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Abstract. The security analysis of Keccak, the winner of SHA-3, has
attracted considerable interest. Recently, some attention has been paid
to the analysis of keyed modes of Keccak sponge function. As a notable
example, the most efficient key recovery attacks on Keccak-MAC and
Keyak were reported at EUROCRYPT’15 where cube attacks and cube-
attack-like cryptanalysis have been applied. In this paper, we develop
a new type of cube distinguisher, the conditional cube tester, for Kec-
cak sponge function. By imposing some bit conditions for certain cube
variables, we are able to construct cube testers with smaller dimensions.
Our conditional cube testers are used to analyse Keccak in keyed modes.
For reduced-round Keccak-MAC and Keyak, our attacks greatly improve
the best known attacks in key recovery in terms of the number of round-
s or the complexity. Moreover, our new model can also be applied to
keyless setting to distinguish Keccak sponge function from random per-
mutation. We provide a searching algorithm to produce the most efficient
conditional cube tester by modeling it as an MILP (mixed integer linear
programming) problem. As a result, we improve the previous distinguish-
ing attacks on Keccak sponge function significantly. Most of our attacks
have been implemented and verified by desktop computers. Finally we
remark that our attacks on the the reduced-round Keccak will not threat
the security margin of Keccak sponge function.

Keywords: Keccak-MAC, Keyak, cube tester, conditional cube vari-
able, ordinary cube variable

1 Introduction

The Keccak sponge function family, designed by Bertoni, Daemen, Peeters, and
Giles in 2007 [1], was selected by the U.S. National Institute of Standards and
Technology (NIST) in 2012 as the proposed SHA-3 cryptographic hash function.
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Due to its theoretical and practical importance, cryptanalysis of Keccak has
attracted increasing attention. There has been extensive research recently, pri-
marily on the keyless setting. For example, in keyless modes of reduced-round
Keccak, many results have been obtained on collision attack [2], preimage attack
[3] and second preimage attack [4]. Additionally, there are also some research
focused on the distinguishers of Keccak internal permutation, in which the size
of input is the full state. In [5], a distinguisher of full 24-round Keccak internal
permutation was proposed which takes 21579 Keccak calls. Using the rebound
attack and efficient differential trails, Duc et al.[6] derived a distinguisher for
8-round Keccak internal permutation with the complexity 2491. Jérémy et al.[7]
provided an 8-round internal differential boomerang distinguisher on Keccak
with practical complexity. It should be remarked that these results on Keccak
internal permutation seem to be a little far from the security margin of Keccak
sponge function, which do not lead any attacks to Keccak hash function. For
distinguishing attacks on Keccak sponge function with the bitrate part as its
input, some results have been given in [8], [9] and [10]. These distinguishers are
one step closer to the security margin but some of these distinguisher are far
from being practical.

By embedding a secret key in a message as an input, Keccak can be used
in several settings. For example, Keccak sponge function can produce a pseudo-
random binary string of arbitrary length, and hence can serve as a stream cipher.
It is also a natural keyed hash function, namely, a message authentication code
(MAC). Moreover, an authenticated encryption (AE) scheme based on Keccak
was described in [11]. However, there is much less research reported for the
keyed modes of the family of Keccak sponge functions. Besides the side channel
attack for Keccak-MAC [12], the celebrated paper on key recovery attacks [10]
seems to be the only one found in the literature for analysing keyed modes of
Keccak. In [10], the authors set cube variables in the column parity (CP) kernel
to control the propagation of the mapping θ in the first round. More specifically,
the cube dimension can be reduced by carefully selecting cube variables so that
they are not multiplied with each other after the first round. The cube sums of
output polynomials depend only on a portion of key bits. The dedicated cube-
attack-like cryptanalysis uses this property to construct the first key recovery
attack on reduced-round Keccak-MAC and Keyak. It is also noted that the cube
attack and cube-attack-like are very efficient techniques in analysing Keccak-like
cryptosystems in [13] and [14].

We observe that most of the attacks described in the previously published
work deal with propagations of cube variables only after the first round. Thus,
it is a natural and interesting question to ask whether and how we can control
certain relations of cube variables after the second round of the Keccak sponge
function to push this kind of attacks further. The purpose of this paper is to
answer this question by proposing the technique of conditional cube tester and
making the corresponding attacks more efficient. To the best of our knowledge,
the results obtained in this paper are currently the best in terms of the number
of rounds or the complexity.
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1.1 Our Contributions

Conditional Cube Tester for Keccak Sponge Function. Our conditional
cube tester model is inspired by the dynamic cube attack on Grain stream cipher
[15]. The approach of dynamic cube attack in [15] is to set some bit conditions
on the initial value (IV) so that the intermediate polynomials can be simplified
and the degree of output polynomial can be reduced. However, this approach
cannot be utilized directly in the setting of Keccak sponge function because
its structure is very different from that of Grain stream cipher. Additionally,
the number of intermediate polynomials related to the ones in the previous
round is too large for Keccak, which makes the approach of dynamic cube attack
infeasible. The bit-tracing method (see [16]), proposed by one of the authors, is
a powerful technique to analyse hash functions. This method has also been used
in the cryptanalysis of block ciphers such as Simon family in [17]. Some ideas
of our current work are stimulated by the bit-tracing method. In this paper, we
propose a new approach by imposing bit conditions on the input to control the
propagation of cube variables caused by the nonlinear operation χ. This will
be helpful in identifying the cube variables that are not multiplied with each
other after the second round of Keccak sponge function. We provide several
algorithms for searching the cube variables and imposing the corresponding bit
conditions. These algorithms give a base to construct a conditional cube tester.
In some cases the dimension of this cube tester is smaller than the cube testers
in [10]. Our model is also influenced by the conditional differential cryptanalysis
method developed in [18]. Noted that our analysis is algebraic in nature since
the attacks are designed by exploring algebraic properties while the previous
conditional differential is based on differential bias.

Improved Key Recovery Attack on Reduced-Round Keccak-MAC. We
have obtained improved results for Keccak-MAC by applying the conditional
cube tester. For 5-round Keccak-MAC-512, our key recovery attack makes 224

Keccak calls. We are also able to recover full key bits for 6-round Keccak-MAC-
384 with the complexity of 240. Furthermore, we prove that a 7-round Keccak-
MAC-256 can be broken using 272 Keccak calls. These results greatly improve
the current best complexity bounds for key recovery attacks reported in [10].
Notice that in [10] the attacks were performed on 5-round Keccak-MAC-288
and 6-round and 7-round Keccak-MAC-128, with the time complexity of 235,
266 and 297 respectively. As it is easy to see that an attack on Keccak-MAC-
n1 can be used to break Keccak-MAC-n2 without increasing its complexity as
long as n1 ≥ n2, we conclude that our attacks cover those in [10] with better
efficiencies. It is remarked that our attacks on 5-round Keccak-MAC-512 and
6-round Keccak-MAC-384 are practical and have been verified by experiments.
In Table 1, we list a comparison of the performance of our key recovery attacks
and the existing ones. This table also shows that our attacks save the space
complexity significantly.
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Rounds Capacity Time Data Memory Reference

5 576 235 235 negligible [10]
6 256 266 264 232 [10]
7 256 297 264 232 [10]

5 576/1024 224 224 negligible Section 4
6 256/768 240 240 negligible Section 4
7 256/512 272 272 negligible Section 4

Table 1. Summary of key recovery attacks on Keccak-MAC

Improved Key Recovery Attack on Reduced-Round Keyak. Keyak is
an AE scheme based on Keccak sponge function [11]. In this paper we also
use the technique of conditional cube tester to recover the key for reduced-
round Keyak. In this situation, we assume that a message is of two blocks and
the nonce could be reused. This means that our attacks on Keyak break the
properties of authenticity and integrity because the specification of Keyak [11]
states that a nonce may not be variable when only authenticity and integrity
are required. We perform our attacks on 7-round and 8-round Keyak with the
time complexity of 242 and 274 respectively. Under the same assumption on the
nonce, [10] proposed a key recovery attack on Keyak, which can work up to 7
rounds with the time complexity of 276. Table 2 compares our results with the
existing attacks on Keyak, and shows a significant reduction of complexity by
using our method. It is also interesting to note that the memory complexity in
our attacks is negligible.

Rounds Capacity Time Data Memory Reference

7 256 276 275 243 [10]

7 256 242 242 negligible Section 5
8 256 274 274 negligible Section 5

Table 2. Summary of key recovery attacks on Keyak

Improved Distinguishing Attack on Keccak Sponge Function. In addi-
tion to the cases of keyed modes of Keccak, we use the technique of conditional
cube tester in keyless setting as well. To be more specific, we use this technique
to carry out distinguishing attacks on Keccak sponge function. With the help of
mixed integer linear programming (MILP), we can get a suitable combination
of conditional cube variables automatically with good efficiency. As a result,
practical distinguishing attacks have been achieved for Keccak sponge function
up to seven rounds. There have been several distinguishing attacks on Keccak
sponge function reported in the published papers. In [8], Naya-Plasencia et al.
put forward a 4-round differential distinguisher over Keccak-256/224. A 6-round
distinguisher over Keccak-224 was constructed in [9] by Das et al. Recently, a
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straightforward distinguisher on n-round Keccak sponge function was given in
[10] which invokes 22n−1+1 Keccak calls for n ≤ 7. Table 3 lists these existing dis-
tinguishing attacks on Keccak sponge function together with our attacks. It can
be seen that our improvements over the previous attacks are quite significant.

Rounds Capacity Time Data Memory Referance

4 448/512 225 224 negligible [8]
6 448 252 252 negligible [9]
6 448/512/576 233 233 negligible [10]
7 448/512/576 265 265 negligible [10]
8 576 2129 2129 negligible [10]

5 448/512 29 29 negligible Section 6
6 768/1024 29 29 negligible Section 6
6 448/512/576 217 217 negligible Section 6
7 768 217 217 negligible Section 6
7 448 233 233 negligible Section 6

Table 3. Summary of distinguishing attacks on Keccak sponge function

The remainder of the paper is organized as follows. We introduce some pre-
liminaries needed for the paper in Section 2, including Keccak sponge function,
two keyed modes of Keccak, and the idea of cube tester. In Section 3, we will
describe our new model, the conditional cube tester. Key recovery attacks for
Keccak-MAC and Keyak based on our new model will be discussed in detail in
Section 4 and Section 5. Section 6 is devoted to distinguishing Keccak sponge
function from a random permutation using the conditional cube tester. Finally,
we conclude the paper in Section 7.

2 Preliminaries

In the section, we will briefly introduce some necessary background for this paper.
We will describe Keccak sponge function including two keyed modes, namely
Keccak-MAC and the AE scheme Keyak. In the later part of the section, the
idea of cube tester will be described.

2.1 Keccak Sponge Function

Description of Keccak Sponge Function. We shall just describe the Keccak
sponge function in its default version. We refer the readers to [1] for the complete
Keccak specification.

The (default) sponge function works on a 1600-bit state A, which is sim-
ply a three-dimensional array of bits, namely A[5][5][64]. The one-dimensional
arrays A[ ][y][z], A[x][ ][z] and A[x][y][ ] are called a column, a row and a lane
respectively; the two-dimensional array A[ ][ ][z] is called a slice(see Fig. 1). The



6 Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, Jingyuan Zhao

coordinates are always considered modulo 5 for x and y and modulo 64 for z.
Each 1600-bit string a is interpreted as a state A in the following manner: the
(64(5y + x) + z)th bit of a becomes A[x][y][z].

state

slice

row

bit

lane

column

Fig. 1. Terminologies used in Keccak

For each n ∈ {224, 256, 384, 512}, the sponge function Keccak-n corresponds
to parameters r (bitrate) and c = 2n (capacity) with r + c = 1600. Initially, all
the 1600 bits are filled with 0s and the message will be split into r-bit blocks.
There are two phases in the Keccak sponge function. In the absorbing phase,
the next r-bit message block is XORed with its first r-bit segment of the state
and then the state is processed by internal permutation which consists of 24
rounds. After all the blocks are absorbed, the squeezing phase starts. In this
phase, Keccak-n will return the first r bits as the output of the function with
internal permutation iteratively until the n-bit digest is produced.

In the permutation, each round is computed by composing five operations
θ, ρ, π, χ and ι as R = ι ◦ χ ◦ π ◦ ρ ◦ θ. Given a round constant RC, the round
function can be described by the following pseudo-code, where r[x, y] is the offset
of the internal permutation shown in Table 8 and for a lane L, rot[L, n] means
L >>> n.

R(A, RC)

{
θ step

for x in (0...4)

C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4]

D[x] = C[x-1] xor rot(C[x+1],1)

for x in (0...4)

for y in (0...4)

A[x,y] = A[x,y] xor D[x]

ρ step

for x in (0...4)

for y in (0...4)
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A[x,y] = rot[A[x,y],r[x,y]]

π step

for x in (0...4)

for y in (0...4)

B[y,2*x+3*y] = A[x,y]

χ step

for x in (0...4)

for y in (0...4)

A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])

ι step

A[0,0] = A[0,0] xor RC

return A

};

The purpose of θ is to diffuse the state. If a variable in every column of state
has even parity, it will not diffuse to other columns: this is the column parity
kernel (CP kernel) property. Thus diffusion of some input variables caused by
θ can be controlled in the first round. This property has been widely used in
cryptanalysis of Keccak. For example, the attacks in [10] use it to decrease
the dimension of the cube. The operations ρ and π just change the position of
bits. The first three linear operations θ, ρ and π will be called half a round. In
the permutation, the only nonlinear operation is χ whose algebraic degree is 2.
Therefore, after an n-round Keccak internal permutation, the algebraic degree
of the output polynomial is at most 2n. We will not consider ι since it has no
impact on our attacks.

2.2 Keyed Modes of Keccak

MAC based on Keccak. As an example demonstrated in Fig. 2, one gets a
MAC (or a tag) by concatenating a secret key with a message as the input to
a hash function. This primitive to ensure data integrity and authentication of a
message should satisfy the two following security requirements: no key recovery
and resistance of MAC forgery.

Fig. 2 shows the construction of Keccak-MAC-n working on a single block.
As described in 2.1, n is half of capacity length. In this paper we will use a single
block message and assume that the key and tag are 128 bits long. So there are
two significant lanes that consist of key bits. Block sizes may be different based
on the variants we analyse.

Authenticated Encryption Scheme based on Keccak An AE scheme is
used to provide confidentiality, integrity and authenticity of data where decryp-
tion is combined with integrity verification. An authenticated encryption scheme
based on Keccak is the scheme Keyak [11] which is a third-round candidate al-
gorithm submitted to CAESAR [19]. Fig.3 depicts the construction of Keyak on
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bitrate

capacity

Keccak internal 

permutation

128-bit tag

128-bit key||message

1600-2n bits

2n bits

Fig. 2. Construction of Keccak-MAC-n

two-block message. Both key and nonce are 128 bits. The capacity is 256 bits
long and the bitrate is 1344 bits long.

According to the specification of Keyak [11], when confidentiality of data is
not required, a nonce can be reused. In this paper, we shall restrict our discussion
to the two-block Keyak.

Keccak internal 

permutation

128-bit key||128-bit nonce

tag

Keccak internal 

permutation

pad

C1

P1

pad

C2

P2

Keccak internal 

permutation

X0

k

1344 bits

256 bits

Fig. 3. Construction of Keyak on two blocks

2.3 Cube Tester.

Cube tester introduced in [20] is a distinguisher to detect some algebraic property
of cryptographic primitives. The idea is to reveal non-random behaviour of a
Boolean function with algebraic degree d by summing its values when cube
variables of size k (k ≤ d) run over all of their 2k inputs. This cube sum can be
taken as higher order derivative [21] of the output polynomial with respect to
cube variables. More precisely, we have

Theorem 1. ([10]) Given a polynomial f : {0, 1}n → {0, 1} of degree d. Sup-

pose that 0 < k ≤ d and t is the monomial
∏k−1

i=0 xi. Write f as:

f(X) = t · Pt(xk, . . . , xn−1) +Qt(X),
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where none of the monomials in Qt(X) is divisible by t. Then the sum of f over
all values of the cube (cube sum) is∑

x′∈Ct

f(x′, xk, . . . , xn−1) = Pt(xk, . . . , xn−1),

where the cube Ct contains all binary vectors of the length k.

Some properties for the polynomial Pt, such as its low algebraic degree and
highly unbalanced truth table, have been extensively considered in [20] and [22].

(n+1)-Round Cube Tester on Keccak Sponge Functions. A cube tester
can be constructed based on algebraic properties of Keccak sponge function to
distinguish a round-reduced Keccak from a random permutation. An adversary
can easily select a combination of 2n + 1 cube variables such that they are not
multiplied with each other after the first round of Keccak. Note that after n-
round Keccak the degree of these cube variables is at most 2n. So the adversary
can sum the output values over a cube of dimension 2n + 1 to get zero for
a (n + 1)-round Keccak. This property is also used to perform MAC forgery
attack in [10] when n ≤ 6.

3 Conditional Cube Tester for Keccak Sponge Function

z=6 z=62

ρ-1◦π-1◦χ -1

z=60z=45 z=5z=44 z=4 z=59 z=7z=6

χ◦π◦ρ

z=0

θ

z=0

Round 0 ：

v0

Input
z – the index of slice 

Fig. 4. Overview of bit conditions

As stated in Section 2, the cube attacks against the keyed modes of Keccak
in [10] is to select the cube variables that are not multiplied with each other after
the first round. Actually, it can be done simply in the context of the differential
propagation. Let us consider the following example. In Figure 4, A[2][0][0] =
A[2][1][0] = v0 is set to be a cube variable and it only impacts two bits before
the operation χ in the first round. To find 2n + 1(n ≤ 6) cube variables to
construct an attack, one just needs to trace the positions of these bits.
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In our new model, we develop a strategy to carefully choose the cube variables
such that they are either not multiplied with each other after the second round
or multiplied within a restrict set of variables.

The idea of our new model—the conditional cube tester, is to attach some bit
conditions to a cube tester. Fig. 4 illustrates how to formulate such conditions. A
detailed discussion will be given later in this section. To minimize the possibilities
that the cube variable v0 gets multiplied with other cube variables, we need to
slow down the propagation of v0. This can be done by imposing some additional
conditions on the input message so that the coloured input bits of the second
round are not related to v0. Thus these coloured input bits of the second round
will not diffuse to other bits in the next round Keccak internal permutation.
This is how the propagation of v0 is controlled.

In the rest of this section, we shall define some types of cube variables in the
CP kernel that are involved in the conditional cube tester. An important type
is a set of variables that are well behaved through two rounds of Keccak, and
we will see that some extra conditions on bits must be satisfied in order to get
such variables. Then we will prove a useful result for these cube variables in a
conditional cube tester. In the last part of the section, we shall discuss some
properties on Keccak sponge function and describe algorithms based on these
properties to examine multiplication relation after the second round between
every pair of cube variables.

3.1 Conditional and Ordinary Cube Variables in a Conditional
Cube Tester

In our discussion, cube variables are the variables in the CP kernel that are not
multiplied with each other after the first round of Keccak. Now let us define two
types of cube variables for the conditional cube tester.

Definition 1 Cube variables that have propagation controlled in the first round
and are not multiplied with each other after the second round of Keccak are
called conditional cube variables. Cube variables that are not multiplied with
each other after the first round and are not multiplied with any conditional cube
variable after the second round are called ordinary cube variables.

An ordinary cube variable has the advantage that it does not need any extra
conditions. However, there are no mechanisms to prevent ordinary cube variables
from being multiplied with each other after the second round. Thus, in order to
get an optimal cube tester for Keccak sponge function, a proper combinations
of ordinary cube variables and conditional cube variables should be carefully
selected.

To construct an (n + 2)-round cube tester, we need to choose p conditional
cube variables and q ordinary cube variables. With an appropriate choice of p
and q, we have

Theorem 2. For (n + 2)-round Keccak sponge function (n > 0), if there are p
(0 ≤ p < 2n + 1) conditional cube variables v1, . . . , vp, and q = 2n+1 − 2p + 1
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ordinary cube variables, u1, . . . , uq (If q = 0, we set p = 2n + 1), then the term
v1v2 . . . vpu1 . . . uq will not appear in the output polynomials of (n + 2)-round
Keccak sponge function.

Proof. Let X1, · · · , Xs be the terms that contain vi (i = 1, . . . , p) after the
second round. Then by the definition of conditional cube variables, the degree
of each Xj is one with respect to some vi(i = 1, . . . , p). Similarly, let Y1, · · · , Yt
be the terms that contain ui (i = 1, . . . , q) after the second round. Then by the
definition of ordinary variables, the degree of each Yj is at most two with respect
to some uis (i = 1, . . . , p), and no vi (i = 1, . . . , p) appears in Yj .

For output polynomials after another n-round operation, a term with the
highest degree with respect to v1, . . . , vp and u1, . . . , uq must be of the following
form

Tn+2 = Xi1Xi2 . . . XikYj1Yj2 . . . Yjh with k + h = 2n.

This implies that there are at most k distinct vi and 2h distinct uj can appear
in Tn+2.

If Tn+2 is divisible by v1v2 . . . vpu1 . . . uq, then we would have k ≥ p, 2h ≥ q+1
(since q is odd). This yields

k + h ≥ p+
q + 1

2
= p+ 2n − p+ 1 > 2n,

and we have reached a contradiction. ut

Let us make some remarks on this theorem. The case that there is no condi-
tional cube variable (i.e., p = 0) has been discussed extensively in [10], such as
forgery attacks on Keccak-MAC and Keyak. For the case where 1 ≤ p ≤ 2n + 1,
we can apply the conditional cube tester to recover the key for the (n+2)-round
keyed modes of Keccak based on Theorem 2. The specific methods will be de-
scribed in Section 4 and 5. Furthermore, in Section 6, we are able to use the case
p = 2n + 1 to implement the distinguishing attacks on Keccak sponge function.

In this paper, we only consider the cases when n = 3, 4, 5. If a proper com-
bination of cube variables could be found for n > 5, the conditional cube tester
still works.

3.2 Properties of Keccak Sponge Function

Before stating three useful properties of Keccak sponge function, we will de-
scribe the bitwise derivative of Boolean functions–a tool that helps us to explain
our ideas accurately. The bitwise derivative of Boolean functions was proposed
by Bo Zhu et.al and used to analyse Boolean algebra based block ciphers [23].
We observe that there is an equivalent relation between the differential char-
acteristic and the bitwise derivatives of Boolean functions. However, it is much
more efficient to trace the propagation of a variable by observing the differential
characteristic rather than by computing the exact bitwise derivatives of Boolean
functions. The bitwise derivative of a Boolean function is defined as follows.
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Definition 2 Given a Boolean function f(x0, x1, . . . , xn−1), the bitwise deriva-
tive of f with respect to the variable xm is defined as

δxmf = fxm=1 + fxm=0

The 0-th bitwise derivative is defined to be f itself. The i-th, where i ≥ 2, bitwise
derivative with respect to the variable sequence (xm1

, . . . , xmi
) is defined as

δ
(i)
xm1

,...,xmi
f = δxmi (δ

(i−1)
xm1

,...,xmi−1
f)

Now let us describe differential properties of χ in the view of bitwise deriva-
tive. In this section, we first fix some notations. We will write the input of χ to be
the (vector-valued) Boolean function F = (f0, f1, f2, f3, f4). The corresponding
output is written as the (vector-valued) Boolean function G = (g0, g1, g2, g3, g4).
The bitwise derivative of a (vector-valued) Boolean function is defined to be the
(vector-valued) Boolean function by taking bitwise derivative in a component-
wise manner.

Property 1. (Bit Conditions) If δv0F = (1, 0, 0, 0, 0), then δv0G = (1, 0, 0, 0, 0)
if and only if f1 = 0 and f4 + 1 = 0.

Proof. By the structure of χ, the algebraic representation of the output Boolean
function G is given by the following equations:

g0 = f0 + (f1 + 1)f2,

g1 = f1 + (f2 + 1)f3,

g2 = f2 + (f3 + 1)f4,

g3 = f3 + (f4 + 1)f0,

g4 = f4 + (f0 + 1)f1.

From the definition of the bitwise derivative, it can be deduced that δv0G =
(1, 0, 0, f4 + 1, f1). It is clear that δv0G = (1, 0, 0, 0, 0) if and only if f1 = 0 and
f4 + 1 = 0. ut



Fig. 5. Diffusion caused by operation χ

Now we explain the equivalence between the truncated differential character-
istic and the bitwise derivatives of Boolean functions when tracing the propaga-
tion of a variable by using Fig. 5. Let the input difference for χ be (1, 0, 0, 0, 0)
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and the truncated output difference is (1, 0, 0, ?, ?) with ‘?’ meaning an unknown
bit. From the view of Boolean functions, the output vector (1, 0, 0, ?, ?) indicates
that δv0g0 = 1, δv0g1 = 0, δv0g2 = 0 and both δv0g3, δv0g4 are some Boolean func-
tions. From the view of the differential characteristic, if f1 = 0 and f4 + 1 = 0,
then the differential characteristic (1, 0, 0, 0, 0) → (1, 0, 0, 0, 0) holds with prob-
ability 1. This also implies that g0 is related to v0 but gi (for 1 ≤ i ≤ 4) are
independent of v0. Therefore, the truncated differential characteristics and the
bitwise derivatives of Boolean functions are equivalent representations.

Input/Output Bitwise Derivative(Difference) Conditions
(1, 0, 0, 0, 0) −→ (1, 0, 0, 0, 0) f1 = 0, f4 = 1
(0, 1, 0, 0, 0) −→ (0, 1, 0, 0, 0) f2 = 0, f0 = 1
(0, 0, 1, 0, 0) −→ (0, 0, 1, 0, 0) f3 = 0, f1 = 1
(0, 0, 0, 1, 0) −→ (0, 0, 0, 1, 0) f4 = 0, f2 = 1
(0, 0, 0, 0, 1) −→ (0, 0, 0, 0, 1) f0 = 0, f3 = 1

Table 4. Summary of conditions for bitwise derivative of χ

We summarize all of the five input bitwise derivative cases in Table 4 where
each input bitwise derivative has only one non-zero bit. Each case can be proved
in a similar manner as Property 1. As discussed before, in each case, the input
and output have the same vector of bitwise derivatives so that the propagation
of v0 by χ is under control. This will be used in constructing our conditional
cube tester.

Round 0

Round 1

Round 1.5

Round 0

Round 1.5

Round 1

(a) Propagation of an ordinary cube variable (b) Propagation of a conditional cube variable

Fig. 6. 1.5-round differential of an ordinary and a conditional cube variable
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In order to show the advantage of a conditional cube variable over an ordinary
cube variable, we consider the propagation of variable A[2][0][0] = A[2][1][0] = v0

in two views: as an ordinary cube variable in the view of truncated differential
characteristic (Fig. 6(a)) and as a conditional cube variable in the view of dif-
ferential characteristic (Fig. 6(b)).

It is obvious to see that the two active bits at the beginning of the second
round will affect 22 bits caused by the step θ. Thus, the conditional cube vari-
able in Fig. 6(b) only relates to 22 active bits after 1.5-round Keccak internal
permutation. However, not only bits with black colour but also those with gray
colour after 1.5-round Keccak involve the ordinary cube variable in Fig. 6(a). In
total, there are 62 bits related to v0 after 1.5-round Keccak. So it is more likely
for a ordinary cube variable to get multiplied with other cube variables after the
second round Keccak.

The pattern of the conditional cube variable v0 in Fig. 6(b) will be called
a 2-2-22 pattern to reflect the number of active bits in three states (the input
state, the output state of the first round and the output state of the first 1.5
rounds).

During the process of searching more cube variables, we need to determine
whether candidate variables get multiplied after the second round of Keccak and
eliminate conditional cube variable candidates that require conflicting condition-
s. We observe that the following two properties with respect to the operation χ
will be useful in dealing with these situations.

Property 2. (Multiplication) Assume that δv0F = (δv0f0, 0, 0, 0, 0) and δv1F =
(0, δv1f1, 0, 0, 0) with δv0f0 · δv1f1 6= 0, then the term v0v1 will be in the output
of χ.

Proof. As mentioned in the proof of the Property 1, the component g4 of the
output G = (g0, g1, g2, g3, g4) is f4 + (f0 + 1)f1. From

δ(2)
v0,v1g4 = δv1(δv0g4) = δv1(δv0f0) · f1 + δv0f0 · δv1f1 = δv0f0 · δv1f1

we see that δ
(2)
v0,v1g4 6= 0 and hence g4 contains the term v0v1. In particular, if

δv0f0 = δv1
f1 = 1, then g4 = v0v1+h, where h is a Boolean function not divisible

by v0v1. ut

Property 3. (Exclusion) If δv0F = (1, 0, 0, 0, 0) and δv1F = (0, 0, 1, 0, 0), then
at least one of δv0G = (1, 0, 0, 0, 0) and δv1

G = (0, 0, 1, 0, 0) is false.

Proof. From the Property 1 as well as the Table 4, the conditions δv0F =
(1, 0, 0, 0, 0) and δv0G = (1, 0, 0, 0, 0) would imply f1 = 0, f4 = 1. Under the
assumption δv1F = (0, 0, 1, 0, 0), if δv1

G = (0, 0, 1, 0, 0) also holds true, then we
would have f1 = 1, f3 = 0. This is a contradiction. ut

For a version of Keccak sponge function, many positions in the plaintext
space can be set as cube variables. For example, as shown in Fig. 7, we can set
the bits in the same colour as a cube variable for the version Keccak-512. There
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are 256 such cases in 64 slices. Each of these cases in a version of Keccak is called
a cube variable candidate.

Before searching for a proper combination of cube variables from these can-
didates to construct a conditional cube tester, we need to know the relation
between every pair of cube variable candidates, namely, whether they are multi-
plied after the second round of Keccak. This problem could be solved directly by
examining exact intermediate polynomials after the second round. However, it is
very time-consuming to derive such an exact representation for the polynomials
after the second round. Our approach with the application of truncated differ-
entials can determine the (multiplication) relation between two cube variables
efficiently. The precise procedures will be given in Algorithm 1, 2 and 3. These
three algorithms are based on Property 2 and Property 3.

Fig. 7. Cube variable candidates in a slice for Keccak-512

In the three algorithms, v0 and v1 are assumed to be two cube variable
candidates in a Keccak version. We use δv0A (δv1A) to denote the positions
of v0 (v1) in the input state, which means to apply bitwise derivative on each
entry of A. For example δv0A[i][j][k] = 1 means A[i][j][k] = v0 + h, where h is
a Boolean function independent of v0. For a cube variable candidate v, we shall
use ‘0’, ‘1’ and ‘2’ to denote the inactive bit, the active bit and the unknown
bit respectively. To be more specific, v is of type ‘0’ if δvA[i][j][k] = 0, v is of
type ‘1’ if δvA[i][j][k] = 1 and type ‘2’ if δvA[i][j][k] is a Boolean function. In
this way, the truncated differences or differences in the algorithms can be used
to interpret the bitwise derivatives on the state with respect to v.

Now we include three algorithms in this subsection for determining whether
two possible cube variables (conditional or ordinary) have a multiplication rela-
tion after first round and the second round. The first algorithm is restricted to
the case of two ordinary cube variable candidates. They should not be multiplied
together after the first round.

The second algorithm is to test the relation between a conditional cube vari-
able candidate and an ordinary cube variable candidate, whose multiplication
is not allowed after the second round. The third algorithm is to examine the
relation between two conditional cube variable candidates, whose multiplication
is not allowed after the second round either.
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Algorithm 1 Determine Relation of Two Ordinary Cube Variable Candidates

Input: δv0A and δv1A for two ordinary cube variable candidates v0 and v1
Output: multiplication relation of v0 and v1
1: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
2: flag=0
3: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
4: if B0[k][j][i] ·B1[k + 1][j][i] = 1 then
5: flag=1; . Property 2.
6: end if
7: end for
8: if (flag) then
9: return multiplied after the first round;

10: else
11: return not multiplied after the first round;
12: end if

Algorithm 2 Determine Relation of a Conditional Cube Variable Candidate
and an Ordinary Cube Variable Candidate

Input: δv0A and δv1A for the conditional cube variable candidate v0 and the ordinary
cube variable candidate v1

Output: multiplication relation of v0 and v1
1: flag=[0,0]
2: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
3: compute the 1.5-round truncated output difference C0 (C1) based on δv0A(δv1A);
4: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
5: if B0[k][j][i] ·B1[k + 1][j][i] = 1 then
6: flag[0]=1; . Property 2.
7: end if
8: if C0[k][j][i] · C1[k + 1][j][i] 6= 0 then
9: flag[1]=1; . Property 2.

10: end if
11: end for
12: if (flag[0]) then
13: return multiplied after the first found;
14: else if (flag[1]) then
15: return multiplied after the second round;
16: end if
17: return not multiplied after the second round;
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Algorithm 3 Determine Relation of Two Conditional Cube Variable Candidates

Input: δv0A and δv1A for two conditional cube variable candidates v0 and v1
Output: multiplication relation of v0 and v1
1: flag=[0,0,0]
2: compute the 0.5-round output difference B0 (B1) based on δv0A(δv1A);
3: compute the 1.5-round output difference C0 (C1) based on δv0A(δv1A);
4: for each integer i ∈ [0, 63], each integer j ∈ [0, 4], each integer k ∈ [0, 4] do
5: if B0[k][j][i] ·B1[k + 2][j][i] = 1 then
6: flag[0]=1; . Property 3.
7: end if
8: if B0[k][j][i] ·B1[k + 1][j][i] = 1 then
9: flag[1]=1; . Property 2.

10: end if
11: if C0[k][j][i] · C1[k + 1][j][i] = 1 then
12: flag[2]=1; . Property 2.
13: end if
14: end for
15: if (flag[0]) then
16: return contradiction;
17: else if (flag[1]) then
18: return multiplied after the first round;
19: else if (flag[2]) then
20: return multiplied after the second round;
21: end if
22: return not multiplied by the second round;

4 Key Recovery Attack on Reduced-Round Keccak-MAC

In this section, we will use conditional cube testers to perform key recovery
attacks against Keccak-MAC. First, we will discuss the general procedure for key
recovery attack, including the attack process, complexity analysis and searching
algorithm for suitable combinations of conditional and ordinary cube variables.
Then we will describe conditional cube attacks to different variants of Keccak-
MAC, including Keccak-MAC-512, Keccak-MAC-384 and Keccak-MAC-224.

4.1 General Process for Key Recovery Attack on Keccak-MAC

Given a cube tester with p conditional cube variables and q = 2n+1 − 2p + 1
ordinary cube variables (1 ≤ p ≤ 2n +1), we can construct a key recovery attack
on (n + 2)-round Keccak-MAC. In order to explain the general attack process
clearly, we need to define some types of variables other than cube variables. As
we know, a bit condition is an equality with a single variable on the left hand
side and a Boolean function on the right hand side. The variable on the left
hand side is called a conditional variable. Other public variables (that can be
assigned to arbitrary values) are called free variables. Thus, a bit condition is a
relation between conditional variable, equivalent key bit and free variables. It is
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assumed that s equivalent key bits are related to the bit conditions derived from
conditional cube variables. The general attack process is described as follows.

Step 1. Assign free variables with random values.

Step 2. Guess values of the s equivalent key bits.

Step 3. Calculate the values of conditional variables under the guess of key bits.

Step 4. For each possible set of values of cube variables, compute the corre-
sponding tag and then sum all of the 128-bit tags over the (2n+1 − p + 1)-
dimension cube.

Step 5. If the sum is zero, the guess of these s key bits is probable correct and
the process terminates; otherwise the guess is invalid, go back to Step 2.

After one execution of the above process, which takes 22n+1−p+1 · 2s Keccak
calls at most, the values of s key bits can be recovered. To recover the remaining
128−s key bits, we just shift the positions of all the cube variables equally to the
right along the z-direction and repeat the process for 128/s times. In this case,
the bitwise derivatives with respect to the cube variables are rotated equally
along the z axis as well. This rotation, known as translation invariance in the
direction of the z axis, will change the equivalent key bits in the bit conditions
but not the relations between the cube variables. Therefore, the time and data

complexity of the key recovery attack are both 1
s · 2

2n+1−p+s+8 = 2s−p

s · 2
2n+1+8.

Thus, for an (n+2)-round conditional cube attack, the complexity is determined

by 2s−p

s . We would like this term to be small to achieve a better performance.
Notice that when the number of conditional cube variables gets larger, more
key bits will be involved in the bit conditions and hence more guesses will be
required. So p can not be too large to make the attack better. In our case, we use
one conditional cube variable and 2n+1− 1 ordinary cube variables to construct
our key recovery attack on Keccak-MAC.

We choose A[2][0][0] = A[2][1][0] = v0 as the conditional cube variable in
our attacks. As shown in Fig.4, bit conditions are derived from δv0A[2][0][6] =
δv0
A[2][4][6] = δv0A[4][3][62] = δv0A[4][4][62] = 0, where A is the intermedi-

ate state after 1.5-round Keccak. This procedure could be done efficiently with
the help of SAGE [24], a software on symbol computation. We fix A[2][0][0] =
A[2][1][0] = v0 as the conditional cube variable because there are only two equiv-
alent key bits involved in the bit conditions. But if we choose other positions
to set the conditional cube variable, the number of key bits involved in the
bit conditions may be greater than two. Thus, A[2][0][0] = A[2][1][0] = v0 is
the cube variable and we find the corresponding ordinary cube variables using
Algorithm 4.

In the discussion later, we will see that 2n+1− 1 ordinary cube variables can
be always found for n = 3, 4 and 5. So in these cases, the cube tester with v0

and 2n+1−1 ordinary cube variables can be constructed to perform key recovery
attacks on different variants of Keccak-MAC.
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Algorithm 4 Searching Ordinary Cube Variables along with the conditional
cube variable A[2][0][0] = A[2][1][0] = v0 for Keccak-MAC

Output: a set of ordinary cube variables;
1: m=#{ordinary cube variable candidates in bitrate part}
2: S = ∅
3: for each integer i ∈ [0,m− 1] do
4: execute Algorithm 2 with v0 and the i-th ordinary cube variable candidate ui

as the input;
5: if Algorithm 2 returns ‘not multiplied by the second round’ then
6: S ← S ∪ {ui}
7: end if
8: end for
9: Choose the maximum number of variables in S which will not be multiplied with

each other after the first round and put these variables into T
10: return T

4.2 Key Recovery on 5/6/7-Round Keccak-MAC

We first discuss 5-round Keccak-MAC-512. In this case, n = 3 and full key
bits can be recovered with one conditional cube variable and 15 ordinary cube
variables. The block size of this version is 1600 − 2 · 512 = 576 bits. As dis-
cussed in Section 4.1, we set A[2][0][0] = A[2][1][0] = v0 to be the conditional
cube variable. A[4][0][44], A[2][0][4], A[2][0][59] and A[2][0][27] are the condi-
tional variables assigned with Boolean functions and a set of the corresponding
ordinary cube variables is produced by Algorithm 4(see Table 5). To recover the
remaining key bits, the positions of the conditional cube variable shall be shifted
to A[2][0][i] = A[2][1][i] = v0(1 ≤ i ≤ 63) and the positions of ordinary cube
variables shall be rotated at the same time. The key is recovered in 224 time and
data, which is very practical. On a desktop computer, the process of recovering
a key only costs a few minutes.

The next example is a simple illustration of the attack where the key was
generated randomly. For the convenience of statement, all the free variables are
fixed to be zero, but they can be random bits. It is obvious that the correct key
can be easily distinguished.

128-bit key:
1110000100010100000101101001000101111111000000110010111001110101
1100011110001011110100011111111010000101011000000011000100100010
correct value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0xe93169ae5c86d086, 0xf6ec898c859bea1a
guessed value:01, cube sum: 0xc7d0bc36dc141c5e, 0x523a33c8753eb171
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x2ee1d5988092ccd8, 0xa4d6ba44f0a55b6b
To perform a conditional cube attack on 6-round Keccak-MAC-384, we use

one conditional cube variable and 31 ordinary cube variables to recover full 128-
bit key with 240 Keccak calls. Fixing the conditional cube variable, we collect
the corresponding ordinary cube variables by applying Algorithm 4. The param-
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Ordinary Cube Variables

A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2,
A[2][0][20]=A[2][1][20]=v3, A[2][0][28]=A[2][1][28]=v4,
A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8,
A[2][0][62]=A[2][1][62]=v9, A[3][0][3]=A[3][1][3]=v10,
A[3][0][4]=A[3][1][4]=v11, A[3][0][9]=A[3][1][9]=v12,

A[3][0][13]=A[3][1][13]=v13, A[3][0][23]=A[3][1][23]=v14,
A[3][0][30]=A[3][1][30]=v15

Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]=0,
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + 1,

A[2][0][7]= A[4][0][6] + A[2][1][7] + A[3][1][7]
Guessed Key Bits k60, k5 + k69

Table 5. Parameters set for attack on 5-round Keccak-MAC-512

eters for this attack can be found in Table 9. It takes just a few days to run this
attack on a desktop with four i5 processors. An instance for attacking 6-round
Keccak-MAC-384 is summarized below, with randomly generated key and free
variables are fixed to be zero:

128-bit key:
1111011111001001000111010010100111100011110001110111100100000010
0111000010010100010101110110111110100010101010001110111001100011
correct value: k5 + k69 = 1, k60 = 0
guessed value:00, cube sum: 0x3f9d5fa4e143f779, 0x26607b3ce1c56f2b
guessed value:01, cube sum: 0x99bbf2ae6b93a7fb, 0xdbbb864fcc563747
guessed value:10, cube sum: 0x0,0x0
guessed value:11, cube sum: 0x398b37a846e81e42, 0x691cf4345e2164ee

For 7-round Keccak-MAC-256, our conditional cube attack takes 272 Keccak
calls to recover full 128-bit key, with a cube of dimension 64. We include the
parameters of this attack in Table 10.

5 Key Recovery Attacks on Reduced-Round Keyak

Similar to the key recovery attack on Keyak in [10], we also deal with two-block
messages (as depicted in Fig. 3) and allow the reuse of a nonce. In this way, we
can use the first block to control the input of the second permutation and the
second block to get the output of the second permutation. The attack described
here is in fact a state recovery attack. We are able to get the bitrate part X0

(see Fig. 3) but not the 256 bits in the capacity part. Denoting the capacity
part as k = (k0, k1, · · · , k255), we will first recover k, then get the master key by
performing the inverse of the first Keccak internal permutation.

In the attack, cube variables are set in the input state of the second Keccak
internal permutation by choosing the values of P1 while the second message block
P2 is set to zero bits. This implies that the second ciphertext block C2 is the
output of Keccak internal permutation. The attack procedure is almost identical
to the general process described in Section 4.1 except for the bit conditions and
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the inverse process on the output. For 1344 output bits of Keyak, the operation
χ of the last round on the most significant 1280 bits can be reversed. Note that
the linear operations of the final round do not increase the degree of output
polynomials, so the previous (n+ 2)-round cube tester can be used for (n+ 3)-
round. In other words, conditional cube attack can be extended by one more
round forward without increasing the dimension of cube.

For 7-round Keyak, conditional cube attack is built with the same cube as
in Table 9 except for a different set of bit conditions as shown in Table 6. Note
that in Table 6 A denotes the input state to the second internal permutation.
By shifting the positions of cube variables and repeating the attack for 192/4 =
48 times, three lanes of secret values, i.e. k0, . . . , k191, can be recovered with
236 · 48 = 241.58 Keyak calls. The other lane of key bits can be recovered by
changing the conditional cube variable to A[3][0][i] = A[3][1][i] = v0 and a
set of the corresponding ordinary cube variables could be produced similarly
by Algorithm 4. Since only one key bit is involved in the bit conditions after
recovering three lanes of secret values, the remaining lane of secret values can
be identified with 233 · 26 = 239 Keyak calls. In total, the time complexity to
recover the full 128-bit master key is about 242 Keyak calls.

For 8-round Keyak, cube variables in Table 10 and bit conditions in the
Table 6 are used in the conditional cube attack. Using a similar analysis as that
to 7-round Keyak, the data and time complexities for 8-round attack are 274.

Finally, we remark that the memory complexity for both attacks can be
neglected.

Bit conditions for 8(7)-round Keyak

A[4][0][44]=k169 (+A[4][1][44]) + A[2][2][45]
+ A[3][2][45] + A[4][2][44] + A[2][3][45] + A[4][3][44],
A[0][0][5]= k128 + A[1][0][5] + A[2][0][4] + A[0][1][5]

+ A[2][1][4] + A[0][2][5] + A[2][2][4] + A[0][3][5]
+ A[2][3][4] + A[0][4][5] + 1,

A[0][0][60]= k56 + k183 + A[2][0][59] + A[0][1][60]
+ A[2][1][59] + A[0][2][60] + A[2][2][59] + A[0][3][60]

+ A[2][3][59]+ A[0][4][60] + 1,
A[2][0][7]= k131 + A[4][0][6] + A[2][1][7] + A[3][1][7]

+ A[4][1][6] + A[2][2][7]+ A[4][2][6] + A[2][3][7]
+ A[4][3][6]

Guessed Key Bits k169, k128, k56 + k183, k131

Table 6. Parameters for attacking 7-round and 8-round Keyak

6 Distinguishing Attacks on Keccak Sponge Function

In this section, conditional cube tester will be applied to establish distinguishing
attacks on Keccak sponge function with practical complexity. By Theorem 2, if
we use 2n + 1 conditional cube variables, the monomial containing these 2n + 1
conditional cube variables will not appear in the output polynomials of (n+ 2)-
round Keccak sponge function. This means that the dimension of the cube to
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distinguish (n+ 2)-round Keccak is reduced to 2n + 1 from higher numbers re-
ported in [10]. In some cases like Keccak-512 and Keccak-384, the distinguishing
attacks could be extended one more round forward.

Our construction of the cube tester includes two parts:

– Find a combination of sufficiently many conditional cube variables;
– Derive the corresponding bit conditions for the chosen conditional cube vari-

ables.

6.1 Constructing Conditional Cube Tester with MILP

A mixed-integer linear programming (MILP) problem is a linear programming
problem with some variables taking integer values. MILP has been used to find
the best differential characteristic in [25]. In this section, we model the problem
of finding a combination of sufficiently many conditional cube variables as an
MILP problem.

In this new model, each conditional cube variable candidate is assigned with
a variable xi ( 1 ≤ i ≤ m) where xi takes value from {0, 1}. The i-th conditional
cube variable candidate is selected as a conditional cube variable if and only if
xi = 1. To find sufficiently many conditional cube variables, we need to find an
assignment X = {(x1, x2, . . . , xm)|xi ∈ {0, 1}, 1 ≤ i ≤ m} of hamming weight
larger than 2n + 1. From earlier analysis, we know that in some cases two condi-
tional cube variable candidates can not be selected simultaneously. We will first
generate such constraints in terms of X. The precise generation procedure is the
following.

Algorithm 5 Generating Constraints on X

Input: m conditional cube variable candidates;
Output: A set F of constrains on X
1: F = ∅
2: for each integer i ∈ [1,m− 1] do
3: for each integer j ∈ [i+ 1,m] do
4: excute Algorithm 3 on the i-th and j-th conditional cube variable candidates;
5: if Algorithm 3 does not return ‘Not Multiplied after the Second Round’ then
6: F ← F ∪ {xi + xj ≤ 1}
7: end if
8: end for
9: end for

10: return F

With the constraint set F , the selection problem for conditional cube vari-
ables is modeled into a binary linear programming problem as follow:∑m

i=1 xi ≥ 2n + 1
s.t.A0X ≤ b,X = {(x1, x2, . . . , xm)|xi ∈ {0, 1}, 1 ≤ i ≤ m}
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where A0 is a binary matrix and b a binary vector such that A0X ≤ b describes
the constraint set F . Although MILP is proved to be NP-hard, our problem
is a special (and small) instance and can be solved by the programming solver
Gurobi Optimizer [26] based on branch and cut algorithm.

We can get a desired combination of conditional cube variables by solving
the MILP problem. In the rest of the section, we will construct distinguishing
attacks on Keccak sponge function by solving the MILP problems and deriving
the corresponding conditions for these conditional cube variables.

6.2 Distinguishing Attack on Keccak-512 and Keccak-384

As depicted in Fig. 7, there are 4 conditional cube variables candidates in one
slice for Keccak-512. There are total 256 such candidates in 64 slices. Applying
Algorithm 5 to generate all of the constraints with respect to these 256 candidates
and solving the problem with Gurobi Optimizer, we get a set of 9 conditional
cube variables. The bit conditions can be derived directly from δvmA[i][j][k] =
0(0 ≤ m ≤ 9), where δvmA[i][j][k] 6= 1 and A is the 1.5-round intermediate state.
We then construct a 5-round conditional cube tester. Note that the algebraic
degree of output polynomial of 5-round Keccak-512 is at most 8, the cube sum
of 5-round Keccak-512 output is zero.

The most significant 320 bits of Keccak-512 output can be reversed so that the
distinguishing attack can be extended one more round further without increasing
the complexity. The time complexity for the distinguishing attack on 6-round
Keccak-512 with the conditional cube tester is thus 29 Keccak calls and the
data complexity is also 29. From the fact that a distinguishing attack on Keccak
with the capacity c1 also works on Keccak with the capacity c2 with the same
complexity as long as c1 > c2, this attack can also distinguish Keccak-224,
Keccak-256 up to 5 rounds and Keccak-384 up to 6 rounds.

We can find a combination of 17 conditional cube variables for Keccak-384
and construct a 7-round conditional cube tester in a similar manner with a
complexity of 217.

The conditions for these two conditional cube tester are shown in Table 11
and Table 12. We have verified both of these two conditional cube testers by
experiments.

6.3 Distinguishing Attack on Keccak-224

For Keccak-224, the same process can be applied with the conditional cube vari-
ables candidates in a 2-2-22 pattern. But with 1536 conditional cube variable
candidates, the searching problem becomes difficult to solve. So we turn to con-
sider the conditional cube variable candidates in double kernel patterns. The
bitwise derivatives of such a chosen variable are still invariant with respect to
the operation θ in the second round.

Four differential characteristics in double kernel pattern are shown in Table 7
in hexadecimal format with ‘-’ denoting zero. The rows labeled with δ0 and δ1
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NO δi Differential

0 δ0 - - - - - - - - - - - - - - - 1 8- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - 8- - - - - - - - - - - - - - - - - - - - - - - 4- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 1 - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - - - - - - - - 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 δ1.5 - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - -
- - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - 1 - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - -

2 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - -

2 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - -
- - - - - - - - - - - - - 8 - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - 2 - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - 8 - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

3 δ1.5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - 4 - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - 2 - - - - - - - - - - -

Table 7. Four differential characteristics in double kernel pattern
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are the input difference of the first round and the second round respectively;
δ1.5 is the output difference after 1.5-round Keccak. The first two differential
characteristics can be found in [9] in 6-6-6 pattern and the other two are found
using the method in [8] in 8-8-8 pattern. As an example, a conditional cube
variable can be set as

A[0][0][0]=A[0][1][0]=A[2][1][30]=A[2][2][30]= A[1][0][63]=A[1][2][63]=v0.

This variable only impacts 6 bits after 1.5 round, which reduces the possibilities
for the conditional cube variables to multiply with each other. Because of trans-
lation invariance in the direction of the z axis, we have 256 conditional cube
variable candidates to build the MILP problem by applying Algorithm 5. With
Gurobi Optimizer, we can find a combination of 30 conditional cube variables.
Three conditional cube variables in 2-2-22 pattern have been added to the com-
bination to get 33 independent conditional cube variables. Refer to Table 13 for
the list of the conditional cube variables. The bit conditions can be derived ex-
actly from the conditional cube variables, but they will be listed in the auxiliary
supporting material due to the space limitation. Thus, a 7-round cube tester on
Keccak-224 is constructed.

The time complexity of this distinguishing attack is 233. Memory complexity
is negligible. This distinguishing attack can be performed on a desktop computer
in several hours.

7 Conclusion

In this paper, we propose the conditional cube tester for Keccak sponge func-
tion with the advantage of having smaller dimensions compared to the previous
cube tester in some cases. Our approach is based on a novel idea to add some
conditions for certain cube variables, so that the multiplication between cube
variables are under control after the second round of Keccak sponge function.
More specifically, using a conditional cube tester to round-reduced Keccak-MAC
and Keyak, our key recovery attacks are more efficient than the currently best
known attacks according to the number of rounds or the complexity. Another
application of our conditional cube tester is to construct distinguishing attack-
s on Keccak sponge function. Our distinguishing attacks are much faster and
improve the existing attacks. Most of our attacks are very practical and imple-
mentations and experiments have been conducted on desktop computers. We
should also remark that our proposed conditional cube testers may be used to
analyse Keccak-like cryptosystems. Implementations of our methods are avail-
able at http://people.uwm.edu/gxu4uwm/eurocrypt17_code/.
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0 1 62 28 27
36 44 6 55 20
3 10 43 25 39
41 45 15 21 8
18 2 61 56 14

Table 8. offsets r[x,y] in operation ρ
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Ordinary Cube Variables

A[2][0][12]=A[2][1][12]=v1, A[2][0][20]=A[2][1][20]=v2, A[2][0][28]=A[2][1][28]=v3,
A[2][0][41]=A[2][1][41]=v4, A[2][0][43]=A[2][1][43]=v5, A[2][0][45]=A[2][1][45]=v6,
A[2][0][53]=A[2][1][53]=v7, A[2][0][61]=A[2][1][61]=v8, A[2][0][62]=A[2][1][62]=v9,
A[3][0][3]=A[3][1][3]=v10, A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,

A[3][0][15]=A[3][1][15]=v13, A[3][0][23]=A[3][1][23]=v14, A[3][0][30]=A[3][1][30]=v15,
A[3][0][40]=A[3][1][40]=v16, A[3][0][46]=A[3][1][46]=v17, A[3][0][56]=A[3][1][56]=v18,
A[3][0][57]=A[3][1][57]=v19, A[4][0][5]=A[4][1][5]=v20, A[4][0][10]=A[4][1][10]=v21,

A[4][0][12]=A[4][1][12]=v22, A[4][0][14]=A[4][1][14]=v23, A[4][0][47]=A[4][1][47]=v24,
A[4][0][58]=A[4][1][58]=v25, A[4][0][62]=A[4][1][62]=v26, A[4][0][63]=A[4][1][63]=v27,
A[0][1][28]=A[0][2][28]=v28, A[0][1][34]=A[0][2][34]=v29, A[0][1][37]=A[0][2][37]=v30,

A[0][1][46]=A[0][2][46]=v31
Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]= A[4][1][44] + A[2][2][45],
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60] + A[2][2][59] + 1,

A[2][0][7]= A[4][0][6] + A[2][1][7] + A[4][1][6] + A[2][2][7] + A[3][1][7].
Guessed Key Bits k60, k5 + k69

Table 9. Parameters set for attack on 6-round Keccak-MAC-384

Ordinary Cube Variables

A[2][0][8]=A[2][1][8]=v1, A[2][0][12]=A[2][1][12]=v2, A[2][0][20]=A[2][1][20]=v3,
A[2][0][28]=A[2][1][28]=v4, A[2][0][41]=A[2][1][41]=v5, A[2][0][43]=A[2][1][43]=v6,
A[2][0][45]=A[2][1][45]=v7, A[2][0][53]=A[2][1][53]=v8, A[2][0][62]=A[2][1][62]=v9,
A[3][0][3]=A[3][1][3]=v10, A[3][0][9]=A[3][1][9]=v11, A[3][0][13]=A[3][1][13]=v12,

A[3][0][30]=A[3][1][30]=v13, A[3][0][40]=A[3][1][40]=v14, A[3][0][46]=A[3][1][46]=v15,
A[3][0][56]=A[3][1][56]=v16, A[4][0][5]=A[4][1][5]=v17, A[4][0][10]=A[4][1][10]=v18,

A[4][0][12]=A[4][1][12]=v19, A[4][0][14]=A[4][1][14]=v20, A[4][0][31]=A[4][1][31]=v21,
A[4][0][47]=A[4][1][47]=v22, A[4][0][58]=A[4][1][58]=v23, A[4][0][62]=A[4][1][62]=v24,

A[4][0][63]=A[4][1][63]=v25, A[0][1][37]=A[0][2][37]=v26, A[0][1][47]=v27,
A[0][2][47]=v27+v28, A[0][3][47]=v28, A[0][1][46]=A[0][2][46]=v29,

A[0][1][59]=A[0][2][59]=v30, A[1][1][7]=A[1][2][7]=v31, A[1][1][15]=A[1][2][15]=v32,
A[1][1][20]=A[1][2][20]=v33, A[1][1][26]=A[1][2][26]=v34, A[1][1][30]=A[1][2][30]=v35,
A[1][1][38]=A[1][2][38]=v36, A[1][1][39]=A[1][2][39]=v37, A[1][1][40]=A[1][2][40]=v38,
A[1][1][52]=A[1][2][52]=v39, A[1][1][54]=A[1][2][54]=v40, A[2][1][11]=A[2][2][11]=v41,
A[2][1][15]=A[2][2][15]=v42, A[2][1][19]=A[2][2][19]=v43, A[2][1][24]=A[2][2][24]=v44,
A[2][1][52]=A[2][2][52]=v45, A[2][1][58]=A[2][2][58]=v46, A[2][1][61]=A[2][2][61]=v47,
A[3][1][23]=A[3][2][23]=v48, A[3][1][29]=A[3][2][29]=v49, A[3][1][58]=A[3][2][58]=v50,
A[4][1][1]=A[4][2][1]=v51, A[4][1][28]=A[4][2][28]=v52, A[4][1][44]=A[4][2][44]=v53,

A[4][1][50]=A[4][2][50]=v54, A[4][1][61]=A[4][2][61]=v55, A[0][2][17]=A[0][3][17]=v56,
A[0][2][28]=A[0][3][28]=v57, A[0][2][34]=A[0][3][34]=v58, A[0][2][56]=A[0][3][56]=v59,
A[1][2][44]=A[1][3][44]=v60, A[1][2][49]=A[1][3][49]=v61, A[1][2][57]=A[1][3][57]=v62,

A[2][0][5]=A[2][2][5]=v63
Conditional Cube Variables A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44]= A[2][2][45] + A[3][2][45],
A[2][0][4]= k5 + k69 + A[0][1][5] + A[2][1][4]

+ A[0][2][5] + A[2][2][4] + A[0][3][5] + 1,
A[2][0][59]= k60 + A[0][1][60] + A[2][1][59] + A[0][2][60]

+ A[2][2][59] + A[0][3][60] + 1,
A[2][0][7]= A[3][1][7] + A[4][1][6] + A[2][1][7] + A[4][1][6]

+A[2][2][7] + A[4][2][6]
Guessed Key Bits k60, k5 + k69

Table 10. Parameters set for attack on 7-round Keccak-MAC-256
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Conditional Cube Variables
A[2][0][0]=A[2][1][0]=v0, A[2][0][1]=A[2][1][1]=v1,A[2][0][2]=A[2][1][2]=v2,

A[2][0][3]=A[2][1][3]=v3,A[2][0][22]=A[2][1][22]=v4, A[2][0][23]=A[2][1][23]=v5,
A[2][0][44]=A[2][1][44]=v6, A[2][0][45]=A[2][1][45]=v7,A[3][0][15]=A[3][1][15]=v8

Bit Conditions

A[2][0][4]= A[0][0][5]+ A[1][0][5]+ A[0][1][5]+ A[2][1][4]+ 1,
A[2][0][5]= A[0][0][6]+ A[1][0][6]+ A[0][1][6]+ A[2][1][5]+ 1,
A[2][0][6]= A[0][0][7]+ A[1][0][7]+ A[0][1][7]+ A[2][1][6]+ 1,
A[2][0][7]= A[0][0][8]+ A[1][0][8]+ A[0][1][8]+ A[2][1][7]+ 1,

A[2][0][8]= A[4][0][7]+ A[2][1][8]+ A[3][1][8],
A[2][0][9]= A[4][0][8]+ A[2][1][9]+ A[3][1][9],

A[2][0][10]= A[4][0][9]+ A[2][1][10]+ A[3][1][10],
A[2][0][17]= A[0][0][18]+ A[0][1][18]+ A[2][1][17]+ 1,

A[2][0][25]= A[4][0][24]+ A[2][1][25],
A[2][0][26]= A[0][0][27]+ A[1][0][27]+ A[0][1][27]+ A[2][1][26]+ 1,
A[2][0][27]= A[0][0][28]+ A[1][0][28]+ A[0][1][28]+ A[2][1][27]+ 1,

A[2][0][29]= A[4][0][28]+ A[2][1][29]+ A[3][1][29],
A[2][0][30]= A[4][0][29]+ A[2][1][30]+ A[3][1][30],

A[2][0][40]= A[0][0][41]+ A[0][1][41]+ A[2][1][40]+ 1,
A[2][0][46]= A[4][0][45]+ A[2][1][46],
A[2][0][47]= A[4][0][46]+ A[2][1][47],
A[2][0][48]= A[4][0][47]+ A[2][1][48],

A[2][0][49]= A[0][0][50]+ A[1][0][50]+ A[0][1][50]+ A[2][1][49]+ 1,
A[2][0][51]= A[4][0][50]+ A[2][1][51]+ A[3][1][51],
A[2][0][52]= A[4][0][51]+ A[2][1][52]+ A[3][1][52],

A[2][0][59]= A[0][0][60]+ A[0][1][60]+ A[2][1][59]+ 1,
A[2][0][60]= A[0][0][61]+ A[0][1][61]+ A[2][1][60]+ 1,
A[2][0][61]= A[0][0][62]+ A[0][1][62]+ A[2][1][61]+ 1,
A[2][0][62]= A[0][0][63]+ A[0][1][63]+ A[2][1][62]+ 1,

A[3][0][23]= A[0][0][22]+ A[0][1][22]+ A[3][1][23],
A[3][0][31]= A[0][0][30]+ A[0][1][30]+ A[3][1][31],

A[3][0][45]= A[1][0][46]+ A[1][1][46]+ A[3][1][45]+ 1,
A[4][0][3]= A[0][0][5]+ A[1][0][5]+ A[0][1][5]+ 1,

A[4][0][6]= A[0][0][8]+ A[1][0][8]+ A[0][1][8]+ A[3][1][7]+ 1,
A[4][0][25]= A[0][0][27]+ A[1][0][27]+ A[0][1][27]+ 1,
A[0][1][49]= A[0][0][49]+ A[1][0][49]+ A[4][0][47]+ 1,

A[4][0][44]=0, A[4][0][2] = 1.

Table 11. Conditions to distinguish Keccak-512
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Conditional Cube Variables

A[0][0][14]=A[0][1][14]=v0, A[2][0][23]=A[2][1][23]=v1,A[2][0][24]=A[2][1][24]=v2,
A[2][0][43]=A[2][1][43]=v3, A[2][0][44]=v4, A[2][1][44]=v4+v5, A[2][2][44]=v5,

A[3][0][56]=A[3][1][56]=v6, A[3][0][58]=A[3][1][58]=v7, A[0][1][57]=A[0][2][57]=v8,
A[0][1][58]=A[0][2][58]=v9, A[1][1][49]=A[1][2][49]=v10, A[1][1][50]=A[1][2][50]=v11,
A[2][1][41]=A[2][2][41]=v12, A[0][0][20]=A[0][2][20]=v13, A[1][0][13]=A[1][2][13]=v14,

A[2][0][0]=A[2][2][0]=v15, A[2][0][16]=A[2][2][16]=v16

Bit Conditions

A[0][0][1]= A[3][0][2]+ A[0][1][1]+ A[3][1][2]+ A[4][1][2]+ A[0][2][1]
A[0][0][2]= A[3][0][3]+ A[0][1][2]+ A[3][1][3]+ A[4][1][3]+ A[0][2][2]+ 1

A[0][0][5]= A[3][0][6]+ A[0][1][5]+ A[3][1][6]+ A[0][2][5]+ 1
A[0][0][7]= A[3][0][8]+ A[0][1][7]+ A[3][1][8]+ A[0][2][7]

A[0][0][9]= A[3][0][10]+ A[0][1][9]+ A[3][1][10]+ A[0][2][9]
A[0][0][12]= A[2][0][11]+ A[0][1][12]+ A[2][1][11]+ A[0][2][12]+ A[2][2][11]+ 1

A[0][0][15]= A[2][0][14]+ A[0][1][15]+ A[2][1][14]+ A[0][2][15]+ A[2][2][14]
A[0][0][16]= A[2][0][15]+ A[0][1][16]+ A[2][1][15]+ A[0][2][16]+ A[2][2][15]

A[0][0][19]= A[2][0][18]+ A[0][1][19]+ A[2][1][18]+ A[0][2][19]+ A[2][2][18]+ 1
A[0][0][22]= A[3][0][23]+ A[0][1][22]+ A[3][1][23]+ A[4][1][23]+ A[0][2][22]+ A[2][2][24]+ 1

A[0][0][28]= A[1][0][29]+ A[2][0][27]+ A[2][0][28]
+ A[4][0][29]+ A[0][1][28]+ A[0][1][29]+ A[1][1][28]+ A[2][1][27]+ A[2][1][28]

+ A[4][1][29]+ A[0][2][28]+ A[0][2][29]+ A[1][2][28]+ A[2][2][27]+ A[2][2][28]+ 1
A[0][0][29]= A[1][0][29]+ A[2][0][28]+ A[0][1][29]+ A[2][1][28]+ A[0][2][29]+ A[2][2][28]+ 1

A[0][0][30]= A[1][0][29]+ A[4][0][30]+ A[1][1][29]+ A[4][1][30]+ A[1][2][29]+ 1
A[0][0][34]= A[2][0][33]+ A[0][1][34]+ A[1][1][34]+ A[2][1][33]+ A[0][2][34]+ A[2][2][33]

A[0][0][39]= A[4][0][37]+ A[0][1][39]+ A[4][1][37]+ A[0][2][39]+ 1
A[0][0][40]= A[3][0][41]+ A[0][1][40]+ A[3][1][41]+ A[4][1][41]+ A[0][2][40]+ 1

A[0][0][42]= A[2][0][41]+ A[0][1][42]+ A[0][2][42]
A[0][0][43]= A[2][0][42]+ A[0][1][43]+ A[1][1][43]+ A[2][1][42]+ A[0][2][43]+ A[2][2][42]+ 1
A[0][0][46]= A[1][2][46]+ A[2][0][45]+ A[0][1][46]+ A[2][1][45]+ A[0][2][46]+ A[2][2][45]+ 1
A[0][0][48]= A[1][0][48]+ A[2][0][47]+ A[0][1][48]+ A[2][1][47]+ A[0][2][48]+ A[2][2][47]+ 1

A[0][0][49]= A[2][0][48]+ A[2][0][49]+ A[3][0][48]+ A[0][1][49]+ A[2][1][48]
+ A[3][1][48]+ A[0][2][49]+ A[2][2][48]

A[0][0][60]= A[2][0][59]+ A[0][1][60]+ A[2][1][59]+ A[0][1][60]+ A[2][2][59]+ 1
A[0][0][63]= A[3][0][0]+ A[0][1][63]+ A[3][1][0]+ A[0][2][63]+ 1

A[1][0][8]= A[3][0][7]+ A[1][1][8]+ A[3][1][7]+ A[1][2][8]
A[1][0][22]= A[0][1][23]+ A[1][1][22]+ A[1][2][22]+ A[2][2][24]+ 1

A[1][0][23]= A[4][0][24]+ A[0][1][24]+ A[1][1][23]+ A[4][1][24]+ A[1][2][23]+ 1
A[1][0][25]= A[3][0][24]+ A[1][1][25]+ A[3][1][24]+ A[1][2][25]+ 1

A[1][0][28]= A[1][0][29]+ A[2][0][28]+ A[4][0][29]+ A[0][1][29]+ A[1][1][28]+
A[2][1][28]+ A[4][1][29]+ A[0][2][29]+ A[1][2][28]+ A[2][2][28]
A[1][0][44]= A[3][0][43]+ A[1][1][44]+ A[3][1][43]+ A[1][2][44]
A[1][0][45]= A[3][0][44]+ A[1][1][45]+ A[3][1][44]+ A[1][2][45]

A[1][0][49]= A[2][0][49]+ A[3][0][48]+ A[3][1][48]+ 1
A[1][0][50]= A[4][0][51]+ A[0][1][51]+ A[4][4][51]+ 1

A[1][0][51]= A[3][0][50]+ A[1][1][51]+ A[3][1][50]+ A[1][2][51]+ A[2][2][51]
A[1][0][59]= A[4][0][60]+ A[1][1][59]+ A[4][1][60]+ A[1][2][59]

A[2][0][2]= A[4][0][1]+ A[2][1][2]+ A[4][1][1]+ A[2][2][2]
A[2][0][4]= A[2][1][4]+ A[2][2][4]

A[2][0][5]= A[4][0][4]+ A[2][1][5]+ A[4][1][4]+ A[2][2][5]
A[2][0][7]= A[4][0][6]+ A[2][1][7]+ A[3][1][7]+ A[4][1][6]+ A[2][2][7]

A[2][0][22]= A[4][0][21]+ A[2][1][22]+ A[4][1][21]+ A[2][2][22]
A[2][0][25]= A[4][0][24]+ A[2][1][25]+ A[4][0][24]+ A[2][2][25]

A[2][0][30]= A[4][0][29]+ A[2][1][30]+ A[3][1][30]+ A[4][1][29]+ A[2][2][30]
A[2][0][31]= A[4][0][30]+ A[2][1][31]+ A[3][1][31]+ A[4][1][30]+ A[2][2][31]

A[2][0][38]= A[4][0][37]+ A[2][1][38]+ A[4][1][37]+ A[2][2][38]
A[2][0][39]= A[3][0][41]+ A[2][1][39]+ A[3][1][41]+ A[4][1][41]+ A[2][2][39]
A[2][0][50]= A[4][0][49]+ A[2][1][50]+ A[3][1][50]+ A[4][1][49]+ A[2][2][50]

A[2][0][51]= A[2][2][51]+ 1
A[2][0][62]= A[3][0][0]+ A[1][1][63]+ A[2][1][62]+ A[3][1][0]+ A[2][2][62]

A[2][0][63]= A[4][0][62]+ A[2][1][63]+ A[4][1][62]+ A[2][2][63]
A[3][0][22]= A[4][0][24]+ A[0][1][24]+ A[3][1][22]+ A[4][1][24]
A[3][0][40]= A[4][0][37]+ A[3][1][40]+ A[4][1][37]+ A[4][1][40]

A[3][0][49]= A[4][0][51]+ A[0][1][51]+ A[3][1][49]+ A[4][1][51]+ A[2][2][50]+ 1
A[4][0][2]= A[4][1][2]+ 1

A[4][0][22]= A[3][1][23]+ A[4][1][22]+ A[2][2][23]
A[4][0][23]= A[4][1][23]+ A[2][2][24]

A[4][0][50]= A[2][1][51]+ A[3][1][51]+ A[4][1][50]+ 1
A[0][1][20]= A[2][0][19]+ A[2][1][19]+ A[2][2][19]+ 1

A[1][2][40]= 1 A[4][1][0]= 1 A[1][2][19]= 1
A[1][2][20]= 1 A[1][1][40]= 1 A[2][1][8]= 0 A[1][1][15]= 1

Table 12. Conditions to Distinguish Keccak-384
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Conditional Cube Variables
A[0][0][3]=A[1][2][2]=v0, A[0][1][3]=A[2][1][33]=A[2][2][33]=v0+v25, A[1][0][2]=v0+v17,

A[0][0][6]=A[1][0][5]=A[1][2][5]=v1, A[0][1][6]=A[2][1][36]=A[2][2][36]=v1+v17,
A[0][0][9]=A[0][1][9]=A[2][1][39]=A[2][2][39]=A[1][0][8]=A[1][2][8]=v2,

A[0][0][11]=A[1][0][10]=v3, A[0][1][11]=A[2][1][41]=A[2][2][41]=v3+v18, A[1][2][10]=v3+v16,
A[0][0][14]=A[2][1][44]=A[2][2][44]=A[1][0][13]=A[1][2][13]=v4, A[0][1][14]=v4+v16+v26,

A[0][0][16]=v5, A[0][1][16]=A[2][1][46]=A[2][2][46]=v5+v19, A[1][0][15]=v5+v20+v27, A[1][2][15]=v5+v27,
A[0][0][19]=A[1][0][18]=A[1][2][18]=v6, A[0][1][19]=A[2][1][49]=A[2][2][49]=v6+v20,

A[0][0][21]=A[0][1][21]=A[2][1][51]=A[2][2][51]=v7, A[1][0][20]=v7+v21+v28, A[1][2][20]=v7+v28,
A[0][0][22]=A[2][1][52]=A[2][2][52]=A[1][0][21]=v8, A[0][1][22]=A[1][2][21]=v8+v14,
A[0][0][24]=A[1][0][23]=A[1][2][23]=v9, A[0][1][24]=A[2][1][54]=A[2][2][54]=v9+v21,

A[0][0][27]=A[2][1][57]=A[2][2][57]=A[1][0][26]=A[1][2][26]=v10, A[0][1][27]=v10+v28,
A[0][0][29]=A[1][0][28]=v11, A[0][1][29]=A[2][1][59]=A[2][2][59]=v11+v22, A[1][2][28]=v11+v15,

A[0][1][32]=v12+v15+v29, A[0][0][32]=A[2][1][62]=A[2][2][62]=A[1][0][31]=A[1][2][31]=v12,
A[0][0][62]=A[1][2][61]=v13, A[0][1][62]=A[2][1][28]=A[2][2][28]=v13+v23, A[1][0][61]=v13+v24,

A[3][1][6]=A[3][2][6]=A[1][3][21]=A[0][1][25]=A[0][3][25]=v14,
A[3][1][13]=A[3][2][13]=v15+v29, A[1][3][28]=A[0][3][32]=v15,
A[3][1][59]=A[3][2][59]=v16+v26, A[1][3][10]=A[0][3][14]=v16

A[1][3][2]=A[4][0][40]=A[4][2][40]=A[0][3][6]=v17,
A[1][0][7]=A[4][0][45]=A[4][2][45]=v18+v26, A[1][3][7]=A[0][3][11]=v18

A[1][0][12]=A[1][3][12]=A[4][0][50]=A[4][2][50]=A[0][3][16]=v19,
A[1][3][15]=A[0][3][19]=v20, A[4][0][53]=A[4][2][53]=v20+v27,
A[1][3][20]=A[0][3][24]=v21, A[4][0][58]=A[4][2][58]=v21+v28,

A[1][0][25]=A[4][0][63]=A[4][2][63]=v22+v29, A[1][3][25]=A[0][3][29]=v22,
A[1][0][58]=A[1][3][58]=A[4][0][32]=A[4][2][32]=A[0][3][62]=v23,

A[1][3][61]=A[4][0][35]=A[4][2][35]=A[0][1][1]=A[0][3][1]=A[2][1][31]=A[2][2][31]=v24,
A[1][0][63]=A[1][3][63]=A[4][0][37]=A[4][2][37]=A[0][3][3]=v25,

A[1][2][7]=A[0][2][14]=v26, A[0][2][22]=A[3][1][3]=A[3][2][3]=v27
A[0][2][27]=A[3][1][8]=A[3][2][8]=v28, A[1][2][25]=A[0][2][32]=v29, A[2][0][55]=A[2][1][55]=v30

A[0][2][60]=A[0][3][60]=v31, A[0][1][37]=A[0][3][37]=v32

Table 13. Conditional Cube Variables to Distinguish Keccak-224


