft. The experimental test 
stand is designed to operate either on ball bearing shaft 
supports or on AMBs. The ball bearings are oil lubricated, deep 
groove precision ball bearings rated for full test rig speed of 
15,000 rpm. They are mounted in support housing, similar to 
the touchdown bearings, and the support housing can be bolted 
to the side of either radial or conical magnetic bearing 
pedestals. The static load capacity of radial and conical AMBs 
is 266 N (60 lbf) with a dynamic load capacity of 48 N (11 lbf) 
at 1,000 Hz. The nominal air gap of the magnetic bearings is 
381 µm (0.015 in) and the design gap between the auxiliary 
bearings and the landing sleeves on the rotor shaft is 190 µm 
(0.0075 in). The balance disks with threaded holes drilled for 
balancing are mounted onto the shaft using a hydraulic mount 
hub. 
 

Two digital controllers provide control loop updates at a 
10 kHz frequency and they essentially control and power the 
magnetic bearings while allowing the user to view useful 
information about the system under operation. The dSPACE 
platform is used to have complete control over the experiment 
by providing access to every sensor signal, user defined control 
command, and operational parameter. 

 
Figure 11 shows the measured transfer function between 

the current disturbance and the rotor response. The force 
excitation was applied to the non-rotating rotor by magnetic 
actuator at node 13 (see Fig. 1) as a result of injecting the 
current sweep over the frequency from 0 to 1,000 Hz. The rotor 
response was measured by sensors located at the node 15. The 
measured resonances are 47, 225, 435, and 636 Hz, and they 
agree well with rotordynamic predictions presented in previous 
section. 
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Figure 11.  The measured transfer function of the undamaged  
machine (no rotation).  

 
 

 To approximate the effect of a crack, a notch was cut at 
the location of the shaft between the magnetic actuator and the 
unbalance disk, as denoted in Fig. 1. The notch had a width of 
0.94 mm (0.037 inch) and a depth of 40% of shaft diameter. 
Figure 12 shows the measured response at the node 15 of the 
machine with the damaged (notched) and healthy rotor due to 
the residual unbalance. The response is characterized by major 
peak at the synchronous frequency 36.7 Hz. The noise-induced 
harmonics of the spin speed (2X, 3X, …) can also be seen in 
the response but their magnitude is very small compared to 1X 
frequency component (note the logarithmic scale). It can be 
observed that the response magnitude is higher almost at all 
frequencies for the damaged machine.  
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Figure 12.  The measured response of the damaged and healthy 
machine, Ω=2200 rpm (36.7 Hz), no external excitation. 
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Figure 13 compares the measured response at node 15 of 
the machine with the damaged (notched) and healthy rotor due 
to the residual unbalance and the externally applied at the node 
13 magnetic force excitation having frequency  
( in Equation (9)) and amplitude of 200 N. Figure 14 
presents the simulated results for the same conditions for the 
damaged rotor. Both figures clearly show the rotor spin speed 
and its harmonics (1X, 2X, 3X, …). Also, the response at the 
actuator frequency of 63 Hz can be noted. In addition to these 
responses, in this case, there are visible peaks of combinatorial 
resonances at 26.3, 63, 83.6, 99.7, 120.3 and 136.3 Hz.   

2 63 HzΩ =
3n =
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Figure 13.  The measured response of the damaged and healthy 
machine, Ω=2200 rpm (36.7 Hz), magnetic actuator frequency 

3780 rpm (63 Hz).  
 

0 50 100 150 200
10

-3

10
-1

10
1

10
3

Frequency (Hz)

R
es

po
ns

e 
m

ag
ni

tu
de

 ( μ
m

)

1X

47
63 2X

83.7

99.7

3X

136.4
173

146.7120.3

26.3
10.3

 
 

Figure 14.  The simulated response of the damaged machine, 
Ω=2200 rpm (36.7 Hz), magnetic actuator frequency 3780 rpm 

(63 Hz). 
 
 

All these frequencies are the result of the application of 
external force excitation which produces combination 

resonances based on the magnetic actuator frequency, the 
rotational speed, and the natural frequencies.  The combination 
frequencies present a unique crack signature that could be used 
to detect cracks in the rotor.  
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CONCLUSIONS 

The modeling and experimental approach has been 
presented in attempt to use the changes in the dynamics of a 
rotor to identify and possibly locate crack (and other faults) in a 
rotor at an early stage in their development. The presented 
simulation and experimental results show that the use of an 
active magnetic bearing (AMB) to excite the rotor with a 
harmonic force at an appropriate frequency produces  
components in the system response at many frequencies which 
are combinations of the rotor speed, the AMB excitation 
frequency and the system natural frequency. These 
combination frequencies have a potential to be used to detect 
cracks in the rotor. The presented approach has some merit, but 
further work is needed to produce a robust condition 
monitoring technique.  
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