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Abstract

Statistical inference on conditional dependence is essential in many fields including genetic 

association studies and graphical models. The classic measures focus on linear conditional 

correlations, and are incapable of characterizing non-linear conditional relationship including non-

monotonic relationship. To overcome this limitation, we introduces a nonparametric measure of 

conditional dependence for multivariate random variables with arbitrary dimensions. Our measure 

possesses the necessary and intuitive properties as a correlation index. Briefly, it is zero almost 

surely if and only if two multivariate random variables are conditionally independent given a third 

random variable. More importantly, the sample version of this measure can be expressed elegantly 

as the root of a V or U-process with random kernels and has desirable theoretical properties. Based 

on the sample version, we propose a test for conditional independence, which is proven to be more 

powerful than some recently developed tests through our numerical simulations. The advantage of 

our test is even greater when the relationship between the multivariate random variables given the 

third random variable cannot be expressed in a linear or monotonic function of one random 

variable versus the other. We also show that the sample measure is consistent and weakly 

convergent, and the test statistic is asymptotically normal. By applying our test in a real data 

analysis, we are able to identify two conditionally associated gene expressions, which otherwise 

cannot be revealed. Thus, our measure of conditional dependence is not only an ideal concept, but 

also has important practical utility.
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1. INTRODUCTION

The concept of conditional dependence or independence is fundamental to statistical 

inference such as casual inference, graphical models, dimension reduction and Bayesian 
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network analysis (Ackley et al., 1985; Zhang et al., 2012). Many scientific questions must be 

answered through statistical inference on conditional dependence.

The most commonly used method to measure conditional dependence is the classical partial 

correlation (Lawrance, 1976) between two multivariate random variables conditioning on a 

third multivariate random variable. A zero correlation is equivalent to the conditional 

independence, under the condition that the underlying joint distribution of the three 

multivariate random variables is normal. Without this condition, the statement may not hold, 

even though the converse is always true. More importantly, this measure suffers from some 

serious drawbacks; for example, the joint normality condition implies the linearity between 

random variables, and as a result, the partial correlation does not depend on the value of the 

conditioning random variable. This may not be realistic in nonlinear world (Speed, 2011). 

Due to these limitations, the partial correlation cannot serve as a general measure of 

conditional dependence, and an appropriately defined and broadly applicable measure is 

warranted. Various measures have been proposed in literature, but none of them have the 

ideal properties. Consequently, testing for conditional independence among multivariate 

random variables with arbitrary dimensions is usually chanllenging in practice.

Linton and Gozalo (1996) proposed a Kolmogorov-Smirnov type of test statistic and a 

Cramér von-Mises type of test statistic based on a generalization of the empirical 

distribution function. Gretton et al. (2005) provided a conditional independence test derived 

from the normalized conditional cross-covariance operator under the framework of 

Reproducing Kernel Hilbert Space (RKHS). A series of test statistics have been developed 

using various difference measures between conditional densities including the use of 

smoothing empirical likelihood (Su and White, 2003), conditional characteristic function 

(Su and White, 2007), and weighted Hellinger distance (Su and White, 2008). Huang (2010) 

suggested another test of conditional association based on the maximal nonlinear conditional 

correlation.

We develop a proper measure of conditional dependence for multivariate random variables 

with arbitrary dimensions. Specifically, our proposed measure is zero almost surely if and 

only if the two multivariate random variables are conditionally independent given a third 

multivariate random variable, and varies with the value of conditional random variable. 

Importantly, although our measure is based on conditional characteristic function, it can be 

simplified as a concise expression of conditional moments, and its sample version is 

convenient to use in practice. Some additional features will be outlined below.

In Section 2 we propose a nonparametric measure of conditional correlation (covariance) for 

multivariate random variables by replacing characteristic function used in the definition of 

distance correlation (covariance) (Székely et al., 2007) with conditional characteristic 

functions. This definition is conceptually straightforward but computationally difficult. 

Hence, we explore two alternative types of the sample conditional distance covariance 

(SCDCov) in Section 3: the roots of V and U-processes with random kernel. It is important 

to observe that our two sample measures have the same asymptotic limit when defined 

differently. This property enables us to introduce a conditional distance independence test 

(CDIT) for random variables with arbitrary dimensions in Section 4. We show that the CDIT 
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is asymptotically normal. Monte Carlo simulation studies in Section 5 suggest that the CDIT 

is more powerful than some tests cited above based on nonlinearity and nonmonotonicity, 

and has a comparable power to the partial correlation test and kernel based conditional 

independence test in the multivariate normal case. We offer our conclusions in Section 6 and 

defer all technical details to the Appendix.

2. CONDITIONAL DISTANCE COVARIANCE AND CORRELATION

2.1 Definition

Let X, Y, and Z be p, q, and r dimensional random vectors in Euclidean spaces ℝp, ℝq, and 

ℝr, respectively. For vectors t ∈ ℝp and s ∈ ℝq, the conditional joint characteristic function 

of X, Y given Z is defined as,

where E denotes the expectation, i is the complex number, and 〈·, ·〉 is the inner product of 

the two cooresponding vectors. In addition, the conditional marginal characteristic functions 

of X, Y given Z are, respectively,

Note that if X is independent of Y given Z, denoted by X⊥Y|Z, then ϕX,Y|Z = ϕX|ZϕY|Z.

The key idea is that we measure the conditional dependence through “distance” between 

ϕX,Y|Z and ϕX|ZϕY|Z, which can be defined by replacing the characteristic functions with the 

conditional characteristic functions in the correlation definition of Székely et al. (2007). In 

what follow, we define conditional distance covariance (CDCov), conditional distance 

variance (CDVar), and conditional distance correlation (CDCor).

Definition 1 (CDCov)—The conditional distance covariance (X, Y|Z) between random 

vectors X and Y with finite moments given Z is defined as the square root of

(1)

where  and .

The CDVar is the square root of

(2)
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Definition 2 (CDCor)—The conditional distance correlation between random vectors X 

and Y with finite moments given Z is defined as the square root of

(3)

if (X|Z) (Y|Z) > 0, or 0 otherwise.

A Working Example: To help the understanding of these definitions, we go through the 

calculation through the following working example. Suppose that (X, Y, Z) is a random 

vector generated from a 3-dimensional multinormal distribution with the mean vector µ = (0, 

0, 0) and covariance matrix . We can see that X ⊥ Y|Z since (X, 

Y)|Z follows a 2-dimensional multinormal distribution with the covariance matrix 

. The mean vector of (X, Y)|Z is (Z, Z). Hence, the conditional characteristic 

function is

Thus, (X, Y|Z) = 0 and CDCov=0.

2.2 Properties of CDCov and CDCor

In this section, we present the analogous properties of CDCov (CDCor) to those of 

unconditional distance covariance (DCov) or distance correlation (DCor) in the sense of 

“almost surely” as stated in Theorems 1 and 2. These properties ensure that CDCov 

(CDCor) is a proper measurement of conditional dependence.

Let E(|X|p|Z) denote the p-th conditional moment of X given Z.

Theorem 1 (Properties of CDCov)—For random vector (X, Y, Z) ∈ ℝp × ℝq × ℝr such 

that E(|X|p + |Y|q|Z) < ∞ and σ(Z) is complete, the following properties hold:

i. (X, Y|Z) ≥ 0, and (X, Y|Z) = 0 if and only if X and Y are conditionally 

independent given Z.

ii. (X|Z) = 0 implies that X = E(X|Z).
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iii.
 for any constant vectors a1 ∈ 

ℝp, a2 ∈ ℝq, scalars b1, b2, p × p orthonormal matrix C1, and q × q orthonormal 

matrix C2.

iv. (a + bCX|Z) = |b| (X|Z) for any constant vectors a in ℝp, scalar b and p × p 

orthonormal matrices C.

v. If random vectors (X1, Y1) and (X2, Y2) are conditionally independent given Z, then

Equality holds if and only if X1 and Y1 are both the functions of Z, or X2 and Y2 are 

both the functions of Z, or X1, Y1 are conditionally independent given Z and also 

X2, Y2 are conditionally independent given Z.

vi. If X and Y are conditionally independent given Z, then (X + Y|Z) ≤ (X|Z) + (Y|

Z). Equality holds if and only if either X or Y is a function of Z.

Part (i) in Theorem 1 indicates that CDCov is nonnegative and that (X, Y|Z) = 0 is the 

necessary and sufficient condition of conditional independence. Part (ii) assures that (X|Z) 

= 0 iff random variable X is σ(Z)-measurable. Parts (iii) and (iv) present the properties of the 

CDCov and the CDVar under a linear transformation. Parts (v) and (vi) provide Minkowski-

type inequalities for the CDCov and the CDVar.

Theorem 2 (Properties of CDCor)

i. If E(|X|p + |Y|q|Z) < ∞, then 0 ≤ ρ(X, Y|Z) ≤ 1, and ρ(X, Y|Z) = 0 if and only if X and 

Y are conditionally independent given Z.

ii. Orthogonal invariance: ρ(a1 + b1C1X, a2 + b2C2Y|Z) = ρ(X, Y|Z) for any constant 

vectors a1 ∈ ℝp, a2 ∈ ℝq, scalars b1, b2, p × p orthonormal matrix C1, and q × q 

orthonormal matrix C2.

3. SAMPLE CONDITIONAL DISTANCE CORRELATION MEASURES

We have defined the conditional distance measures that have desirable theoretical 

properties. However, to explore their practical use, we need to introduce the sample forms to 

avoid complicated integrations involving conditional characteristic functions. Specifically, 

we consider two approaches. The first approach is to make use of V-process with random 

kernels, and verify that this V-process is identical to the form defined by plugging in the 

empirical characteristic functions in (1). The second approach is to estimate the CDCov by a 

U-process with random kernels. These two sample forms are constructed to have similar 

asymptotic properties and converge to the same theoretical conditional distance measures. 

The use of V-process or U-process allows us to employ the established theory of V-process 

and U-process.
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3.1 Plug-in sample conditional distance covariance

Consider a kernel function K such as the Gaussian kernel (Li and Racine, 2007). Let ωk(Z) = 

KH(Z − Zk) and . The theory below assumes that ω(Z)/n is a 

consistent estimator for the density of Z, which is known for the Gaussian kernel under 

certain regularity conditions.

Next, we define the joint empirical conditional characteristic function of (X, Y)|Z:

and the marginal empirical conditional characteristic functions of X|Z and Y|Z:

and

respectively. Then the sample conditional dependence is defined as follows.

Definition 3 (Plug-in sample conditional distance covariance, pSCDCov)—A 

sample conditional distance covariance (Wn|Z) between Xi’s and Yi’s is defined as

(4)

where the norm || · || is defined in (1).

3.2 V-process based sample conditional distance covariance

Suppose that Wi = (Xi, Yi, Zi), i = 1, ···, n are sampled iid. from a random vector W = (X, Y, 

Z) in ℝp × ℝq × ℝr. Let Xn = {X1, ···, Xn}, Yn= {Y1, ···, Yn}, Zn = {Z1, ···, Zn}, and Wn = 

(Xn,Yn,Zn). Denote the Euclidean distance of Xi and Xj in ℝp as , and 

similarly,  for Y. Let

Note that dijkl is not symmetric with respect to {i, j, k, l}, and we introduce a symmetric 

form as follows:
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Moreover, for the specific value of (X, Y |Z = z) when given Z = z, the pairwise distances 

can be related to the CDCov by the following lemma.

Lemma 1— (X, Y |Z = z) can be rewritten as:

This expectation representation in Lemma 1 reveals that we can estimate our conditional 

dependence measures by using V process or U process. We begin with the definition of a V-

type sample conditional distance covariance (vSCDCov) as the square root of

(5)

where ψn() is the symmetric random kernel of degree 4 defined in Schick (1997):

(6)

Let WXn
 = (Xn,Xn,Zn) and WYn

 = (Yn,Yn,Zn). Then, the V-type sample conditional 

distance correlation (vSCDCor), , between Xi’s and Yi’s can be defined as the 

square root of

(7)

if (WXn
|Z) (WYn

|Z) > 0 or 0 otherwise.

Theorem 3 below states that pSCDCov and vSCDCov are actually the same, giving rise to 

the same definition of sample conditional distance covariance, which we simply refer to as 

SCDCov from now on.

Theorem 3—If Wn = {W1, ···,Wn} is a sample from the joint distribution of (X,Y,Z), then
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3.3 U-process based sample conditional distance covariance

Here, we use U-process to further define an analogous unbiased sample conditional distance 

covariance (uSCDCov) as the square root of

(8)

Similarly, we can define the U-type sample conditional distance correlation (uSCDCor), 

.

3.4 Large sample theory of  and 

We now present the asymptotic theory for  and  and assure that vSCDCov and 

uSCDCov converge to CDCov, and their companion correlations vSCDCor and uSCDCor 

converge to CDCor. In addition, the sample measures have desirable properties under linear 

transformations and the correlation measures are between 0 and 1.

Theorem 4—If E(|X|p + |Y|q|Z) < ∞, and if ω(Z)/n is a consistent density function estimator 

of Z, then (Wn|Z)( (Wn|Z)) converges to (X, Y |Z) in probability at each point of Z, that 

is,

The following corollary states the consistency of the sample conditional distance 

correlations.

Corollary 1—Under the assumptions of Theorem 4, it is in probability at each point of Z 

that

Theorem 5—For all constant vectors a1 ∈ ℝp, a2 ∈ ℝq, scalars b1, b2 and p × p 

orthonormal matrix C1, q × q orthonormal matrix C2, the following equations hold at each 

point of Z,

i. (a1 + b1C1Xn, a2 + b2C2Yn,Zn|Z) = |b1b2| (Xn,Yn,Zn|Z).

ii. (a1 + b1C1Xn, a2 + b2C2Yn,Zn|Z) = |b1b2| (Xn,Yn,Zn|Z).

iii. .
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iv. .

v. 0 ≤ ρn, .

The above theorem confirms that the sample measures retain the linearity property and 

Cauchy inequality.

4. CONDITIONAL DISTANCE INDEPENDENCE TEST

4.1 The hypothesis

In this section, we discuss how to test conditional independence which can be stated as

To this end, we introduce quantities that can represent the conditional independence. 

Specifically, let

(9)

where a(·) is a certain nonnegative function with the same support as the probability density 

function of Z. For computational considerations, we choose a(Z) to be 12f4(Z). 

Consequently, X⊥Y |Z if and only if  = 0.

4.2 The kernel function and bandwidth selection

In the previous section, we introduced a general kernel function K. Here, we choose the 

Gaussian kernel

in ℝr, where H is a diagnoal matrix diag{h, ···, h} determined by bandwidth h. There are 

other kernels, but the Gaussian kerne is commonly used in statistical learning, and its 

theoretical and computation properties are well established.

It is well known that the use of kernel function usually involves a challenging choice of 

bandwidth selection. This issue is not entirely solved, although there are many competing 

methods as presented in Li and Racine (2007), including so-called Rule-of-Thumb, Plugin, 

Least Square CV and Likelihood CV. For convenience of computation, we consider the 

Rule-of-Thumb method as introduced by Wand and Jones (1994, 1995). In fact, we found 

this bandwidth selection method works well in our simulation studies. In other words, there 

could be a more optimal method, but the gain in performance may not be outweigh the 

increased complexity by exploring a potentially better method.
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With the Gaussian kernel, ω(Z)/n is known to be consistent under the following regularity 

conditions:

(C1) ∫ℝr uK(u)du = 0, ∫ℝr K(u)du = 1, ∫ℝr |K(u)|du < ∞, ∫ℝr K2(u)du > 0, ∫ℝr 

u2K(u)du < ∞.

(C2) hr → 0 and nhr → ∞, as n → ∞. This requires h to be choosen appropriately 

according to n.

(C3) The density function of Z and the conditional density function f(·|z) are twice 

differentiable and all of the derivatives are bounded.

4.3 The test and its properties

Let

(10)

where Kiu = K(H−1 · (Zi −Zu)).

The theorem below states that  is a consistent estimate of , and we propose it as a 

conditional distance independence test (CDIT). We should also note that as proven in the 

appendix, this theorem holds for any kernel function K satisfying the same regularity 

conditions as above.

Theorem 6 (Consistency)—Assume that conditions (C1)–(C3) hold and the second 

moments of X and Y exist, then as n → ∞, we have

Moreover, using the theorey of U statistic discussed in Fan and Li (1996) and Lee (1990), 

we have the following asymptotic normality.

Theorem 7 (Weak convergence)—Assume that conditions (C1)–(C3) hold and the 

second moments of X and Y exist. If X and Y are conditionally independent given Z and if 

n2h(r+4)2/4 → 0 as n → ∞, we have

where σ2 will be given in (A.9).

Theorem 7 validates that nhr/2  is asymptotically normally distributed. Although we can 

use this asymptotic normality to compute p-values, we need to be cautious of its serious 

limitations in practice. Firstly, as it becomes clear in (A.9), the variance parameter σ2 can be 
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difficult to compute, and it is even more complicated for unknown distribution of random 

variables. Secondly, the sample size in practice may be too small (Su and White, 2007).

In practice, we consider the local bootstrap procedure proposed by Paparoditis and Politis 

(2000) as an alernative. For a given sample Wn = {(Xi, Yi, Zi) : i = 1, ···, n}, we draw a local 

bootstrap sample , and then compute the bootstrap statistic. 

The specific steps are as follows.

i. For i = 1, ···, n, draw  from

ii. Compute  by using the local bootstrap sample

iii. Repeat (a) and (b) for B times, and obtain , k = 1, ···,B. And then the p-value of 

the test is given by

5. EMPIRICAL RESULTS

In this section, we conduct several simulation experiments to demonstrate the performance 

of CDIT in comparison to CI.test (Scutari, 2009) and KCI.test (Fukumizu et al., 2008). The 

computation is based on 1000 random samples, and we use the significance level of 0.05.

Examples 1–4 consider the case that X and Y are conditionally independent given Z. 

Specifically, X, Y and Z are all univariate in Examples 1–3, X and Y remain univariate but Z 

is multivariate in Example 4. Simulation results are summarized in Table 1.

We consider various conditional dependence cases in Examples 5–12 and report the results 

in Table 2. As for Examples 1–4, we construct corresponding conditional dependence cases 

in Examples 5–8. Examples 9–12 evaluate the power of our proposed test with X, Y being 

multivariate for which CI.test and KCI.test are not applicable.

Ex1 (X, Y, Z) follows the multivariate normal distribution with zero mean vector µ 

and covariance matrix .

Ex2 X1, Y1, Z are i.i.d. random variables from the binomial distribution B(10, 0.5). 

Define X = X1 + Z and Y = Y1 + Z.

Ex3 , and define
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Therefore X and Y are conditionally independent given Z.

Ex4 , and define X = X1 + Z1 + Z2 and Y = Y1 + Z1 + Z2, 

Z = (Z1, Z2).

Table 1 presents the type I error rates for Examples 1–4. From this table, we can see that the 

empirical type I error rates of the CDIT and KCI.test are under reasonable control. However, 

the CI.test is out of control in Example 3, which in fact contributes to an inflated power in 

Example 7.

Ex5 (X, Y, Z) has the multivariate normal distribution with zero mean vector µ and 

covariance matrix . Therefore, the conditional 

covariance matrix of X and Y given Z is 

.

Ex6 , and define X = X1 + Z, Y = (X1 − 5)4 + Z.

Ex7 , and define

We standardize X3, Y3 and define

Therefore X and Y are not conditionally independent given Z.

Ex8 , and define X = X1 + Z1 + Z2 and Y = (X1 − 5)4 + Z1 + 

Z2, Z = (Z1, Z2).

Ex9 Supposed , the t-distribution with degree freedom 1, and 

define
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Therefore X = (X1, X2, X3, X4) and Y are not conditionally independent given Z = 

Z5.

Ex10 Supposed , and define

Therefore X = (X1, ··· X10) and Y = (Y1, Y2) are not conditionally independent 

given Z = Z11.

Ex11 Supposed , and define

Therefore X = (X1, X2, X3, X4) and Y = (Y1, Y2) are not conditionally independent 

given Z = (Z1, Z2).

Ex12 Supposed , and define

Therefore X = (X1, X2, X3, X4) and Y = (Y1, Y2) are not conditionally independent 

given Z = (Z1, Z2).

We can see from Table 2 that CI.test is the most powerful test for Example 5, due to the fact 

that the data are the generated from a multivariate normal distribution. Unlike KCI, the 

CDIT performs closely to CI.test and becomes closer as the sample size increases. In the 

nonlinear cases, the CDIT performs the best. Importantly, it has competitive or better 

performance than KCI when X, Y and Z are all multivariate, whereas CI.test are not 

applicable.

6. APPLICATION ON GENE REGULATION

In this section, we use our CDIT to re-analyze the data reported in Scheetz et al. (2006). The 

data were collected to study gene regulations in the mammalian eye, including 18976 probes 

of sufficient signal among 120 rats. Previous research documented that the mutations in 

gene IMPG1 can cause the macular dystrophies (Manes et al., 2013) and gene CFH is 

important for age-related macular dystrophies (Hageman et al., 2005; Haines et al., 2005). 

Moreover, a significant association between IMPG1 and CFH was reported (Dcor(IMPG1, 

CFH)=0.3105, p-value=10−6), but it has not be investigated which gene remains associated 

with IMPG1 beyond the known important role of CFH.
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To this end, we treat the signal from IMPG1 as the response variable and the signals from 

the other probes as covariates. CFH serves as the conditional variable. Bonferroni correction 

is used and 2.6 × 10−6 significant level is set (0.05/18976 ≈ 2.6 × 10−6). Under this 

criterion, the p-value corresponding to gene LOC361100 is smaller than the threshold.

Table 3 indicates that IMPG1 and LOC361100 are significantly associated given CFH after 

the Bonferroni correction (the p-values is less than 0.05 after the correction), even though 

their marginal association is not.

To verify this finding, we fit the model

where g(·) and h(·) are the fitted generalized additive models. Thus the test for the 

conditional dependence becomes the test for β1 = 0. Denote

β̂1 = 0.3966, the p-value of H0: β1 = 0 is 2.786 × 10−6. This result suggests a significant 

dependence between LOC361100 and IMPG1, indicating that gene LOC361100 may have 

latent relationship with macular dystrophies. Fig 1 displays the dependence between 

e(IMPG1|CFH) and e(LOC361100|CFH), as indicated by the increasing regression line.

It has been reported that the LOC361100 gene expresses in tissues including kidney, lung, 

brain and eyes. According to Tsutsui et al. (2001, 1993), it participates in the process of 

DNA topological change and brain development. However, we did not find any reported 

role of LOC361100 in the macular dystrophies. For this reason, the significant conditional 

association detected here by CDIT warrants further investigation and replication.

7. DISCUSSION

As discussed above, inference on conditional association is an important topic in scientific 

research. In addition to our earlier introduction, Li and his colleagues (Li, 2002), for 

example, introduced liquid association to evaluate the association of two gene expressions X 

and Y, given gene Z expression. Because liquid association assumes the normality of Z and 

is only sensitive to linear dependence, its application can be limited. In contrast, our CDIT is 

distribution free, sensitive to linear and non-linear dependence, and applicable to 

multivariate random variables. Therefore, CDIT is potentially useful for detecting the 

functional association between groups of genes.

Our conditional distance correlation can not only measure the nonlinear conditional 

correlation between two random variables given a third random variable, but also allow the 

arbitrary dimensions of random variables. Moreover, it captures the adaptive change of the 

conditional correlation dependent on the conditional random variable.
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We presented theoretically desirable properties for our conditional distance correlation, and 

introduced two sample versions of our conditional distance correlation to simplify the 

computation. Importantly, these sample forms have the same asymptotic limit. Built on these 

desirable results, we proposed and demonstrated CDIT as a powerful test for conditional 

dependence. In the present work, we incorporated the concept of weights into the 

conditional dependence to construct the sample version, taking into account the conditional 

variable. Furthermore, our theoretical results make use of mainly V-statistic and large 

sample theory.

Despite the useful progress reported above, there remain important open issues. For 

example, we adopt Euclidean distance for simplicity, but the approach can be extended for 

α-distance:  and , 0 < α < 2. A proper α may 

potentially improve the power with the type-I error under control. Morever, the power of our 

test diminishes dramatically as the dimensions of the random variables increase. While the 

dimensions of the random variables are expected to reduce the power, it would be useful to 

limit the power loss.

One limitation of our test is that it depends on a kernel function, which requires the selection 

of a bandwidth. The choice of the bandwidth is a challenging problem, and has been a 

difficult and active research topic on its own. It is beyond the scope of this article to address 

the problem of bandwidth selection. Instead, we took a practical approach after considering 

several existing choices. We used the Rule-of-Thumb method (Wand and Jones, 1995) 

because it was convienient for our numerical studies, and performed well. However, it could 

be a worthy effort to consider different methods. We also add that we presented asymptotic 

theory for various statistics based on the conditional distance. While it offers insight into the 

behavior of the important statistics, the theoretical result may not necessarily practical due to 

computational complexity and sample size limitation. Sample re-use methods such as 

bootstrapping may provide a useful alternative.
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APPENDIX A. TECHNICAL DETAILS

We begin with Lemma 2 from Székely and Rizzo (2005) for the convenience of presenting 

our proofs.

Lemma 2

If 0 < α < 2, then for all x in ℝβ

where

and Γ(·) is the complete gamma function. The integrals at 0 and ∞ are meant in the principal 

value sense: limε→0 ∫ℝβ/{εB+ε−1Bc}, where B is the unit ball (centered at 0) in ℝβ and Bc is 

the complement of B.

In the following proofs, we take α = 1 for clarity.

A.1 Proof of Theorem 1

i. Statement (i) is obvious.

ii. If (X|Z) = 0, then ϕX,X|Z(t, s) = ϕX|Z(t)ϕX|Z(s) for all t, s; that is, X is conditionally 

independent of X given Z. This suggests that ∀A ∈ σ(X), P(A ∩ A|Z) = P(A|Z)P(A|

Z), then P(A|Z) = 1, or P(A|Z) = 0.

1. If ∀B ∈ σ(Z), P(A ∩ B) = P(B) and P(A ∩ Bc) = P(Bc), then

Thus P(A) = 1, and A ∈ σ(Z) follows from the completeness.

2. If ∀B ∈ σ(Z), P(A ∩ B) = 0 and P(A ∩ Bc) = 0, then

Thus P(A) = 0, and A ∈ σ(Z) follows from the completeness.

3. If ∃B ∈ σ(Z), P(A ∩ B) = P(B) and P(A ∩ Bc) = 0, then
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and

Thus P(A△B) ≤ P(A\B)+P(B\A) = 0, and A ∈ σ(Z) follows from the 

completeness.

Therefore, σ(X) ⊂ σ(Z), and there exists a Borel function f, such that X = f(Z) 

and E(X|Z) = E(f(Z)|Z) = f(Z) = X.

iii.

Denote t′ = b1C1t and s′ = b2C2s. Then,

iv. This follows from (iii) for a1 = a2 = a, b1 = b2 = b and Y = X.

v. Since random vectors (X1, Y1) and (X2, Y2) are conditionally independent given Z 

and the norm of a characteristic function cannot be greater than 1, we have

Note that (X1+X2, Y1+Y2|Z) = (X1, Y1|Z)+ (X2, Y2|Z) holds if and only if all 

equations above hold; or equivalently to (1) X1 and Y1 are both the function of Z, 

(2) X2 and Y2 are both the function of Z, or (3) X1, X2, Y1, Y2 are mutually 

conditionally independent given Z.

vi. This is a special case of (v) for X1 = Y1 = X and X2 = Y2 = Y.

A.2 Proof of Theorem 2

i. By the Cauchy-Schwarz inequality,
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This implies that 0 ≤ ρ(X, Y|Z) ≤ 1.

ii. It directly follows from (iii) of Theorem 1.

A.3 Proof of Lemma 1

First, given the event Z = z, we consider

Using the following equation

we can get that

According to Lemma 2, we have
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By the definition of dijkl:

and :

We can verify the following the identities after some algebra.

Therefore,

A.4 Proof of Theorem 3

Lemma 2 implies that there exist constants cp and cq such that for all X in ℝp, Y in ℝq,

where the integrals are considered in the sense of principal value.

We first simplify pSCDCov and prove the following algebraic identity:

(A.1)

where
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Note that  and  are involved in 

the derivation of the pSCDCov. Each of them can be expressed as the sum of a V-process 

with a random kernel and remainder as follows:

and

where the integrals of V1, V2 and V3 equal to zero.

Note that

We only need to calculate the following integral:

The above notation is given in Section 3. Thus (A.1) holds.

Next, we verify the following algebraic identity:

(A.2)
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By the definition of the pSCDCov in Definition 3 and denoting the numerator of (Wn|Z) 

by

we have

Using the symmetry of distance  and , the three terms in right hand side of 

the equation can be simplified as follows:

Thus,

We therefore obtain

Thus, (A.1) and (A.2) imply that .
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A.5 Proof of Theorem 4

We first show that . Denote uk = exp(i〈t, Xk〉) − ϕX|Z(t) and vk = 

exp(i〈s, Yk〉) − ϕY|Z(s), and define ξn(t, s) as follows:

Also define a region with respect to a given δ > 0:

and random variables

According to the Lebesgue dominated convergence theorem, for each δ > 0, it follows that 

almost surely,

And  converges to  as δ tends to zero. Now it remains to prove that almost surely,

(A.3)

Given δ > 0,

(A.4)

We consider the first term in (A.4). For r = (r1, r2, ···, rp) in ℝp define the function
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According to Lemma 2, G(y) is bounded by cp and limy→∞ G(y) = 0. Applying the 

inequality |x + y|2 ≤ 2|x|2 + 2|y|2 and the Cauchy-Schwarz inequality for sums, one can obtain 

that

(A.5)

Note that

we have

where EY(·|Z) is taken with respect to Y, and  is independent of Yk. Moreover, after a 

suitable change of variables, we can obtain

where EX(·|Z) is taken with respect to X, and  is independent of Xk. Thus

(A.6)

Since ω(Z)/n is a consistent density function estimator of Z,
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By Lebesgue dominated convergence theorem for conditional expectations,

almost surely.

Next, consider the second term in (A.4). Inequality (A.5) implies that |uk|
2 ≤ 4. Then,

Thus

We therefore have

The remaining two terms in (A.4) can be dealt with similar to the first two terms, and 

likewise for (A.3).

According to Theorem 1 of Section 4.2 in Lee (1990), a V-type statistic can be simplified as 

follows:

Therefore

Wang et al. Page 25

J Am Stat Assoc. Author manuscript; available in PMC 2016 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.6 Proof of Theorem 5

i. Consider the Euclidian distance in ℝp, with the orthogonal invariance of Euclidian 

distance, we have

By (A.2),

Thus .

ii. It follows from a similar argument in Theorem 2.

A.7 proof of Theorem 6

Let  and express  as a U-statistic with 

random kernel,

where

Step 1

= E (W1, W2, W3, W4, W5)/h4r + op(1).
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Consider the H-decomposition in Lee (1990), we denote that

Further, let  and

Then

(A.7)

where  satisfies the following properties:

1.  are uncorrelated.

2.

.

3.

.

Note that  can be expanded into several terms, and each of these terms can be 

shown to be of order h8r. We only give the proof for the first term. Since

we have . Therefore, .

Analogously to , we can obtain that .
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According to (A.7), we have

Thus,  = E (W1, W2, W3, W4, W5)/h4r + op(1) when nhr → ∞.

Step 2

E (W1, W2, W3, W4, W5)/h4r = E[ (X, Y|Z)12f4(Z)] + OP (h2).

Due to the definition of (W1, W2, W3, W4, W5), it’s easy to verify that

thus we consider the expectation of  as follows,

Consider the first term of the above formula,

Denote zj = zi + Hzji, 1 ≤ i < j ≤ 5, as the variable transformations between zi’s which we use 

in evaluating the integrals. With the Taylor expansion, we have
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Similarly, we can verify that

and

Therefore,

(A.8)

According to the results in step 1 and step 2, we can obtain that

A.8 Proof of Theorem 7

The notations in Theorem 7 are defined in Theorem 6. We use Lemma B.4 in Fan and Li 

(1996), which extends Theorem 1 in Hall (1984), to obtain the asymptotical distribution of 

 in the following three steps.

Step 1

 is a degenerated U-statistic with random kernel.

According to (A.8), we have
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Due to the conditional independence assumption, (X, Y|Z) = 0, thus

Therefore,  is a degenerated U-statistic with random kernel.

Step 2

When n → ∞,

where

Note that  can be expanded into several terms, and each of these terms can 

be shown to be of order h14r. We only give the proof for the first term. Since

we have .

Analogously to , we can obtain that .

We can also expand  into several terms, and each of which is of order h15r. 

We give the proof for the first term only here. Since
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and

we can verify that , with one more transformation z3 = z1 + Hz31 

and z2 = z1 + Hz21 in the integral. Furthermore, .

Therefore, under the conditions nhr → ∞ and hr → 0, we have

Step 3

The asymptotical distribution of  is N(0, σ2), where

(A.9)

and
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We need to verify the condition

Similarly to the procedure of calculating , we have

Thus the condition is satisfied when nhr → ∞.

According to Lemma B.4 in Fan and Li (1996), it follows that
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Figure 1. 
Residual Plot of Regressing YIMPG1 against XLOC361100 Conditional on XCFH
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Table 3

p-values of CDCov and DCov conditional on CFH

p-value of DCov p-value of CDCov

IMPG1 LOC361100 0.00835 1.0 × 10−6
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