
Nature GeNetics  VOLUME 44 | NUMBER 4 | APRIL 2012 369

a n a ly s i s

We present an approximate conditional and joint association 
analysis that can use summary-level statistics from a meta-
analysis of genome-wide association studies (GWAS) and 
estimated linkage disequilibrium (LD) from a reference sample 
with individual-level genotype data. Using this method, 
we analyzed meta-analysis summary data from the GIANT 
Consortium for height and body mass index (BMI), with the  
LD structure estimated from genotype data in two independent 
cohorts. We identified 36 loci with multiple associated variants 
for height (38 leading and 49 additional SNPs, 87 in total) via 
a genome-wide SNP selection procedure. The 49 new SNPs 
explain approximately 1.3% of variance, nearly doubling the 
heritability explained at the 36 loci. We did not find any locus 
showing multiple associated SNPs for BMI. The method we 
present is computationally fast and is also applicable to case-
control data, which we demonstrate in an example from meta-
analysis of type 2 diabetes by the DIAGRAM Consortium.

Genome-wide association studies have been successful in identifying 
genes and pathways involved in the development of human complex 

traits and diseases1,2. For many traits, such as height and BMI, and 
diseases, such as type 2 diabetes (T2D) and breast cancer, an increas-
ing number of genetic variants have been identified that are asso-
ciated with trait variation by performing GWAS with continually 
increasing sample sizes or meta-analyses of multiple studies3–6, in 
line with a pattern of polygenic inheritance. Usually, SNPs are tested 
for associations with a trait on the basis of a single-SNP model, and 
the SNP showing the strongest statistical evidence for association 
in a genomic region (for example, a 2-Mb window centered on the 
locus) is reported to represent the association in this region. Implicit 
assumptions, often untested, are that the detected association at the 
top SNP captures the maximum amount of variation in the region 
by its LD with an unknown causal variant and that other SNPs in 
the vicinity show association because they are correlated with the 
top SNP. There are a number of reasons why these assumptions may 
not be met. First, even if there is a single underlying, causal vari-
ant, a single genotyped or imputed SNP may not capture the overall 
amount of variation at this locus7,8. Second, there may be multiple 
causal variants at the locus, in which case, a single SNP is unlikely to 
account for all the LD between the unknown causal variants and the 
genotyped or imputed SNPs at the locus. Therefore, the total variation 
that could be explained at a locus may be underestimated if only the 
most significant SNP in the region is selected.

Conditional analysis has been used as a tool to identify second-
ary association signals at a locus3,9,10, involving association ana-
lysis conditioning on the primary associated SNP at the locus to 
test whether there are any other SNPs significantly associated.  
A more general and comprehensive strategy would be to perform a 
conditional analysis, starting with the top associated SNP, across the 
whole genome followed by a stepwise procedure of selecting addi-
tional SNPs, one by one, according to their conditional P values.  
Such a strategy would allow the discovery of more than two asso-
ciated SNPs at a locus7,11. For meta-analysis of a large number of 
participating studies, however, pooled individual-level genotype 
data are usually unavailable, such that conditional analysis can only 
be performed at the level of individual studies. Summary results 
from individual studies are then collected and combined through a 
second round of meta-analysis. This procedure is administratively 
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Table 1 summary of 87 multiple associated snPs at 36 loci for height with P < 5 × 10−8 in the joint analysis using the aRiC cohort as a 
reference sample for lD

SNP Chr.
Location  

(bp)
Nearest  

gene Allele 1

GIANT single-SNP meta-analysis Joint analysis, LD from ARIC cohort

Freq. β P qL
2 (%) Freq. b P r q2 (%)

rs17346452 1 170319910 DNM3 T 0.727 –0.038 2.5 × 10−19 0.059 0.706 –0.040 2.8 × 10−21 0.109 0.062

rs2421992 1 170507874 DNM3 T 0.701 0.021 2.6 × 10−6 0.713 0.025 2.6 × 10−8 0.023

rs6684205 1 216676325 TGFB2 A 0.714 –0.033 1.6 × 10−15 0.045 0.711 –0.035 1.9 × 10−17 0.051 0.048

rs11118171 1 217114492 LYPLAL1 A 0.631 0.025 2.2 × 10−10 0.644 0.025 2.4 × 10−10 –0.084 0.030

rs11118346 1 217810342 SLC30A10 T 0.464 –0.026 1.7 × 10−12 0.036 0.469 –0.025 6.9 × 10−12 0.035

rs4665736 2 25041103 RBJ T 0.535 0.034 1.3 × 10−18 0.058 0.533 0.029 3.7 × 10−14 0.123 0.050

rs11694842 2 25336474 DNMT3A A 0.669 0.028 2.6 × 10−12 0.660 0.026 1.1 × 10−10 0.033

rs1367226 2 55943044 EFEMP1 A 0.434 –0.005 2.0 × 10−1 0.428 –0.027 5.0 × 10−11 –0.421 0.007

rs3791675 2 55964813 EFEMP1 T 0.234 –0.050 1.1 × 10−28 0.091 0.249 –0.063 3.0 × 10−37 0.116

rs1541777 2 219295535 TTLL4 A 0.526 0.025 1.0 × 10−11 0.513 0.022 6.4 × 10−9 0.062 0.028

rs6741325 2 219615943 CCDC108 C 0.902 0.048 2.0 × 10−14 0.043 0.902 0.044 5.2 × 10−12 0.060 0.039

rs16859517 2 219657428 NHEJ1 T 0.036 0.073 5.8 × 10−12 0.038 0.064 2.6 × 10−9 0.034

rs7598759 2 232030200 NCL T 0.454 –0.022 6.2 × 10−8 0.419 –0.023 1.2 × 10−8 –0.013 0.025

rs2580816 2 232506210 NPPC T 0.197 –0.041 7.3 × 10−17 0.055 0.185 –0.041 2.7 × 10−17 –0.016 0.056

rs7571716 2 233149664 EIF4E2 T 0.292 0.028 7.1 × 10−12 0.287 0.027 3.6 × 10−11 0.033

rs4676386 2 241423659 KIF1A A 0.483 0.023 1.5 × 10−9 0.477 0.022 5.7 × 10−9 –0.028 0.027

rs12694997 2 241911659 37500 A 0.244 –0.027 5.4 × 10−10 0.029 0.234 –0.027 6.2 × 10−10 0.028

rs7652177 3 173451771 FNDC3B C 0.496 –0.031 3.9 × 10−16 0.491 –0.029 1.2 × 10−14 –0.060 0.045

rs572169 3 173648421 GHSR T 0.313 0.036 1.0 × 10−18 0.056 0.315 0.034 4.8 × 10−17 0.053

rs6784185 3 186955759 IGF2BP2 A 0.203 –0.008 8.8 × 10−2 0.205 –0.034 2.2 × 10−10 0.523 0.009

rs720390 3 187031377 IGF2BP2 A 0.386 0.031 1.8 × 10−14 0.046 0.378 0.045 1.5 × 10−22 0.067

rs16896276 4 17624254 LCORL A 0.269 0.041 8.2 × 10−23 0.256 0.030 1.8 × 10−12 0.248 0.051

rs2061455 4 17644348 LCORL A 0.847 0.072 7.8 × 10−39 0.139 0.841 0.063 7.2 × 10−29 0.122

rs17720281 4 145763226 HHIP T 0.406 0.047 1.7 × 10−30 0.437 0.031 9.2 × 10−13 –0.389 0.074

rs7689420 4 145787802 HHIP T 0.163 –0.069 1.1 × 10−41 0.133 0.164 –0.054 2.9 × 10−23 0.106

rs7731703 5 32730699 NPR3 T 0.312 –0.030 1.4 × 10−10 0.324 –0.032 1.4 × 10−11 –0.143 0.043

rs1173735 5 32807136 NPR3 A 0.739 –0.030 1.3 × 10−12 0.738 –0.042 5.1 × 10−23 0.181 0.051

rs1173727 5 32866278 C5orf23 T 0.394 0.036 1.5 × 10−20 0.063 0.409 0.040 1.4 × 10−24 –0.071 0.070

rs11745439 5 33265791 TARS A 0.288 –0.028 1.3 × 10−11 0.271 –0.026 9.9 × 10−10 0.031

rs4620037 5 170807702 FGF18 A 0.801 0.032 3.6 × 10−12 0.788 0.035 4.2 × 10−14 0.049 0.037

rs1529701 5 170933582 FGF18 T 0.292 –0.023 4.9 × 10−8 0.309 –0.024 1.6 × 10−8 0.001 0.023

rs12153391 5 171136043 FBXW11 A 0.255 –0.033 2.4 × 10−13 0.042 0.244 –0.033 4.3 × 10−13 0.027 0.042

rs4868126 5 171216074 FBXW11 T 0.396 –0.031 3.3 × 10−13 0.397 –0.030 6.8 × 10−13 0.046

rs4246079 6 6834817 RREB1 A 0.118 –0.039 1.9 × 10−9 0.124 –0.039 2.5 × 10−9 0.001 0.033

rs3812163 6 7670759 BMP6 A 0.540 –0.037 5.3 × 10−22 0.069 0.541 –0.037 1.7 × 10−22 0.023 0.070

rs9942510 6 7745305 BMP6 A 0.162 0.029 1.3 × 10−8 0.156 0.030 4.3 × 10−9 0.024

rs12204421 6 33736841 ITPR3 A 0.738 0.030 5.6 × 10−12 0.747 0.030 1.0 × 10−11 0.001 0.036

rs12214804 6 34296844 HMGA1 T 0.925 –0.079 3.5 × 10−26 0.090 0.922 –0.082 9.9 × 10−28 0.064 0.093

rs3800461 6 34724300 C6orf106 C 0.124 0.045 6.4 × 10−15 0.126 0.046 7.3 × 10−16 –0.054 0.046

rs6899744 6 35394273 DEF6 T 0.016 –0.138 2.2 × 10−15 0.063 0.018 –0.131 5.5 × 10−14 0.060

rs648831 6 81012927 BCKDHB T 0.493 0.028 2.7 × 10−13 0.509 0.025 3.5 × 10−11 –0.064 0.036

rs310402 6 81857211 FAM46A T 0.462 –0.030 2.6 × 10−15 0.045 0.452 –0.028 5.6 × 10−14 0.042

rs6569648 6 130390812 L3MBTL3 T 0.761 –0.036 3.7 × 10−16 0.048 0.768 –0.036 2.4 × 10−16 –0.011 0.049

rs6921207 6 131369649 EPB41L2 A 0.366 0.021 3.0 × 10−8 0.362 0.021 4.9 × 10−8 0.022

rs543650 6 152152636 ESR1 T 0.396 –0.032 6.4 × 10−13 0.050 0.399 –0.029 3.5 × 10−11 –0.115 0.046

rs3020418 6 152386855 ESR1 A 0.300 0.028 5.9 × 10−12 0.286 0.026 1.7 × 10−10 0.032

rs4470914 7 19583047 TWISTNB T 0.181 0.033 6.7 × 10−11 0.033 0.180 0.033 2.3 × 10−11 0.010 0.034

rs12538581 7 20365642 ITGB8 A 0.502 –0.024 4.7 × 10−10 0.497 –0.024 1.5 × 10−10 0.030

rs10958476 8 57258362 PLAG1 T 0.787 –0.042 1.4 × 10−18 0.833 –0.036 1.6 × 10−13 –0.167 0.053

rs7460090 8 57356717 RDHE2 T 0.873 0.055 8.6 × 10−22 0.068 0.882 0.047 2.2 × 10−16 0.059

rs473902 9 97296056 PTCH1 T 0.922 0.074 7.0 × 10−20 0.082 0.913 0.064 7.3 × 10−15 –0.208 0.071

rs10512248 9 97299524 PTCH1 T 0.660 –0.033 1.5 × 10−16 0.658 –0.026 1.2 × 10−10 –0.020 0.040

rs10990303 9 97450226 PTCH1 T 0.227 0.030 1.4 × 10−10 0.208 0.029 2.4 × 10−10 0.033 0.031

rs2025151 9 98201333 ZNF367 C 0.810 –0.041 3.1 × 10−16 0.806 –0.041 5.0 × 10−16 0.053

rs13302480 9 117505134 37226 C 0.115 –0.036 7.2 × 10−9 0.109 –0.037 1.9 × 10−9 0.041 0.028

rs7869550 9 118174617 PAPPA A 0.796 0.030 1.5 × 10−10 0.029 0.799 0.031 1.6 × 10−11 0.031

rs7849585 9 138251691 QSOX2 T 0.334 0.032 4.6 × 10−15 0.048 0.318 0.031 3.7 × 10−14 –0.031 0.046

rs8413 9 138443132 INPP5E T 0.599 –0.026 3.0 × 10−11 0.584 –0.024 4.2 × 10−10 0.031

rs77993 10 8058852 ZMIZ1 A 0.439 –0.023 2.1 × 10−9 0.426 –0.024 3.6 × 10−10 –0.037 0.028

(continued)
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onerous. It often takes months to organize and perform a single 
round of this kind of conditional meta-analysis, and it would be 
extremely time-consuming and therefore impractical to implement 
a stepwise selection procedure in this manner.

We propose an approximate conditional and joint analysis approach 
using summary-level statistics from a meta-analysis and LD correc-
tions between SNPs estimated from a reference sample, such as a 
subset of the meta-analysis sample, using an approach similar to one 
previously described12. We adopt a genome-wide stepwise selection 
procedure to select SNPs on the basis of conditional P values and 
estimate the joint effects of all selected SNPs after the model has been 
optimized. We applied this method to meta-analysis for height and 
BMI from the GIANT Consortium and validated results by predic-
tion analysis in independent samples. We extended the procedure to 
the analysis of case-control data and demonstrate its power with an 
example of meta-analysis data for T2D.

RESULTS
Loci with multiple associated variants
Using summary statistics (effect size, standard error and allele fre-
quency) of ~2.5 million SNPs from the GIANT meta-analysis of 
133,653 individuals for height3 and 123,865 individuals for BMI4 
along with SNP LD estimated in 6,654 unrelated European-Americans 
selected from the Atherosclerosis Risk in Communities (ARIC) study 
(Online Methods), we identified 247 jointly associated SNPs for 
height and 33 for BMI with P < 5 × 10−8 (Supplementary Tables 1–3).  

For the convenience of presentation and the summary of results,  
we define a locus as a chromosomal region at which adjacent pairs of 
associated SNPs are less than 1 Mb distant, and we define alleles of two 
SNPs to be positively (negatively) correlated if their disequilibrium 
parameter D is positive (negative)13. Of the 247 SNPs associated with 
height, 87 at 36 loci represent multiple associated SNPs within a single 
locus (Table 1 and Supplementary Tables 1 and 2), and all 36 loci  
are located in the genomic regions known to be associated with 
height3. We did not find any locus with multiple associated SNPs 
for BMI (Supplementary Tables 1 and 3). For most of the height-
associated loci, multiple associated variants were detected, mainly 
because of their very low LD (r2 < 0.01), despite their relatively close 
physical proximity (Table 1). In this case, the effect sizes from a joint 
analysis were little different from those from single-SNP analyses. 
For some loci, SNPs were in modest LD and their increasing alleles  
were positively correlated. One example of this is the rs17720281 and 
rs7689420 SNP pair at the HHIP locus on chromosome 4 (Table 1),  
where effect sizes for these SNPs were therefore overestimated 
in single-SNP analyses. In the joint analysis, although the joint 
effects were smaller compared to the marginal effects, these SNPs 
still reached genome-wide significance, and the variance explained 
by them collectively was larger than that if we only considered the 
leading SNP at that locus. For the loci at which the increasing alle-
les of at least two SNPs were negatively correlated, the SNP effects 
were underestimated in single-SNP analyses, meaning that some 
associated variants may be undetected. In other words, the joint 

Table 1 Continued

SNP Chr.
Location  

(bp)
Nearest  

gene Allele 1

GIANT single-SNP meta-analysis Joint analysis, LD from ARIC cohort

Freq. β P qL
2 (%) Freq. b P r q2 (%)

rs2145998 10 80791702 PPIF A 0.480 –0.025 2.0 × 10−11 0.033 0.490 –0.026 7.2 × 10−12 0.034

rs11107116 12 92502635 SOCS2 T 0.223 0.052 4.0 × 10−32 0.098 0.216 0.056 4.2 × 10−37 0.095 0.106

rs2885691 12 92646350 CRADD T 0.436 –0.029 2.3 × 10−14 0.439 –0.034 1.1 × 10−18 0.049

rs7980687 12 122388664 SBNO1 A 0.206 0.036 6.7 × 10−14 0.043 0.192 0.034 4.0 × 10−13 0.045 0.041

rs1809889 12 123367179 FAM101A T 0.290 0.032 1.1 × 10−12 0.293 0.030 7.7 × 10−12 0.040

rs12440667 15 72018492 LOXL1 T 0.467 –0.028 1.4 × 10−12 0.481 –0.030 2.2 × 10−14 –0.051 0.043

rs5742915 15 72123686 PML T 0.527 –0.031 8.2 × 10−14 0.049 0.516 –0.032 3.4 × 10−15 0.051

rs11259936 15 82371586 ADAMTSL3 A 0.484 –0.042 1.4 × 10−29 0.091 0.484 –0.038 7.5 × 10−24 –0.164 0.082

rs12148239 15 82432022 ADAMTSL3 T 0.728 0.031 1.1 × 10−13 0.724 0.024 8.8 × 10−9 0.031

rs4932429 15 87164536 ACAN C 0.510 –0.025 2.7 × 10−10 0.520 –0.022 2.3 × 10−8 0.047 0.028

rs16942341 15 87189909 ACAN T 0.031 –0.134 2.2 × 10−24 0.110 0.027 –0.116 1.8 × 10−18 –0.122 0.095

rs2280470* 15 87196630 ACAN A 0.334 0.039 1.5 × 10−22 0.330 0.036 6.3 × 10−19 0.065

rs12916269 15 98347739 ADAMTS17 A 0.426 –0.028 9.8 × 10−13 0.409 –0.030 9.6 × 10−15 –0.069 0.043

rs2035344 15 98507671 ADAMTS17 A 0.687 –0.024 1.6 × 10−8 0.699 –0.024 1.9 × 10−8 0.049 0.025

rs4965598 15 98577137 ADAMTS17 T 0.681 –0.035 1.4 × 10−18 0.056 0.680 –0.035 1.9 × 10−18 0.056

rs8182364 17 44373024 SNF8 A 0.461 0.023 7.8 × 10−10 0.462 0.021 6.8 × 10−9 0.044 0.025

rs2072153 17 44745013 ZNF652 C 0.306 0.026 7.4 × 10−11 0.031 0.308 0.026 4.6 × 10−10 0.030

rs227724 17 52133816 C17orf67 A 0.657 –0.027 7.0 × 10−12 0.035 0.656 –0.026 6.9 × 10−11 –0.029 0.033

rs4794665 17 52205328 C17orf67 A 0.485 0.024 2.0 × 10−10 0.490 0.023 7.5 × 10−10 0.028

rs2079795 17 56851431 C17orf82 T 0.329 0.040 4.0 × 10−23 0.071 0.331 0.039 6.4 × 10−23 –0.005 0.071

rs12451513 17 56997110 NACA2 T 0.602 –0.022 2.0 × 10−7 0.605 –0.022 4.2 × 10−8 0.024

rs2137143 17 59159133 LYK5 T 0.055 0.049 3.1 × 10−8 0.059 0.062 2.8 × 10−12 0.147 0.033

rs2727300 17 59319130 GH2 A 0.275 0.037 4.1 × 10−18 0.056 0.281 0.041 4.7 × 10−22 0.062

rs12458127 18 44911356 DYM T 0.076 –0.056 1.4 × 10−13 0.055 –0.042 3.9 × 10−8 0.218 0.034

rs9967417 18 45213498 DYM C 0.565 –0.038 1.4 × 10−22 0.074 0.563 –0.033 5.2 × 10−17 0.065

rs6060154 20 33063262 TRPC4AP A 0.264 0.023 5.9 × 10−8 0.278 0.033 9.5 × 10−15 0.040 0.030

rs143384 20 33489170 GDF5 A 0.581 –0.064 2.5 × 10−55 0.206 0.595 –0.053 4.5 × 10−33 –0.390 0.171

rs6060739 20 34031006 C20orf152 T 0.188 0.052 2.8 × 10−25 0.184 0.032 2.4 × 10−9 0.053

Total 2.5 4.1

SNPs on different chromosomes or more than 10 Mb distant from each other are assumed to be uncorrelated. The empirical variance of phenotypes of height estimated from the 
summary statistic is 0.967. Chr., chromosome; allele 1, reference allele; freq.: frequency of the reference allele; β, marginal effect; qL

2, variance explained based on marginal 
SNP effect for the leading SNPs; b, joint effect; q2, variance explained based on the joint SNP effect; r, LD correlation between a SNP and the next adjacent SNP at a locus.
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analysis is more powerful than the single-SNP analysis in detect-
ing such SNPs7,8. For example, rs1367226 at the EFEMP1 locus on  
chromosome 2 (P value from the single-SNP meta-analysis (PM) = 0.198)  
and rs6784185 at the IGF2BP2 locus on chromosome 3 PM = 0.088) 
did not even show nominally significant association in single-SNP 
analyses, but they both reached genome-wide significance when fitted 
jointly with the leading SNPs at these two loci (Table 1). At the same 
time, the significance and effect sizes of the leading SNPs at the two loci  
also increased where PM = 1.1 × 10−28 versus the P value from the 
joint analysis (PJ) = 3.0 × 10–37 for rs3791675 and PM = 1.8 × 10−14 
versus PJ = 1.5 × 10−22 for rs720390 (Table 1). There were 11 loci  
harboring more than 2 associated SNPs, with a maximum number 
of 4, and the length of each locus varied substantially. For examples, 
three associated SNPs at a locus on chromosome 1 covered a genomic 
region of 1,134 kb, and the ACAN locus on chromosome 15, with 
three associated SNPs, only has a length of 32 kb (Table 1). Only 
considering the leading SNP(s) at each of the 36 loci (Table 1), there 
were 38 leading SNPs that, in total, explained 2.5% of phenotypic 
variance. However, taking all 87 jointly associated SNPs into account  
(38 leading and 49 additional), 4.1% of variance was explained, with the 
additional 49 SNPs explaining an additional 1.6% of the variance.

We extracted the GIANT summary statistics of the 247 associated  
SNPs and performed a joint analysis of these SNPs with their LD 
estimated in 3,924 unrelated Australians of British Isles ancestry14 
selected from a GWAS cohort at the Queensland Institute of Medical 
Research (QIMR) (Online Methods). The allele frequencies of the 
247 SNPs estimated from either the ARIC or the QIMR cohort 
were consistent with those reported by the GIANT meta-analysis 
(Supplementary Fig. 1). The joint effects and their corresponding 
P values, obtained from the joint analysis using the ARIC cohort as a 
reference sample, showed good agreement with those obtained using 
the QIMR cohort as the reference sample (Supplementary Fig. 2 and 
Supplementary Table 2), suggesting that the results are robust with 
respect to the choice of reference sample.

We created two predictors in the QIMR cohort by PLINK15, one 
based on all 87 multiple associated SNPs and the other based on the 
49 additionally associated SNPs only, with SNP effects estimated from 
the joint analysis using the ARIC cohort as a reference sample, and 
then regressed the observed height phenotypes on the predictors. We 
performed the same prediction analysis in the ARIC cohort but with 

SNP effects estimated from the joint analysis using the QIMR cohort 
as the reference sample, acknowledging that the ARIC cohort is part 
of the discovery sample of the GIANT meta-analysis. The regression 
slopes were not significantly different from 1 (Table 2), suggesting 
that the estimates of joint SNP effects are unbiased, the prediction R2 
of all 87 SNPs was ~3.8–4.8%, consistent with the estimate of 4.1% of 
variance explained in the discovery sample, and the prediction R2 of  
the 49 additional associated SNPs was ~1.3–1.5%, in line with the 
estimate of 1.6% of variance explained by these SNPs in the discovery 
sample. Hence, by performing a prediction analysis in an independent  
sample, we confirmed that the 49 additional associated variants 
explain approximately 1.3% of phenotypic variation.

The GIANT Consortium performed a conditional meta-analysis for 
height3 in a subset of stage 1 studies including 106,336 individuals and 
identified 19 secondary signals at 19 loci at P < 3.3 × 10−7. The GIANT 
conditional meta-analysis only reported one secondary signal at each 
of the 19 loci, because it was too time-consuming to conduct a single 
run of the conditional meta-analysis to take the process further. There 
are 16 loci associated with height that were reported by GIANT3 with 
secondary SNPs at P < 5 × 10−8, all of which overlapped with our set 
of 36 loci with multiple associated SNPs. The concordance of these 
results provides a technical replication of the analysis methods.

Associated SNPs more than 1 Mb away can be in substantial LD
The GIANT meta-analysis identified 180 loci that were associated 
with height3. When we fitted all 180 hit SNPs simultaneously in a 
joint analysis, the majority of them seemed to be independently 
associated, because they had been deliberately selected to be at least  
1 Mb away from each other to render them unlikely to be in strong 
LD. However, there was an exception. Two SNPs, rs1814175 and 
rs5017948, were reported as independently associated SNPs by the 
GIANT Consortium3 with P values in the discovery set of 1.9 × 10−8 
and 4.6 × 10−8, respectively (Table 3). These SNPs are ~1.76 Mb dis-
tant but in substantial LD (r = 0.61 and 0.59 in the ARIC and QIMR 
cohorts, respectively), suggesting that, in some specific cases, the 
commonly used 1-Mb window is not big enough to guarantee that two 
SNPs are independently associated with a trait and that the stepwise 
conditional analysis is a more general approach to refine association 
signals and to identify additional associated SNPs. Given either of 
these SNPs in the model, the other SNP is not found to reach genome-
wide significance with PJ > 0.001 (Table 3). In our conditional and 
joint analysis, only the rs1814175 SNP was selected, and no additional 
signals were detected in this region.

Case-control studies
Our method is applicable to case-control studies (Online Methods). 
We demonstrate this by using the summary-level statistics of the 
DIAGRAM meta-analysis for T2D from a discovery set of 8,130 
affected individuals (cases) and 38,987 controls. In our example ana-
lysis, we focused only on the CDKN2B region, where there was some 
previous evidence of multiple signals16. We analyzed the DIAGRAM 
meta-analysis data, with allele frequencies and LD structure estimated 
from the ARIC cohort, and replicated the findings by a joint analysis 

Table 2 Prediction analysis based on the snPs at the 36 loci with 
multiple associated snPs

Prediction in ARIC Prediction in QIMR

g87 g49 g87 g49

Slope 0.979 0.953 1.076 0.880

S.e. 0.060 0.095 0.076 0.123

P 1.6 × 10−58 2.3 × 10−23 4.3 × 10−44 8.9 × 10−13

R2 0.038 0.015 0.048 0.013

Shown are the results of a linear regression analysis of the observed height phenotype 
on a single predictor based upon all 87 multiple associated SNPs (g87) and that based 
on the 49 additional SNPs (g49) in both the ARIC and QIMR cohorts. The predictors 
in one cohort are created based on SNP effects estimated from the approximate joint 
analysis using the other cohort as a reference sample.

Table 3 Joint analysis of two GianT hit snPs on chromosome 11

SNP Location (bp) Allele 1

GIANT meta-analysis Joint analysis with LD from ARIC Joint analysis with LD from QIMR

Freq. β P Freq. b P r Freq. b P r

rs1814175 49515748 T 0.339 0.023 1.9 × 10−8 0.330 0.015 4.0 × 10−3 0.611 0.357 0.015 3.1 × 10−3 0.591

rs5017948 51270794 A 0.186 0.027 4.6 × 10−8 0.196 0.016 1.0 × 10−2 0.194 0.016 7.7 × 10−3

Allele 1, reference allele; freq.: frequency of the reference allele; β, marginal effect; b, joint effect; r, LD correlation between a SNP and the next adjacent SNP at a locus.
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using the QIMR cohort as reference sample. Two SNPs, rs10965250 
and rs10757282, which are only 700 bp apart, were retained in step-
wise model selection as jointly associated SNPs with P < 5 × 10−12, 
using either the ARIC or QIMR cohort as a reference sample for LD 
(Table 4), consistent with the result from a previous analysis that 
the two SNPs define a haplotype association16. The risk alleles of 
these two SNPs are negatively correlated (r = −0.53 and −0.59 in 
the ARIC and QIMR cohorts, respectively); therefore, the second-
ary SNP (rs10757282; PM = 3.1 × 10−4) was masked by the primary 
SNP (rs10965250; PM = 1.0 × 10−10) in single-SNP analyses. When 
they were fitted jointly, their effects, as well as statistical significance, 
were substantially increased compared to what was obtained in single- 
SNP analyses.

DISCUSSION
We have presented a method of approximate conditional and joint 
genome-wide association analysis that is powerful, versatile and com-
putationally fast. The method does not require any additional geno-
typing or phenotyping and does not rely on individual-level genotype 
and phenotype data, except for a reference population with individual 
genotypes—either from one of the participating studies of the meta-
analysis or from genotype data in the public domain—that is required 
for LD estimation. The effect sizes of most SNPs that are associated 
with complex traits are very small, such that there is a great benefit 
in using estimates from a large-scale meta-analysis, and a reason-
ably large reference sample is sufficient to estimate LD between SNPs 
located near to one another. We believe that this method is useful 
to refine independent GWAS associations and to identify additional 
associated variants in large-scale meta-analysis where the pooled indi-
vidual-level genotype data are unavailable for analysis.

The method is built upon the assumption that the reference sample 
is from the same population as the samples from which the genotype-
phenotype associations are estimated, meaning that the LD corre-
lations that are estimated from the reference sample are unbiased. 
We show by simulation (Supplementary Note) that the P values 
from our approximate approach are highly consistent with those 
from the conditional meta-analysis (correlation of >0.99 in 1,000 
simulation replicates), given a reference sample of 6,654 individuals 
(Supplementary Fig. 3 and Supplementary Table 4). The simulation 
results did not change if the reference sample was independent of the 
discovery sample, as long as both were sampled from the same general 
population (Supplementary Fig. 4). We recommend that a reference 
sample be chosen with a large sample size, so that the LD correla-
tions are estimated with little error17. The simulation results indicate 
that a reference sample with a size of at least 2,000 is required and 
that little additional accuracy is gained beyond a sample size of 5,000 
(Supplementary Fig. 4). The reference sample needs to be checked for 
cryptic relatedness and population stratification, which could cause 
correlations between SNPs that do not exist in the discovery set. In the 
present study, we included only the individuals of European descent in 
the ARIC cohort18 and of British Isles descent in the QIMR cohort14 
and removed one of each pair of individuals with a SNP-derived 
relatedness estimate of >0.025 in both cohorts (Online Methods).  

If the expected value of the LD correlation between two SNPs is zero 
in the general population, the sampling variance of an observed 
LD correlation in a sample is proportional to the sample size (m), 
with var[r | E(r) = 0] = 1 / m. Thus, given a random sample of 
6,654 unrelated individuals from the population, the probability 
of observing a LD correlation greater than 0.1 or smaller than −0.1  
(r2 > 0.01) is 3.4 × 10−16. In order to investigate possible false positives 
resulting from errors in LD estimation, we first performed the analysis 
using the ARIC cohort as a reference sample, and we then performed 
a joint analysis of the selected SNPs using the QIMR cohort as a ref-
erence sample (Supplementary Tables 2 and 3). We show that the 
LD correlations between adjacent pairs of the 247 height-associated 
SNPs are in very good agreement across the ARIC and QIMR cohorts 
(Supplementary Fig. 5). Therefore, our main results were unlikely 
to be driven by errors in estimating the LD structure in the refer-
ence sample. This is consistent with our technical replication of all 
secondary signals reported by the GIANT Consortium from condi-
tional analysis using individual-level genotype and phenotype data3.  
We reported most results based on the ARIC cohort (for example, 
Table 1) because it has a larger sample size and is more genetically 
similar to the whole GIANT meta-analysis sample relative to the 
QIMR cohort, where ancestry is restricted to the British Isles14. We 
could also only consider results that were consistent using two inde-
pendent cohorts as reference samples. However, this might be too 
conservative, as some real associations identified using one cohort 
with P values that just passed the arbitrary cutoff value of 5 × 10−8, 
might be eliminated from the analysis in another cohort due to  
random errors in the estimates of LD correlations. Our method is 
not limited to meta-analysis summary data but can also be applied 
to a single GWAS cohort with individual-level genotypes, in which 
case, the whole discovery sample is used as the reference sample, and 
our method then becomes equivalent to a multiple regression analy-
sis (Online Methods and Supplementary Fig. 6). In this case, the 
automated stepwise selection procedure implemented in our software 
tool19, which has, to our knowledge, not been implemented in any 
other GWAS analysis tools in the public domain, would still be useful 
for data applications.

As with any fixed-effect model selection strategy, such as step-
wise linear multiple regression analysis, there is a risk of over-fitting 
effects. This can be a particular problem for the analysis of GWAS SNP 
data because the number of SNPs is typically much larger than the 
experimental sample size. The effects of selected SNPs tend to be over-
estimated (sometimes called the winner’s curse) and, if the threshold 
for inclusion is less stringent, false positives could be included in the 
model. In both cases, the estimated residual variance will be too low. 
This can, in theory, be a runaway process, because the more SNPs 
that are selected in the model, the lower the apparent residual vari-
ance and the greater the number of remaining SNPs that will become 
significant and will be added to the model. In the general population, 
the expected value of the LD correlation between SNPs on different 
chromosomes or more than d Mb distant is zero, even though, in a 
particular sample, the observed value is nonzero due to finite sample 
size. In our method, we set the LD correlation between distant SNPs 

Table 4 Joint analysis of two T2D snPs at the CDKN2B locus on chromosome 9

SNP Location (bp) Allele 1

DIAGRAM meta-analysis Joint analysis with LD from ARIC Joint analysis with LD from QIMR

log(OR) P Freq. log(OR) P r Freq. log(OR) P r

rs10965250 22,123,284 G 0.181 1.0 × 10−10 0.827 0.273 1.3 × 10−18 –0.530 0.828 0.299 9.6 × 10−21 −0.590

rs10757282 22,123,984 C 0.097 3.1 × 10−4 0.432 0.208 2.5 × 10−12 0.373 0.235 1.8 × 10−14

Allele 1, reference allele; freq.: frequency of the reference allele; r, LD correlation between a SNP and the next adjacent SNP at a locus. log(OR), log odds ratio.
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to zero, because it is inappropriate to represent a randomly sampled 
correlation in the discovery sample by another randomly sampled 
correlation in the reference sample. In the conditional analysis, if 
a SNP to be tested is more than d Mb distant from all the top SNPs  
fitted in the model, we are therefore unable to model and adjust for the 
variability in the estimate of the SNP effect due to the sampling vari-
ation of correlations in the discovery sample. Thus, the conditional 
effect will be the same as the marginal effect, whereas the standard 
error of this SNP effect decreases as the residual variance is reduced 
because of the selected SNPs in the model. This signifies that test 
statistics will be inflated and the false positive rate will increase. This 
problem will be dramatically exacerbated if the discovery set is not 
very large, for example, coming from a single GWAS cohort, with 
there being a higher chance of observing a substantial correlation 
due to random sampling and, further, if the selected SNPs fitted in the 
model explain a large proportion of variance. In our method imple-
mentation, we keep the residual variance constant at the same level 
of the phenotypic variance, even after fitting SNPs that cumulatively 
explain a substantial proportion of phenotypic variation in the model 
(Online Methods). Although this approach is conservative, because 
we know that fitting the 180 known height-associated SNPs in the 
model reduces the residual variance by ~10% and therefore increases 
power to detect additional variants, it has the benefit of keeping the 
type-I error rate at the same level as that in the meta-analysis and 
thus avoids over-fitting.

To demonstrate the conservative nature of our model selec-
tion strategy, we performed selection of SNPs with a less stringent  
P value threshold. We constrained the analysis to region 1 Mb up- or 
downstream of the 180 known height-associated SNPs and chose a 
P value threshold of 5 × 10−7, as only ~13% of the genome is covered 
by these 2-Mb regions. We identified 85 additional associated SNPs  
at 60 loci, which explained 2.4% of variance in the discovery set. 
We validated the joint effects of these 85 SNPs by our prediction  
analyses. The prediction R2 were 2.4% (P = 8.6 × 10−37) and 1.9%  
(P = 5.3 × 10−18) in the ARIC and QIMR cohorts, respectively, sugge-
sting that we could detect more associated variants with a less stringent  
threshold but, of course, might increase the risk of including false 
positives. Nevertheless, this analysis confirms more heritability can 
be explained at a substantial proportion of loci that affect the trait. It 
also suggests a model of genetic architecture of a large number of loci 
and multiple causal variants at many of these regions.

In the GIANT meta-analysis for height and BMI3,4, the summary 
statistics were adjusted by the genomic control method20 in each of 
the participating studies, and the test statistics were adjusted by the 
genomic control method for a second time in the combined analysis 
of all studies, which is sometimes called ‘double-GC’ correction.  
In the present study, we did not perform the second genomic control 
correction (although we have provided an option to implement this 
in our software tool) for two reasons. First, the purpose of genomic 
control correction is to adjust for the effect of population stratifica-
tion, but, in the absence of population stratification and presence 
of polygenic inheritance, genomic inflation is expected21; therefore, 
double-GC correction might be too conservative and overkill. Second, 
if the genomic inflation is due to stratification, there is no reason to 
find additional associated SNPs at known loci, whereas under the 
hypothesis that the genomic inflation is consistent with polygenic 
inheritance and that there are multiple variants at the same loci seg-
regating in the population, we would expect to see what we found 
empirically. The GIANT conditional meta-analysis detected 16 loci 
with additional associated SNPs, and we identified 20 more such 
loci, which is partly because the GIANT conditional meta-analysis 

used only a subset of the discovery sample (106,336 out of 133,653 
 individuals) due to the difficulty of managing the large number of 
participating studies in a fixed time period and partly because the 
GIANT conditional meta-analysis implemented a double-GC correc-
tion that substantially reduced the power of detection.

The results for height and BMI seem to be very different. For height, 
we identified 36 loci with multiple associated SNPs, whereas, for BMI, 
we did not find any such loci. It seems unlikely that this large differ-
ence can be entirely explained by the greater power to detect associa-
tions with height compared to BMI because of the greater heritability 
of height. The narrow-sense heritability for height is estimated to be 
~80% by pedigree analyses22, and the heritability for BMI is ~40–60% 
(refs. 23,24). If we assume the heritability of BMI is 50%, then 4% 
(2%/50%) of narrow-sense heritability for BMI has been explained 
by GWAS4, a much lower proportion than that for height, which is 
approximately 12.5% (10%/80%)3. When considering all the SNPs 
simultaneously, 32% (16%/50%) of narrow-sense heritability for BMI 
can be captured by all common SNPs using the whole-genome esti-
mation approach we recently developed, which is also lower than 
the corresponding explained heritability for height (~56%)14,18. In 
a previous analysis partitioning genetic variance onto individual 
chromosomes, the variance explained by each chromosome showed 
a strong linear relationship with chromosome length for height, but 
such a relationship was rather weak for BMI18. To investigate whether 
additional variants for BMI could be detected, we performed a con-
ditional and joint analysis with a less stringent P value threshold of 
5 × 10−6, with the LD structure estimated from the ARIC cohort. We 
identified 19 multiple associated SNPs (9 leading and 10 additional 
SNPs) at 9 loci (Supplementary Tables 1 and 5), which is still much 
lower than the number of additional variants detected for height. The 
ten additional SNPs explained 0.21% of the variance in the discovery 
set. When using these SNPs to predict the BMI phenotypes in the 
QIMR cohort, the prediction R2 was 0.13%, which is nominally sig-
nificant (P = 0.037). Taken together, the previous and current results 
are consistent and suggest that the genetic architectures for height 
and BMI might be different in terms of the allelic spectrum of causal 
variants within and between loci, the distribution of effect sizes and 
the robustness of effect sizes to environments and gene modifiers.

We identified 36 loci with multiple associations for height. We 
have shown by examples of pairs of multiple associated SNPs that 
marginal SNP effects will be underestimated (overestimated) if their 
trait increasing alleles are negatively (positively) correlated, consistent 
with the findings from a GWAS of gene expressions25. However, this is 
not necessarily always the case when there are more than two associ-
ated SNPs in LD with each other, and the generality of these results 
depends on the actual LD correlations of all segregating causal vari-
ants at a locus. If one of the associated SNPs at each locus is causative, 
then there must be multiple causal variants in that region, because 
the joint effects have already taken the LD into account, such that, 
conditional on the causal variant in the model, the effects of any of its 
proxies would not be statistically significant. However, it is unlikely 
that the SNPs themselves are causative, because the ~2.5 million SNPs 
in the HapMap 2 panel of Utah residents of Northern and Western 
European ancestry (CEU)26 represent only a fraction of all the  
polymorphisms segregating in the human population27. Assuming 
that multiple associated SNPs at a particular locus are not causative, 
it is unlikely that they are in LD with a single rare causal variant, 
especially for SNPs with minor allele frequency (MAF > 0.1), and it 
is also implausible that they are in LD with a single common causal  
variant (Supplementary Note). Therefore, it seems likely that there  
are multiple causal variants segregating at the same locus; however,  
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this inference is indirect and inconclusive. With whole-genome  
sequence data, the conditional and joint analysis approach we present 
here will be helpful in identifying causal variants.

URLs. GCTA, http://gump.qimr.edu.au/gcta/massoc.html.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METhODS
Summary statistics of meta-analysis and individual-level genotype data. 
The GIANT Consortium performed a meta-analysis of GWAS data in a dis-
covery set with 133,653 and 123,865 individuals of recent European ancestry 
from 46 studies for height3 and BMI4, respectively. In each of the participating  
studies, genotype data were imputed to ~2.8 million SNPs present in the 
HapMap Phase 2 European-American reference panel26, and the standard 
errors of all SNPs were adjusted by the genomic control method20. We calcu-
lated the effective sample size for each SNP and excluded SNPs with effective 
sample sizes of >2 s.d. from the mean. We also excluded SNPs with MAF of 
<0.01, retaining ~2.5 million SNPs for both height and BMI.

We also obtained access to the individual-level genotype and phenotype 
data of the ARIC cohort, a population-based study of Americans28, and the 
QIMR cohort, a twin study of Australians29. The ARIC samples were geno-
typed by Affymetrix 6.0 SNP array, and the QIMR samples were genotyped by 
Illumina 610K or 370K array. After quality control filtering of SNPs, 593,521 
and 274,604 genotyped SNPs were retained in the ARIC (excluding SNPs with 
missingness of >2%, MAF of <0.01 or Hardy-Weinberg equilibrium (HWE) 
P value of <1 × 10−3) and QIMR cohorts (excluding SNPs with missingness 
of >5%, MAF of <0.01 and HWE P value of <1 × 10−6), respectively. After  
sample quality control analysis, 8,682 and 11,742 individuals of European 
ancestry in the ARIC and QIMR cohorts, respectively, were included for fur-
ther analysis. The quality control protocol has been detailed previously for the 
ARIC cohort18,30 and for the QIMR cohort14,29. We then estimated pairwise 
genetic relationships between individuals14 and removed one of each pair of 
individuals with an estimated relatedness of >0.025. After these quality control 
steps, 6,654 and 3,924 unrelated individuals were retained in the ARIC and 
QIMR cohorts, respectively. All the ARIC samples were from adults and the 
QIMR samples were from 3,247 adults and 677 16-year-old adolescents. The 
SNP data for both ARIC and QIMR cohorts were imputed to the HapMap 
Phase 2 CEU panel by MACH31. We used the best guess genotypes of the 
imputed SNPs and excluded imputed SNPs with HWE P value of <1 × 10−6, 
imputation R2 of <0.3 or MAF of <0.01 and retained 2,406,652 and 2,410,957 
SNPs in the ARIC and QIMR cohorts, respectively. The ARIC cohort is part of 
the discovery sample of the GIANT meta-analysis, whereas the QIMR cohort 
is not. In the prediction analyses, the height and BMI phenotypes in the ARIC 
and QIMR cohorts were adjusted for age and sex effects and standardized to 
z scores14,18. In the QIMR cohort, only samples from 3,247 adults were used 
in the prediction analysis for BMI.

Estimating the joint effects of multiple SNPs for a quantitative trait. Under 
the assumption that a quantitative trait is affected by multiple genetic vari-
ants, we can express phenotypes in a sample of unrelated individuals by a 
multi-SNP model as

y Xb e= +  

where y = {yi} is an n × 1 vector of phenotypes, with n being the sample size,  
X = {xij} is an n × N genotype matrix, with xij = −2pj, 1 − 2pj or 2 − 2pj for the jth  
SNP of the ith individual, with pj being the allele frequency of a SNP j and N 
being the number of SNPs fitted in the model, and b = {bj}, an N × 1 vector of 
joint SNP effects. For simplicity, we subtract the mean of the phenotype from yi,  
such that we do not need to fit the intercept in the model. We therefore can 
estimate the joint effects of multiple SNPs by the least-squares approach as

b X X X y b X X= =− −( ) var( ) ( )′ ′ ′1 2 1and Js

where sJ
2 is the residual variance in the joint analysis.

In a GWAS or meta-analysis, however, each SNP is usually tested for asso-
ciation separately based on a single-SNP model

y x e= +j jb  

where xj is the jth column of X and βj is the marginal effect of SNP j. The 
marginal effects of multiple SNPs estimated from a single SNP–based genome 
scan can be written in matrix form as

� �= =− −D X y D1 2 1′ and Mvar( ) s

(1)(1)

(2)(2)

(3)(3)

(4)(4)

where β = {βj} is an N × 1 vector of marginal SNP effects, D = {Dj} is the diago-
nal matrix of X′X with D xj iji

n= ∑ 2 and sM
2  is the residual variance in the 

single-SNP analyses. The marginal SNP effects do not take the LD correlations 
between SNPs into account compared with the joint SNP effects. There are two 
issues involved in such single-SNP analyses for SNPs a short distance from 
each other: (i) if the increasing (or risk) alleles of two SNPs is negatively cor-
related, the effects of both SNPs will be attenuated; therefore, the single-SNP 
analysis is underpowered, and one SNP or both SNPs may be undetected and 
(ii) if both SNPs reach genome-wide significance, it is difficult to determine 
their degree of dependency by interrogating the LD afterwards.

With the summary statistics from single-SNP analyses and individual-level 
genotype data of the discovery sample, we can convert the marginal effects to 
joint effects without using the phenotype data. We know from equation (4) that 
X y D′ = �, and we therefore can rewrite equation (2) with respect to �

b X X D b X X= =− −( ) var( ) ( )′ ′1 2 1� and � J

The proportion of phenotypic variance explained by all the SNPs (coefficient 
of determination of a multiple regression model) is

RJ
2 = =b X y

y y
b D
y y

′ ′
′

′
′

�

giving the following equation: 

sJ
J2
21

=
−

−
=

−
−

( )R
n N n N

y y y y b D′ ′ ′ �

In an association analysis of a single SNP j,

s
b

M( )j
j jD

n
2

2

1
=

−
−

y y′

and the squared standard error of the estimate of the effect size is 
S Dj j j
2 2= sM( ) /  so that y y′ = − +D S n Dj j j j

2 21( ) b . Although the phenotypes 
of a quantitative trait are often standardized to z scores, we take the median 
of D S n Dj j j j

2 21( )− + b  across all the SNPs to calculate y′y instead of relying 
on the variance being known.

For a meta-analysis of a large number of cohorts, such as the GIANT 
Consortium meta-analysis3,4, we are usually unable to obtain pooled indi-
vidual-level genotype data of the whole discovery set; hence, we do not have 
the X′X matrix. X′X is essentially a variance-covariance matrix of SNP geno-
types, which can be estimated from the allele frequencies in the meta-analysis 
sample along with LD correlations between SNPs from a reference sample, 
such as one of the meta-analysis cohorts for which individual-level genotype 
data are available. We let W = {wij} denote the genotype matrix of the reference 
sample with sample size of m, where wij = −2fj, 1 − 2fj or 2 − 2fj for the three 
genotypes, with fj being the allele frequency of a SNP j in the reference sam-
ple, and we let DW denote the diagonal matrix of W′W with D wj iji

m
W( ) = ∑ 2.  

If the reference sample is from the same population as the meta-analysis  
sample, the LD correlation between a pair of SNPs j and k should be similar 
in the two samples32,33, with

x x

x x

w w

w w

ij iki
n

iji
n

iki
n

ij iki
m

iji
m

iki
m

∑
∑ ∑

∑
∑ ∑

≈
2 2 2 2

so that X′X is approximately equal to B, with the jkth element of B being

B
D D

D D
w wjk

j k

j k
ij iki

m≈ ∑
W W( ) ( )

We have defined above that D xj iji
n= ∑ 2 and, as xij is not available in this 

case, we thus take Dj = 2pj (1 − pj)n, assuming HWE and can show this in 
matrix form:

B D D W WD D= − −1 2 1 2 1 2 1 2/ / / /
W W′

(5)(5)

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(11)(11)
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Therefore, we can approximate a joint analysis of multiple SNPs as

� �b B D b B= =− −1 2 1� and Jvar( ) s

where  b = { }bj  is an N × 1 vector of approximate estimates of joint SNP effects. 
If a SNP is uncorrelated with all other SNPs in the model, then the estimate 
of the effect size from the joint analysis will be identical to that from the 
meta-analysis. In a genetically homogenous population of large effective size,  
the expected value of LD correlation between two SNPs on different chromo-
somes or a large distance apart is approximately zero, and the observed  
LD correlations between such pairs of SNPs in a sample are just a result of ran-
dom sampling. We show with empirical data that the observed LD correlation 
between SNPs more than 10 Mb apart is consistent with what we would expect 
by chance (Supplementary Fig. 7). We use the expected values (zeros) in the 
matrix B for such pairs of distant SNPs, because it is more appropriate to repre-
sent a sampled correlation observed in the meta-analysis sample by its expected 
value rather than another sampled correlation observed in the reference sample 
unless the whole meta-analysis sample is used as the reference sample.

In addition, the sample size varies for different SNPs due to imputation 
failures for different SNPs in different participating studies. Therefore, n is no 
longer constant across different SNPs, and we need to rescale the elements of  
B and D according to the different effective sample sizes of different SNPs. 
For any SNP j,

n D S Sj j j j j= − +y y′ / /2 2 2 1b

where we take the variance explained by a single SNP into account, consider-
ing that the effect sizes of some particular SNPs are large for some traits. We 
use the estimated effective sample size rather than the reported sample size, 
because the effective sample size will be smaller than the reported sample 
size if there is some degree of relatedness in the data. We then adjust the jkth 
element of B for the sample size variability of the SNPs as

B n n
p p p p

w w
w wjk j k

j j k k

iji
m

iki
m ij iki

m=
− −

∑ ∑
∑min( , )

( ) ( )
2

1 1
2 2

and adjust the jth diagonal element of D as D p p nj j j j= −2 1( ) .

Conditional analysis. In a linear regression analysis of multiple SNPs, the 
least-squares estimates of the joint effects of one set of SNPs conditional on 
another set of SNPs (b2 | b1) are

b b X X X y X X X X X X X y2 1 2 2
1

2 2 2
1

2 1 1 1
1

1| ( ) ( ) ( )= ′ ′ − ′ ′ ′ ′− − −

var( | ) ( ) ( ) ( ) (b b X X X X X X X X X X X2 1
2

2 2
1 2

2 2
1

2 1 1 1
1

1 2= ′ − ′ ′ ′ ′ ′− − −s sC C 22 2
1X )−

where sC
2  is the residual variance in the conditional analysis and all the other 

variables and parameters are defined as above, with the subscripts 1 and 2 
indicating the two SNP sets. We can perform a multi-SNP conditional analysis 
using summary data from single-SNP analyses and individual-level genotype 
data of the sample without accessing the phenotype data by

b b X X D X X X X X X D2 1 2 2
1

2 2 2 2
1

2 1 1 1
1

1 1| ( ) ( ) ( )= ′ − ′ ′ ′− − −� �

s
b b

C
2 1 1 1 2 1 2 2

1 2
=

′ − ′ −
− −

y y b D b b D( | )
( )

′
n N N

where N1 and N2 are the number of SNPs in the two sets. If there is only one 
SNP to be tested in the conditional analysis (N2 = 1), then equations (17) and 
(18) simplify to

b2 1 2 2 2
1

2 1 1 1
1

1 1| ( ) ( )b X X X X X X D= − ′ ′ ′− −� �

var( | ) [ ( ) ]/b D D2 1
2

2 2 1 1 1
1

1 2 2
2b X X X X X X= − ′ ′ ′−sC

where b2, �2 and D2 are scalars.

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

(17)(17)

(18)(18)

(19)(19)

(20)(20)

As in a joint analysis, if the individual-level genotype data of the discovery 
sample are unavailable, we can estimate the LD correlations from the reference 
sample and approximate a conditional analysis as

� �b b B D B CB D2 1 2
1

2 2 2
1

1
1

1 1| = −− − −� �

var( | ) b b B B CB C B2 1
2

2
1 2

2
1

1
1

2
1= −− − − −s sC C ′

where B1 and B2 are similar as in equation (11) and C X X≈ ′2 1 with the jkth 
element.

C n n
p p p p

w w
w wjk j k

j j k k

iji
m

iki
m ij=

− −

∑ ∑
min( , )

( ) ( )
2 1

2 2 1 1

2
2

1
2 22

1 1
11iki

m∑

Model selection. There are many ways of performing model selection  
in a multiple regression framework. We use the following stepwise  
selection strategy to select the associated SNPs iteratively over all the 
SNPs across the whole genome, regardless of their P values from the meta- 
analysis, except for the most significant SNP, which was used for model 
initiation.

(1)  Start with a model with the most significant SNP in the single-SNP meta-
analysis across the whole genome with P value below a cutoff P value, 
such as 5 × 10−8.

(2)  For the tth step, calculate the P values of all the remaining SNPs  
conditional on the SNP(s) that have already been selected in the  
model. To avoid problems due to colinearity, if the squared multiple 
correlation between a SNP to be tested and the selected SNP(s) is larger 
than a cutoff value, such as 0.9, the conditional P value for that SNP will 
be set to 1.

(3)  Select the SNP with minimum conditional P value that is lower than the 
cutoff P value. However, if adding the new SNP causes new colinearity 
problems between any of the selected SNPs and the others, we drop the 
new SNP and repeat this process.

(4)  Fit all the selected SNPs jointly in a model and drop the SNP with the 
largest P value that is greater than the cutoff P value.

(5)  Repeat processes (2), (3) and (4) until no SNPs can be added or removed 
from the model.

A multiple regression analysis with model selection, such as that presented 
above, might suffer from over-fitting of effects, because the residual vari-
ance decreases as more and more SNPs are included in the model, such that 
the false positive rate for the inclusion of new SNPs in the model would be 
inflated. In practice, we keep the residual variance constant to the phenotypic 
variance, even if we added significant SNPs into the model, which may be too 
conservative and may therefore result in a loss of power to detect additional 
associated variants but has the benefit of keeping the false positive rate in 
the conditional and joint analysis at the same level as in the meta-analysis. 
If a SNP has no correlation with any of the SNPs selected in the model, its P 
value in the conditional or joint analysis will remain the same as it is in the 
meta-analysis.

Case-control studies. We know from the methods above that the scale of 
measurement of a quantitative trait is not important, as it can be dropped 
from the equations. We therefore extend these methods to be applied to the 
case-control study design, assuming that the disease liabilities (L) of all the 
individuals are known, and model the effects of multiple SNPs.

L Xb e= +

There are two distributions that are often assigned to the residuals to trans-
form the underlying liability to the probability of being affected or unaffected, 
the standard normal distribution (probit model) and the logistic distribution 
(logistic regression). Given the logistic probability function of f(li) = exp(li)/ 
[1 + exp(li)] with li being the liability of the ith individual, the odds ratio (OR)  

(21)(21)

(22)(22)

(23)(23)

(24)(24)
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for a SNP j in a multiple-SNP analysis is exp(bj), with bj being the log(OR) 
in a joint analysis, and is exp(βj) for a single-SNP model L = xjβj + e, with βj 
being the log(OR) in a single-SNP analysis. Even though the residuals follow 
a logistic distribution, the least-squares estimates of effect sizes are unbiased, 
because the least-squares approach does not rely on the assumption of normal-
ity. Hence, we can apply the same methods as described above for a quantitative 
trait to a case-control study, as long as the effect sizes and standard errors are 
expressed on the log(OR) scale.

Software tool. The method described above has been implemented as an 
option in the GCTA software package (see URLs)19.
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