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1. INTRODUCTION

The mathematical theory of evidence (Shafer et al. [9]) has recently found much
interest as an approach to treat uncertainty in expert and knowledge-based sys-
tems. Although the theory is very promising, there are not yet many practical
applications. Modeling practice has still to be developed. This is a crucial task
in view of facilitating the application of evidential modeling. It is the aim of
this paper to discuss an important element of evidential modeling—conditional
belief—within the scope of the mathematical theory of evidence.

In a given problem domain, there exist in general domain dependent, struc-
tural knowledge about various relations between different aspects or elements
of the problem. On the other hand, there are several sources of information or
knowledge, which produce evidence about various facets of the problem in a
given context or situation. This observational evidence must then be combined
with the structural knowledge.

Any model within the mathematical theory of evidence is based on a. frame
of discernment 0, a finite set whose elements represent the possible outcomes
or results. Often the reasoning is about different objects, different attributes
or properties of an object, or more generally about different variables related
to a problem. It is then natural to consider 0 as a product set formed by several
factor frames 0,, each one representing the possible values of one variable.
The structural knowledge in such models is then contained in relations between
different variables or different factor frames 0,. Such relations may take the
form of conditional belief structures. Intuitively, these structures describe the
beliefs about propositions in 0y, given certain propositions in 0,. The exact
mathematical definition of these conditional belief structures is the first goal
of this paper.
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416 J. Kohlas

Observational evidence coming from a knowledge source pertains often to
one of the factor frames 0, and can be modeled by a belief function on 0,.
The belief functions representing observational evidences have then to be com-
bined with the conditional belief structures representing structural knowledge.
The analysis of this combination of observational and structural knowledge is
the second goal of this paper.

Lowrance and Garvey [5], Lowrance [4], and Garvey [2] describe applica-
tions which are modeled along the above lines. Their conditional belief struc-
tures reduce, however, to simple and fixed compatibility relations (compare
Section 3 below). The concepts introduced in this paper generalize their ap-
proach. Lu and Stephanou [6] discuss another approach which is generalized
in this paper.

The outline of this paper is as follows: In Section 2, a short introduction
to the mathematical theory of evidence is given. In Section 3, two simple, but
interesting examples, are discussed as an introduction into the subject of the
paper. In Section 4, conditional belief structures are introduced on the basis of
simple compatibility relations. Some applications are given, notably a discus-
sion of inference networks. In Section 5, more general relations are considered
and the general definition of conditional belief structures is introduced. The
propagation of belief from one frame 0, to another frame 07 by conditional
belief structures is discussed in detail. As an application, the case of indepen-
dent "if . . . then . . ." rules, i.e., the model of Lu and Stephanou [6] is ana-
lyzed.

2. ELEMENTS OF THE MATHEMATICAL THEORY OF EVIDENCE

The central notion of Shafer's mathematical theory of evidence is the belief
function (Shafer [8]). It expresses mathematically the belief induced by a given
body of evidence on possible outcomes or results and propositions formed by
them. Let 0 be a. finite set, whose elements represent the possible outcomes. 0
is called the frame of discernment. The evidence available concerning the pos-
sible outcomes is regarded as a message, whose interpretation is uncertain. Sup-
pose there are i = 1,2,... ,m different possible interpretations and that the /th
interpretation has probability pt of being the correct one. These probabilities
are positive and sum up to one:

I, A>O, (l)

Now, suppose the /th interpretation of the available evidence says that the true
(and unknown) outcome lies within the subset A,C 0. There is thus a proba-
bility of Pi that Aj is the right interpretation of the evidence.

Now fix any subset A C 0. It can be concluded that the true outcome lies
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CONDITIONAL BELIEF STRUCTURES 417

within A at least, if any one of the interpretations At of the available evidence
with Aj C A is the correct one. The probability of this event can be considered
as a degree of belief induced into proposition (or event) A by the available evi-
dence on the possible outcomes. We define thus

Bel (A) = £ ph (2)
A,<ZA

where Bel denotes the degree of belief. Note that Bel is an application from 2e

to [0,1], but that it is —in general —not additive, i.e., Bel(A U B) J= Bel(A) +
Bel(B), even if A and B are disjoint. The sets A, are called focal sets and their
probabilities p, basic probability commitments. It is convenient to introduce a
function m(B) = p, if B - At and m(B) - 0 otherwise. Then Eq. (2) can also
be written as

Bel(A) = £ m(B). (3)
BCA

The introduction of belief functions as given here using the model of different
possible interpretations of an evidence was proposed by Shafer and Tversky
[10]. A slightly different one goes back to Dempster [1]; see also Shafer [8].

The more belief that is assigned to the complement Ac of a proposition A,
the more doubt is cast upon A itself. Therefore,

Dou(A) =Bel(Ac) (4)

is called the degree of doubt of A. The less doubt there is in a proposition A,
the more plausible appears this proposition. That is

Pl(A) = 1 - Dou(A) = 1 - Bel(Ac) (5)

is called the degree of plausibility in A. It is easy to see that always

Bel (A) < PI (A). (6)

Be! and PI are therefore sometimes considered as the upper and lower proba-
bility limits within which the true (but unknown) probability must be contained
(e.g., Dempster [1]).

Often an evidence is to be interpreted as either pointing to a focal set A c
0 (probability p) or else containing no information whatsoever (probability
1 — p). In the latter case, the corresponding focal set is the whole frame of dis-
cernment 0. The corresponding belief function is then called a simple belief
function. Belief functions whose focal sets are nested, A^x C Ah for / =
2,...,m, are called consonant.

There might be different evidences stemming from different sources, but
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418 J. Kohlas

pertaining to the same frame of discernment. Suppose there are two bodies of
evidence, j = 1,2, each one inducing a belief function Belj with focal sets Atj

and basic probability commitments /?<,,/ = 1,2,... ,mjt j = 1,2. How can these
two bodies be fused into a single, combined body of evidence, inducing a com-
bined belief function? Consider interpretation / of the first body and interpre-
tation k of the second body. If both are the correct interpretations of the two
corresponding bodies of evidence, then their combined interpretation must lead
to the focal set An fl Ak2. If, furthermore, the two bodies and their possible
interpretations are considered to be independent in the usual stochastic sense,
then the above combined interpretation has the probability PnPk2 to be
correct.

It cannot be excluded that the intersection An H Ak2 is empty. This is
a contradiction in the sense that not both interpretations can be correct at
the same time. In other words, their combination is no possible combination
of interpretations and must be excluded. This means that the probabilities of
combinations must be conditioned on the event that these combinations are
possible. Furthermore, different interpretations i and k may lead to the same
intersection An H Akl. Thus, the combined belief function is defined by the
following basic probability commitments:

m(B) = £ m(An)m(Ak2)/k, (7)

where

k=\- S m(An)m(Ak2). (8)
Anr\Ak2=<t>

This is Dempster's rule for the combination of independent bodies of evidence
(Dempster [1]). The new, combined belief function is denoted by Belx ®Bel2.
It is easy to verify that this operation of combination is commutative and
associative. As mentioned in the introduction, the frame of discernment is often
a product space. Suppose 0 = 0 ' x 0". In many cases, a belief function is
defined on one of the factors, say 0 ' . It can then be extended to 0 by defin-
ing the focal sets At x 0". This is called the vacuous extension. Sometimes one
wants to restrict a belief function defined on 0 to one of the factors, say 0".
This is accomplished by projecting the focal sets of the belief function to the
factor and taking these projections as new focal sets (it is possible that several
focal sets project to the same set, then their probabilities have to be summed
up). These two operations are special cases of the corresponding operations
related to the refining and coarsening of frames as discussed by Shafer [8]. For
that and other aspects of the mathematical theory of evidence, we refer to
Shafer's book [8].
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CONDITIONAL BELIEF STRUCTURES 419

3. TWO SIMPLE EXAMPLES

3.' I . Fingerprints

Both examples which are analyzed in this section are taken from Pearl [7], who
treats them with the classical Bayesian analysis, whereas they are discussed here
within the framework of evidential modeling.

Assume in the first example that in a certain trial there are some suspects,
one of whom might have committed a murder and that the murder weapon,
showing some fingerprints, has been found by the police. It is believed that the
killer was the last to hold the weapon. In this example, there are two variables
or frames of discernment 0 ' and 0 " related to the two questions "who was the
murderer?" and "who last held the weapon?". Let 0i,02, • • -0n denote the sus-
pects, but assume that it is not excluded that somebody else committed the mur-
der, a possibility denoted by 0'. Then 0 ' = \6U... ,6n,9'}. In the same way,
0 " contains also the suspects 0,, but again assume that it is not excluded that
somebody else last held the weapon, a possibility denoted this time by 0", hence
0 " = ( 0 , , . . . ,0n,0"}. If it is in fact true that the murderer was the last to hold
the weapon, then only the points C, = {(0i,0i),(02,02). • • • ,(0n,0n),(0',0")) C
0 ' x 0 " are possible. Such a subset Cx of the product set 0 ' x 0 " is called a
compatibility relation. It represents a restriction on the combined possibilities
of both frames. But it is not sure that it was the killer who last held the weapon.
Then all points of C2 - 0 ' x 0 " are possible. Suppose a probability of p can
be assigned to the possibility that the murderer was in fact the last to hold the
weapon. Then m{C\) = p, m(C2) = I —p defines a simple belief function Bel
on 0 ' x 0 " which represents the belief that the killer held the weapon last.

This construction can also be interpreted in the following way: Given that
0, is in fact the murderer, then there is a simple belief function on 0 " , focus-
ing a probability p to (0,), that the fingerprints of 0, are on the weapon. Or
symmetrically: given that 0, was the last to hold the weapon, then this induces
a simple belief function on 9 ' , focusing the probability/7 on (0,), that 0,- is in
fact the murderer. That is why Bel may be called a conditional belief structure
describing a relation between the two frames 0 ' and 0" .

The laboratory which analyses the fingerprints is a knowledge source which
produces evidence about who last held the weapon. The results of the analysis
may be represented by a belief function Bel" on 0 " . Using the vacuous exten-
sion of Bel" to 0 ' x 0" , Bel® Bel" can be computed by Dempster's rule, and
the restriction Bel' of Bel© Bel" to 0 ' represents the resulting belief about who
could have been the killer.

Suppose (i) that the laboratory produces a simple belief function Bel"
focusing a probability q on {0,) for some /. Then it can be easily verified that
this charges 0, with a belief of Bel' ({0,)) = pq to be the murderer. Suppose (ii)
that the laboratory produces a simple belief focusing a probability q on (0"}.
Then it follows that the suspects 0,,/ = 1,2,...,/?, are discharged from the
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420 J. Kohlas

accusation by a small plausibility Pl'([6\,... ,#„)) = 1 - pq for any one of
them being the killer. Other cases may of course be invented and treated and
other knowledge sources yielding evidence in favor or against the suspects in
0 ' (such as alibis) may be introduced and combined with the evidence from the
analysis of fingerprints on the weapon.

3.2. Alarm System

Pearl [7] considers the following small story: "Mr. Holmes received a phone call
from his neighbor notifying him that she heard a burglar alarm sound from the
direction of his home. As he is preparing to rush home, Mr. Holmes recalls that
recently the alarm had been triggered by an earthquake. Driving home, he hears
a radio newscast reporting an earthquake 200 miles away." The question is,
should Mr. Holmes be worried about a burglary?

In this case, three variables or factor frames must be considered: B = [b,
not b) concerning the question whether there is or is not a burglary, E = [e,
not e] regarding the question whether there is or not an earthquake in the re-
gion, and A — [a, not a] representing the possibility of an alarm. Here causal
relationships of the form "if b then probably (hopefully) a", "if e then possi-
bly a", "if neither b nor e then surely not a" have to be modeled. This means
that the two variables B and E together causally influence A. Four possible
cases have to be distinguished: (1) Both burglary and earthquake trigger alarm.
This restricts the possible cases in the product set B x E x A to Ct = {(b,e,a),
(b,not e,a),(not b,e,a),{not b,noi e,not a)). (2) Burglary triggers alarm, but
earthquake does not. Similarly, (3) burglary does not trigger alarm, but earth-
quake does. In these two cases, the following restrictions hold: C2 = \{b,e,a),
(b,not e,a), (not b,e,not a ) , (not b,not e.not a)); C3 = {(b,e,a),(b,not e.not
a),(not b,e,a),(not b,noi e.not a)}. Finally (4), it is possible that neither bur-
glary nor earthquake triggers an alarm, but it is not excluded that alarm is
caused by another source. In this case, all combinations in C4 = B x E x A
are possible. C\ to C4 are compatibility relations between B, E, and A. Let/?
and q be the probabilities that a burglary triggers an alarm and that an earth-
quake triggers an alarm, respectively, and suppose that these two events are
stochastically independent. Then the four cases have the four probabilities
pq,p(\ - q),{l -p)q, and (1 -p)(l - q). These are the probabilities com-
mitted to the four sets C\ to C4 in B x E x A. This defines a belief function
Bel' on the product set B x E x A.

This belief function can again be considered as a conditional belief struc-
ture. In fact, given that there is at the same time a burglary and an earth-
quake (b,e), then by C,, C2, and C3 an alarm will be triggered with probabil-
ity pq + p(l - q) + (1 -p)q = 1 - (1 - p ) ( l - q), whereas according to C4
it is not sure that an alarm is triggered (probability (1 -p)(\ - q)). This rep-
resents a belief function on A. In the same way, conditional beliefs of an alarm
given (Z>,not e) and (not b,e) are defined. On the other hand, given that there
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CONDITIONAL BELIEF STRUCTURES 421

is ar. alarm, there is by Cx a burglary or an earthquake (probability pq), by C2

there is a burglary (probability p( 1 — q)), and by C3 an earthquake (probabil-
ity (1 - p)q). By C4, it is also possible that neither an earthquake nor a bur-
glary caused the alarm. Thus, the condition a G A induces also a conditional
belief function on B X E.

Consider now the phone call from the neighbor reporting an alarm. This
can be represented as a simple belief function focusing a belief 1 to a G A.
Combining this simple belief function with Bel' by Dempster's rule gives a belief
function on B x E x A with focal sets {(b,e,a),(b,not e,a),(not b,e,a)\;
{(b,e,a),(b,not e , a ) } ; {(b,e,a),(not b , e , a ) } , a n d B x E x [a] a n d b a s i c p r o b -
ability numbers pq, p( 1 —q), (1 — p)q, and (1 — p)(\ — q), respectively. This
defines the following beliefs: Be/(burglary or earthquake) = 1 — (1 — p)(\ —
q), Be/(burglary) = p(\ -q).

q may be nearly 1, i.e., an alarm system may be very sensitive to earth-
quakes. Then there is at first sight a surprisingly small belief in a burglary. Sup-
pose, e.g., p = 0.9, q — 0.8, then fie/(burglary) = 0.18 only. That is because
there is another evidence to be combined: if there is no radio message about the
occurrence of an earthquake, then there is strong evidence, based on past expe-
rience on the rarity of earthquakes, that there is in fact no earthquake. This can
be represented by a simple belief function focusing s (near to 1) to not e G E.
If this supplementary evidence is combined by Dempster's rule with the above
belief function, then there results a belief into burglary to Bel (burglary) =
(pqs + p(\ -<7))/(l - (1 -p)qs). This gives, fors = 0.99, a belief of 0.96959
as compared to 0.18 above. This result shows that it is important to include
always all the available evidence.

But assume now that there is a radio message about an earthquake. Then
this is strong evidence in favor of e G E, represented by a belief function focus-
ing r (near to 1) to e G E. If this is combined by Dempster's rule with the above
belief function, then the belief in burglary remains the same, Bel (burglary) =
p{\ — q) = 0.18, independently of r. But it is of course drastically reduced com-
pared to the case where there is no evidence about an earthquake.

4. SIMPLE COMPATIBILITY RELATIONS

4.1 . Two Variables

The examples of Section 3 show how to define conditional belief structures link-
ing two or more variables together. In this subsection, the particular case of two
variables will be considered. Consider, therefore, the two frames of discernment
0 ' and G" corresponding to the two variables. Each subset C C G' x 0 " of the
product set is a compatibility relation between the two frames or variables
which restricts the possible values which the two variables may take at the same
time. For any 0' G G', define the set C(d') = (0" G 0 " : (0',0") G C) of val-
ues in G" compatible with $' in 0 ' . It will not be excluded that C(0') may be
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422 J. Kohlas

empty; 6' is then an impossible value. In the same way, C(0") is defined as the
set of values S ' 6 9 ' compatible with 0".

A conditional belief structure on 0 ' x 6 " is defined by a belief function
Bel with compatibility relations C, G 0 ' x 0" , / = 1,2,... ,m, as focal sets and
basic probability commitments/?, to these sets. Given a 0' G 0 ' , there is then
a conditional belief function on 0 " with focal sets C,(0') and basic probabil-
ities Pi (assuming no C,(0') is empty). Symmetrically, given a 6" G 0 " , there
is a conditional belief function on 0 ' with focal sets C,(0") and basic proba-
bilities />,. This allows the consideration of uncertain rules of the form "if 0'
then C,(0 ')" with some probability/?,. But many times one wants to consider
more generally propositions P' in 0 ' and uncertain rules of the form "if P' then
Q"" with some probability, where Q" is a proposition in 0 " . This case will be
discussed in the next section.

If Bel' is a belief function on 0 ' , then it may be extended to 0 ' x 0 " by
the vacuous extension, then combined with Bel using Dempster's rule and
finally restricted in 9" , resulting in a belief function Bel" on 6 " representing
the belief induced on 0 " by Bel' and the conditional belief structure Bel. Of
course, belief may also be propagated from 0 " to 0 ' in a similar way.

4.2. Many Variables

Consider now more generally the case of n > 2 variables or frames of discern-
ment 0, , / = 1,2,... ,n. Let /„ = (1 ,2 , . . . ,« ) be the corresponding index set. If
W c /„ contains at least two elements, then a subset

C C I I ©y (9)
jew

is a compatibility relation between variables or frames JEW and restricts pos-
sible values of tuples (djj G W). A conditional belief structure between vari-
ables j G W'\s a belief function whose focal sets are compatibility relations C,,
i = 1,2, . . . ,m, between variables j G W with basic probability commit-
ments Pj.

If / / is a family of several subsets W <Zln (all of them containing at least
two elements), then for any WE Ha conditional belief structure Belw can be
considered. It will generally be assumed that the probabilities of the different
conditional belief structures are stochastically independent. If, furthermore,
belief functions on one or several frames 0, are given, then these beliefs may
be combined with the conditional belief structures using Dempster's rule. Sys-
tems of this kind have been considered by Kong [3]. Shafer et al. [9] studied
special cases of this structure and indicated computationally efficient methods
to combine evidence. In the following subsection, another important special
case is presented.
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CONDITIONAL BELIEF STRUCTURES 423

4.3. Inference Networks

Consider a set of propositions pk, k = 1,2,... ,n, linked by rules "if A then
pj" for some couples (i,j). The propositions pk form the nodes V and the
rules "if p, thenp/' the oriented edges E of a graph G = (V,E). G is called an
inference network. It will be assumed that the rules are not fully reliable in the
sense that a condition pt implies the conclusion pj only with some probability
m,j smaller than 1, whereas with probability (1 — m^) p, implies neither/?, nor
not pj. To represent such a situation, consider frames 0, = {/?,-,not /?,). If a
rule "if Pi then/?/' holds then only the couples {(pi, pj),(not PJ,PJ),(not pitnot
Pj)\ C 0, X Qj are possible, otherwise all of 0, X 0y is possible. Let us denote
the former set by (not pt) or Pj. Then the unreliability of the rule "if /?, then
Pj" can be described by the simple belief function Belti on 0, X 0, focusing the
probability m,y to (not />,) or pj. This corresponds to the general case discussed
in the previous subsection where H is here equal to E and all conditional belief
structures are between pairs of frames 0, and Qj.

Suppose furthermore that there are some independent, simple belief func-
tions Belj for some propositions /?,,/ G M C /„, which assign probabilities m,
to pj. Let Bel denote the total combined belief of the simple beliefs about
propositions /?,, / G M and the conditional belief structures associated to the
rules of the network,

Bel=[® Bel, © I © Belu). (10)
\ie\f I \u,j)eE I

It is possible to interpret m, as the probability that node p, in G is intact or
available and m^ in the same sense, that edge (ij) in G is intact or available.
G is then considered as a network where some nodes and edges may fail. For
any node q in G, there is a probability pVmk (q) that at least one node /?,, / £ M,
together with a path from p, to q in G is available. The following theorem
establishes a relation between total belief Bel and the network reliability:

THEOREM 4.1: For any node q of the graph G,

Bel(q)=plink(ci)- (ID

PROOF: The focal sets of Eq. (10) are obtained by taking any subsets W of M
and (/of £and intersecting/?,, / G W, and (not/?*) or/?,, (k,j) E U. Suppose
then first there exists a path from a w G W (we write w G W instead of w =
ph i G W) to q within the subgraph (V, U) of G(U C £ ) . Consider

9t/= fl ((not p*) or p,-) (12)
(kj)eu

and let w,pup2,... ,/?r,<7 define a path from w to q within (K, (/). Then

qu C ((not w) or/7,) n ((not p,) or /?2) D • • • D ((not pr) or 9)

C (not w) or q
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424 J. Kohlas

and thus

Q(w,u) = ( f| Pi) H qv C w H ((not w) or 9) C q. (14)

Hence, every focal set of Bel in Eq. (10) which defines a subgraph containing
a path from some w = ph i £ M to q implies q. This means that Bel(q) >
Aink(<7).

Suppose now, on the other hand, that either W = <f> or there is no path
from a w e W to q within the subgraph (V, U). If W = <f>, then q(w,v) — Qu
may be developed into a disjunction of literals X\X2..., where each x, is either
a j9y or a not /?,. But obviously at least one literal of this disjunction does not
contain q and therefore qu does not imply q.

If Wis not empty, but there is no path from a w G H^to 9 within (K, t / ) ,
then consider the subset of edges U' of U which are on some path leading to
q. U' may be empty. But if U' is not empty, then q^ may again be developed
into a disjunction of literals. None of these literals contains a w E. W because
there is no path from w to q. At least one of these literals does not contain q.

Let U" = U — U'. If U" is not empty then consider once again the devel-
opment of qu- into the disjunction of literals. None of these literals contain q
and for any wE Wat least one of the literals does not contain (not w). Then
Qu - Qw H qu~- Combining the two disjunctions of literals corresponding to
qu' and qv- yields the disjunction of literals corresponding to qu. There is
then for any w E W a literal containing neither (not w) nor q. Thus, qu does
not imply (not w) or q and this implies that q{W,u) does not imply q. Hence,
Bel(q) =Aink(<7)- •

The computation of Bel(q) is in general no easy task, except in some spe-
cial cases. If G contains no cycles then the method described in Shafer et al. [9]
can be applied.

5. GENERALIZED COMPATIBILITY RELATIONS

5.1. Modeling Rules

This section is primarily motivated by the desire to model uncertain rules like
"if P then probably Q" within the mathematical theory of evidence. More gen-
erally assume P C 9 ' is some proposition discerned by the frame of discernment
0 ' . If P is known to be true, then some (conditional) belief function Belp on
0" may describe what follows from P. Even, more generally, if Pk, k =
1,2,..., is a family of propositions in 9' , then for any k there is a (conditional)
belief function Belk on 9" describing the belief induced by Pk. If Bel repre-
sents a belief function on 9 ' , then one wants, of course, to combine this belief
with the conditional belief structure defined by Belk to propagate belief from
9 ' to 9". This is only a sketch of what one wants to achieve. Several attempts
have been reported in the literature to model that within the framework of the
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CONDITIONAL BELIEF STRUCTURES 425

mathematical theory of evidence (Lu and Stephanou [6]), but none of them was
entirely satisfactory. In this subsection, a rigorous, formal solution to this prob-
lem is proposed.

The simple compatibility relations and conditional belief structures dis-
cussed in the last section are by themselves not yet sufficient to model the kind
of rules mentioned above. But they offer, nevertheless, the base for the solu-
tion. Let Pk, k = 1,2,... ,n, Pk c 6 ' , and Qj, j ~ 1,2,. ..,m,QjC 9 " be two
families of arbitrary propositions in 0 ' and 9" , respectively. Note that it is not
assumed that the Pk (nor the Qj) are mutually disjoint. Let /„ and Im be the
index sets of the two families. Consider a compatibility relation R c /„ X lm

between propositions of the two families. So if (k,j) € R, then the two propo-
sitions Pk and Qj are compatible; i.e., if Pk is known to be true, then Qj is pos-
sible and vice versa. We call this a generalized compatibility relation which will
be denoted by R.

Let R(k) = [j E /„: (kj) E R] and R(j) = [k E /„: (kj) E R). Then
together with 6' E Pk, only points 6" E Qj withy E R(k) are possible or sym-
metrically, to 0" E Qj, only points 6' E Pk, k E R(j), are compatible. Thus,
a generalized compatibility relation between propositions in 9 ' and 9 " imposes
constraints on the possible pairs (O',d") which are described by the simple com-
patibility relation

C(R) = |J PkxQjCB' x 0". (15)

If C is an arbitrary, simple compatibility relation between 9 ' and 9" , then the
two family of propositions (0' E 9 ' ) and {6" E 9 " ) may be considered, and
C then defines a generalized compatibility relation C" between these two fam-
ilies of propositions such that clearly C(C') = C. That's why one may speak
of generalized compatibility relations. As a further example, note that a rule
like "if P then Q" (P C G', Q C ©") is defined by the generalized compatibil-
ity relation R = [(P, Q),(not P,Q")} between the families of propositions (P.not
P) and \Q,Q"). Associated with this generalized compatibility relation is the
simple compatibility relation C(R) =Px Q U (not P x 9") , which we will note
in a convenient abbreviation as (not P) or Q. Note furthermore that the gener-
afeed compatibility relation {(not P,not Q),(Q',Q)} leads to the same simple
compatibility relation (not (not Q)) or (not P) = (not P) or Q. As the simple
compatibility relation C(R) is what really matters to treat generalized compati-
bility relations (see below), the two generalized compatibility relations above
may be considered as equivalent.

Suppose a generalized compatibility relation R between propositions in 9 '
and 9 " is given and that a proposition P c 9 ' is known to be true. This restricts
the possible values in 9 ' x 9 " to (P x 9") fl C(R). The projection of this set
to 9" determines the set of possible points in 9 " (i.e., points which are com-
patible with P). In the case of a rule "if P then Q" as it is modeled above, it
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426 J. Kohlas

follows that a proposition P' which implies P(P' C P) projects to Q, whereas
any other proposition (P' C\ not P =£ <f>) projects to 0". This is exactly as it
must be.

To introduce uncertainty into the rules, consider, in a general approach for
/ = 1,2,... ,r, different generalized compatibility relations /?, and suppose that
Rj is selected with some given probability /?, (the p, sum to 1). This then
defines a belief function Bel on 0 ' X 0" with focal sets C(/?,-) and basic prob-
ability numbers ph hence a conditional belief structure on 0 ' x 0" in the
sense of Subsection 3.1. This is how uncertain rules must be represented within
the framework of the mathematical theory of evidence. If there is a belief func-
tion Bel' given on 0 ' , then it may be extended to 0 ' x 0" by the vacuous
extension and then be combined with Bel by Dempster's rule. The belief thereby
propagated to 0" is obtained by the restriction of Bel' © Bel to 0". In a sym-
metrical way, belief Bel" on 0" may be transported to 0 ' .

This will be illustrated by a few very simple examples. Consider first an
uncertain rule like "if P then probably Q." If in fact the rule "if P then Q"
holds, then the generalized compatibility relation /?, = ((.P,Q),(not P,Q")}
holds. Let's give it the probability p. If, on the other hand, the rule does not
hold, then there is no restriction on 0 ' x 0". This corresponds to R2 =
((0',0")) which obtains the probability 1 —p. This defines a conditional belief
structure Bel on 0 ' x 0". Let Bel' be a belief function on 0 ' and consider a
focal set F with basic probability commitment g{F). Then (Fx Q") D C(/?,)
is a focal set of Bel' © Bel. In the sequel, it will be convenient to use the fol-
lowing abbreviation: if P C 0 ' and Q C 0", then P C\ Q or P U Q stands for
(P X 0") D (0 ' X Q) = P X Q or (P X 0") U (0 ' x Q), respectively. Hence,
the above focal set may be written as FC\ ((not P) U Q) = (Ffl (not P)) U
(Ffl Q). Because we are interested in the belief propagated to 0", we consider
the restriction of Bel' © Bel to 0" and hence the projection of its focal sets to
0". Now if FD (not P) =£ <j>, then the focal set above projects to the whole set
0" and the focal set F of Bel' induces no particular belief into 0". One may
also say that F does not trigger the rule because F does not imply P. If, on the
other hand, F D (not P) = 4> or Fc P (i.e., F implies P and thus triggers the
rule), then the focal set above projects to Q C 0" and assigns it the probabil-
ity pg(F). Other focal sets of Bel' may also contribute to Q. It is then seen that
Bel" is a simple belief function focusing on Q with a probability equaling

(16)
FCP

As a second, slightly more general example, suppose one wants to model a rule
which says that if P c 0 ' then a belief on 0" is induced which is represented
by a belief function Bel with focal sets Qj J = 1,2,... ,m, and basic probabil-
ity numbers pj. Such a rule is modeled by generalized compatibility relations
Rj = {{P,Qj)X^oi P,Q")},j - 1,2,... ,m, where each relation holds with prob-
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ability/?,. This defines again a belief function Bel on 9 ' x 0 " which represents
a conditional belief structure. One of the focal sets Qj, say Qm, may be equal
to 0" . Then Rm = ( ( 0 ' , 0 " ) ) . If Bel' is a belief function on 0 ' focusing belief
1 to a set Fc P (i.e., Fimplies P), then it follows by the same argument as in
the first example that the belief function Bel" which represents the belief trans-
ported to 0 " by the conditional belief structure has exactly the focal sets Qj
and the basic probability numbers pj as would be expected. If, more generally,
Bel' has focal sets Fwith basic probability numbers q(F), then Bel" has focal
sets Qj with basic probability numbers (assuming Qj =£ 0")

m(Qj) =Pj 2 Q(F) (17)
FCP

and 0 " with (assuming Qm = 0")

S q(F). (18)
FCP /Tl(not

There may be several rules of this type. For k = 1,2,...,«, there are rules which
say that if Pk C 0 ' is true then a belief function on 0 " with focal sets QkJ,j =
\,2,...,mk and basic probability numbers pkj holds. Each one of these rules
can be modeled according to the second example by a belief function Belk on
0 ' x 0" . If the rules can be assumed to be independent, then

Bel = 0 Belk (19)
k=\

represents the corresponding conditional belief structure. This case of indepen-
dent rules will be considered in the following subsection.

5.2. Independent Rules

In this subsection, the propagation of belief from 0 ' to 0 " by n independent
rules will be discussed in some detail. To simplify, we will consider only sim-
ple rules of the type "if Pk then Qk" with probability pk, i.e., Pk implies a sim-
ple belief function focusing probability/?* on Q t C 0" . According to the first
example in the previous subsection, this is modeled by a simple belief function
Bell: focusing probability pk to (not Pk) U Qk C 0 ' X 0 " . The case of more
general rules as in the third example in the previous subsection can be treated
along similar lines.

These n rules define a conditional belief structure Bel on 0 ' x 0 " accord-
ing to Eq. (19). Consider a belief function Bel' on 0 ' with focal sets /•} and
basic probability numbers qhi = 1,2,... ,m. Bel' ® Bel then has focal sets
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(i) Fi,ielm,

(ii) f l ((not Pj) U Qj) = ( f l (not />,)) U .

for all nonempty subsets J C /„,

(Hi) * ; n ( f l (not Pj) U Q,)
\yey

= F, n ( f | not />•) U [ U FiC\ (not PA) f) G*) >
\jeJ I K.HCJ,H*J heH keJ-H )

for i E Im, and for all nonempty subsets J C /„.

(Remember that in these formulae, P C 0 ' means P x 9" and QcQ" stands
for 9 ' x Q.)

We are interested in the restriction Bel" of Bel' © fie/ to 6". The focal sets
of Bel" are obtained as projections of the above sets in Eq. (20) to 9". Note
that all the sets (i) project to 9". This is also true of the sets (ii) unless

U Pj = 9'- (21)
jeJ

But this means that the rules "if Pj then Qj" themselves without any belief on
9 ' induce already some belief on subsets of 9". This case will be excluded in
the following. Finally, even the sets (iii) project to 9" unless

F,C\JPj. (22)
j&J

So Eq. (22) is the interesting case. We may say that Fj triggers, in this case, the
rules with conditions Pj, j € J. If Eq. (22) holds for no nonempty subset J C
/„, then Fj triggers no rule and the probability committed to Ft goes to 9".

Let T be the family of subsets J C /„ for which Eq. (22) holds and con-
sider a J G T. Because

Fj fl (not Ph)=4> (23)
heH

for any H E T, it follows that (iii) projects to

Proj= U f l G A C G " . (24)
H(£T k<EJ-H

Let Tj = \K C J: J - K £ T). This is a monotone family of sets: if K E Tj
and K C K', then also K' E Tj. Tj has one or more minimal sets Ku.. .,KS,
i.e., sets K, E Tj, but such that no proper subset of K, belongs to 7}. It is then
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clear that it is sufficient to take the union in Eq. (24) only over the minimal sets
K\,..., Ks:

= U f) Qx- (25)
h = \ keKh

The minimal sets of Tj determine therefore the projection of the focal set (iii).
The basic probability number affected by the focal set (iii) and transported to
Eq. (25) in the restriction Bel" is

I I (1 -Pj)- (26)
je.J je.in-J

This is, of course, not yet the basic probability number of Eq. (25) because
other focal sets (iii) may project to the same set and contribute therefore to its
probability. It is, furthermore, not excluded that some of the sets of Eq. (25)
are empty and that a renormalization is necessary.

This shows how to compute the belief propagated from a belief function
Bel' on 9 ' to 0 " by n independent rules. The following three theorems cover
three special, but important cases.

THKOREM 5.1: Suppose that the Pk, k = 1,2, . . . ,«, are mutually disjoint and
let Bel' be a simple belief function focusing probability q to F C 0 ' . Let M be
the unique smallest subset of In such that

FC U Pk- (27>

Then the restriction Bel" of Bel® Bel to 0 " is a simple belief function focus-
ing probability

Q Upk (28)

to the set

U Qk- (29)

PROOF: Under the assumptions of this theorem, T consists of M and of all its
supersets. For any JET and k G M, we have J - {k} £ T. The sets {k} for
k €: M a r e therefore exactly the minimal sets of 7}. This implies that for any
JD M, Proj equals Eq. (29) whereas for all other J c /„ we have Proj = 0" .
The total probability going to Eq. (29) is then
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Q s iiPJ n (i -PJ) = QU pk s UPJ n o -*,•>.
JDM JSJ je/n-J keM K<Zln-M

keM

This proves Eq. (28) and the theorem. •

It is not difficult to generalize this theorem for a more general belief func-
tion than a simple belief function Bel'. The following theorem concerns con-
sonant rules:

THEOREM 5.2: Suppose that PAr_, C Pk and (?*_, C Qkfor k = 2 , . . . ,n. Bel' is
a simple belief function focusing probability q to FcQ'. Let r be the index such
that F is contained in Pr but not in Pr_x (if F is subset of Px, then r = 1; if F
is no subset of Pn, then r = n + \). Then Bel" has the focal sets Qkfor k =
r,r + 1 , . . . , n (together with Q") and they have the basic probability numbers

k-\
m{Qk) =qpkYl (1 -Pi,)- (3D

h=r

Furthermore, for k = r, r + 1, . . . ,n

Bel'(Qk)=q\l-Il(l-ph)\. (32)
V. h=r )

This theorem says that consonant rules transport simple support into consonant
belief.

PROOF: If F is no subset of Pn, then no rule triggers and the whole belief of 1
goes to 9". Otherwise, r < n and T contains all J C /„ which contain at least
one element j > r. Consider a / 6 Tand let 5 be the smallest index greater than
or equal to r in J. Then J - {j > s] £ Tand K = [h G J: h > s} belongs to Tj
and is in fact the unique minimal set of Tj. Thus,

Proj = 0Qk = Qs. (33)

So the Qs,s = r,r + 1,. . . ,n, are in fact the focal sets of Bel".
The probability affected to Qk(k > r) is

m"(Qk)=q?l I]>* II U - P A ) . (34)
J:s=k heJ heln-J

D e f i n e I ( k ) = | l , 2 , . . . , r - 1 ) U [ k + 1 , . . . , n ) . T h e n i t f o l l o w s f r o m E q . ( 3 4 )
t h a t

m"(Qk)=qpk~[l(l-ph) S IIP* II U-P*),
h=r KCl(k) heK h&I(k)-K

(35)
U (1 ~Ph)-
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This implies that

Bel" (Qr) = m" (Q,) = qpr, (36)

and by induction on k,

Bel"(Qk)=Bel"(Qk-l) + m"(Qk),
k-l 1 * - l

- n o -Ph)\ +QPkU u -Ph),
h=r ) h=r

*-' \ (37)

h=r )

h=r

This proves Theorem 5.2. •

THEOREM 5.3: Let Pk,k = 1,2,... ,n, be arbitrary, but suppose Bel' is a sim-
ple belief function focusing with probability q to a set F C 0 ' which has the
property that either Fc Pk or Fc not Pk for any k= 1,2,...,«. Let M — [k:
F C Pk\ and let Belk be simple belief functions focusing probability pk on
QI(,C 0". Then

Bel" =q® Bell. (38)

M represents here the set of rules which are triggered with probability q. The
theorem says then essentially that the conditional belief transported to 0" by
the triggered rules can be combined on 0" by Dempster's rule.

PROOF: T consists of all J C /„ which contain at least one element of M. Fix
a ./ 6 T. Then K e Tj if and only if J-K does not intersect with M. There is
therefore a unique minimal set K = / D M in Tj. This implies that

Proj= f| Qk- (39)

Ecjuation (39) means that the focal sets of Bel" (other than 0") are all formed
by intersections

n QH (40)

over nonempty subsets H of M. Some of the intersections (40) may be empty.
But the probability affected by Eq. (40) for a given H is obtained as the sum
over the probabilities affected to the sets (iii) in Eq. (20) above for which 7 n
M = H:
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s QUPJ n U-PJ)
j-.jr\M=H jeJ je/n-J

UPI. n d-Ph) s lift n d-ft), (4D
A6H heM-H Kcln-M keK ke(l,,-M)-K

n d-ft)-
hSM-H

These probabilities have to be conditioned (renormalized) using the empty sets
of Eq. (40), and they have also to be regrouped for identical sets of Eq. (40)
arising from different H. But that is (up to the factor q) exactly as the focal sets
and basic probability numbers of the orthogonal sum in Eq. (38) would be com-
puted. This proves the theorem. •

6. CONCLUSION

It has been shown in this paper that uncertain "if . . . then . . . " rules can be
modeled within Shafer's mathematical theory of evidence by beliefs about com-
patibility relations between two or more variables or frames of discernment.
More generally, conditional belief structures representing conditional beliefs like
"if some proposition in 9 ' holds, then there is a certain belief function on 0 " "
can be represented by belief functions on the product set 9 ' X 6 " which rep-
resent also belief about compatibility relations. The evidence contained in such
conditional belief functions can then be combined with beliefs about variables
(represented by belief functions) using the usual Dempster rule.

The concepts developed here fit well into the framework developed in the
paper of Shafer et al. [9]. Whereas these authors stress the point of view of par-
titions (which is preferable for basic, theoretical considerations), in this paper
the multivariate approach is used (which is necessary for practical modeling).
Shafer et al. [9] show that propagating belief in a system of conditional belief
structures can be computationally simplified if a certain topological property
is satisfied. This is so because in these cases the overall computation can be bro-
ken up into many local computations. For these local computations, results like
those obtained in Subsection 5.2 may be useful.

If that particular topological property is absent, then the computations for
propagating belief become more complicated. In fact very little is known
whether there are other cases where the computations can be simplified (see,
however, Kong [3]). As Theorem 4.1 in Subsection 4.3 shows, there are some
relations to network reliability problems. In the latter domain, there are some
results on how network topology can be exploited in some cases to get efficient
computational procedures. Perhaps some of these results could be used to con-
struct efficient procedures for propagating belief in non-Markovian networks.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800000140
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:43:07, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800000140
https:/www.cambridge.org/core


CONDITIONAL BELIEF STRUCTURES 433

References

1. Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics 38: 325-339.

2. Garvey, T.D. (1986). Evidential reasoning for land-use classification. A.I. Center. SRI Int.,
Menlo Park, CA 94025.

3. Kong A. (1986). Multivariate belief functions and graphical models. Doctoral dissertation,
Department of Statistics, Harvard University, Cambridge.

4. Lowrance, J.D. (1986). Automating argument construction. A.I. Center, SRI Int., Menlo Park,
CA 94025. Proceeding Workshop on Assessing Uncertainty, Naval Postgraduate School, Mon-
terey, Nov. 1986.

5. Lowrance, J.D. & Garvey, T.D. (1983). Evidential reasoning: an implementation for multisen-
sor integration. A.I. Center, SRI Int., Menlo Park, CA 94025.

6. Lu, S.Y. & Stephanou, H.E. (1984). A set theoretic framework for the processing of uncer-
tain knowledge. Proceedings of the National Conference on Artificial Intelligence, University
of Texas at Austin, TX, p. 216-221.

7. Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. A.I. 28: 241-288.
8. Shafer, G. (1976). A mathematical theory of evidence. New Jersey: Princeton University Press.
9. Shafer, G., Shenoy, P.P., & Mellouli, K. (1986). Propagating belief functions in qualitative

Markov chains. School of Business Working Paper No. 186. The University of Kansas,
Lawrence.

10. Shafer, G. & Tversky A. (1985). Languages and designs for probability judgment. Cognitive
Science 9: 309-339.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964800000140
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:43:07, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964800000140
https:/www.cambridge.org/core

