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Abstract

Cellular circuits sense the environment, process signals, and compute decisions using networks of 

interacting proteins. To model such a system, the abundance of each activated protein species can 

be described as a stochastic function of the abundance of other proteins. High-dimensional single-

cell technologies, like mass cytometry, offer an opportunity to characterize signaling circuit-wide. 

However, the challenge of developing and applying computational approaches to interpret such 

complex data remains. Here, we developed computational methods, based on established 

statistical concepts, to characterize signaling network relationships by quantifying the strengths of 

network edges and deriving signaling response functions. In comparing signaling between naïve 

and antigen-exposed CD4+ T-lymphocytes, we find that although these two cell subtypes had 

similarly-wired networks, naïve cells transmitted more information along a key signaling cascade 

than did antigen-exposed cells. We validated our characterization on mice lacking the 

extracellular-regulated MAP kinase (ERK2), which showed stronger influence of pERK on pS6 

(phosphorylated-ribosomal protein S6), in naïve cells compared to antigen-exposed cells, as 

predicted. We demonstrate that by using cell-to-cell variation inherent in single cell data, we can 

algorithmically derive response functions underlying molecular circuits and drive the 

understanding of how cells process signals.
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INTRODUCTION

Cells process external cues through the biological circuitry of signaling networks wherein 

each protein species processes information pertaining to other proteins whose activities 

themselves are determined by biochemical modifications (e.g., phosphorylation) or other 

allosteric interactions. Signaling networks can be remarkably attuned to distinguishing 

subtle features of stimuli to enable key decisions regarding cellular response or fate. For 

example, naïve CD4+ T cells take into account both dose and duration of T cell Receptor 

(TCR) engagement, the strength of peptide binding in the MHC cleft, and co-receptor cues 

in making a decision to differentiate into either regulatory or helper T cells (1-4). With this 

example as one amongst many, it follows then that to properly understand normal cellular 

responses and how these are dysregulated in disease, robust quantitative characterizations of 

signaling relationships will be required to enable more accurate models of signaling.

Despite progress in the quest to understand and represent the complexities of signaling 

biology, graph diagrams typically used as depictions of signaling relationships only offer 

qualitative abstractions. In such graphs the vertices correspond to proteins and a directional 

edge indicates the influence of one protein or molecular species on another and, as such, fail 

to capture many of the more complex ways through which signaling networks process 

information. Further, such representations are not designed to readily enable predictions of 

response to stimuli or therapeutic intervention. Although quantitative models have been 

proposed to describe signaling networks (3, 5, 6), these are specific to each system and 

require measurements of biochemical rates and many additional parameters. To scale to a 

large number of signaling networks and cell types, a robust data-driven approach that can 

quantify signaling interactions in molecular circuits is required. A data-driven approach 

would take advantage of statistically relevant differences in complex cell populations to 

better inform the function that is encoded by an inferred circuit diagram.

To this end, single-cell measurement technologies can offer quantitatively precise, even 

absolute (given appropriate probes and experimental design), measures of dozens of cellular 

components representing important biochemical functions. Variation in a complex cell 

population can be discerned in a functionally relevant context, and thereby enable unique 

insights into the underlying relationships between signaling molecules. Mass cytometry, for 

example, can assay the abundance of dozens of internal and surface protein epitopes 

simultaneously in millions of individual cells (7, 8), offering an opportunity to quantitatively 

characterize signaling at circuit-wide scales. Modeling a signaling network as a 

computational system, where each signaling protein computes a stochastic function of other 

proteins, and treating each single cell as an example of possible input-out enables the 

recovery of how a signaling network functions. With many thousands of individual cells, 

each providing a point of data about relationships between proteins, we can infer the 

network function.

However, a major challenge in deciphering single-cell signaling data is developing 

computational methods that can handle the complexity, noise (which can be either natural 

stochasticity or actual instrument noise), and bias in the measurements. First, because cell 

populations are rarely homogeneous, different cell subpopulations can manifest distinct 
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behaviors – and therefore the relationships between signaling proteins may be obscured 

beneath a mixture of multiple network states. For example, naïve primary B cells can have 

weak and stochastic responses to stimuli such that only a small fraction of the population 

responds (via activation of signaling pathways), whereas memory B cells are considered 

primed and even evolved towards a more avid binding of antigen. Similarly, naïve T cells 

manifest different kinetics of response to T cell receptor engagement than do effector T 

cells. Second, technical noise in the measurements can further confound the quantification 

of molecular interactions. Third, marker abundance (which often correlates with cell size) 

can lead to biased correlations and thereby be misinterpreted as an influence between the 

assayed signaling proteins.

We addressed these challenges by developing an algorithm, based on the statistical concepts 

of conditional probability (9) and density estimation (10), termed conditional-Density 

Resampled Estimate of Mutual Information (DREMI) to quantify the strength of molecular 

interactions. Given a relationship between two proteins, where X influences Y, DREMI 

considers the abundance or activity of protein Y as a stochastic function of the abundance or 

activity of protein X. DREMI uses the variation in a population of individually measured 

single cells to quantify the amount of information transmitted from protein X to protein Y in 

the signaling network.

A key conceptual shift compared to previous approaches to single -cell analysis is that 

DREMI computes mutual information on the estimated conditional probability of Y∣X 

rather than the joint probability of X and Y (the latter being the preferred approached in 

most other mutual information-based metrics). Joint probability describes the density of cell 

states (like in a traditional scatter or density plot), whereas conditional probability describes 

how the state of Y varies with different states of X. To explore such relationships, we couple 

DREMI to an algorithm we term conditional-Density Rescaled Visualization (DREVI). We 

use DREVI to visually render the estimated conditional density function as a rescaled heat 

map, which allows us to visualize the function underlying the molecular interaction in the 

cell population.

T cells offer an opportune system within which to characterize signaling relationships 

because several well-characterized but subtly distinct T cell subsets exist (e.g., regulatory, 

effector and memory) – each of which have a distinct function and yet the signaling 

distinctions between them are not well appreciated. For example, in naïve CD4+ T cells, 

which have not been exposed to antigen, the activation of the TCR (dependent upon the 

engagement of co-receptors and availability of certain cytokines) leads to differentiation into 

functionally distinct effector cell types (11). In response to the same TCR activation, 

antigen-experienced effector or memory T cells tend to proliferate and mount responses 

more rapidly and in greater magnitude than naïve T cells (12-14). However, although the 

wiring diagrams that broadly describe the basic pathways are partly understood, the 

molecular mechanisms that lead to these differences are far from fully resolved.

Using a combination of DREMI and DREVI we modeled signaling in pathways downstream 

of the TCR. We find that the functional form of interactions between signaling proteins 

demonstrates sigmoidal behaviors that are dynamically and systematically altered upon 
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activation and with increases in stimulus strength, leading to complex but definable 

outcomes. We applied this to a physiological case using mass cytometry to track the 

abundance of 11 phospho-proteins post stimulation, ranging from 30 seconds to several 

hours, of murine TCR-activation in over 2 million individual cells. A comparison of T cell 

subtypes reveals subtle reconfigurations in the strength and functional shape of signal 

transfer between previously known pairs of interacting signaling molecules, all of which 

impacts the response to TCR activation. Our model enabled predicting the outcome of a 

perturbation that quantitatively differed between T cell subtypes that we subsequently 

verified experimentally. The computational framework developed here can be generally 

applied to model any signaling system for which appropriate antibodies, binding agents, or 

surrogate readouts are available. Notably, the approach discerns signaling behaviors that 

exist in complex cell populations, and in departure from our previous work (15), uses the 

inherent stochasticity to quantify and characterize the underlying signaling behaviors, 

demonstrating that computation can help reveal mechanistic insight from multi-dimensional 

single cell datasets.

RESULTS

The dynamics of T cell signaling was characterized and compared across murine T cell 

subsets. Time-series data was collected for phospho-signaling proteins in T-lymphocyte 

populations of B6 mice (16) after stimulation of the TCR (by crosslinking TCR and the 

CD28 co-stimulator with biotinylated antibodies). We assayed the abundance of 9 surface 

markers and 11 phospho-epitopes, among which were key nodes in TCR signaling and 

related pathways (Supplementary Fig. 1 and Table 1). Samples were collected at 13 time 

points after TCR activation ranging from 30 seconds to 80 minutes with two different types 

of stimuli (CD3/CD28 and CD3/CD4/CD28). We measured ~10,000 cells in each sample, 

cumulatively resulting in deep profiling of signaling data for more than 2 million individual 

cells.

The 9 surface markers in our panel distinguish between T cell subsets, including naïve 

CD44low and antigen-experienced CD44high T cells (17, 18) (Supplementary Fig. 2). 

Overall, with 20 markers per individual cell, these studies simultaneously resolve 6 T cell 

subsets in the lymph nodes along with their signaling responses – thus reducing technical 

limitations inherent in the assay of post-sorted T cell subsets.

Conditional Density-Rescaled Visualization of Single-Cell Data

To analyze these data, we consider each individual cell in our mass cytometry data as an 

instance of co-occurring protein states and use this information to quantify the signaling 

relationship between the assayed protein parameters. We demonstrate our approach using a 

signaling relationship between two measured protein epitopes in our data. A primary locus 

for intracellular signaling initiation of the TCR activation cascade is a protein scaffold 

known as the cluster of differentiation 3 zeta-chain (CD3ζ). Upon engagement with antigen, 

CD3ζ is phosphorylated (to pCD3ζ), which creates a scaffold target for the zeta-chain-

associated protein kinase 70 (ZAP-70), which in turn phosphorylates SLP76 (SH2 domain 
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containing leukocyte protein of 76kDa) and LAT (the adaptor protein SH2 domain 

containing leukocyte protein and Linker of activated T cells, respectively (19)).

When the relation between pCD3ζ and pSLP76 pre-stimulation and 30 seconds after 

stimulation (Fig. 1A) is visualized as a scatterplot (a traditional means used to analyze flow 

cytometry data), it is difficult to identify any clear characteristics of the data besides the 

range of expression values. Visualizing the data using a density plot (Fig 1B) (10), one 

observes that the abundance of pCD3ζ and pSLP76 is concentrated at a particular value, but 

there is no clear statistical dependency between the two molecules, nor does this 

visualization method illuminate the nature of the well-researched influence that pCD3ζ has 

on pSLP76 (20).

Why do traditional methods of visualizing data, such as scatterplots or density estimations, 

fail to reveal clear relationships between molecules? In Figure 1, the majority of cells can be 

found in a narrow range of values for each marker. Therefore, the joint density of pCD3ζ 

and pSLP76 is dominated by a narrow set of values and does not reveal the overall 

functional response, i.e., how protein Y changes as a function of the activity of protein X. 

To understand Y as a function of X, we have to explore X’s full dynamic range and how 

values of Y are dependent on values of X.

To visualize and characterize signal transfer between proteins X and Y, we developed 

DREVI (conditional Density-Rescaled Visualization) (Fig. 1, BOX 1, Methods), which 

represents in a visual form the stochastic function of how X influences Y. By using the 

natural variation in the amount of X and Y from cell to cell, we empirically learn the 

probability density P(X, Y) from the data. To characterize the influence that X extends on Y, 

we shift from the joint density and empirically estimate the conditional density P(Y∣X) (See 

Methods), by means of a kernel density estimation method based on heat diffusion (10, 21). 

The conditional density enables us to ascertain how Y’s values are changing with respect to 

the values of X, regardless of where the majority of cells are concentrated in the joint 

distribution. We note that while statisticians have previously developed sophisticated 

methods to directly compute the conditional density (22), these perform poorly on our data 

(Supplementary Fig 3).

Fig. 1C shows DREVI plots that depict pSLP76 abundance (Y) when conditioned on pCD3ζ 

(X) abundance. This view of the data reveals a distinct difference in the relation between 

pCD3ζ and pSLP76 before and after TCR activation that was not apparent in the scatterplots 

or joint distribution. Given an equal amount of pCD3ζ, we observe that pSLP76 has a 

stronger response to increasing pCD3ζ levels after TCR activation (note the increased values 

of the median response represented by the white line in Figure 1C). This suggests that 

following TCR activation, additional factors (perhaps ZAP70 or LAT) modulate the 

relationship between pCD3ζ and pSLP76. Similarly, DREVI can help clarify the 

relationship between additional protein pairs (Supplementary Fig. 4) and visualize how the 

relationships change through time (Supplementary Fig. 5).
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Conditional Density-Resampled Estimate of Mutual Information

To systematically compare between conditions, time points, and cell types, a measure that 

quantifies the relationship between two proteins is needed. Often, mutual information-based 

metrics are used to evaluate relationships between gene or protein pairs. However, mutual 

information (MI) is difficult to compute on continuous data. To resolve this, a first step is to 

discretize the data. Currently, adaptive partitioning (23) is one of the most widely used 

approaches for such discretization (24, 25). However, adaptive partitioning assumes that 

denser regions of the data are more important than sparser regions, and therefore the dense 

regions are partitioned more finely than sparse regions and dominate the resultant mutual-

information metric. By contrast, we developed a measure that allows for sparser populations 

to be accounted for – thus preventing bias against small cell populations that could have 

distinct and interesting biology that might inform understanding of the signaling relations in 

question.

To quantify the strength of the influence protein X has on protein Y, we developed 

conditional Density-Resampled Estimate of Mutual Information (DREMI) (see BOX 2, Fig. 

2, Methods). Like MI (26), DREMI is a shape-agnostic measure that scores how predictive 

X is of Y, but – unlike MI – it is not symmetric (and therefore might inform directionality) 

and also captures the strength of this relationship over all populated regions of the dynamic 

range, regardless of the (often peaked) distribution of X in the data. This is achieved by 

computing mutual information on the conditional density estimate of the data, rather than 

the raw data itself. DREMI begins with the conditional density estimate, computed for 

DREVI (See Box 1). The data is then resampled evenly through the range of the conditional 

probability density, and MI is computed on the resampled data, using equi-partitioned 

binning spanning the entire range.

To understand the differences between MI and DREMI, we use the data from Figure 1. 

Ordinary MI works well for data that is well distributed across the range of X and Y (see toy 

example in Fig 2A) – by equi-partitioning slices of X, the range of Y drastically drops 

within each slice and therefore knowing the value of X provides substantial information on 

the likely value of Y. However, in distributions typical of single cell data (Fig 2B), MI is 

dominated by a peak in density (a narrow range of X) in which only minor changes in Y are 

observed, thus the relationship between X and Y is obscured. By contrast, DREMI (Fig. 2C) 

resamples from the conditional density estimate and equally weights all regions along the 

entire range of X, as long as there are enough cells to form a robust conditional density 

estimate. Thus, DREMI takes into account sparse populations along the X-axis and factors 

for the full range.

DREMI takes advantage of mass cytometry’s ability to collect large sample sizes (data for 

millions of cells), facilitating the estimation of the conditional distribution in relatively 

sparse regions. For example, with 50,000 cells, an X-range with only 1% of the data 

(typically treated as an outlier) still contains 500 cells, a sufficient number to robustly 

estimate P(Y∣X=x). To further ensure a robust estimation of P(Y∣X=x), DREMI 

incorporates an automated noise-filtering step where points are eliminated if they have a low 

rescaled conditional density.
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We evaluated the robustness of DREMI to noise (Supplementary Fig. 6) and subsampling 

(Supplementary Fig. 7). Supplementary Fig. 6 shows that DREMI values generally decrease 

linearly as the standard deviation of the noise increases and that the noise-elimination step 

can be used to adjust signal detection in noisy experimental conditions. A key strength of 

DREMI is that it is shape agnostic and is similarly resilient to noise, whether the underlying 

function is linear or sigmoid, making it well suited to capture the range of behaviors 

observed in biology. Further, DREMI is a robust measure that remains consistent under 

multiple subsamples of the data (Supplementary Fig. 7).

Characterization of Signaling Relations by Curve-Fitting

In the case of a strong relationship (high DREMI score), we can derive a response function 

from the conditional density using curve fitting. Conditional density is particularly suited for 

the derivation of an edge response function because it allows for identification of the 

consensus Y-response (densest region in DREVI; the deep red in the heat maps) for each 

value of X. We compare curve-fitting of the conditional density to directly fitting the raw 

data to demonstrate the superiority of the former – both in terms of fit (RMSE root mean 

squared error) and in terms of the interpretability of the parameters (Supplementary Fig. 8). 

For a well-fit curve, we expect most of the data points to fall in close proximity to this 

curve, as measured by RMSE. A fit to the conditional mean results in a sigmoidal curve that 

closely follows the data points (indicated by low RMSE), whereas the raw data best fits a 

line – but most data points are distant from this line (indicated by high RMSE). An optimal 

sigmoidal fit on the raw data results in degenerate curves, where most data points reside at a 

significant distance.

Fitting a curve in this manner allows for a parametric description of the relationship between 

the two proteins X and Y. Such a functional description of the relationship between X and Y 

enables us to potentially predict the value of Y, if the value of X is altered by an intervention 

or drug. To derive the edge-response function, we fit points sampled from the conditional 

density to one of three models using regularized regression: linear, sigmoidal, or double 

sigmoidal (27). If none of the models result in a good fit, the model is then fit to a free-form 

curve.

In Figure 1, we fit DREVI plots of the pCD3ζ-pSLP76 edge before and after TCR activation 

to a sigmoid curve (Fig. 1D1-II). Among other characteristics, the parameters of the fitted 

sigmoid specify the lower and upper asymptote that correspond to a digital “low” an “high” 

mode of activation for the protein Y, and the inflection point (i.e., the activation threshold of 

X at which the protein Y transitions from low to high state). Comparing the edge before 

TCR activation to after, there is a similar inflection point activation threshold in the pCD3ζ 

axis but a considerably higher response on the SLP76 axis, and a corresponding increase in 

total activation of SLP76 (Fig. 1D). The post-activation state results in higher area-under-

the-curve (AUC), which is proportional to the average amount of pSLP76 generated per 

quantity of pCD3ζ. A larger AUC implies more signal transfer activity such that after 

stimulation less pCD3ζ is required to induce a response in pSLP76. Thus, when the TCR is 

activated, not only do pCD3ζ amounts increase, but this change is also more impactful (than 

a similar increase would have been before stimulation). This increase in edge strength 
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indicates that the pairwise relation between the two proteins is boosted by changes in the 

recruitment and localization of additional and potentially unknown proteins (the effects of 

which are successfully captured by DREVI and DREMI).

Not only do the DREMI and AUC scores increase after T cell stimulation, but they also 

enable distinguishing between different strengths and forms of stimulus (Fig. 3). Murine T 

cells were stimulated with either CD3/CD28 or CD3/CD28/CD4, and mass cytometry 

analysis was undertaken as per above. CD4-costimulus, in addition to CD3/CD28, is known 

to boost signaling responses in CD4+ T cells by engaging additional pathways that reinforce 

the signal transmission (28). When comparing these two forms of stimuli, we derive a higher 

DREMI score under the stronger stimulus in all three of the edges shown in Fig. 3. The 

CD3/CD28/CD4 stimulus clearly leads to a higher activation (magnitude) and/or a lower 

activation threshold in the edge-response functions. This translates to a higher AUC in both 

the sigmoidal (pCD3ζ-pSLP76, Fig. 3A, Panel IV) and linear (pERK-pS6, Fig. 3C, Panel 

IV) cases. Interestingly, the pSLP76-pERK edge (Fig. 3B) can be interpreted as a stochastic 

“digital” response – with a larger percentage of cells responding upon CD3/CD28/CD4 

stimulus (Fig. 3B, panel IV) (5). Together, DREMI, DREVI, and the edge-response function 

form a powerful toolbox for the analysis of signaling interactions.

Canonically Ordered Signaling Transfer in the TCR Pathway

We used DREMI to analyze the dynamics of the pCD3ζ-pSLP76-pERK-pS6 signaling 

cascade downstream of the TCR (Fig. 4). The edge strengths and shapes were highly 

dynamic within just a few minutes following TCR activation. The DREMI scores pinpoint 

the peak timing of signal transduction, meaning the timing when protein activation of Y is 

most sensitive to changes in the activity of protein X. Notably, the peak timings of all edges 

in this signaling cascade followed the expected canonical order (Fig. 4). For example, a 

pCD3ζ and pSLP76 relationship, or edge, was detectable in a small population of cells when 

pCD3ζ is at its highest value even before stimulation (Fig. 4, top left panel). However, after 

TCR activation, pCD3ζ reached maximum signal transfer within 30 seconds and decreased 

soon after. The pSLP76-pERK edge scored highest at 1 minute after activation, and the 

pERK-pS6 edge peaked at 2 minutes after TCR activation. Thus, the peak response follows 

the canonical ordering of the pathway in a manner analogous to the “just-in-time” 

transcriptional networks of metabolic pathways in Zaslaver et al. (29).

The observed dynamics highlight the importance of time series data and the impact of 

signaling dynamics on the relationships that can be derived from each individual time point. 

For instance, the pSLP76-pERK edge (Fig. 4A) is only active in the 1 to 2 minute time 

frame with a strong sigmoidal shape. The pSLP76-pERK edge is flat at other times. Such 

signaling dynamics are suggestive of the observed negative feedback loop resulting in de-

phosphorylation of ERK perhaps by PTPN22 or SHP-1 (30, 31), as the influence of pSLP76 

on pERK drastically decreased at 4 minutes, although pSLP76 remained activated at the 4 

minute time point (Fig. 4A, top row, panel 5). In summary, the DREMI scores quantify the 

intuitive visual interpretation of the DREVI plots (Fig. 4B).

This canonical pathway ordering of peak timing is demonstrated again under the CD3/CD28 

stimulation (Supplementary Fig. 9). However, we see that under the CD3/CD28/CD4 
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stimulation, signals are transferred downstream faster, and the signal transfer is sustained for 

longer periods. For example, the pCD3ζ-pSLP76 edge is only activated up until two minutes 

under CD3/CD28 stimulation, whereas it remains active until 4 minutes under a CD3/

CD28/CD4 stimulatory environment. Additionally, the pSLP76-pERK edge activates only 

after 2 minutes under the CD3/CD28 stimulation but is activated within one minute under 

CD3/CD28/CD4 stimulation. This is in accordance with upstream influences that change the 

nature and speed of the signaling behavior downstream as reflected in the edges more distal 

to the TCR. This increased activation is possibly due to additional signaling pathways that 

converge through other signaling network components downstream of the TCR.

DREMI quantified the strength of each known edge in a given network and the dynamics of 

how the molecular interactions underlying this edge changed over time. Together they 

enabled an elucidation of a classically understood pathway in a single experiment, while 

providing subtle insights into the timing of signaling relationships within the network.

Performance evaluation of DREMI

To compare the performance of DREMI to other approaches that quantify relations typically 

used for this data type, we utilized the canonical timing of signaling edges described in the 

previous section as a basis for comparison. We compared these metrics on 6 edges to 

evaluate the ability of each method to rank edge strengths at various time points after TCR 

stimulation. DREMI outperformed Pearson correlation and recently-developed dependency 

measures such as MIC (32) and adaptively partitioned MI (23) (Fig. 5I, Supplementary Fig. 

10). DREMI identified the peak timing of signal transfer in all six test cases. Adaptive 

partitioning missed the peak timing in four of the six cases, including two cases where 

adaptive partitioning picked the pre-stimulation time as the peak, and typically does not 

perform well when the joint density is concentrated in a narrow range. In such cases, 

adaptive partitioning places many partitions in the dense region (so that the partitions are 

often finer than the sensitivity of the experimental technology) and only a few in the sparse 

regions. MIC tends to pick peaks similarly to adaptive partitioning, identifying the correct 

peak in only one case. MIC has a further limitation in that there is very little range in the 

scores, possibly because it aims for equitability (33), which is a condition that does not hold 

in this data. Pearson correlation missed the peak timing in two cases and typically did not 

perform well for noisy and non-linear relationships. We also compared the performance of 

DREMI in an additional biological system using published mass-cytometry data focused on 

human B-cells following B-cell receptor stimulation, as described in (8). Similar to T cell 

signaling, DREMI was able to quantify and rank relationships better than metrics typically 

used for such data (Supplementary Fig. 11).

Finally, we compared DREMI with other approaches on synthetic data that was designed to 

exemplify features of realistic data (Fig. 5II). We compared two weak, low-noise linear 

relationships against two strong non-linear noisy relationships. Specifically, we included a 

sigmoidal relationship and a non-monotonic quadratic function typical of systems that 

simultaneously induce both protagonist and antagonistic pathways (34). The weak 

relationships were characterized by only slight changes in the distribution of Y as X 

increases (small slope) while the stronger non-linear relationships have more pronounced 
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change in the distribution of Y with changes in X. In both examples, the other methods 

scored the weaker linear relationship higher (Fig. 5II).

A key advantage of single-cell technologies such as mass cytometry and flow cytometry are 

the provision of millions of data-points in each experiment. Therefore, the scalability of the 

analysis is imperative to effectively analyze such data. DREMI is faster and more scalable 

than either MIC or adaptive partitioning (Supplementary Fig. 12). On a dataset with 500,000 

cells, DREMI analysis can be computed within less than 10 seconds. MI with adaptive 

partitioning takes over ninety minutes to perform the same computation and MIC is limited 

to datasets of less than 10,000 cells. Thus, DREMI is a versatile metric that can handle a 

variety of characteristics, including large sample size, non-linearity and different degrees of 

stochasticity.

Unlike the other metrics, DREMI is a directional metric, i.e., DREMI(X, Y) is not 

necessarily equal to DREMI(Y, X) (Supplementary Fig. 13). Here, we based our analysis on 

the known network diagram and scored DREMI in the causal direction of influence. 

Evaluating DREMI in the reverse direction shows a slight degradation of performance 

compared to DREMI in the correct direction (Supplementary Figs. 10, 11, 14). However, 

reverse DREMI outperforms the three symmetric measures used in our comparison and has 

the advantage that it can handle non-linearity and noise (Supplementary Fig. 14). The 

correct causal direction scores approximately equal or higher in 3 of the 4 edges explored at 

peak signaling times (Supplementary Fig. 13). The exception was pERK-pS6, where pS6 is 

known to have many additional factors influencing its activity, a recurring situation in cases 

in which DREMI in the reverse-causal direction scores higher. We show that increasing the 

number of parents decreases the DREMI in the causal direction more than in the reverse 

direction both in linear and non-linear functions (Supplementary Fig. 15).

Comparison of Signaling Interactions between T cell Subtypes

The high-dimensionality of mass cytometry enabled us to simultaneously treat and measure 

multiple T cell subsets, including both naïve and antigen-exposed CD4+ T cells. It is well 

documented that naïve T cells behave differently than cells that have previously seen and 

“remember” antigen. In naïve CD4+ T cells, the activation of the TCR and appropriate co-

receptors under the right cytokine environment leads to differentiation towards different 

effector cell fates (11). In response to the same TCR activation, antigen-experienced effector 

or memory T cells proliferate and respond to the infection (12-14). Moreover, the activation 

response time is known to be faster and of greater magnitude in effector T cells than in naïve 

T cells. However, the signaling mechanisms that create these differences are not yet clear. 

The data set collected here enabled direct comparison of signaling responses in T cells 

before and after exposure to antigen, because the cell subsets are in the same analysis tube 

and are resolved post-measurement by gating techniques (such as the differential expression 

of the surface marker CD44).

We used DREMI and DREVI to analyze differences along the signaling cascade that starts 

at pCD3ζ and continues down through pSLP76, pERK, and pS6. Naive and antigen-exposed 

T cells had three main differences in their responses to TCR cross-linking. First, we found 

that along each edge in this pathway, naïve cells had higher peak-DREMI, indicating that 
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signals were transferred more faithfully from the upstream molecule to the downstream 

molecule (Fig. 6 A-C). Second, we found that naïve cells had more sustained periods of 

high-DREMI (Fig. 6 B), which indicated that signal transduction events transpired longer. 

Third, despite the fact that there was a more faithful signal transfer in naïve T cells, the 

levels of most of the measured phospho-proteins along this cascade, except pCD3ζ, were 

observed to be higher (constitutively starting at time 0) in antigen-exposed cells (Fig. 6D).

The peak DREMI score (Fig. 6C) in either the naïve or the effector cascades occurs at 30 

seconds for the pCD3ζ -pSLP76 edge, at 1 minute for the pSLP76-pERK edge, and at 2 

minutes for the pERK-pS6 edge. All three of these were significantly higher in naïve cells 

than in effector-memory cells. Further, the pCD3ζ -pSLP76 relationship sustained signal 

transmission (high DREMI) for 2 minutes in naïve cells, compared to only 30 seconds in 

antigen-exposed cells. Similarly, the pSLP76-pERK edge had high DREMI between 1 and 3 

minutes in naïve cells, whereas DREMI was only high between 1-2 minutes for antigen-

exposed cells. Thus, at each stage in this cascade, Y transmitted more information about X, 

over a longer time period, in naïve cells than in antigen-exposed cells, suggesting tighter 

control in naïve cells. This difference between naïve and antigen-exposed cells was 

consistently observed across multiple replicates (Supplementary Fig. 16).

Although edge strength was higher in naïve cells, pSLP76 levels were higher in antigen-

exposed cells independent of pCD3ζ levels (Fig. 7A). The near-saturation of the pSLP76 

levels can also be seen in the high and flat slope of pCD3ζ-pSLP76 edge at 30 seconds (Fig. 

6C). Similarly, pERK amounts were more faithfully transmitted to pS6 in naïve cells, 

whereas pS6 amounts were basally higher – independent of pERK – in antigen-exposed cells 

(Fig. 7A). In the case of TCR activation with CD4 co-stimulation, the analysis suggests that 

the AKT pathway might explain the higher level of pS6 in antigen-exposed cells. The AKT-

pS6 edge had higher DREMI in antigen-exposed cells than in naïve cells (Figs. 7B, 7C, 

Supplementary Fig. 17) in early time points. Moreover, the AKT-pS6 relation was active 

before stimulation in antigen-exposed cells, providing a constitutive boost in signaling, 

perhaps through positive feedback between pS6 and pAKT (35).

Together, these differences suggest that antigen-exposed cells are poised towards a more 

easily triggered response (12-14, 36). Because the basal levels of the phospho-proteins are 

higher, a shorter period of signal integration (as indicated by less sustained periods of high-

DREMI) would be needed to elicit a cellular response. On the other hand, naïve cells, which 

are experiencing antigen for the first time, may need to mount a more cautious response, 

with the signaling cascade transmitting information carefully for longer periods of time to 

avoid spurious activation (12-14, 36).

ERK-knockout Validation

Because DREMI analysis determined that the influence of pERK on pS6 is stronger in naïve 

cells, this predicts that knockout of ERK2 should have a larger impact on pS6 levels in naive 

cells (Fig. 8A) and this difference should be detected at the time the DREMI of this edge 

increases, i.e., 2 minutes after stimulation. We used the edge-response function and the 

measured difference in pERK abundance to approximate the expected change in pS6 levels 

at 2 minutes following knockout with an expectation to observe a change that is 
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approximately 50-60% larger in naïve cells relative to effector/memory cells at 2 minutes 

(Figs. 8B, 8C). To validate these predictions we collected data from a mouse model (37), 

which enables tamoxifen-induced knockout of ERK2 within a normally differentiated T cell 

population. To allow for direct comparison, immune cells from both the B6 and ERK 

knockout mice were stimulated and measured in the same tube and subsequently identified 

through congenic markers CD45.1 and CD45.2.

To test the hypothesis that naïve T cells showed a stronger relationship between pERK and 

pS6, based on the relatively higher DREMI in naïve cells, we assessed the impact of the 

Erk2 depletion on pS6 levels in both naïve and antigen-exposed cells. Indeed, as predicted, 

changes in pS6 abundance are larger in naïve cells than in antigen-exposed cells. 

Approximately 50% greater response in naïve cells began at 2 minutes as predicted (Fig. 

8D). DREMI also predicts that the influence of pERK on pS6 is stronger in CD4+ T cells 

than CD8+ T cells (Supplementary Fig. 18), which was also confirmed experimentally 

(Supplementary Fig. 19), demonstrating that DREMI can correctly predict differences in 

signaling edge strengths between related T cell subsets.

DISCUSSION

DREVI and DREMI combined with single cell data provide solutions to a challenging 

problem that has obstructed the analysis of single cell biology: that of quantifying the 

strength of the underlying complex relationships between proteins from data. Other 

approaches such as correlation, mutual information, and MIC – which are typically used to 

quantify the strengths of interactions – are not always reliable in the face of technical noise, 

natural stochasticity, bi-modality, spurious correlations, and non-linearity inherent in single-

cell data. DREMI, on the other hand, consistently quantifies the relative strengths of 

relationships and how they change following stimulation through time and between different 

cell types.

We used DREVI and DREMI to functionally and quantitatively analyze edges within 

intracellular protein networks. DREVI and DREMI directly regard the single-cell population 

as instantiations of an underlying signal processing circuit, and infer the form and strength 

of each edge in the circuit. Many DREVI plots have a sigmoid (or partial sigmoid) response 

curve, suggestive of the signaling kinetics. With absolute quantification of cytometry data, it 

would be possible to derive biochemical rate constants for multiple enzymatic pairs and 

multiple subsets, in a single experiment. This would provide an enormous advantage over 

laborious experiments currently needed to compute such rate constants. Therefore, a 

versatile, data-driven approach such as that represented here enables the systematic and 

quantitative comparison of signaling relationships between different stimuli, time points, 

and cell types.

The analysis in this manuscript focused on mass cytometry data collected from murine T 

cells measuring 11 phospho-proteins and 9 surface markers. The analysis determined that 

the TCR signaling network is dynamic – with edges activating and deactivating quickly as 

the signals are transduced downstream. We used DREMI and DREVI to gain insights into 

how signaling is fine-tuned between related T cell populations. The differences we identified 
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in TCR signaling between naïve and antigen-exposed T cells suggest that naïve cells more 

sensitively transmit upstream signaling inputs along a central signaling cascade. This more 

fine-tuned signaling response might help regulate the cell’s decision to differentiate into 

either regulatory or helper T cells. By contrast, entrained effector or memory cells seem 

poised for fast responses upon secondary exposures. To explain this observation, we noted 

that several alternative pathways had higher activity in antigen-exposed cells, including 

AKT under CD4 co-stimulation, which likely bolsters phospho-protein levels and shortens 

input integration time in antigen-exposed cells.

Cumulatively, these techniques can allow the tracking of subtle reconfigurations in signaling 

that occurs between related cell subtypes. Note that these reconfigurations do not result in an 

essentially rewired network, but rather a network that is behaviorally reconfigured to 

produce changes in response. Although we have presented a specific application of our 

techniques, focused on TCR activation in T cell subsets, we believe that DREVI and 

DREMI are broadly applicable across biological systems and single cell technologies (38, 

39). Our ability to characterize signaling edges and their strengths is of particular value for 

disease studies, as it has been shown that many disease alleles affect the edge strengths of 

the signaling network (40). As single-cell data become more abundant, our methods will 

allow construction of more quantitative models of cellular signaling. Such models can then 

elucidate how these signaling circuits differ between cell types, as well as characterize 

essential and therapy-targetable differences between health and disease.

MATERIALS AND METHODS

Mice

Mice were maintained in specific pathogen-free facilities at Harvard Medical School 

(Institutional Animal Care and Use Committee 99–20, 02954). Age-matched, 4 to 6 week-

old male B6g7 mice were used for all experiments. For TCR signaling responses in 

peripheral T cells from TCR transgenic mice, BDC2.5 and BDC2.5/B6g7. Rag−/− mice were 

used. This mouse strain was previously described (41).

Cell Stimulation

For analysis of phosphorylation events by mass cytometry, total lymph node cell 

suspensions from B6g7 were used. Cells were stimulated in medium containing 2 or 6 μg/ml 

of biotinylated anti-CD3e and anti-CD28 stimulatory antibodies and incubated for 2 min at 

37 °C before addition of 8 or 24 μg/ml streptavidin. At various times after cross-linking, the 

stimulation was stopped by addition of paraformaldehyde (final concentration 2 %) and 

incubation at room temperature for 20 min. In some experiments biotinylated anti-CD4 

antibodies were also included in the stimulation mix. The cells are measured before 

stimulation and at various time points after stimulation: 30s, 1, 2, 3, 4, 6, 8, 10, 20, 80 mins.

Erk Knockout Experiment

To study the role of ERK in peripheral, T cells we used an inducible model that was 

developed in (37) with the Erk2 floxed-gene and ER-CRE, which is a tamoxifen-inducible 

CRE-recombinase. Adult mice are injected with tamoxifen, every day (Sigma) for six 
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consecutive days, to induce the deletion of the floxed gene and create ERk2-deficient cells. 

The mice were analyzed 2 days later. There are normal numbers of peripheral T cells in 

these mice, as they are analyzed only 2 days after the tamoxifen-induced deletion. 

Therefore, these peripheral cells are a result of normal differentiation and transportation 

from the thymus weeks before the tamoxifen treatment injections (37), but have ERK2 

knocked-down for the TCR activation experiment.

Normal B6 and Erk knockout cells express different congenic CD45 surface antigens (Erk-

knockout mice express CD45.1, normal B6 express CD45.2), allowing for the stimulation of 

both cell types in the same tube. B6 and Erk knockout cells are therefore mixed prior to 

stimulation and identified post-analysis with antibodies against CD45.1 and CD45.2. This 

strategy has the considerable advantage of eliminating any contribution of experimental 

variations during the stimulation, staining, and CyTOF processing of the samples (for each 

time point analyzed).

Measurement of Phospho-signaling Events by Mass Cytometry

In our experiments we used mass cytometry to measure surface and internal proteins. 

Primary conjugates of the mass cytometry antibodies (see complete list in Supplementary 

Table 1) were prepared and titrated as described (8) PFA fixed and frozen lymphocyte 

suspensions were thawed at room temperature and then transferred to ice.

Single samples of 1 million cells were stained in a 50 ul final volume. All samples from a 

given time series of a stimulation-condition were run in a single barcoded tube. Each 

barcoded tube contained 20 individual samples and was stained in 300ul. Cells were stained 

with a cocktail of metal isotope conjugated antibodies (Supplementary Table 1) using a 2-

step procedure (surface stains included: CD4, CD8, TCRb, CD5, CD19, CD25, CD44, 

CD45.1, CD45.2; intracellular stains included: pCD3ζ, pSLP76, pERK1/2, pS6, pCREB, 

pMAPKAPKII, IkBa, pNFkB, pRB, pFAK, pAKT). The signaling network consisting of all 

markers is shown in Supplementary Fig. 1. Cell fixation, permeation, and staining were 

performed as previously described (8). To make all samples maximally comparable, all data 

was acquired using internal metal isotope bead standards as previously described in (42). 

Approximately 100,000 events were acquired per sample on a CyTOF I (DVS Sciences) 

using instrument settings previously described in (42).

Barcoding of samples

To reduce sample-to-sample variability cells corresponding to each stimulation condition 

and time point were barcoded using all 6 stable palladium isotopes with a method similar to 

that described by (43). In the barcoding scheme each isotope is used in binary fashion, high 

for “1” and low for “0”. Hence the barcode itself is a binary string that is can be decoded for 

each cell to determine the treatment condition for that cell. For this purpose we developed an 

error-correcting 3-one barcoding scheme that both facilitates ease of debarcoding, and 

eliminates the majority of doublets. All legal barcodes in our scheme have exactly 3 ones 

and 3 zeroes, resulting in 20 possible barcodes. This barcoding scheme also enables the 

detection of most cell doublets because in a well-mixed tube it is unlikely to have a doublet 

created by two cells from the same condition. Doublets with cells from two different 
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conditions would have an illegal combined barcode (with more than 3 “1”s) that is 

represented by the logical OR of the individual barcodes. Therefore this scheme eliminates 

almost all doublet events. Further, each pair of barcodes has a distance of at least 2 and 

therefore this scheme is also robust to errors during the debarcoding.

Post-processing of Mass Cytometry Data

Individual time series were normalized to the internal bead standards prior to analysis using 

the method described in (42). In addition, as described in (8) for all analysis of the mass 

cytometry data, abundance values reported by the mass cytometer were transformed using a 

scaled arcsinh, with scaling factor 5 to minimize the noise in measurements where the data 

is close to zero (the limit of detection on the mass cytometry scale). Events recorded by the 

mass cytometer were gated based on cell length and DNA content (to avoid debris and 

doublets) as described in (8).

Gating of cell subsets

Cells were then filtered through a series of gates as depicted in Supplementary Fig. 2 for the 

purpose of isolating particular subpopulations of T cells such as CD4+ naïve T cells, CD8+ 

naïve T cells and CD4+ effector/memory T cells. These gates include: 1) a gate that 

separates T cells (TCRb+ CD19-) from Bcells (TCRb- CD19+), 2) a gate that further 

separates CD4+ T cells (CD4+) from CD8+ T cells (CD8+), 3) a gate that further separates 

CD4+ T cells into Tconv (CD25-) and Treg (CD25+) populations, and 4) a gate that further 

separates CD4+ Tconv T cells and CD8+ T cells into naïve (CD44-) and antigen-exposed 

effector/memory populations (CD44+). Note that since there is no known CD8+ equivalent 

of the CD4+CD25+ Treg population, CD8+ cells are not passed through gate 3. The final 

populations that we isolate and use in our comparisons include: 1) Naïve CD4+ T cells 

(CD44- CD25- CD4+ CD8- TCRb+ CD19-), 2) Naïve CD8+ T cells (CD44- CD25- CD8+ 

CD4-TCRb+CD19-) and 3) Effector/memory CD4+ T cells (CD44+ CD25- CD4+ CD8- 

TCRb+ CD19-). Supplementary Table 2 shows the nodes, cell types, stimulation and time 

points used in each figure.

Description of computational methods

In the following sections we provide a detailed explanation of how DREVI, DREMI, and the 

edge-response functions are computed,

Kernel Density and Conditional Density Estimation

A kernel density estimate f̂ (x) is a non-parametric approximation of the probability density 

function p(x). The standard method for computation of a kernel density estimate is to 

introduce a narrow Gaussian (or alternative) kernel at each point in the raw data, and 

calculate the integral of the individual kernel values over a large set of points (21, 44). If (x1, 

x2, x3, … xn) are independent, identically distributed random samples from an unknown 

probability density function f, then the kernel density estimator is:

(Eq. 1)
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Where K is the kernel function. The commonly used Gaussian kernel is given by:

(Eq. 2)

Kh refers to the kernel density function scaled by 1/h (where h denotes the bandwidth). 

Intuitively, one can think of kernel density estimation as placing a small smooth kernel Kh at 

each sampled point, and integrating over all such kernels to determine a smooth probability 

density function. The kernel density estimate in two dimensions is given by:

(Eq. 3)

This standard method of kernel density estimation suffers from several deficiencies 

including 1) sensitivity to selected bandwidth and the assumption of normalcy in many 

bandwidth estimation methods, 2) boundary bias, 3) over or under-smoothing.

Instead we use the heat-diffusion method from (10) for two dimensional kernel density 

estimation. This method views the kernel density estimate as a solution to the heat-equation, 

which it evolves for a time-period proportional to the bandwidth. This interpretation of a 

kernel density estimate derives from the notion of a Weiner process. A Weiner process W is 

a stochastic Markov process (i.e., the next state can be directly computed by the previous 

state) with

1. Initial probability uniformly spread through the d-dimensional data points (x1, x2, 

x3, … xn).

2. The transition probability of going from point xi to xj is given by the Gaussian 

kernel:

The Gaussian kernel KDE can be interpreted as the probability distribution function for this 

process at time t is the same as Eq. 2 with bandwidth h:

But since this is an iterative process, the transition satisfies the following differential 

equation, which is also known as the heat equation.
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The initial condition is given by  where δ is the dirac delta function 

(which gives point-masses to all datapoints). The advantage of writing this in PDF form is 

that if the PDF is known to be 0 outside the range, then boundary conditions enforcing this 

can be added which results in a theta kernel rather than a Gaussian kernel:

(Eq. 4)

The theta kernel is locally adaptive and has the property that it behaves like a Gaussian 

kernel for small bandwidths and like a uniform kernel for large bandwidths. The evolution 

of the heat equation decides the shape of the kernel rather than having a fixed Gaussian 

estimate. This often results in a smoother density function (Supplementary Fig 3). 

Additionally: 1) it can be solved quickly using fast Fourier transform methods, 2) it can be 

extended to a more general diffusion equation easily, and finally 3) the bandwidth t can be 

solved as a fixed point solution to a recursion without a normal assumption on the 

distribution. The superior performance and speed of computation of the heat-equation based 

KDE is shown in Supplementary Fig. 3.

To obtain the standard conditional density estimate, the joint density estimate f̂ (x, y) is 

divided by the marginal density estimate f ̂ (x) as follows (45):

(Eq. 5)

We utilize the conditional density estimate as a starting point for DREVI and DREMI as 

explained in the following sections.

Conditional Density-Rescaled Visualization

DREVI is aimed at visualizing the stochastic function representing how X influences Y, by 

depicting the distribution of Y for each value of X. To visualize 2-dimensional relationships 

in single-cell data, we begin by computing a 2-dimensional kernel density estimate as 

described in Eq. 4 (10) on a square mesh grid. The mesh grid of points is denoted G = {(xi, 

yj), 1<i<n, 1<j<m} and the 2-D kernel density estimate is a matrix D = f̂ (G), where D(i, j) 

corresponds to f ̂ (xi, yj). The mesh grid of points G is selected so that the X-Y ranges are 

restricted to regions that are well-populated by cells. Most markers (e.g. phospho-proteins) 

are distributed among the measured cells as heavy-tailed multimodal distributions 

(Supplementary Fig. 7C). For any pair of markers X and Y, we remove 1% of both tails of 

these distributions as outliers, removing ~200 cells from a population of ~10000 cells (per 

condition and time point). The remaining range is generally well populated by cells and is 

amenable for a robust density estimate, which results in robust visualization and scoring as 

shown in Supplementary Fig. 7.
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After the 2-dimensional kernel density estimate is computed, each column of D 

(corresponding to a fixed X-value, X = xi) is renormalized by the marginal density estimate 

of X = xi as shown in Eq. 5, f̂ (x) for that column to obtain the conditional density matrix

(Eq. 6)

This is an estimate of P(Y∣X) on the same mesh grid. This matrix is rescaled for the 

purposes of visualization as follows:

(Eq. 7)

We denote the matrix of rescaled kernel density estimates as

(Eq. 8)

The matrix of Eq. 8 is visualized as a heatmap using the “jet” colorscale, where densest 

regions, corresponding to the highest rescaled conditional density are maroon/red and the 

sparsest regions are blue. This way, the X-Y relationship is revealed even in regions 

populated by fewer cells, because each X-slice is renormalized individually. The 

computation of DREVI is demonstrated Fig. 1.

Conditional Density-Resampled Mutual Information (DREMI)

We developed a method for scoring relationships termed conditional-Density Resampled 

Estimate of Mutual information (DREMI). Like mutual information this will depend on how 

well the value of X can predict the value of Y. However unlike mutual information, we are 

not interested in how the entropy of Y decreases with X in a given sample on average. 

Instead, we are interested in looking at the underlying stochastic function F(X) = Y, with the 

aim of learning the strength of this relationship over the entire dynamic range of X, 

independently of a specific sample.

The key mathematical insight in DREMI is that we provide a score for the conditional 

distribution of P(Y∣X) rather than joint distribution P(X, Y). DREMI resamples from the 

conditional density estimate as described above, taking care to generate an uniform number 

of samples from each column of the matrix ∆*, so that the relationship between X-and-Y is 

scored through the full dynamic range of X that is well-sampled by the data.

DREMI begins with the rescaled conditional density matrix ∆* described in Eq. 8. To filter 

out noise, we round values of ∆* (xi, yj) < ε to zero and eliminate the corresponding points 

from the grid G. We generate n new points  from the density 

distribution in each column i of ∆*, denoted . We generate a total of n × m samples S = 

{S1, S2, … Sm}. Since points in each column of  have a similar value X=xi, we are 

generating an equal number of samples from the entire range of X (up to the fine-mesh grid 

level of granularity).

Krishnaswamy et al. Page 18

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Finally, we define a discrete partition of the X-and Y-axes and compute mutual information 

I(X:Y) as in Eq. 10 using the samples in S. We generally use 8 equi-partitions of the X and 

Y-axes to compute the mutual information on these samples, but our software can use any 

number of equi-partitions based on a user-defined parameter. Our partitions are formed by 

pooling all data from conditions being compared for a particular variable, taking the 

maximal range of the X and Y and partitioning that space into 8 equal units along each axis. 

We normalize DREMI by the log base 2 of the number of partitions to provide a score that 

lies between 0 and 1.

To derive the mathematical expression for DREMI, we start with standard mutual 

information, computed as the differential entropy between Y and Y∣X:

(Eq. 9)

Alternatively mutual information can be regarded as a measure of the distance between the 

joint distribution P(X, Y) and the marginal distributions P(X) and P(Y). An equivalent 

formula for computing mutual information is given by(26):

(Eq. 10)

The first three steps of the DREMI algorithm involve estimating the conditional density by 

normalizing the joint kernel density estimate and filtering out noise. These steps result in a 

smoothed and de-noised conditional density estimate that will fill gaps in the raw data. The 

final step involves estimating mutual information from this computed conditional density. In 

Supplementary Fig. 20, we show intuitively how sampling from the conditional density 

estimate is equivalent to taking weighted samples from the joint distribution. Each point (xi, 

yj) from the joint distribution has sample weight proportional to .

Given this, DREMI can be written in terms of the differential entropy formulation of mutual 

information (Equation 8) as follows:

(Eq. 11)

Where Hc (Y) and Hc (Y∣X) are reweighted entropies where each point (xi, yj) in the joint 

distribution is weighted by  given as follows:

(Eq. 12)
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(Eq. 13)

Substituting Eq. 13 and Eq. 12 into Eq. 11 gives:

(Equation 14)

Note that the final form in Eq. 14 is equivalent to Eq. 10, with each point reweighted by 

. Hence, Ic maintains many properties of mutual information including the fact that Ic 

(Y∣X) = 0 if p(x, y) = p(x)p(y).

Robustness Analysis

We demonstrate that DREVI and DREMI are robust methods. Supplementary Fig. 7 shows 

that the downsampling of the data by 20% results in virtually identical DREVI plots and 

very similar DREMI scores (standard deviation of .02 or less) for several edges. The reason 

underlying this robustness is our use of density estimation with a locally adaptive smoothing 

that results from the evolution of a differential equation whose solution is equivalent to the 

kernel density estimate (10). The density estimation method interpolates and fills gaps 

within the data by integrating using a smooth kernel.

Fitting Edge-response functions

For strong relationships, P(Y∣X) is highly peaked for any value of X. Moreover, the peak of 

P(Y∣X) for adjacent X-slices tend to follow along a smooth and continuous curve, the edge-

response function, which we fit to the data. We derive the edge-response function by fitting 

points sampled from the noise-filtered conditional density ∆* to one of three models using 

regularized regression: linear, sigmoidal, or double sigmoidal (27). If none of the models 

obtain significant fits (based on p-values), we fit to a free-form curve (See Fig. 1C, 3, 5C for 

examples).

We define the edge-response function as the function f(X) that best fits the data. We derive 

the edge-response function by performing non-linear, mixed-model regression (46) of the 

high valued regions of the conditional-density estimate. The models we use are:

1. linear: f1(x) = ax + b

2. sigmoidal: f (x) = (L − U)/1 + (xn/Kd)) + U
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3. double-sigmoidal:

4. free-form curve

We minimize over both the models and parameters in 1)-3). If no model results in 

sufficiently high significance of fit, we use LOESS regression (47) to fit to a non-parametric 

curve.

Performance of DREMI on Synthetic Data

We used synthetic data to evaluate how DREMI behaves under increasingly noisy 

conditions (Supplementary Fig. 6). We generated the synthetic data based on characteristics 

of real pairwise relations observed in single-cell cytometry data:

1. X is concentrated in a narrow band within the entire X-range.

2. The high density region of the conditional distribution reveals a consensus of 

response which is smooth and can be fit to a curve.

3. The noise in Y is variable.

To fulfill these conditions we generated data as follows:

For condition 1) The X is a random variable that follows the distribution normal 

distribution with standard deviation 0.25, i.e., N(2, .25).

For condition 2) The mean Y is functionally related to X, i.e., E(Y∣X=x) = f(x). We use 

linear, sigmoidal and quadratic functional relationships in the synthetic data.

For condition 3) Y has varying degrees of Gaussian noise added on top of its mean 

value, i.e. Y = f(X) + N(0, s), for parameter s.

Each synthetic dataset contained around 20,000 points. We generated synthetic data 

following the above conditions for 5 different values of noise: s = {0.25, 0.5, 0.75, 1, 1.25}. 

Supplementary Fig. 6 shows the results of computing DREMI on this synthetic data. Results 

show that DREMI scores decrease roughly linearly with the standard deviation of the 

Gaussian noise, regardless of the underlying functional shape of the relationship.

In additional to the analysis described in the main text we also evaluate how varying the 

noise-filtering threshold influences the results. Supplementary Fig. 6 also shows how the 

noise-filtering threshold ε can be used to eliminate experimental noise. Supplementary Fig. 

6B depicts a horizontal line that equalizes the scores of all of the noise levels. Thus the value 

of ε can be tuned to compensate for experimental or measurement noise.

There are certain settings that provide naturally noisier signals than others. For instance 

certain antibodies can have weak binding affinities with their target proteins, others can non-

specifically bind to a variety of proteins. In such cases a higher level of the outlier-

elimination threshold may be useful. In other situations such as the pSLP76-pERK edge, the 

response of the protein itself is stochastic and therefore the stochasticity itself has meaning. 

In such cases the outlier-elimination threshold can be set higher to capture the natural 
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stochasticity in the data. Other global contexts, such as measurements on primary cells as 

opposed to cell-lines, lead to higher noise and weaker response. In these cases it may be 

useful to set the noise-filtering threshold to a particular global value. We use a globally fixed 

noise-filtering threshold of 0.85 for all figures and DREMI values computed for this 

manuscript, as the data all come from B6 murine T cells. As shown in Supplementary Fig. 6, 

within any set noise-filtering threshold, the DREMI score decreases linearly with the 

standard deviation of noise, and as such is able to relatively rank DREMI scores for 

comparison purposes.

Comparing DREMI to other methods

We compared the performance of DREMI against other commonly used dependency 

measures: 1) MIC (32), 2) adaptively partitioned MI (48) and, 3) Pearson correlation (see 

Fig. 5). Since no gold-standard exists to compare strength of signal transfer along an edge, 

we created a framework to conduct the comparisons based on the dynamics of signaling. We 

used DREVI to visually determine the peak timing of the dynamic signaling response and in 

cases where peak timing is known our visual inspection matched published literature(2). We 

then assess whether each of the four metrics can recover the peak timing and also order the 

time points correctly according to strength of signal transfer. We systematically computed 

all of the metrics along the time-series in each of the six edges (Fig 5I and Supplementary 

Fig 10). DREMI outperformed all other metrics.

To show that DREMI is able to quantify and rank relationships in settings other than TCR-

stimulated mice cells, we also compared DREMI on three known signaling edges on 

previously published B cell data (8) from the bone marrow of healthy human donors 

following BCR (B cell Receptor) stimulation (Supplementary Fig. 11). This data only has a 

single time point post BCR stimulation, therefore instead of ranking edge strength along 

time points, we rank edge strength across increasingly mature B cell populations. The five 

populations, in order of maturity, are 1) Pre-BI, 2) Pre-BII, 3) Immature B cells, 4) Mature 

CD38+ B cells and 5) Mature CD38- B cells. The cells are gated into these populations 

based on phenotypic B cell markers such as CD20, CD38, CD45RA, CD19 and CD123 as 

described in (8). We used prior biological knowledge to determine the cell population 

expected to have strongest signaling, determined before computing the metrics. DREMI 

outperformed all other metrics on this data.

An important goal of MIC is “equitability”. Intuitively, this means that different types of 

edge shapes are given similar scores if they are similarly “fuzzy”(33). Evaluating MICs 

performance, this does not seem to be a suitable assumption for molecular relations. 

Adaptive partitioning puts more weight into the densest part of the distribution. While this 

might make sense, in essence, it makes a large number of microscopic partitions over the 

small range where most of the density lays. Thus the partitions often represent random 

measurement noise rather than biological signal. Pearson correlation prefers linear 

dependencies to other types of dependencies, whereas non-linear dependencies are 

frequently present in signaling relationships.
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In Fig. 5II we compare DREMI on synthetic data, where the generating function is known. 

Here we generate a weak linear relationship with low slope compared to the range of the 

data: Y = aX+ N(0, 0.1), to compare against strong non-linear relationships

1. A quadratic relationship with a high degree of noise: Y = -AX2 + N(0, 0.75).

2. A sigmoidal relationship X-Y with both Gaussian noise and uniform noise in the 

range [0, Y], for any value of Y: Y = sigmoid(X) + N(0,.75) + U(0, sigmoid(X)), 

where U is a uniform random function.

In both cases, the noisy-yet-strong relationships scored lower than the weak linear 

relationship with low noise for all metrics other than DREMI.

Evaluating Edge-Response Functions on Raw verses Resampled Conditional Data

In Supplementary Fig. 8 we show that the data resampled from the conditional density is 

more suitable for curve fitting than the raw data. In the first two columns, we use linear, 

sigmoidal or double sigmoidal least-squares regression on the raw mass cytometry data. In 

the third column, we resample from the dense regions of the conditional density and perform 

the same types of regression on this resampled data. Finally, in the fourth column we 

perform regression on the conditional mean (computed from the conditional density).

In each case, the best fit on the raw data has higher RMSE (root-mean-squared-error) than 

the best-fit data that is resampled from the conditional density (measured on the raw data). 

In addition, the linear fit always results in a better fit on the raw data, while the conditional 

data results in a variety of shapes linear, sigmoidal and double sigmoidal. The raw data tends 

to be concentrated in a small region of the X-Y plane, resulting in a weak penalty for 

deviations in most regions of the X-Y plane, and a heavy penalty for deviation only in the 

region of data-concentration. Therefore, a line that passes through the concentrated region of 

the raw data generally results in the best fit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank B. Bodenmiller, N. Friedman, N. HaCohen, I. Pe’er, A. Regev, and S. Reiner for valuable comments. We 

respectfully appreciate the provision of murine samples and key mechanistic discussions with C. Benoist and S. 

Hedrick. This research was supported by the National Science Foundation CAREER award through grant number 

MCB-1149728 and National Centers for Biomedical Computing Grant 1U54CA121852-01A1 and the NIH S10 

Shared instrumentation grant NIH S10 SIG S10RR027582-01. D.P. holds a Packard Fellowship for Science and 

Engineering. S.C.B. is supported by the Damon Runyon Cancer Research Foundation Fellowship (DRG-2017-09). 

E. S. is supported by NIH K01 award 1K01DK095008. G.P.N. is supported by the Rachford and Carlota A. Harris 

Endowed Professorship and grants from U19 AI057229, P01 CA034233, HHSN272200700038C, 1R01CA130826, 

CIRM DR1-01477 and RB2-01592, NCI RFA CA 09-011, NHLBIHV-10-05(2), European Commission HEALTH.

2010.1.2-1, and the Bill and Melinda Gates Foundation (GF12141-137101).

References

1. Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate 

of naive and effector T cells. Immunity. 1998; 8:89–95. published online EpubJan. [PubMed: 

9462514] 

Krishnaswamy et al. Page 23

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



2. Lanzavecchia A, Lezzi G, Viola A. From TCR engagement to T cell activation: a kinetic view of T 

cell behavior. Cell. 1999; 96:1–4. published online EpubJan 8. [PubMed: 9989490] 

3. Miskov-Zivanov N, Turner MS, Kane LP, Morel PA, Faeder JR. The duration of T cell stimulation 

is a critical determinant of cell fate and plasticity. Sci Signal. 2013; 6:ra97.10.1126/scisignal.

2004217 [PubMed: 24194584] 

4. Turner MS, Kane LP, Morel PA. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell 

induction and expansion. J Immunol. 2009; 183:4895–4903. published online EpubOct 15. 10.4049/

jimmunol.0901459 [PubMed: 19801514] 

5. Altan-Bonnet G, Germain RN. Modeling T cell antigen discrimination based on feedback control of 

digital ERK responses. PLoS Biol. 2005; 3:e356. published online EpubNov. 10.1371/journal.pbio.

0030356 [PubMed: 16231973] 

6. Antebi YE, Reich-Zeliger S, Hart Y, Mayo A, Eizenberg I, Rimer J, Putheti P, Pe’er D, Friedman N. 

Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. 

PLoS Biol. 2013; 11:e1001616. published online EpubJul. 10.1371/journal.pbio.1001616 [PubMed: 

23935451] 

7. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick 

JE, Tanner SD. Mass cytometry: technique for real time single cell multitarget immunoassay based 

on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009; 81:6813–6822. 

published online EpubAug 15. 10.1021/ac901049w [PubMed: 19601617] 

8. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, Bruggner RV, Melamed R, 

Trejo A, Ornatsky OI, Balderas RS, Plevritis SK, Sachs K, Pe’er D, Tanner SD, Nolan GP. Single-

cell mass cytometry of differential immune and drug responses across a human hematopoietic 

continuum. Science. 2011; 332:687–696. published online EpubMay 6. 10.1126/science.1198704 

[PubMed: 21551058] 

9. DeGroot, MH.; Schervish, MJ. Probability and statistics. 4. Addison-Wesley; Boston: 2012. p. xiv, 

893

10. Botev ZI, Grotowski JF, Kroese DP. Kernel Density Estimation Via Diffusion. Annals of Statistics. 

2010; 38:2916–2957. published online EpubOct. 10.1214/10-Aos799

11. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev 

Immunol. 2010; 28:445–489.10.1146/annurev-immunol-030409-101212 [PubMed: 20192806] 

12. Berard M, Tough DF. Qualitative differences between naive and memory T cells. Immunology. 

2002; 106:127–138. published online EpubJun. [PubMed: 12047742] 

13. Chandok MR, Farber DL. Signaling control of memory T cell generation and function. Semin 

Immunol. 2004; 16:285–293. published online EpubOct. 10.1016/j.smim.2004.08.009 [PubMed: 

15528073] 

14. MacLeod MK, Kappler JW, Marrack P. Memory CD4 T cells: generation, reactivation and re-

assignment. Immunology. 2010; 130:10–15. published online EpubMay. 10.1111/j.

1365-2567.2010.03260.x [PubMed: 20331469] 

15. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks 

derived from multiparameter single-cell data. Science. 2005; 308:523–529. published online 

EpubApr 22. 10.1126/Science.1105809 [PubMed: 15845847] 

16. Mingueneau M, Krishnaswamy S, Spitzer MH, Bendall SC, Stone EL, Hedrick SM, Pe’er D, 

Mathis D, Nolan GP, Benoist C. Single-cell Mass Cytometry of TCR signaling: Amplification of 

small initial differences results in low ERK activation in NOD mice. Proceedings of the National 

Academy of Sciences. 2014

17. Baaten BJ, Li CR, Bradley LM. Multifaceted regulation of T cells by CD44. Commun Integr Biol. 

2010; 3:508–512. published online EpubNov. 10.4161/cib.3.6.13495 [PubMed: 21331226] 

18. Baaten BJ, Li CR, Deiro MF, Lin MM, Linton PJ, Bradley LM. CD44 regulates survival and 

memory development in Th1 cells. Immunity. 2010; 32:104–115. published online EpubJan 29. 

10.1016/j.immuni.2009.10.011 [PubMed: 20079666] 

19. Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009; 27:591–

619.10.1146/annurev.immunol.021908.132706 [PubMed: 19132916] 

Krishnaswamy et al. Page 24

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



20. Brownlie RJ, Zamoyska R. T cell receptor signalling networks: branched, diversified and bounded. 

Nat Rev Immunol. 2013; 13:257–269. published online EpubApr. 10.1038/Nri3403 [PubMed: 

23524462] 

21. Rosenblatt M. Remarks on Some Nonparametric Estimates of a Density-Function. Annals of 

Mathematical Statistics. 1956; 27:832–837.10.1214/Aoms/1177728190

22. Hall P, Racine J, Li Q. Cross-validation and the estimation of conditional probability densities. 

Journal of the American Statistical Association. 2004; 99:1015–1026. published online EpubDec. 

10.1098/01621450400000548

23. Darbellay GA, Vajda I. Estimation of the information by an adaptive partitioning of the 

observation space. Ieee Transactions on Information Theory. 1999; 45:1315–1321. published 

online EpubMay. 10.1109/18.761290

24. Margolin AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A. Reverse engineering 

cellular networks. Nature Protocols. 2006; 1:663–672.10.1038/Nprot.2006.106

25. Jang IS, Margolin A, Califano A. hARACNe: improving the accuracy of regulatory model reverse 

engineering via higher-order data processing inequality tests. Interface Focus. 2013; 3 published 

online EpubAug 6. 10.1098/Rsfs.2013.0011

26. Cover, TM.; Thomas, JA. Elements of information theory. 2. Hoboken, NJ., editor. Wiley-

Interscience; 2006. p. xxiii-748.

27. Hastie, T.; Tibshirani, R.; Friedman, JH. Springer series in statistics. Springer; New York: 2001. 

The elements of statistical learning : data mining, inference, and prediction : with 200 full-color 

illustrations; p. xvip. 533

28. Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK. CD4 and CD8 binding to MHC 

molecules primarily acts to enhance Lck delivery. Proceedings of the National Academy of 

Sciences of the United States of America. 2010; 107:16916–16921. published online EpubSep 28. 

10.1073/Pnas.1010568107 [PubMed: 20837541] 

29. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U. Just-

in-time transcription program in metabolic pathways. Nature Genetics. 2004; 36:486–491. 

published online EpubMay. 10.1038/Ng1348 [PubMed: 15107854] 

30. Caunt CJ, Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of 

MAP kinase signalling. FEBS J. 2013; 280:489–504. published online EpubJan. 10.1111/j.

1742-4658.2012.08716.x [PubMed: 22812510] 

31. Li G, Yu M, Lee WW, Tsang M, Krishnan E, Weyand CM, Goronzy JJ. Decline in miR-181a 

expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 

2012; 18:1518–1524. published online EpubOct. 10.1038/nm.2963 [PubMed: 23023500] 

32. Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, 

Mitzenmacher M, Sabeti PC. Detecting novel associations in large data sets. Science. 2011; 

334:1518–1524. published online EpubDec 16. 10.1126/science.1205438 [PubMed: 22174245] 

33. Kinney JB, Atwal GS. Equitability, mutual information and the maximal information coefficient. 

Proceedings of the National Academy of Sciences. 2014 published online EpubFebruary 18. 

34. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB. Systems model of 

signaling identifies a molecular basis set for cytokine-induced apoptosis. Science. 2005; 

310:1646–1653. published online EpubDec 9. 10.1126/Science.1116598 [PubMed: 16339439] 

35. Okkenhaug K. Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev 

Immunol. 2013; 31:675–704.10.1146/annurev-immunol-032712-095946 [PubMed: 23330955] 

36. Adachi K, Davis MM. T-cell receptor ligation induces distinct signaling pathways in naive vs. 

antigen-experienced T cells. Proc Natl Acad Sci U S A. 2011; 108:1549–1554. published online 

EpubJan 25. 10.1073/pnas.1017340108 [PubMed: 21205892] 

37. Chang CF, D’Souza WN, Ch’en IL, Pages G, Pouyssegur J, Hedrick SM. Polar opposites: Erk 

direction of CD4 T cell subsets. J Immunol. 2012; 189:721–731. published online EpubJul 15. 

10.4049/jimmunol.1103015 [PubMed: 22675204] 

38. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schuffler PJ, Grolimund 

D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Gunther D, Bodenmillerthat B. Highly multiplexed 

imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014; 

11:417. published online EpubApr. 10.1038/Nmeth.2869 [PubMed: 24584193] 

Krishnaswamy et al. Page 25

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



39. Angelo M, Bendall SC, Finck R, Hale M, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu 

SD, Zhao S, Natkunam Y, Nolan GP. Quantitative Imaging of Ten Markers in Human Breast 

Tumors Using Multiplexed Ion Beam Imaging (MIBI) and Metal-Tagged Antibodies. Lab Invest. 

2014; 94:518A–518A. published online EpubFeb. 

40. Zhong Q, Simonis N, Li QR, Charloteaux B, Heuze F, Klitgord N, Tam S, Yu H, Venkatesan K, 

Mou D, Swearingen V, Yildirim MA, Yan H, Dricot A, Szeto D, Lin C, Hao T, Fan C, Milstein S, 

Dupuy D, Brasseur R, Hill DE, Cusick ME, Vidal M. Edgetic perturbation models of human 

inherited disorders. Mol Syst Biol. 2009; 5:321.10.1038/msb.2009.80 [PubMed: 19888216] 

41. Mingueneau M, Jiang W, Feuerer M, Mathis D, Benoist C. Thymic negative selection is functional 

in NOD mice. J Exp Med. 2012; 209:623–637. published online EpubMar 12. 10.1084/jem.

20112593 [PubMed: 22329992] 

42. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, Pe’er D, Nolan GP, Bendall 

SC. Normalization of mass cytometry data with bead standards. Cytometry A. 2013; 83:483–494. 

published online EpubMay. 10.1002/cyto.a.22271 [PubMed: 23512433] 

43. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, Simonds EF, Bendall SC, 

Sachs K, Krutzik PO, Nolan GP. Multiplexed mass cytometry profiling of cellular states perturbed 

by small-molecule regulators. Nat Biotechnol. 2012; 30:858–867. published online EpubSep. 

10.1038/nbt.2317 [PubMed: 22902532] 

44. Parzen E. Estimation of a Probability Density-Function and Mode. Annals of Mathematical 

Statistics. 1962; 33:1065.10.1214/Aoms/1177704472

45. Rosenblatt, M. Multivariate Analysis II. PR, K., editor. Academic Press; New York: 1969. p. 

25-31.

46. Koller, D.; Friedman, N. Probabilistic graphical models : principles and techniques. MIT Press; 

Cambridge, MA: 2009. Adaptive computation and machine learning; p. xxi-1231.

47. Cleveland WS, Devlin SJ. Locally Weighted Regression - an Approach to Regression-Analysis by 

Local Fitting. Journal of the American Statistical Association. 1988; 83:596–610. published online 

EpubSep. 10.2307/2289282

48. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating 

dependencies between variables. Bioinformatics. 2002; 18(Suppl 2):S231–240. [PubMed: 

12386007] 

Krishnaswamy et al. Page 26

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



BOX 1

conditional Density-Rescaled Visualization

DREVI reveals the influence of protein X on protein Y. Most methods for visualizing 

pairwise data (such as scatterplots and density contours) depict the joint probability of X 

and Y. By contrast, we reveal signaling behavior along its full dynamic range by 

visualizing conditional probability. The main steps of DREVI are as follows:

1. Compute the joint kernel density estimate f ̂(x, y) (10).

2. Compute the marginal density of X, f̂(x) and the conditional density estimate of 

Y given X as  on a fine grid of points G = {(xi, yj), 1<i<n, 

1<j<m}(2, 12, 15) that span the range of X and Y.

3. Rescale each value of the conditional density estimate by its column-maximum 

to obtain f̂*(yj∣xi)=f ̂(yj∣xi)/maxk(f
̂(yk∣xi))

4. Visualize f̂ * (G) as a heatmap, adding side-bars depicting the marginal densities 

of X and Y.
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BOX 2

Conditional Density-Resampled Estimate of Mutual Information

DREMI provides a score for the strength of the influence protein X has on protein Y. In 

many physiological conditions, only a small fraction of the cells have activated protein X 

in response to stimuli and these active populations have little influence on the mutual 

information metric. DREMI explicitly factors these populations by computing a score 

based on the conditional distribution of Y∣X rather than joint distribution. DREMI 

estimates the computation Ic, given by:

DREMI is computed as follows:

1. Begin with the rescaled conditional-density estimate f ̂*(G) as in DREVI (BOX 

1), computed on the grid of points G = {(xi, yj), 1<i<n, 1<j<m}.

2. Round values f ̂*(xi, yj)< ε to 0, for user-defined threshold ε, to eliminate 

technical noise from the measurements.

3. Resample from G according to the conditional density estimate f ̂(G).

4. Equi-partition the full range of the data, and calculate mutual information using 

this partition as the discretization.
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Figure 1. Outline of the DREVI method

All panels represent the relationship between pCD3ζ and pSLP76 in CD4+ naïve T-

lymphocytes from B6 mice with CD3 and CD28 before stimulation (AI-DI) and 30 seconds 

after stimulation (AII-DII). (A) Each dot in the scatterplot represents the value of a single 

cell, where the x-axis represents the amount of pCD3ζ levels and the y-axis represents the 

amount of pSLP76 levels. (B) The same data is shown using kernel density estimation with 

red corresponding to dense regions and blue corresponding to sparse regions. The x-axis is 

partitioned into slices (in practice we use 256 such slices). (C) A DREVI plot of the same 

data, renormalizing the density estimate to obtain a conditional-density estimate of the 

abundance of pSLP76 levels given the abundance of pCD3ζ levels. Within each column, 

dark red (maximal color) represents the highest density in that slice. A response function 
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(white curve) is fit to the region of highest conditional density. The top bar plots the 

marginal distribution of pSLP76 levels and the right bar plots the marginal distribution of 

pS6 levels. (D) Following curve fitting, the inflection point, upper plateau and area under the 

curve can be computed and compared between conditions.
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Figure 2. Outline of the DREMI method

(A) Simulated data depicting a relationship with high mutual information (MI). Across the 

entire range of X, Y has a wide range of values (left). After conditioning on X (red lines), 

the range of Y within each x-slice is significantly smaller (right). Thus knowledge of X’s 

value provides information on Y’s likely value. (B) The data represents the relationship 

between pCD3ζ and pSLP76 30 seconds after stimulation of the TCR as in Fig 1BII. Most 

of the cells are concentrated around a single peak as shown in the 2D density estimate (left). 

If we resample from this density estimate, samples will fall within a narrow range where 

there is little change in Y’s range. This narrow range dominates the MI metric. (C) Instead, 

DREMI samples from the renormalized conditional density estimate, which covers entire X-

range. So there is the same number of cells in each X-slice, as long as there are sufficient 

cells in the original data. MI information is calculated over this resampled data.
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Figure 3. Comparison between stimulation conditions

The cells are CD4+ naïve T-lymphocytes of B6 mice. (A) I-II) The pCD3ζ-pSLP76 edge at 

30s after stimulation under both stimulation conditions. III) As stimulation strength 

increases, DREMI increases. IV) The inflection threshold moves to the left and the upper 

plateau of the response curve also increases resulting in a higher AUC. B) The pSLP76-

pERK edge 2 minutes after stimulation. The cyan lines indicate a partitioning between 

“low” and “high” states of pERK. The pie charts in IV show increase in the percentage of 

cells that reach the high state at the higher dose. C) The pERK-pS6 edge has a linear edge-

response function. Here, increasing stimulation strength results in an increase in DREMI 

shown in III and AUC, shown in IV.
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Figure 4. DREVI and DREMI reveal the dynamics of TCR signaling

The pCD3ζ -pSLP76-pERK-pS6 cascade at various time points following after TCR 

activation. All panels represent data from CD4+ naïve T-lymphocytes from B6 mice with 

CD3, CD28 and CD4 crosslinking. (A) Each row represents an edge in the cascade and each 

column a time point after TCR activation. DREVI plots show the dynamics of TCR 

signaling; edges change their strength and shape as signaling proceeds. The scale used is the 

same as in figure 1, with dark red representing the behavior of the majority of cells, whereas 

the other colors depict the heterogeneity and spread of the response. (B) Network diagrams 

with DREMI values indicated on each edge, columns matching the same time points as in A. 
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For each edge, the color indicates the computed DREMI values, more purple indicating a 

higher DREMI score. DREMI captures peak signal transfer timings in each of the 3 edges.
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Figure 5. Comparison of DREMI with three other metrics

The metrics compared are mutual information using adaptive partitioning (23), MIC (32), 

and Pearson correlation. (I) Comparisons are performed on edges in naïve CD4+ T cells 

under CD3 and CD28 stimulation. In each case the green outline indicates the point with the 

strongest relationship upon visual inspection of the DREVI plot. (A) The pCD3ζ-pSLP76 

edge: Only DREMI identifies the post-stimulation 0.5m time point as having a stronger 

signaling relationship than the pre-stimulation data. (B) The pMAPKAPKII-Ikba 

relationship as an example of a negative relationship. DREMI successfully identifies this 

negative relationship, while other methods are unable to detect it. Four additional edges are 

compared in Supplementary Fig 10. (II) Comparison of dependency metrics on synthetic 
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data: both parts (A) and (B) show comparisons between a noiseless but weak dependence of 

Y on X, compared to a noisy but strong dependence of Y on X, (A) sigmoidal and (B) 

quadratic relationships. The other three metrics score the linear, weaker dependence higher 

than the noisier but stronger dependence. Since single-cell signaling data is often noisy and 

non-linear, DREMI is better suited.
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Figure 6. Comparison of naïve with antigen-exposed T cells

All panels in this figure represent data from CD4+ naïve (CD44low) and effector or memory 

(antigen-exposed, CD44high) T-lymphocytes from B6 mice with CD3, CD28, and CD4 

crosslinking. We compare the pCD3ζ-pSLP76-pERK-pS6 cascade between the naïve and 

effector or memory CD4+ T cells using (A) DREVI and (B) DREMI. The time points in (A) 

match the indicated time points in (B). Both depictions show that signal transmission is 

sharper and more sustained in naïve cells. (C) Bar graph depicts the higher peak-DREMI 

detected in naïve cells, DREVI plots with edge response functions show alterations in edge 

behavior during peak signaling. The pCD3ζ-pSLP76 edge response function shows an 

earlier inflection point in effector or memory cells and is relatively flat after induction. This 

suggests only a small amount of pCD3ζ is needed to initiate a complete response. In 

contrast, pSLP76 needs more pCD3ζ for a similar response in naive cells. The pSLP76-
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pERK edge indicates that the pERK response is weaker, and requires more pSLP76 in these 

cells. Finally the pERK-pS6 edge shows a steeper slope in naïve cells indicating that pS6 

responds more strongly to pERK levels in naïve cells.
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Figure 7. Comparison of naïve with antigen-exposed T cells on the pAKT pathway

All panels in this figure represent data from CD4+ naïve (CD44low) and effector or memory 

(antigen-exposed, CD44high) T-lymphocytes from B6 mice with CD3, CD28, and CD4 

crosslinking. (A) Comparison of phopho-protein abundances between of naïve CD4+ T 

cells, with effector or memory CD4+ T cells. Red indicates the phospho-protein levels 

amounts are higher in naïve CD4+ T cells and blue indicates the phospho-protein amounts 

are higher in effector or memory CD4+ T cells, demonstrating that differences in the 

average behavior of nodes (protein species) is not necessarily telling of the differences in 

edges (relationships between proteins). B) DREVI plots comparing naïve and effector or 

memory cells on the pAKT-pS6 edge from 0-3 minutes after stimulation. C) Network 

diagrams depicting DREMI scores in naïve and effector or memory cells, showing the 

combined pCD3ζ-pSLP76-pERK-pS6 and pCD3ζ-pAKT-pS6 pathways. The pre-

Krishnaswamy et al. Page 39

Science. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



stimulation pAKT-pS6 edge is stronger in effector-memory cells at 0 and 2 minutes, while 

responses downstream of pCD3ζ are stronger in naïve cells at 2 minutes.
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Figure 8. Validation of differences in edge-strength using in an inducible Erk2-knockout mouse

This figure depicts data are from CD4+ naïve T-lymphocytes from both B6 and Erk2-

knockout mice with CD3 and CD28 crosslinking. (A) DREMI is used to compare the 

strength of the pERK-pS6 relationship between naïve and effector or memory T cells in B6 

mice. Higher DREMI in naïve T cells predicts a bigger impact of Erk2 knockout on pS6 in 

naïve cells. (B) Heatmaps show the amounts of pERK and pS6 in the control and knockout 

mice cells. (C) Edge-response functions for B6 mice at the 2-minute time point predict the 

outcome of a knockout experiment in (I) naïve cells and (II) effector or memory cells. The 

x-axes of both figures are annotated with the measured change in mean pERK levels upon 
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knockout, and the y-axis shows the predicted decrease in pS6 levels based on the edge-

response function. (D) I-II show two replicates demonstrating the change in pS6 amounts 

following after ERK2 knockout. The blue bars represent the average difference between pS6 

in normal and ERK2-knockout mice cells in naïve T cells. The maroon bars show the same 

difference in effector or memory cells. The blue bars are significantly higher than the 

maroon bars, especially after the 2-minute timepoint (as predicted), therefore our edge 

strength assessment is validated.
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