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SUMMARY

We study model selection for clustered data, when the focus is on cluster specific inference.
Such data are often modelled using random effects, and conditional Akaike information was
proposed in Vaida & Blanchard (2005) and used to derive an information criterion under lin-
ear mixed models. Here we extend the approach to generalized linear and proportional hazards
mixed models. Outside the normal linear mixed models, exact calculations are not available and
we resort to asymptotic approximations. In the presence of nuisance parameters, a profile con-
ditional Akaike information is proposed. Bootstrap methods are considered for their potential
advantage in finite samples. Simulations show that the performance of the bootstrap and the ana-
lytic criteria are comparable, with bootstrap demonstrating some advantages for larger cluster
sizes. The proposed criteria are applied to two cancer datasets to select models when the cluster-
specific inference is of interest.

Some key words: Akaike information; Conditional likelihood; Effective degrees of freedom.

1. INTRODUCTION

Mixed effects models have been widely used to analyse clustered data, which arise in appli-
cations such as longitudinal studies, familial studies and multicentre clinical trials. The focus of
inference under such models can be on the population parameters, such as the fixed regression
effects, on the variance parameters or on the cluster-level parameters, often represented by the
random effects themselves. As an example of the latter, in a multicentre clinical trial where the
treatment effect is found to be heterogeneous among the trial centres, it is of scientific interest to
estimate the treatment effects from individual centres, and to investigate the cause of the treatment
differences. Other examples of cluster-level focus occur in ecology, small-area estimation, and
animal husbandry.
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Specifically, assume that the data consist of outcomes from m clusters, with ni observations
in cluster i (i = 1, . . . , m). Within a cluster, the outcomes are dependent, but conditional on the
cluster-specific d × 1 vector of random effects bi , the outcomes yi j are independent and follow
a generalized linear mixed model with mean

μi j = E(yi j | β, bi ) = g−1(βTxi j + bT
i zi j ), (1)

where xi j and zi j are the covariate vectors for the fixed effects β and the random effects bi of
cluster i , bi ∼ p(bi ) and g is the link function. For cluster-level inference, any future prediction
takes place in the same clusters as the observed data, and the random effects for these clusters are
held constant (Vaida & Blanchard, 2005). More specifically, let y0 be independently replicated
outcomes from the same conditional distribution as the original data y given the same random
effects b. Here y, y0 and b are random vectors consisting of elements yi j , y0

i j and bi , respec-
tively. For model selection purposes, Vaida & Blanchard (2005) defined the conditional Akaike
information,

cAI = −2E(y,b)Ey0|b[l{y0 | β̂(y), b̂(y)}], (2)

where l(· | ·) is the conditional loglikelihood given the random effects, and β̂(y), b̂(y) are esti-
mators of β and b based on the data y, for example, the maximum likelihood and the empirical
Bayes estimators. The expectations are taken with respect to the true model generating the data.
They proceeded to show that for the linear mixed model with known variance components, an
unbiased estimator of (2) is

cAIC = −2l{y | β̂(y), b̂(y)} + 2ρ , (3)

where the bias correction factor ρ is the effective degrees of freedom of the linear mixed model
of Hodges & Sargent (2001) and Ye (1998). Expression (3) is referred to as the conditional
Akaike information criterion. Vaida & Blanchard (2005) and Liang et al. (2008) give formulae
for ρ in the more general case of unknown variance parameters in finite samples. The theory of
the Akaike information criterion and its basis in model prediction are well understood (Akaike,
1973; Linhart & Zucchini, 1986; Burnham & Anderson, 2002). In this paper we develop the con-
ditional Akaike information and its criterion under generalized linear and proportional hazards
mixed models. Exact calculation is not available outside normal linear mixed models, and asymp-
totic approximations are necessary. An additional concern is the presence of nuisance baseline
hazard function in the proportional hazards mixed models.

Generalized linear mixed models have been studied for the past two decades (Jiang, 2007;
McCulloch et al., 2008). In contrast, the proportional hazards mixed model has only recently
been proposed to model complex correlated time-to-events data (Gustafson, 1997; Sargent, 1998;
Vaida & Xu, 2000; Ripatti & Palmgren, 2000; Ripatti et al., 2002); it includes the univariate
frailty model (Hougaard, 2000) as a special case. The asymptotics were considered in Gamst et al.
(2009). Xu et al. (2009) consider the marginal AIC which focuses on the fixed effects and the vari-
ance parameters.

From a different perspective and not specifically for clustered data, the issue of focus of
model selection was addressed in Claeskens & Hjort (2003) and Hjort & Claeskens (2006). For
an overview of the AIC see the Burnham & Anderson (2002) and Claeskens & Hjort (2008).
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2. GENERALIZED LINEAR MIXED MODELS

Consider the model given by (1). To set the notation, write D−1 = −∂2 log p(b)/∂b∂b′, where
p(b) = ∏m

i=1 p(bi ) is the distribution of the independent random effects; when bi ∼ N (0, �),
D = var(b) = diagm(�), the block-diagonal matrix with m blocks equal to �. Let Xi and Zi be
the matrices with rows xT

i j and zT
i j , and let X = stack(X1, . . . , Xm) and Z = diag(Z1, . . . , Zm)

be the N × p and N × q model matrices, where p , d and q = md are the lengths of β, bi and
b, N = n1 + · · · + nm , and the stack function stacks matrices on top of each other. Further, let
wi = (wi1, . . . , wini )

T be the vector of weights given by wi j = [var(yi j | bi ){g′(μi j )}2]−1, and
W = diag(w1, . . . , wm). The usual estimator for β is the maximizer of the marginal likelihood,
L(β) = ∫

exp{l J (y, b | β)} db, where

l J (y, b | β) = l(y | β, b) + log p(b) (4)

is the joint loglikelihood. Alternatively, (β, b) are estimated jointly as the maximizer of the joint
loglikelihood l J . The joint loglikelihood (4) and its maximizer (β̂, b̂) have been variously justi-
fied. Breslow & Clayton (1993), Wolfinger (1993) and Vonesh (1996) show that under suitable
conditions β̂ is a first-order Laplace approximation to the maximum likelihood estimator. Given
the fixed effects, the joint likelihood is proportional to the posterior distribution of the random
effects, maximized by b̂ (Jiang, 2001). Lee & Nelder (1996) call (4) the hierarchical loglikeli-
hood, and consider it as a basis of inference; see also Lee et al. (2006). In the smoothing litera-
ture l J is seen as a penalized loglikelihood (see, e.g., Wager et al., 2007). The variance matrix �

that is suppressed in p(b) is estimated by maximum likelihood or residual maximum likelihood
(Breslow & Clayton, 1993).

Let U = (X, Z) and θ = stack(β, b), so that Uθ = Xβ + Zb. Let sJ = ∂l J /∂θ be the score
function for the joint loglikelihood. Standard derivations show that

G = var{sJ (y) | θ} = U TWU, (5)

� = E{sJ (y)sT
J (y) | θ} = E{−∂2l J (y)/∂θ∂θT | θ} = U TWU + diag(0, D−1). (6)

Further, let

ρ = tr(G �−1) = tr[U TWU {U TWU + diag(0, D−1)}−1]. (7)

For the linear mixed model, W = I . In this case, ρ is the effective degrees of freedom of
Hodges & Sargent (2001), as well as the correction factor for conditional AIC (3) in Theorem 1
of Vaida & Blanchard (2005). Lu et al. (2007) use a form similar to ρ as the effective degrees of
freedom for the generalized linear mixed models. The following result shows that ρ is asymptot-
ically the relevant correction factor for the conditional AIC (3).

THEOREM 1. Assume that the data y are generated from the generalized linear mixed model
(1). Let β̂ be the maximum likelihood estimator, and b̂ the maximizer of the joint likelihood given
β̂ and the maximum likelihood estimate of �. Under Conditions A1–A11 given in the Appendix,
an asymptotically unbiased estimator of the conditional Akaike information (2) is given by the
conditional AIC (3), with ρ = tr(G�−1) as in (7). That is, E(cAIC) = cAI + o(1) for large m and
ni .

In addition, the effective degrees of freedom ρ satisfies p � ρ � p + q.

The proofs for this and for the following results are given in the Appendix.
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In practice, W is computed at θ = θ̂ . Using formulae for explicit computation of the inverse
matrix in (7) (Harville, 1996, p.99) we get

ρ = (p + q) − tr[{Z TW Z − Z TW X (X TW X)−1 X TW Z + D−1}−1 D−1]. (8)

Formulae (5) and (6) are a form of the Bartlett identities for the joint likelihood. The more
general form is given below.

PROPOSITION 1. Bartlett identities for joint or penalized likelihood. Assume that the data y
have loglikelihood l(y | θ), satisfying the standard regularity conditions which ensure differenti-
ation with respect to parameter θ under the integral sign, as well as the first two Bartlett identi-
ties: E{s(y | θ)} = 0 and E{−l̈(y | θ)} = E{s(y | θ)s(y | θ)T}, where s and l̈ denote the first two
derivatives of l with respect to θ . Further, assume that p(θ) is a nonnegative function of θ not
depending on y, twice differentiable with respect to θ and with continuous second derivatives. Let
lJ (y | θ) = l(y | θ) + log p(θ). Let sJ and l̈J be the first two derivatives of lJ . Then lJ satisfies
the modified Bartlett identities:

E(sJ | θ) = ∂ log p(θ)/∂θ,

var(sJ | θ) = var(s | θ),

E(−l̈ J | θ) = E(−l̈ | θ) − ∂2 log p(θ)/∂θ∂θT = var(sJ | θ) − ∂2 log p(θ)/∂θ∂θT.

In particular, if θ = (β, b) and p(θ) = p(b) is the N (0, D) density, then ∂ log p(θ)/∂θ = Aθ and
−∂2 log p(θ)/∂θ∂θT = A = diag(0, D−1).

The proof follows directly from the definition of l J and the Bartlett identities for l.

3. PROPORTIONAL HAZARDS MIXED MODELS

3·1. Direct derivation of conditional AIC

In the proportional hazards mixed model for clustered right-censored data, the hazard function
for the j th observation of the i th cluster is

λi j (t) = λ0(t) exp(βTxi j + bT
i zi j ) (i = 1, . . . , m; j = 1, . . . , ni ), (9)

where bi ∼ p(bi ) independently of each other, and xi j , zi j are the covariate vectors associated
with the fixed and the random effects β and bi , as before. The fixed intercept is absorbed in the
baseline hazard function λ0(t), while the random cluster effect on the hazard needs to be included
as a 1 in zi j . Vaida & Xu (2000) developed the nonparametric maximum likelihood estimator of
the parameters in this model, computed using a Monte Carlo EM algorithm, with the random
effects estimated by the posterior empirical Bayes expectation. The program is available in the R
package phmm.

The outcome data corresponding to λi j (t) is yi j = (Yi j , δi j ), where Yi j is the possibly right-
censored failure time and δi j is the failure-event indicator. Put yi = stack(yi1, . . . , yini ), y =
stack(y1, . . . , ym), and ηi j = βTxi j + bT

i zi j . The conditional loglikelihood is

l(y | β, b, λ0) =
m∑

i=1

ni∑
j=1

{δi j log λ0(Yi j ) + δi jηi j − �0(Yi j )e
ηi j }, (10)
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with �0(t) = ∫ t
0 λ0(s) ds the cumulative baseline hazard function. Profiling the baseline hazard

out of (10) we get the conditional profile loglikelihood

pl(y | β, b) =
m∑

i=1

ni∑
j=1

δi j log
exp(ηi j )∑

i ′ j ′ exp(ηi ′ j ′)I (Yi ′ j ′ � Yi j )
. (11)

This is also the conditional partial loglikelihood; the rationale for using the profile likelihood to
define an Akaike information in the presence of nuisance parameters is explained in Xu et al.
(2009). For model (9) we define the conditional profile Akaike information as

cAI = −2E(y,b)E(y0|b)[pl{y0 | β̂(y), b̂(y)}]. (12)

The joint conditional profile loglikelihood is

plJ (y | θ) = pl(y | β, b) + log p(b), (13)

where θ = stack(β, b). This is also called the penalized partial loglikelihood (Ripatti &
Palmgren, 2000), or the h-likelihood (Ha & Lee, 2003), and its maximizer can be seen as an
approximation of the maximum likelihood estimator. Let sJ = ∂plJ /∂θ . Calculation in Ha & Lee
(2003) shows that

sJ (y | θ) = U T(δ − μ̂) + Aθ,

where δ = stack(δi j ), μ = stack(μi j ), μi j = exp(ηi j + log �0(Yi j )), and μ̂ = μ(λ̂0) where λ̂0 =
λ̂0(θ) is the usual Breslow’s estimate of the discretized baseline hazard for a given θ ; U = (X, Z),
and A = diag(0, D−1), as before. In addition −∂2pl/∂θ∂θT = U TW ∗U , where W ∗ = W1 − W2,
with W1 = diag(μ̂) and W2 nondiagonal, given in the Appendix. Therefore,

−∂2plJ /∂θ∂θT = −∂sJ /∂θ = U TW ∗U + A,

and � = E{−∂2plJ (y)/∂θ∂θT | θ} = U TWU + A with W = E(W ∗ | θ). In addition, as the
Barlett identities hold asymptotically for the partial likelihood, following Proposition 1 we have
the asymptotic variance needed in Theorem 2 below: G = var{sJ (y) | θ} = U TWU . The condi-
tional profile AIC corresponding to (12) is given by

cAIC = −2pl{y | β̂(y), b̂(y)} + 2ρ, (14)

with ρ = tr(G �−1). The development here is parallel to the generalized linear mixed model case
in § 2. Since W is not available in closed form, in practice, we use

ρ = tr{ U TW ∗U (U TW ∗U + A)−1 }. (15)

The following result shows that under suitable conditions (14) is an asymptotically unbiased
estimator of the conditional Akaike information in (12).

THEOREM 2. Assume that the data y are generated under (9). Let β̂ be the maximum likeli-
hood estimator and b̂ the maximizer of the profile joint likelihood (13) given β̂ and the maximum
likelihood estimate of �. Under analogous conditions to Theorem 1, an asymptotically unbiased
estimator of the conditional Akaike information (2) is given by the conditional AIC in (14), i.e.
E(cAIC) = cAI + o(1) for large m and ni s. Moreover, p � ρ � p + q.

An alternative formula for ρ is given by (8) with W ∗ in place of W . We call ρ the effective
degrees of freedom for the proportional hazards mixed model.
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3·2. Poisson formulation

Let t1 < · · · < tK be the K distinct event times among the Yi j s. It is well known that the log-
likelihood of the proportional hazards model is equivalent, up to a constant, to that of a Poisson
model with outcomes ξi j,k = δi j I (Yi j = tk) and mean exp{log λ0(tk) + ηi j }, for all i, j and k
such that tk � Yi j . This connection was observed early in Whitehead (1980), and extended to the
mixed model in Ma et al. (2003), Ha & Lee (2003) and Kauermann et al. (2008), among others.
The following result shows that the conditional AIC based on the Poisson generalized linear mixed
model formulation is identical to that in (14) and (15) up to a constant.

PROPOSITION 2. For the proportional hazards mixed model let conditional AICP be the con-
ditional Akaike information criterion corresponding to the Poisson formulation, i.e., cAICP =
−2l(ξ | θ̂ ) + 2ρP , where l(ξ | θ̂ ) is the Poisson loglikelihood conditional on b, with data ξ =
(ξi j,k), and ρP is the corresponding Poisson degrees of freedom defined in (7). Then ρP =
ρ + a1, l(ξ | θ̂ ) = pl(y | θ̂ ) + a2, and cAICP = cAIC + a, where a1, a2 and a = 2(a1 − a2) are
constants depending only on the data y, and cAIC and ρ are given by (14) and (15).

For computational efficiency and numerical accuracy, it is advantageous to fit the proportional
hazards mixed model directly, rather than using the equivalent Poisson formulation.

4. ALTERNATIVE ESTIMATION USING THE BOOTSTRAP

The bootstrap has been used in the estimation of prediction errors (Efron, 1983, 1986;
Xu & Gamst, 2008) and for Akaike-type criteria (Shibata, 1997), and has shown less bias in finite
samples (Cavanaugh & Shumway, 1997; Pan, 1999; Shang & Cavanaugh, 2008). Our proposed
estimate is

cAICb = −2l(y | β̂, b̂) + 2ρb.

The correction factor ρb is given by

ρb = E∗{l(y∗ | β̂∗, b̂∗) − l(y | β̂∗, b̂∗)}, (16)

where E∗ denotes the bootstrap expectation, i.e., the average over the bootstrap datasets; the
bootstrap datasets y∗ are obtained by resampling first the clusters, then the observations within
cluster, and (β̂∗, b̂∗) = {β̂(y∗), b̂(y∗)}. For each cluster in y∗, the data y from the same cluster are
used in calculating ρb. For applications with extremely small clusters, such as in the lung cancer
example below where some clusters have only one observation, resampling within the clusters
might be infeasible. In this case, parametric or model-based bootstrap can be used, where the
bootstrap data are generated under a fitted large model, with estimated fixed and random effects.
The formula (16) is derived similar to Yafune et al. (2005), but adjusted to our conditional setting.

5. SIMULATION

We carried out simulation experiments to evaluate the proposed criteria under the generalized
linear and proportional hazards mixed models. Here we report a few representative results. The
emphasis is two-fold: on the criteria as estimators of the underlying Akaike information as well
as on their success in selecting the correct model. We computed the conditional Akaike informa-
tion by simulation, and its criteria with correction factors ρ and ρb. The results are reported in
Tables 1–3. The numbers of fixed and random effects in each model are indicated as a pair at the
top of each column; for example, (2,1) indicates that two fixed effects and one random effect are
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included in the model. In each case we used a combination of small and large numbers of clusters
m and observations within cluster ni . We used two model selection rules: (i) the rule of two, in
which one selects the smallest model whose criterion value is within 2 of the minimum criterion
value; or (ii) select the model with the minimum criterion value. The rule of two acknowledges
the variation in a criterion as an estimate of the underlying information, so that for models with
close criterion values there is not enough evidence for a preference; in this situation a parsimony
principle is applied. The estimation used the lme4 and phmm packages in (R Development Core
Team, 2011).

Table 1 reports the simulation under a log-link Poisson generalized linear mixed model. Over-
all conditional AIC provides a good estimate of the conditional Akaike information, within the
statistical error range. In the first scenario of 10 clusters of 5 observations each, although the
average of the conditional AIC is minimized at the larger model (3,3), it is not significantly dif-
ferent from that of the true model (3,2). The rule of two chooses the correct model most often,
and chooses the larger model (3,3) between 8 and 30% of the cases. Note, however, that the con-
ditional Akaike information criteria for models (3,2) and (3,3) are very close to each other, so it is
not surprising that they often erroneously prefer the larger model. The nonparametric bootstrap
works well when the cluster sizes are reasonably large, e.g. ni � 10, and when the model is not
too far from the truth. While the true model is (3,2), under model (2,1) conditional AICb is typi-
cally more than twice the standard error away from conditional Akaike information except when
ni = 40. Such inaccuracy seems to be attributable to the model fitting procedure by lmer and
the high probability of duplicated data with small cluster resampling in the bootstrap. In the sur-
vival data case below, fitted by Markov chain Monte Carlo EM which has shown good numerical
stability and accuracy (Gamst et al., 2009), the results are extremely good in comparison.

The proportional hazards mixed model simulations are summarized in Tables 2 and 3. Since
models (2,2) and (3,1) in Table 2 are not nested, for the rule of two, the size of a model is
determined by ρ or ρb. The analytic and the bootstrap methods are comparable according to
this table, both in terms of bias and the selection of the correct model. The bootstrap cAICb

shows a slight advantage over the conditional AIC in picking the correct model. The rule of two
consistently meets or outperforms the simple minimum rule. The simulations in Table 3 have
smaller between-cluster variability compared with Table 2, and as expected the model selection
criteria are less effective in correctly selecting the random effects. On average the conditional
AIC is minimized at the largest model; this might be expected since the Laplace approximation
used in the derivation is more accurate when the cluster sizes are large. On the other hand, when
standard errors from the simulation are taken into account, the conditional AIC values are practi-
cally identical for models (2,1) and (2,2). The bootstrap cAICb is minimized at the true model on
average. For selecting the true model with smaller cluster sizes, the conditional AIC outperforms
the bootstrap cAICb.

6. CASE STUDIES

6·1. The skin cancer prevention study

The Skin Cancer Prevention Study was a randomized, double-blinded, placebo-controlled
clinical trial of non-melanoma skin cancer prevention in 1805 high-risk subjects randomized
to either 50 mg of beta-carotene daily or placebo, for up to five years (Greenberg et al., 1990;
Fitzmaurice et al., 2004). The dataset consisted of the m = 1683 subjects with complete covari-
ate information, with N = 7081 observations. We fitted Poisson mixed models with log-link for
the main outcome, the number of new skin cancers yi j for subject i in year j . The covariates
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Table 1. Comparison of model selection procedures based on simulations from a Poisson
generalized linear mixed model with log-link. Data are generated from model (3, 2): covari-
ates x1, x2, x3 are independent Bernoulli (0·5), β = (1, 1, 1)T, z1 = x1, z2 = x2, and bi ∼
N (0, 0·25I2). Model (2, 1) includes x1, x2 and z1; model (3, 1) includes also x3, and (3, 3)

includes also z2 and z3 = x3. Averages over 100 simulations and simulation standard errors,
in parentheses, are reported for conditional Akaike information, cAIC, cAICb with 400 bootstrap
samples, and −2l(y | β̂, b̂); a/b gives the number of times out of 100 a model was chosen using

the rule of two (a) or simple minimum (b)

(fixed, random) (2,1) (3,1) (3,2) (3,3)

m = 10, ni = 5
cAI 318 (3·8) 244 (1·9) 230 (1·1) 232 (1·1)

0/0 9/2 89/74 2/24
cAIC 321 (4·4) 244 (2·1) 229 (1·3) 227 (1·8)

0/0 14/10 73/65 13/25
cAICb 369 (7·1) 252 (3·0) 235 (2·3) 242 (3·7)

0/0 17/14 72/66 11/20
−2pl(y | β̂, b̂) 302 (4·4) 224 (2·1) 203 (1·2) 200 (1·2)

m = 10, ni = 10
cAI 674 (7·0) 494 (3·7) 448 (1·6) 450 (1·6)

0/0 0/0 99/85 1/15
cAIC 675 (7·7) 495 (4·1) 447 (2·4) 448 (3·7)

0/0 5/5 84/72 11/23
cAICb 746 (9·7) 509 (5·0) 450 (2·8) 454 (3·0)

0/0 3/2 86/83 11/15
−2pl(y | β̂, b̂) 654 (7·7) 473 (4·1) 414 (2·2) 411 (2·2)

m = 10, ni = 40
cAI 2732 (28·1) 1929 (14·3) 1727 (6·1) 1729 (6·1)

0/0 0/0 100/97 0/3
cAIC 2733 (29·0) 1933 (14·7) 1730 (6·9) 1741 (13·6)

0/0 0/0 92/83 8/17
cAICb 2810 (31·0) 1943 (15·2) 1729 (7·0) 1733 (7·0)

0/0 0/0 95/89 5/11
−2pl(y | β̂, b̂) 2711 (29·0) 1909 (14·7) 1691 (6·9) 1688 (6·8)

m = 50, ni = 5
cAI 1612 (8·1) 1240 (4·9) 1137 (2·4) 1140 (2·4)

0/0 0/0 100/98 0/2
cAIC 1606 (10·0) 1238 (5·5) 1135 (2·8) 1135 (3·5)

0/0 0/0 70/60 30/40
cAICb 1821 (14·2) 1276 (7·3) 1131 (3·8) 1137 (3·8)

0/0 0/0 85/80 15/20
−2pl(y | β̂, b̂) 1519 (10·0) 1151 (5·4) 1001 (2·7) 996 (2·5)

m = 50, ni = 10
cAI 3352 (14·9) 2475 (9·1) 2219 (3·6) 2221 (3·6)

0/0 0/0 100/96 0/4
cAIC 3354 (17·3) 2479 (10·7) 2218 (4·5) 2222 (6·3)

0/0 0/0 79/69 21/31
cAICb 3670 (20·8) 2535 (12·9) 2210 (5·5) 2225 (5·6)

0/0 0/0 99/99 1/1
−2pl(y | β̂, b̂) 3258 (17·3) 2382 (10·7) 2052 (4·4) 2046 (4·2)

cAI, conditional Akaike information; cAIC, conditional Akaike information criterion; cAICb, bootstrap estimated cAIC.
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Table 2. Comparison of model selection procedures based on simulations from a proportional
hazards mixed model. Data are generated from model (2, 2): covariates x1, x2, x3 are indepen-
dent Bernoulli (0·5), β = (1, 2)T, bi ∼ N (0, I2); λ0(t) = 1, with 20% censoring. Model (1, 1)

includes x1 and z1 = x1; model (2, 1) includes x1, x2 and z1 = x1, etc. Mean over 100 simula-
tions are reported for cAI, cAIC, cAICb with 400 bootstrap samples, and −2l(y | β̂, b̂); (a; b) gives
the number of times out of 100 a model was chosen using the rule of two (a) or simple minimum

(b). Simulation standard errors: 2·2–4·3 (ni = 20); 4·4–6·8 (ni = 40)

(fixed, random) (1,0) (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

m = 5, ni = 20
cAI 578 (0;0) 565 (0;0) 527 (11;4) 513 (88;69) 528 (0;0) 514 (1;14) 515 (0;13)
cAIC 579 (0;0) 567 (1; 0) 527 (12; 3) 511 (69; 61) 527 (0;0) 512 (6; 4) 511 (12; 32)
cAICb 577 (0;0) 566 (1;1) 524 (18;15) 510 (71;63) 525 (0;0) 512 (7;16) 515 (3;5)
−2pl(y | β̂, b̂) 577 560 517 496 516 495 493

m = 5, ni = 40
cAI 1372 (0;0) 1345 (0;0) 1261 (4;1) 1229 (95;77) 1261 (1;0) 1230 (0;12) 1230 (0;10)
cAIC 1370 (0;0) 1344 (0;0) 1258 (5;1) 1225 (86;77) 1260 (1;1) 1227 (1;5) 1226 (7;16)
cAICb 1367 (0;0) 1341 (0;0) 1254 (5;4) 1221 (88;83) 1255 (1;2) 1222 (2;6) 1225 (4;5)
−2pl(y | β̂, b̂) 1368 1336 1247 1208 1247 1207 1206

cAI, conditional Akaike information; cAIC, conditional Akaike information criterion ; cAICb, bootstrap estimated cAIC.

Table 3. Comparison of model selection procedures based on simulations from a proportional
hazards mixed model, continued. Data are generated from model (2, 1): covariates x1, x2 are
independent, x1 ∼ Ber(0·5), x2 ∼ Un(0, 1), β = (1, 1)T, bi ∼ N (0, σ 2); λ0(t) = 1, with 20% cen-

soring. Simulation standard errors: 0·8–3·3 (m = 5); 2·4–8·7 (m = 20)

(fixed, random) (1,0) (1,1) (2,1) (2,2)
m = 5, ni = 20, σ 2 = 0·05

cAI 576 (9;3) 576 (1;1) 571 (90;58) 572 (0;38)
cAIC 573 (18;4) 572 (7;8) 567 (66;32) 566 (9;56)
cAICb 569 (39;26) 571 (9;6) 566 (49;62) 569 (3;6)
−2pl(y | β̂, b̂) 571 568 561 560

m = 5, ni = 20, σ 2 = 0·5
cAI 574 (1;0) 565 (7;3) 561 (92;60) 561 (0;37)
cAIC 570 (8;2) 560 (23;15) 555 (59;32) 555 (10;51)
cAICb 567 (14;7) 558 (22;15) 553 (63;74) 556 (1;4)
−2pl(y | β̂, b̂) 568 554 547 545

m = 20, ni = 20, σ 2 = 0·05
cAI 3181 (0;0) 3180 (0;0) 3157 (100;64) 3157 (0;36)
cAIC 3178 (0;0) 3175 (0;0) 3154 (88;50) 3153 (12;50)
cAICb 3174 (21;19) 3183 (0;0) 3161 (76;78) 3172 (3;3)
−2pl(y | β̂, b̂) 3176 3165 3142 3138

m = 20, ni = 20, σ 2 = 0·5
cAI 3171 (0;0) 3125 (0;0) 3103 (100;69) 3104 (0;31)
cAIC 3169 (0;0) 3122 (1;0) 3101 (86;45) 3100 (13;55)
cAICb 3165 (0;0) 3120 (1;0) 3099 (98;98) 3112 (1;2)
−2pl(y | β̂, b̂) 3167 3092 3068 3064

cAI, conditional Akaike information; cAIC, conditional Akaike information criterion; cAICb, bootstrap estimated cAIC.

included skin type and gender as binary variables, and age at entry and number of skin can-
cers at entry as continuous variables. The year of follow-up was either omitted, or included as
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Table 4. Skin cancer prevention study. Estimates of fixed effects and cAIC from five Poisson mixed
models differing in the fixed and random effects for year of follow-up. Age and number of skin
cancers at baseline are continuous. The best models, marked with a ∗, cannot be ranked based

on cAIC.
(fixed, random) (5,1) (6,1) (7,1) (6,2) (7,2)

β Intercept −4·28 −4·35 −4·18 −4·79 −5·36
(0·37) (0·37) (0·39) (0·50) (0·54)

Age (years) 0·02 0·02 0·02 0·02 0·02
(0·01) (0·01) (0·01) (0·01) (0·01)

Skin that burns 0·33 0·33 0·33 0·33 0·32
(0·10) (0·12) (0·11) (0·14) (0·15)

Male gender 0·63 0·63 0·63 0·69 0·70
(0·12) (0·12) (0·12) (0·16) (0·17)

Baseline cancers 0·18 0·18 0·18 0·19 0·19
(0·01) (0·01) (0·01) (0·02) (0·02)

Year – 0·02 −0·13 −0·03 0·38
– (0·02) (0·08) (0·04) (0·11)

Year2 – – 0·03 – −0·08
– – (0·01) – (0·02)

σ 2 Intercept 2·37 2·38 2·39 9·97 13·12
Year – – – 0·85 1·22
−2l(y | β̂, b̂) 6072·10 6068·57 6063·50 4942·28 4825·32
cAIC 7824·69∗ 7824·28∗ 7823·13∗ 8023·39 8038·86

cAIC, conditional Akaike information criterion.

a linear or quadratic effect. In some models, a subject-specific year effect was fitted. All mod-
els included a subject-specific random intercept. The treatment effect was proven not signifi-
cant in earlier analyses and was not included. The results in Table 4 show that the random year
effect should not be included in the model; the three models with the year omitted, in linear,
or quadratic form yield comparable conditional Akaike criteria and cannot be distinguished.
On parsimony grounds, the model without year effect can be chosen. To determine whether
the difference of conditional Akaike information between models was significant, a 95% confi-
dence interval of this difference was computed by bootstrap for each pair. The 95% confidence
intervals for this difference were as follows: (5,1) versus (6, 1) = (−2, 19, 18, 55); (6,1) versus
(7, 1) = (−1 · 96, 22 · 54); (5,1) versus (7, 1) = (−3 · 74, 28 · 61). This analysis confirms that
the three models cannot be ranked on conditional AIC alone, and that the simpler (5,1) model
may be chosen.

6·2. The E1582 lung cancer trial

The E1582 multicentre non-small cell lung cancer trial including N = 579 subjects was
discussed and analysed using a proportional hazards mixed model in Vaida & Xu (2000)
and Xu et al. (2009), with observations clustered by the m = 31 institutions. The number of
subjects per institution, ni , ranged from 1 to 50. The primary endpoint was time to death.
The subjects were randomized to either standard chemotherapy or an alternative regimen.
Other important covariates related to survival were the presence of bone metastases, pres-
ence of liver metastases, performance status at study entry and weight loss, prior to entry,
all binary. Gray (1995) found a significant difference in treatment effects across institu-
tions, using a score test. We consider three models here, all of them including the fixed
effects for the five important covariates. The first model (5,0) includes no random effects,
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Table 5. E1582 lung cancer trial data. Estimates of fixed effects and variance components and
cAICb from three proportional hazards mixed models. Best model is marked by ∗

(fixed, random) (5,0) (5,1) (5,2)

β

Treatment −0·254 (0·085) −0·250 (0·104) −0·247 (0·119)
Bone metastases 0·223 (0·093) 0·212 (0·095) 0·230 (0·144)
Liver metastases 0·429 (0·090) 0·423 (0·091) 0·393 (0·094)
Performance status −0·602 (0·104) −0·641 (0·109) −0·649 (0·131)
Weight loss 0·200 (0·087) 0·218 (0·089) 0·208 (0·092)

Estimates of σ 2

Treatment – 0·071 (0·069) 0·046 (0·184)
Bone met. – – 0·129 (0·083)

cAIC 6107 6098 6088∗
cAICb 6107 6088 6071∗

cAIC, conditional Akaike information criterion.

the second model (5,1) includes the random treatment effect and the third model (5,2)
includes the random treatment and bone metastases effects. The random components are
assumed independent, i.e., � is diagonal. The results are given in Table 5. Model selec-
tion is done using both the conditional AIC and cAICb. The model-based bootstrap sam-
ples are generated under the fitted model (5,2), including the estimated bi . The favoured
model is (5,2), including the random effects for both treatment and presence of bone
metastases.

7. DISCUSSION

The analytic derivations and resampling methods used in this paper follow a general approach
that can readily be applied to other models, such as nonlinear mixed models. More importantly,
the results apply to general distributions for the random effects, although in practice the normal
distribution is often used. Our setting is of independent clusters. This is not the most general
model for random effects. Much of the theory applies to the general setting. However, care is
needed in establishing the asymptotic results, since they require adequate convergence for the
random effects.

For generalized linear hierarchical models with only random intercepts, the ρ in (7) turns out
to be equal to the effective degrees of freedom obtained in equation (11) of Lu et al. (2007), using
their quasi-exact method; such a connection was in fact conjectured in their paper. In addition
Spiegelhalter et al. (2002) gave an approximation to their Bayesian measure of model complexity,
which is the same as (7). See also Ruppert et al. (2003, Ch. 8 and 11). In the case of linear mixed
models, Cui et al. (2010) show that the part of ρ due to the random effects can be interpreted as
the ratio of the random effects variance to the total variance. For frailty models based on the hier-
archical likelihood, Ha et al. (2007) also proposed an AIC; the models they considered included
only random intercepts. We note the close connection between the joint and the hierarchical
likelihood. Therneau & Grambsch (2000, Ch. 5) define the degrees of freedom in the penalized
partial likelihood formulation of the proportional hazards mixed models. Our derivation provides
a theoretical basis both for the information criteria and for the model degrees of freedom under
generalized linear and proportional hazards mixed models, that is, as an approximately unbiased
estimate of the conditional Akaike information defined in (2) and (12), respectively.
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Although the bootstrap has been applied to risk estimation and has been shown to have good
finite sample performance for independent and identically distributed data, in our investigation
it did not substantially outperform the analytic approximation. This may be because the cluster
sizes are typically not large, and the resampling is done within the clusters. Given the wide range
of possible implementations allowed by the bootstrap, further improvements are possible, and
the topic deserves further exploration. As an alternative to the bootstrap, the numeric methods
of Liang et al. (2008) may be extended to our setting for evaluating ρ.

One limitation of the Akaike information is that it is model inconsistent; that is, even in large
samples it can select, with nonzero probability, a wrong model which is usually too large in
dimension. This is the case when there is a fixed true model. It is now understood (Shao, 1997)
that for linear model selection various procedures including the AIC and the BIC fall into three
classes: valid if there exist fixed-dimension correct models, valid if no fixed-dimension correct
model exists or a compromise of the above two. Our work here on the conditional Akaike infor-
mation, adjusted to mixed models, does not address these issues. Where the more classical case is
concerned and there is a fixed true model, a possible remedy is to include considerations of parsi-
mony. One would choose the smaller model, unless the larger one has an AIC that is significantly
better. Our rule of two used in the simulation is a simple step in this direction.
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APPENDIX

Setup and conditions for Theorem 1

We assume the following. Given the number of clusters m, let θm = stack(β, b1, . . . , bm), and let θ =
stack(β, b1, b2, . . .) be the corresponding infinite-dimensional parameter as m increases; θm contains the
first m + 1 elements, or p + q components, of θ . The true value of θ is θ0, with first m + 1 elements
θ0m = stack(β0, b01, . . . , b0m). For fixed m and cluster size n = n1 = · · · = nm , the data y is generated from
model (1), with parameter θm = θm0. Further, θm is estimated by θ̂nm , the maximizer of the joint likelihood
lJ (y | θm). Note that N = mn.

Nie (2007) partitions β into β = (β1, β2), where the covariates xi j1 of β1 do not have random effects, and
the covariates xi j2 of β2 have random effects, i.e., xi j2 = zi j . Nie (2007) shows that the maximum likelihood
estimates of these two components have different rates of convergence as m, n → ∞. For simplicity we
will assume that β = β1; the more general case follows with straightforward modifications.

In the following, unless explicitly stated, all expectations are conditional on θ , and therefore on the
random effects b. Let �(θm) = −E{lJ (θm; y)}, and �̂(θm) = −lJ (θm; y). We do not include indices m, n
for � and �̂ unless necessary. Let �′, �′′ denote the derivative and the Hessian of � with respect to θ ,
with a similar notation for �̂. Write lJ = ∑m

i=1 lJ i , where lJ i is the component for the i th cluster. From (6)
we have that �′′ = U TWU + diag(0, D−1). Let �′′

ββ , �′′
βbi

, �′′
bi b j

be the corresponding matrix blocks from

the Hessian matrix �′′, and similarly for �̂′′. We assume that the following conditions hold:

Condition A1. The true parameter θ0 is unique, and is in the interior of a convex closed bounded set
� ⊂R∞ equipped with the sup norm.

Condition A2. The fixed effects component β̂ of θmn satisfies β̂ → β0 almost surely as m, n → ∞.

Condition A3. The random effects components b̂1, . . . , b̂m of θmn satisfy maxi=1,...,m ||b̂i − b0i || → 0
almost surely as m, n → ∞.
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Condition A4. For any m, n, the first and second derivatives �′, �̂′ and �′′, �̂′′ exist, and are contin-
uous on �.

Condition A5. The ratio n/m → ∞, as m, n → ∞.

Condition A6. As m, n → ∞, {�̂ββ(θ)′′ − �ββ(θ)′′}/N ,
∑m

i=1{�̂bi bi (θ)′′ − �bi bi (θ)′′}/n, and∑m
i=1{�̂βbi (θ)′′ − �βbi (θ)′′}/(nm1/2) converge almost surely to 0 uniformly on �.

Condition A7. As m, n → ∞, N 1/2(β̂ − β0) → N (0, v1) in distribution, and N ||β̂ − β0||22 is uni-
formly integrable.

Condition A8. As n → ∞, n1/2(b̂i − bi0) → N (0, vbi ) in distribution uniformly over i , and n||b̂i −
b0i ||22 is uniformly integrable for all i .

Condition A9. The quantity �̂′′
ββ/N is bounded for all θ , m and n, and limm,n→∞ �̂′′

ββ/N is positive
definite.

Condition A10. The quantity �̂′′
bi bi

/n is bounded for all θ , m and n, and limn→∞ �̂′′
bi bi

/n is positive
definite.

Condition A11. The quantity
∑m

i=1 �̂′′
βbi

/(nm1/2) is bounded for all θ , m and n.

Under the generalized linear mixed model the distributional convergences in Conditions A7 and A8 are
established in Nie (2007), assuming Conditions A9–A11 and some additional conditions that are discussed
in details in Nie (2007); they can be interpreted as non-collinearity among the covariates under the mixed
model, for example. The uniform integrability conditions in Conditions A7 and A8, and the boundedness
conditions in Conditions A9–A11 are for the uniform integrability of Rnm which leads to E(Rnm) = o(1)

in the proof below; these are not always easy to establish in general. However Conditions A9–A11 can be
directly verified under specific models such as the generalized linear mixed model, since the derivatives
can be explicitly calculated.

Proof of Theorem 1. A second order Taylor expansion of �̂ yields

�̂(θ̂nm) = �̂(θ0m) + (θ̂nm − θ0m)T�̂′(θ0m) + 1

2
(θ̂nm − θ0m)T�̂′′(θ̄nm)(θ̂nm − θ0m)

= �̂(θ0m) − 1

2
(θ̂nm − θ0m)T�′′(θ0m)(θ̂nm − θ0m) + Rnm,

(A1)

where
Rnm = (θ̂nm − θ0m)T{�̂′′(θ̄nm) + �′′(θ0m) − 2�̂′′(θ̃nm)}(θ̂nm − θ0m)/2,

θ̄nm , θ̃nm are measurable functions such that ||θ̄nm − θ0m || � ||θ̂nm − θ0m || almost surely,
||θ̃nm − θ0m || � ||θ̂nm − θ0m || almost surely, and �̂′(θ0m) = −�̂′′(θ̃nm)(θ̂nm − θ0m). Write Q̂nm(θ) =
(θ̂nm − θ0m)T�̂′′(θ)(θ̂nm − θ0m), Qnm(θ) = (θ̂nm − θ0m)T�′′(θ)(θ̂nm − θ0m). Then Rnm = {Q̂(θ̄nm) +
Q(θ0m) − 2Q̂(θ̃nm)}/2. We have that

Q̂nm(θ) =

⎛
⎜⎜⎜⎝

β̂ − β0

b̂1 − b01
...

b̂m − b0m

⎞
⎟⎟⎟⎠

T
⎛
⎜⎜⎜⎜⎜⎝

∂2lJ
∂β∂βT

∂2lJ1
∂β∂b′

1
. . . ∂2lJm

∂β∂b′
m

∂2lJ1
∂b1∂βT

∂2lJ1
∂b1∂b′

1
0

...
. . .

...
∂2lJm

∂bm∂βT 0 . . . ∂2lJm
∂bm∂b′

m

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

β̂ − β0

b̂1 − b01
...

b̂m − b0m

⎞
⎟⎟⎟⎠

= (β̂ − β0)
T�̂′′

ββ(β̂ − β0) + 2(β̂ − β0)
T

m∑
i=1

�̂′′
βbi

(b̂i − b0i ) +
m∑

i=1

(b̂i − b0i )
T�̂′′

bi bi
(b̂i − b0i ),

with an analogous formula for Qnm(θ). Under Conditions A2, A3, A6–A8 it is seen that Rnm = op(1). In
addition, Conditions A7–A11 imply that E(Rnm) = o(1).
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Now, take expectations conditional on b on both sides of equation (A1):

E(�̂(θ̂nm)) = E{�̂(θ0m)} − 1

2
E{(θ̂nm − θ0m)T�′′(θ0m)(θ̂nm − θ0m)} + E(Rnm)

= �(θ0m) − 1

2
tr{� var(θ̂nm)} + o(1).

In a similar manner we can show that E{�(θ̂nm)} = �(θ0m) + 1
2 tr{�var(θ̂nm)} + o(1). Replacing

�(θ0m) in the last two equations above we get

E{�(θ̂nm)} = E{�̂(θ̂mn)} − tr{� var(θ̂nm)} + o(1).

Finally, it can be seen that tr{� var(θ̂nm)} = tr(G �−1) + o(1) = ρ + o(1). After the simplification of
log p(b̂) terms, and taking expectations over b, we get

−2E(y,b) Ey0|b[l{y0 | θ̂ (y)}] = −2Ey[l{y | θ̂ (y)}] + 2ρ + o(1).

Now we show p � ρ � p + q. The semipositive definite matrix W admits a square root, so we can write
Z1 = W 1/2 Z , X1 = W 1/2 X . In (8) we have Z TW Z − Z TW X (X TW X)−1 X TW Z = Z T

1(I − P)Z1 = Z T
2 Z2,

where P = X1(X T
1 X1)

−1 X T
1 and therefore I − P are both projection matrices, and Z2 = (I − P)Z1. Then

ρ = p + q − tr{(Z T
2 Z2 + D−1)−1 D−1} = p + q − tr{(Iq + Z T

3 Z3)
−1} = p + q − ∑q

i=1(1 + ui )
−1, where

Z3 = Z2 D1/2, and 0 � u1 � · · · � uq are the eigenvalues of Z T
3 Z3. It follows that p � ρ � p + q. �

Details of Theorem 2 and Proposition 2

Let d1, . . . , dK be the number of failures at the distinct failure times t1 < · · · < tK . Further, let V
be the N × K indicator matrix with element (i j, k) equal to I (Yi j � tk), and W3 = diag{exp(ηi j ); i, j}.
The matrix W ∗ in (15) is given by W ∗ = W1 − W2, where W1 = diag(μ̂) and W2 = W3V diag(λ̂2

0k/dk; k =
1, . . . , K )V ′W3.

The conditions for Theorem 2 are identical to conditions A1–A11 for Theorem 1, where �(θ) and �̂(θ)

are defined with respect to the joint profile loglikelihood (13). The proof is then analogous to the proof of
Theorem 1.

Although Conditions A9–A11 can still be directly verified under the proportional hazards mixed model,
unlike the generalized linear mixed model, the distributional results as in Conditions A7 and A8 have
only been established for parametric baseline hazard functions (Feng et al., 2009), with simulation results
to suggest that the same likely hold for the nonparametric baseline hazard function. The more standard
asymptotic results with only m → ∞ and ni bounded were given in Gamst et al. (2009).

Proof of Proposition 2. For simplicity, let the N data points be counted by l = 1, . . . , N , and put
r = p + q. For l = 1, . . . , N define Kl such that Yl = tKl if δl = 1, and Kl = max{k : tk � Yl}, if δl = 0.
Using the Poisson formulation of the proportional hazards mixed model, the effective degrees of
freedom are ρP = tr{Ũ TW̃Ũ (Ũ TW̃Ũ + Ã)−1}, where Ũ = (Ũ1, Ũ2), Ũ1 = stack(Ũ11, . . . , Ũ1N ), Ũ2 =
stack(Ũ21, . . . , Ũ2N ), and W̃ = diag(W̃1, . . . , W̃N ); Ũ1l is Kl × K , Ũ2l is Kl × r and W̃l is Kl × Kl ,
with Ũ1l = (IKl , 0), Ũ2l = 1Kl ul , W̃l = exp(ηl) diag(λk; k = 1 . . . Kl), 1k is a k-vector with 1 of each
element, and ul is the lth row of U , Ã = diag(0, A); W̃ is computed at λ̂. Since 1T

Kl
W̃l1Kl = exp(ηl)

�(Yl), Ũ T
2 W̃Ũ2 = U TW1U . Also, T = Ũ T

1 W̃Ũ1 = ∑N
l=1 diag(W̃l , 0) = diag(αkλk, k = 1 . . . K ), where

αk = ∑N
l=1 exp(ηl)I (Yl � tk). Put J = diag(1Kl , l = 1, . . . , N ). Note that Ũ2 = JU . The N × K matrix

is � = J TW̃Ũ1 with generic element γlk = exp(ηl)I [tk � Yl] λk . So � = W3V diag(λ).
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Using the derivation for ρP as in (8), it follows that

ρP = K + r − tr[{Ũ T
2 W̃Ũ2 − Ũ T

2 W̃Ũ1(Ũ
T
1 W̃Ũ1)

−1Ũ T
1 W̃Ũ2 + A}−1 A]

= K + r − tr[{U TW1U − U T(J TW̃Ũ1T −1Ũ T
1 W̃ J )U + A}−1 A]

= K + r − tr[{U TW1U − U TW3V diag(λ) T −1 diag(λ)V ′W3U + A}−1 A]

= K + (p + q) − tr[{U T(W1 − W2)U + A}−1 A] = K + ρ,

after noting that diag(λ) T −1diag(λ), computed at λ̂, has diagonal elements λ̂k/αk = λ̂2
k/dk . It is well-

known in the standard Cox model that l(y | θ) = pl(y | θ) + a2, where a2 depends on data. Therefore, for
a1 = K and a = 2(a1 − a2) we have cAICP = cAIC + a, which completes the proof. �
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