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Synopsis- Condition monitoring of rolling element bearings through the use of vibration 

analysis is an established technique for detecting early stages of component degradation. 

However, this success has not mirrored at rotational speeds below 16 rpm. At such speeds 

the energy generated from bearing defects might not show as an obvious change in 

signature and thus become undetectable using conventional vibration measuring 

equipment. 

 

This paper presents an investigation into the applicability of stress wave analysis for 

detecting early stages of bearing damage at a rotational speed of 1.12 rpm (0.0187 Hz). 

Furthermore, it reviews work undertaken in monitoring bearings rotating at speeds below 

16 rpm. 
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1. Introduction 

 

This research originated from difficulties with low-speed (0.6 to 1.2 rpm) rolling element 

bearings used in the UK water industry (1,2,3). Types of damage listed included cage 

fracture, scoring of shafts and bearing housings, severe roller wear and grease 

contamination. However, due to the nature of their investigation (2), these defects were at 

an advanced stage and easily detected. Investigating the applicability of Stress wave 

analysis to all the defects detailed above is beyond the scope of this paper; however, it 

presents investigations on the early stages of surface degradation and grease 

contamination. 

 

Mba et. al. (3) attributed bearing failures in their studies to be due to the application of  

grease with an inappropriate base oil viscosity. With several hundred bearings in 

operation the cost of grease removal and replacement is considerably high. Although 

there is a gradual replacement programme in place, there is also a need for a monitoring 

system that can be utilised for early fault detection, regardless of the type of grease 

employed. For this reason the presented research investigated monitoring early defects on 

bearings operating in two types of grease. The first, type A, was a standard grease used 

for medium to high speed bearings (base oil viscosity 180 mm2/s at 40oC), while the 

second, type B, consisted of a base oil viscosity of 1000 mm2/s at 40oC, appropriate for 

the rotational speed of investigation (<2 rpm). 

 
 



2. Limitations of vibration analysis at low rotational speeds 

 

Monitoring bearing degradation by vibration analysis is an established technique and the 

various methods of analysis have been widely published (4,5,6,7,8,9). However, at low-

rotation speeds there are numerous difficulties which have been detailed (10,11,12). The 

main problems can be divided into four sections : 

1. Optimum measurement parameter for low-frequency vibration: Conventional 

vibration systems employ accelerometers, though displacement sensors are best suited 

to low speed frequency analysis.   

2. Instrument limitations for low-frequency analysis: Involves overcoming inherent low-

frequency instrument noise problems, and, low-frequency roll-off limitations of the 

charge amplifier. 

3. Sensor requirements for low frequency analysis: Most sensors have roll-off filters  

that affect the magnitude of signals detected within the roll-off frequency range. 

4. Coupling between the sensor and the data collector: Murphy (12) suggested that a 

strong magnetic clamp be used to attach the sensor to the machine, thus avoiding the 

rocking effects as would be experienced with a hand held probe, thereby reducing 

unwanted noise at very low frequencies. Others (11,13) suggest the use of a coaxial 

cable to minimise any electrical noise pickup, and, to avoid hanging cables to 

eliminate tribo-electric effects at low frequencies.  

 

 

 



3. Review of monitoring techniques  applied to bearings rotating at less than 

16rpm. 

 

The four points highlighted in the previous section make vibration monitoring of low-

speed rotating machinery almost impossible, though some attempts have been made.  

Kuboyama (14) summarised the difficulty with monitoring low speed rotating machinery, 

by stating that "At over 100 rpm, it is easy to diagnose the condition of degradation and 

damage using vibration analysis. This is because vibrations have a great amount of 

energy and occur over a short period. On the other hand, with a rotating machine 

working at less than 100 rpm, it is difficult to diagnose damage or degradation because 

of the small amount of energy and the vibrations occur over a longer period". Several 

techniques for monitoring low-speed bearings were suggested (14), particularly, the Peak 

Level Differential method. This technique was applied to rolling element bearings of the 

same type and size. Noise was rejected by band pass filtering of the bearings natural 

frequencies. 

 

Acceleration peaks exceeding pre-set threshold levels were held by what Kuboyama (14) 

referred to as a “peak picker”. The peak level differentials between both bearings and the 

number of occurrences were calculated, when values exceeded a certain criteria the 

bearing was judged to have sustained damage. This technique required the comparison of 

two bearings and was applied to pinch roller bearings that were operated at 1 rpm. 

Successful detection of flaking on the surface of the inner race on one of the bearings was 



claimed, however, Kuboyama (14) does not specify the type of measuring equipment, nor 

characteristics of the sensor used.  

 

Canada et. al. (11) developed a Slow Speed Technology (SST) system for measuring 

vibrations on low-speed machinery. It was based on separating the high frequency noise 

of the machine from the low frequency signatures of interest.  This was accomplished 

with an analog integrator. It was stated that although analog integrators distort the low 

frequency components, this distortion is deterministic, hence the effect can be corrected. 

The method was shown to give improved performance when compared to digital 

integration and was applied to a variable low-speed rotor unit with an adjustable cam 

rotating at between 15 to 150 rpm. Claims that this method could be applied at speeds as 

low as 10 rpm were made. 

 

Robinson et. al (13) proposed a new methodology for vibration monitoring of low speed 

machinery. This built on the SST method described earlier (Canada et. al. [11]). It 

involved segmenting the signal into time intervals, dependent on the sampling frequency, 

and obtaining peak values for continuing time intervals until the desired number are 

captured for processing. Processing peak values involved spectral analysis. Field 

measurements using low-frequency accelerometers on bearings rotating at 10 rpm 

showed that the peak value technique detected inner race defects one month prior to 

failure.  

 



More relevant to this paper is the research on acoustic emission (AE) and its applicability 

for monitoring low-speed bearings. Sato (15) investigated the use of AE to monitor low-

speed bearing damage by simulating metal wipe in journal bearings at 5.5 rpm. It was 

observed that acoustic bursts were generated as a result of slight metallic contact and the 

amplitude of the waveform became larger with increasing metal wear.  

 

McFadden et. al. (16) explored the use of acoustic emission transducers for the 

monitoring of rolling element (angular contact) bearings at speeds varying from 10 to 

1850 rpm. The sensors were placed on the bearing housing. A fault, simulated by a fine 

scratch on the inner raceway, formed the basis of this experiment. At low rotational 

speeds (10 rpm) the AE transducer appeared to respond to minute strains (local 

distortions) of the bearing housing caused by the concentrated loading of each ball in the 

bearing.  These minute strains appeared as spurious spikes superimposed on the ball pass 

frequency. Measurements with conventional strain gauges failed to detect the strain on 

the bearing housing. The ball pass frequency was detected with a fault signature 

superimposed onto the original signal in the time domain. 

 

McFadden  (16) concluded that at low speeds with steady loads, base bending/strain of 

the bearing housing could enable the AE transducer to detect signatures from very small 

defects in rolling element bearings, while at higher speeds base bending appears as low 

frequency noise.  

 



Smith (17) was involved in the experiment mentioned above and in a separate paper 

reiterated McFadden’s (16) findings though puzzled at the behaviour of the AE sensor 

used, stating " the form of response of the AE sensor was puzzling since the transducer 

was responding to once-per-ball distorting in the casing at frequencies as low as 1Hz. AE 

transducers are not supposed to respond to frequencies as low as these". 

 

It is apparent that condition monitoring of low-speed machinery using vibration analysis 

and acoustic emissions is fraught with difficulties and there are limited claims of success. 

Only one paper was directly relevant to this research (1 rpm), unfortunately the author 

(Kuboyama [14]) failed to specify the equipment used for detection.  

 

4. Suitability of stress waves (SW) as a monitoring tool. 

 

Stress waves are defined as the transient waves generated by the interaction of two 

surfaces that are in relative movement. In this instance, rubbing between metal surfaces 

in contact. The formation, deformation, and fracture of surface irregularities or asperities, 

which is associated with friction of metals (13), and the motion of entrapped wear debris 

causing ploughing, will result in the generation of stress waves. This makes it an ideal 

tool for application to condition monitoring of slow-speed rotating rolling element 

bearings.  

 

 

 



5. Test-rig and measuring equipment 

 
A test-rig was designed to simulate early stages of bearing defects. The rig consisted of a 

motor/gearbox system, two support slave bearings, a test bearing and a hydraulic cylinder 

ram, see figure 1. The test bearing was a split Cooper spherical roller. This type of 

bearing was chosen due to its ability to be disassembled without removing the slave 

bearings, thereby allowing the test bearing to be regularly inspected throughout the test 

programme. The technical specifications of the test bearing are shown in table 1. The 

support bearings were of a much larger size than the test bearing. These were type SKF 

22222EK, with an internal (bore) diameter of 100mm. 

 

Table 1 Split cooper bearing technical specifications 

Bearing type:  Split Cooper bearing Series 01B65 EX 

Internal (bore) diameter, d: 65 mm 

External diameter, D: 114.30 mm 

Static load rating, LS  110 kN 

Length of the roller, l: 19.05 mm 

Diameter of the roller, rd: 14.287 mm 

Number of rollers, Z: 12 

 



 

Figure 1 Bearing test-rig 

 

The motor/gear box system used was a KA96R62 Helical-Bevel geared motor, providing 

a rotational speed of 1.12rev/min. A radial load was applied to the top of the test bearing 

via a hydraulic cylinder ram supported by a ‘H’ frame. A constant load of 55.00KN was 

applied to the test bearing for all the experimental tests, providing a safety factor of 2.  

 

The process of data acquisition involved fixing a receiving transducer onto the test 

bearing, amplification and digitising of measured signatures, and signal processing. A 

schematic diagram illustrating the data acquisition system used throughout all 

experimental tests is shown in figure 2. A commercially available piezoelectric type 

sensor (Physical Acoustics Corporation type WD) with an operating frequency range 

between 100 kHz and 1000 kHz at temperatures ranging from -65 to 177°C, was used. 

The pre-amplifier used on all experimental tests was a PAC (Physical Acoustics 



Corporation) type 1220A, specially designed for AE measurements, having a bandwidth 

of between 20 kHz and 1.2 MHz, at 20 V peak to peak. The pre-amplifier had a noise 

specification of less than 2µV plus a switch-able gain of 40-60 dB. A dual-channel 8-bit 

analogue-to-digital converter (ADC) Rapid Systems R2000 was used for data acquisition. 

The system provided sampling rates of between 1 Hz and 20 MHz, 128Kb memory 

capability per channel, 100 per cent pre-and post-trigger capability and a selectable gain 

range of between 0.256 and 1280V. The electronic noise level on the ADC system, with 

60dB amplification, had a peak voltage of 30 mV. 

 

The measurement transducer was cemented to the top of the test bearing housing to 

obtain uniform force and consistent measurements throughout the experimental tests. The 

sampling rate employed for all tests was 5MHz. During the experiments, stress wave 

(SW) signatures were initially obtained from a good bearing to provide baseline, or 

background noise data. Stress wave signatures for each simulated fault condition were 

recorded for several revolutions of the shaft until 30 data sets were obtained.  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 2 Schematic diagram of data acquisition system 

 

6. Experimental procedure 

 
 
Attempts had been made to generate a natural defect onto the bearing components by 

fatiguing. However, after allowing the test bearing to operate for a period of 800 hours 

whilst under conditions of grease starvation, no defect and/or wear was visually 

detectable on any of the bearing components. This was attributed to the low speed 

phenomena of 1 rpm and lack of contaminants to initiate and accelerate defect. Since 

fatigue testing was unable to create any natural defect on the bearing components, seeded 

surface defects were introduced. These included: 

6.1 A uniform surface line defect manufactured on the outer race, inner race 

and rolling element using an Electro Discharge Machine (EDM) (18, 19, 

20, 21). This defect was intended to simulate early stages of surface 
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degradation. The nominal width and depth of the line defect on each 

component was measured at 0.5100mm and 0.7500mm respectively, and 

these measurements were undertaken with a Laser Form Talysurf 

machine.  

 

6.2 Localised surface defects were also seeded on bearing components using 

the spark erosion technique (22, 23, 24, and 25). This involved inscribing 

a defect across the full width of the working surface, and, resulted in 

surface damage that resembled pitting. This was intended to simulate a 

surface defect that had progressively worsened, in this instance, from the 

EDM defect. The defect size on each component was approximately 

3.0mm wide and an effective depth of 75µm.  

 

6.3 Finally, introducing debris particles into the test bearing simulated grease 

contamination. The debris particles were obtained from cast steel S230 

shot peening materials with a nominal diameter of 0.230mm. 

 

For all three simulated cases detailed above, stress wave signatures were collected for 

two types of grease, A and B. Grease A is a general application grease while grease B is 

formulated specifically for a slow-speed rotating machinery. Properties of these grease 

types are shown in Table 2. Tests were undertaken while the housing of the test bearing 

was completely filled with grease. Weighing the grease to ensure repeatability throughout 

the tests identified the filling capacity of the test bearing.  



 

Table 2  Properties of the lubricants used in the study 

Lubricant Kinematic viscosity,

mm2/s at 40oC 

Pressure exponent of 

viscosity, 

10-9 m2/N 

Density, 

kg/m3 

Grease A 180 25 880 

Grease B 1000 25 880 

 

7. Experimental results 

 

The method of data measurement involved setting a trigger level above the electronic 

noise level of the data acquisition system. This noise level peaked at 30mV and was 

determined by settings on the acquisition system and pre-amplifier (60dB).  

 

7.1 Operational baseline measurements 

 

To obtain operational background noise, the test-rig was run without any seeded fault on 

the bearing, for the two grease types. Continuos data was recorded with a pre-trigger 

level set above 30mV. A typical signature with a corresponding frequency spectrum can 

be seen in figure 3. Observations and analysis showed that the maximum amplitude for 

this condition did not exceed 170mV. Therefore, on tests with seeded defects the pre-

trigger level was set slightly above 170mV in order that SW’s associated with defects 

could be measured. 
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Figure 3 Typical time signature with corresponding frequency spectrum for a 

good bearing 

 

7.2 Seeded fault simulation 

 

7.2.1 Electro Discharge Machined defects 

 

No SW signatures were detectable for faults seeded by this technique, i.e., no SW’s were 

detected above the operation baseline trigger level.  

 



7.2.2 Spark Erosion 

 

Faults seeded with this technique resulted in stress wave activity above the operation 

baseline trigger level. The signatures were correlated to the fault condition by monitoring 

the position of bearing components at the time of acquisition, i.e., signatures were 

generated only when the seeded fault was within the loaded region of the bearing. 

Typical SW signatures for the various defect conditions, with corresponding frequency 

spectra, are displayed in figures 4 to 6. The SW’s showed their duration to be no more 

than 1msec, equivalent to 5000 data points at a sampling rate of 5MHz.  
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Figure 4 Typical time signature with a corresponding frequency spectrum, 

outer race defect 
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Figure 5 Typical time signature with corresponding frequency spectrum, inner 

race defect. 
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Figure 6 Typical time signature with corresponding frequency spectrum, roller 

defect 

 

7.2.3 Grease contamination 

 

A typical signature for grease contamination, with, corresponding frequency spectrum, is 

displayed in figure 7. 
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Figure 7 Typical time signature with corresponding frequency spectrum, 

grease contamination 

 

 

8. Classification and Signal processing 

 

Typical acoustic emission features, amplitude and energy, were employed to identify and 

classify SW signatures associated with various seeded defects and background noise. A 

total of thirty SW signatures were obtained for each simulated fault condition.  The 

maximum amplitude (mV) and energy (Vsec 10-3) of each SW signature was extracted. 

These values were plotted against the associated SW signature for the varying greases 



employed, see figures 8 to 11. To aid interpretation, a polynomial fit based on a 5th order 

model was applied.  

 

Definitions for figures 8 to 11 :- 

ORD 

IRD 

RD 

GOOD 

DEBRIS 

Outer race defect 

Inner race defect 

Roller defect 

Good bearing 

Debris contamination 

  



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2
P

ea
k 

A
m

pl
itu

de
, V

ol
ts

Peak Amplitude: Defects and good bearing, Grease A

ORD   
IRD   
RD    
Good  
Debris

Debris 

ORD 

RD 

IRD 

Good 

 

  Individual Stress Waves signature 

Figure 8 Peak amplitude values for all defects, grease type A. 
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Figure 9 Peak amplitude values for all defects, grease type B. 
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Figure 10 Energy values for all defects, grease type A.  Note: Values for SW 
signatures 3 and 12 were 41.74 and 40.60 (micro-volts-seconds) 
respectively. These values were included in the computation of the 
polynomial fit. 
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Figure 11 Energy values for all defects, grease type B.  Note: Values for SW 
signatures 3 and 12 were 35.95 and 48.60 (micro-volts-seconds) 
respectively. These values were included in the computation of the 
polynomial fit. 

 

Thus far, the process of distinction has been applied to data obtained under ideal 

experimental conditions, where all the influencing factors are controlled.  It was therefore 

though prudent to establish a relatively more robust technique for classifying and 

grouping the various fault conditions. The philosophy behind this was that on-site, the 

interpretation of signatures from real operational bearings might not be distinguishable by 

extracting parameters such as amplitude and energy.  This is due to the very random 



nature of noise that could be generated on bearings operating under varying loads and 

environments. Furthermore, the levels of background noise, which would vary from one 

bearing to another, could be comparable with levels of our fault simulations; therefore, 

identification of a defect would be impossible. Background noise simulated in the 

laboratory for this investigation was under a controlled non-hostile environment. Mba et. 

al. (1,2) has shown that transmission paths can aid in source location of SW signatures by 

classification of Auto-Regressive (AR) coefficients associated with each SW. Since the 

defects simulated in this paper originate from different parts of the bearing, having 

different transmission paths to the receiving transducer, SW generated from these defect 

positions will have characteristic features that are unique to their particular transmission 

path. As it has been shown (1,2) that AR coefficients can represent the shape of a 

signature, which in turn is dependent on transmission path to the receiving sensor, 

classification based on an AR model was undertaken.  

 

The computation of AR coefficients is derived from linear prediction and a review of 

parametric models such as AR has been detailed (26,27,28). Application of the Forward 

Prediction Error and Akaike Information Criteria (26,27), used for the selection of the 

optimal AR model order on various stress waves generated on the test-rig, showed that a 

15th order model was sufficient for characterisation of SW signatures associated with 

seeded defects and background noise. The computation of AR coefficients was 

undertaken with the Levinson-Durbin algorithm (26). The use of a 15th order model 

implied that each SW signature was represented by sixteen coefficients. The process of 

classifying these coefficients employed a cluster technique known as K-means (29). This 



is a non-hierarchical technique that measures the Euclidean distances between the 

centroid value of the AR coefficients associated with each signature. This technique was 

employed and detailed by Mba et. al (1,2) and initially involves grouping the coefficients 

with the least Euclidean. Next, the group’s centroid position is recalculated, and the AR 

coefficients with the minimum distance to the newly formed group are clustered with it. 

This procedure is repeated every-time a component is added to the cluster until all the 

components are grouped. The results were displayed on dendrograms (29). 

 

Auto-Regressive coefficients associated with SW signatures from inner, outer and roller 

defects, and grease contamination, were compared with those from operational 

background noise by clustering, see figures 12 to 21. In addition, all AR coefficients 

associated with all simulated faults were grouped and clustered, see figures 22 to 27.  

 

 

Definitions for figures 12 to 27:- 
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Figure 12 Classification of SW’s associated with background noise of a good 

bearing, grease type A. 
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bearing, grease type B. 
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Figure 14 Classification of SW’s associated with background noise and outer 

race defects, grease type A. 
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Figure 15 Classification of SW’s associated with background noise and outer 

race defects, grease type B. 
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Figure 16 Classification of SW’s associated with background noise and roller 

defects, grease type A. 
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Figure 17 Classification of SW’s associated with background noise and roller 

defects, grease type B. 
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Figure 18 Classification of SW’s associated with background noise and inner 

race defects, grease type A. 
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Figure 19 Classification of SW’s associated with background noise and inner 

race defects, grease type B. 
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Figure 20 Classification of SW’s associated with background noise and grease 

contamination, grease type A. 
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Figure 21 Classification of SW’s associated with background noise and grease 

contamination, grease type B. 
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Figure 22 Classification of SW’s associated with background noise and all fault 

conditions, grease type A.  
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Figure 25 Classification of SW’s associated with background noise and all fault 

conditions, grease type B. 
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9. Discussions 

 

Stress waves emitted from defect simulations were attributed to the relative movements 

between mating components. Signatures associated with operational baseline data (noise) 

showed the maximum amplitude to be in the order of 170mV. By setting a trigger level 



above this value, and undertaking individual fault simulations, only signatures relating to 

a specific fault condition were captured.  

 

9.1 Electro Discharge Machine (EDM) technique 

 

Experimental observations and analysis of the SW signatures associated with the EDM 

seeded defects revealed that the generation of SW’s was random in nature, as with 

operational baseline noise. For instance, having seeded a fault onto the outer race, it was 

expected that SW’s would be generated at a frequency corresponding to the outer-race 

passage frequency (5.65rpm). However, no SW signature was detected. This scenario 

applied to all defects seeded with the EDM technique and implied that there is a limit of 

surface distortion below which a fault will pass undetected by the monitoring system. 

This is seen as a drawback to the technique presented, suggesting that very early stages of 

surface defect may go undetected until such a time that the defects has ‘matured’ to a  

critical level of surface distortion. 

 

9.2 Faults seeded with the Spark eroding technique 

 

Defects seeded with the spark erosion technique emitted SW signatures for all 

simulations. During simulation of the outer race defect (ORD), SW activity occurred 

approximately every ten seconds. This corresponded to the calculated outer-race passage 

frequency of 5.65 rpm. Also, observations showed that in some instances more than one 

SW signature was emitted as the roller passed the outer-race defect. This was attributed 



to the fact that each roller had to rub against the full 3mm width of the defect. As a direct 

result, SW can be generated at various positions along the 3mm length of the defect. 

Furthermore, SW signatures associated with the inner-race defect (IRD) and roller defect 

(RD) were only detected for a certain period of time, i.e., did not occur continuously 

throughout one complete revolution of the cage. This phenomenon was due to the fact 

that SW was only generated when the IRD and RD were in the loading zone.  

 

Typical SW’s detected from simulations showed their duration to be no more than 1msec. 

The corresponding frequency spectra ranged from 100KHz to 600KHz, though the 

strength at varying frequencies differed for different fault conditions. 

 

Comparisons of the amplitude and energy levels associated with individual SW’s showed 

trends that were distinguishable, for the two types of grease. The lowest amplitude and 

energy values were associated with operational noise. Furthermore, a gradual increase in 

amplitude and energy levels was evident for inner-race, roller, outer-race defects and 

grease contamination respectively. A polynomial fit was employed to highlight this trend, 

see figures 8 to 11.  

 

The increasing values of amplitude and energy were attributed to the closeness of the 

source of defect to the sensor. For instance, as the sensor was placed on the bearing 

housing, it was expected that the greatest amplitude/energy of SW should come from the 

outer race (under constant load conditions). The outer race rests on the bearing housing, 

consequently, the SW only has two interfaces to overcome to reach the receiving sensor, 



i.e., the interface between the outer race and the housing, and, the housing and the 

receiving sensor. 

 

Lower values of amplitude/energy were emitted from the inner race defect. As the 

signature has more interfaces to overcome before reaching the receiving sensor, it was 

not surprising that attenuation has played a vital role in reducing its strength. Stress wave 

values of amplitude and energy emitted by the roller defect were scattered between 

corresponding levels of the inner and outer race. This was attributed to the position of  

roller rubbing at the time of data acquisition, for instance, a higher level of 

amplitude/energy was expected when the roller defect made contact/rubbed with the 

outer race. A signature of reduced amplitude/energy levels was expected as the roller 

defect rubbed with the cage, and an even more reduced strength of signature was emitted 

due to defect contact with the inner race. This mechanism explains the scatter of roller 

defect amplitude and energy values between the inner and outer race values. All the 

results discussed above were observed for both types of grease.  

 

9.3 Grease contamination 

 

Stress waves associated with simulating grease contamination generated the highest 

values of amplitude and energy. This was attributed to the crushing of debris particles at 

the working interfaces. Differences in individual values of amplitude/energy, or the 

scatter of values, were attributed to the unique transmission paths from the position of 

crush. For instance, crushing of debris trapped between a roller and the outer race would 



have greater values of amplitude/energy than that generated between the roller and the 

inner-race. This phenomenon was attributed to attenuation. 

 

9.4 Classification 

 

Whilst the results already presented clearly show that extracting amplitude/energy values 

from SW could help indicate bearing deterioration, a more robust system of classification 

was investigated. The reason for this was that bearings on-site/in-operation could have 

background noise levels that were comparable to amplitude/energy levels associated with 

our fault simulations, making fault identification impossible. Thus an alternative method 

was developed which involved a clustering technique that utilised the Auto-Regressive 

(AR) coefficients associated with each SW signature. This technique has been shown 

(1,2) to represent the distinct shapes of SW’s, particularly, when they are emitted from 

sources with varying transmission paths, as in this case.  

 

Clustering of AR coefficients associated with background noise SW signatures resulted 

in two cluster groups, figures 12 and 13, however, the distances between these cluster 

groups was relatively small. The main mechanisms responsible for generating 

background/operational noise were, firstly, the rolling action between the rolling 

elements and the races. Secondly, the rubbing action between the rolling elements and the 

non-working surfaces, i.e., the clamping rings. It is probable that these mechanisms 

accounted for the two cluster groups. 

 



By comparing classifications of background noise against all four-fault simulations, it 

was evident that the AR cluster technique showed distinct source groupings, and, was 

applicable to both grease types. In the majority of cases, there was a clear distinction 

between the background noise and fault, evident by the two main cluster groups, see 

figures 14 to 21. However, in some instances three cluster groups were evident, though, 

the clustering of background noise still remained distinct from the other two clusters. 

These two clusters were attributed to changing characteristics of the defect with time, i.e., 

the defect might become smooth. It is thus probable that the change in defect 

characteristics resulted in an emission of distinct shape. In addition, the distinct manner 

that each roller approached the defect on the outer- and inner-races, and, the movement of 

the seeded defects on the roller could also contribute to slight changes in signature shape, 

thus contributing to such clustering results.  

 

The classification of all defect simulation signatures with background noise, exclusive of 

grease contamination, resulted in well-defined clusters, see figures 22 to 27. These 

clusters showed that the source of fault, and unique transmission paths, could be clearly 

distinguished. However, on the inclusion of grease contamination SW signatures to the 

above, the cluster results proved inconclusive. This was not unexpected, as signatures 

from grease contamination could have been triggered from any part of the bearing 

component, thus the grease contamination signatures would cluster to any one of the 

other seeded defect signatures.  

 



Given the scenario of an operational bearing with a fault, it is probable that SW 

signatures measured could contain background noise that was of similar 

amplitude/energy levels as the fault signature, consequently, we would be unable to 

differentiate the signatures by observing amplitude and energy values. However, because 

operational background noise is random in nature (1,2), the shape of its signatures will 

also be random. The shape of SW signatures associated with the fault, in this instance and 

for a short period of time, would generally be of similar pattern. Thus, if clustering of the 

AR coefficients associated with all SW signatures yielded distinct group clusters, this 

would be evident of early signs of deterioration. If no distinct groups were evident, the 

bearing would be passed as defect free, as clustering of AR coefficients associated with 

random shaped signatures (background noise) will result in no clearly defined groups. 

 

10. Conclusion 

 
Investigations into the application of the stress wave technique to condition monitoring of 

slow-speed rotating element bearings have proven extremely successful. The uniqueness 

of the transmission path for the various fault conditions can be utilised to provide early 

fault diagnosis.  

 

Results of the seeded mechanical faults on the test-rig showed that stress waves generated 

from rubbing of mating components were of complex pattern, indicative of their different 

transmission paths. Simulation of surface defects suggested that very early stages of 

surface defect (EDM simulation) may go undetected until such a time that the defects has 

‘matured’ (spark eroding simulation) to a critical level of surface distortion. 



Classification of stress wave signatures from the test-rig showed that the Auto-Regressive 

(AR) coefficients associated with each stress wave provided an efficient and effective 

parameter for diagnosis. This particular technique has its strength in the ability to 

represent the shape of a stress wave by a few AR coefficients. 
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