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Abstract

Conditional distributions for affine Markov processes are at the core of present
(defaultable) bond pricing. There is, however, evidence that Markov processes may
not be realistic models for short rates. Fractional Brownian motion (FBM) can be
introduced by an integral representation with respect to standard Brownian motion.
Using a simple prediction formula for the conditional expectation of an FBM and its
Gaussianity, we derive the conditional distributions of FBM and related processes. We
derive conditional distributions for fractional analogies of prominent affine processes,
including important examples like fractional Ornstein–Uhlenbeck or fractional Cox–
Ingersoll–Ross processes. As an application, we propose a fractional Vasicek bond
market model and compare prices of zero-coupon bonds to those achieved in the classical
Vasicek model.
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1. Introduction

Prediction problems arise in many financial and technical applications. For example, in
a bond market driven by an adapted short rate process r = (r(v))v∈[0,T ] the price of a non-
defaultable zero-coupon bond with maturity t ≥ 0 at time 0 ≤ s ≤ t is given by the conditional
expectation

B(s, t) = EQ

[
exp

{
−

∫ t

s

r(v) dv

} ∣∣∣∣ r(v), v ∈ [0, s]
]

(1.1)

under some risk-neutral measure Q.
For a wide class of stochastic processes, in particular affine models (see, e.g. [6] and [7]),

such predictions are easy to calculate and depend only on the level of the process at time t

due to their Markov property. However, staying in the bond framework above, Markov
models may not be sufficient to catch the real market structure, as was shown in the ongoing
financial crisis. One reason behind this is that short rates, which are driven by macroeconomic
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variables such as domestic gross products, supply and demand rates, and volatilities, exhibit
long-range dependence, which cannot be captured by Markov models. Empirical evidence has
been reported over the years and we refer the reader to [15] for details and further references.
In particular, Backus and Zin [1] provided in their Section 4 evidence for long memory in the
short rate process.

When it comes to modeling such structures, fractional processes, such as fractional Brownian
motion (FBM), have been at the core of most models. Their non-Markovianity, however, makes
prediction more complicated, since all past information will play a role. Since FBM can be
introduced by an integral representation of a standard Brownian motion (which is itself an affine
process), certain structures remain when deriving the conditional distribution.

In this paper we calculate the conditional distributions of FBM-driven integrals and, in
general, of solutions to FBM-driven stochastic differential equations (SDEs), which have been
considered by Buchmann and Klüppelberg [4] based on previous work by Zähle [22]. Our
results include important models, such as fractional Ornstein–Uhlenbeck (FOU), fractional
Vasicek, and fractional Cox–Ingersoll–Ross (FCIR) processes. An application is given by a
bond market model, where the short rate is described by a fractional Vasicek SDE. Justified
by Section 3 of Biagini et al. [3], which was based on the previous work of Guasoni et al.
[12], [13] and Ohashi [17], we can construct such a model by specifying the dynamics directly
under a risk-neutral measure. In particular, Biagini et al. [3] derived the fractional Vasicek
model from a fractional Heath–Jarrow–Morton (HJM) approach. Ohashi [17] introduced such
an HJM model and proved that it is arbitrage free under suitable transaction costs. Biagini et
al. [3] extended these results to propose a fractional Vasicek model with fractional hazard rate,
and explicitly calculated bond option prices. Using these results, we can directly model under
a risk-neutral measure in this paper.

Our work is based on a formula for the conditional expectation of FBM, which has been
derived by Gripenberg and Norros [11] and Pipiras and Taqqu [19].

Our paper is organized as follows. In Section 2 we briefly recall integration with respect to
FBM and state a prediction formula for its conditional expectation. In Section 3 we present
our main results on conditional distributions of FBM related processes, including important
models, such as the FOU and FCIR models. An application to a bond market described by a
fractional Vasicek model is presented in Section 4. Zero-coupon bond prices are calculated and
compared to the classical Brownian situation. We conclude the paper with the proofs of our
results in Section 5.

We will always assume a given complete probability space (�, F , Q), and denote by L2(�)

the space of square-integrable random variables. For a family of random variables (X(i))i∈I ,

I some index set, let σ {X(i), i ∈ I } denote the completion of the generated σ -algebra. The
spaces of integrable and square-integrable real functions are denoted by L1(R) and L2(R),
respectively. On a compact interval [0, T ], the corresponding function spaces are denoted by
L1([0, T ]) and L2([0, T ]). Furthermore, ‖ · ‖2 is the L2-norm, and R+ and R− are the positive
and negative real half-lines, respectively.

Recall that, for µ ∈ R and σ > 0, a random variable X is normally distributed with
expectation µ and variance σ 2 if and only if E[eiuX] = exp{iuµ−u2σ 2/2} for u ∈ R. We will
repeatedly use this relationship without further comment.

2. Preliminaries

We recall that FBM is a zero-mean Gaussian process starting at 0 with stationary increments
satisfying (BH (ct))t≥0

fdd= cH (BH (t))t≥0 for every c > 0. The parameter H ∈ (0, 1) and
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‘
fdd= ’ denotes equality in finite-dimensional distributions. We also assume that BH is standard,

i.e. that E[BH (1)2] = 1. For general background on FBM, we refer the reader to [20]. For the
present paper, we will draw heavily from Pipiras and Taqqu [18], [19].

It is appropriate in our context to use fractional calculus, which suggests replacing H

by the fractional parameter κ = H − 1
2 ∈ (− 1

2 , 1
2 ). The case κ ∈ (0, 1

2 ) refers to long-range
dependence. We also recall that κ = 0 refers to standard Brownian motion and we will write
B0 = B.

Throughout the paper, we will work on the compact interval [0, T ] for some T > 0 and
define the fractional Riemann–Liouville integral with finite time horizon for κ > 0:

(I κ
T −f )(s) = 1

�(κ)

∫ T

s

f (r)(r − s)κ−1 dr, 0 ≤ s ≤ T .

For f ∈ L1(R), this always exists almost everywhere; cf. Equation (7) of [22]. We will also
need the fractional derivative with finite time horizon for κ ∈ (0, 1):

(Dκ
T −g)(u) = 1

�(1 − κ)

(
g(u)

(T − u)κ
+ κ

∫ T

u

g(u) − g(s)

(s − u)κ+1 ds

)
, 0 < u < T.

As usual, we will often write I−κ
T − = Dκ

T −. For κ = 0, we set I κ
T − = Dκ

T − = id.
Possible spaces of integrands for FBM have been introduced in [18] and [19]:

�̃κ
T :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
f : [0, T ] → R

∣∣∣∣
∫ T

0
[s−κI κ

T −((·)κf (·))(s)]2 ds < ∞
}
, κ ∈ (

0, 1
2

)
,

{f : [0, T ] → R | there exists φf ∈ L2[0, T ] such

that f (s) = s−κI−κ
T −((·)κφf (·))(s)}, κ ∈ ( − 1

2 , 0
)
.

In light of Lemma 4.3 of [2] we will adjust these spaces such that they are closed with respect
to multiplication with an indicator function. Therefore, we define, for κ ∈ (− 1

2 , 1
2 ),

�κ
T := {f : [0, T ] → R | for all [s, t] ⊆ [0, T ] : f 1[s,t] ∈ �̃κ

T }.
For κ = 0, both spaces coincide and are equal to L2([0, T ]). For κ ∈ (− 1

2 , 1
2 ) and f, g ∈ �κ

T ,
define the scalar product

〈f, g〉κ,T := πκ(2κ + 1)

�(1 − 2κ) sin(πκ)

∫ T

0
s−2κ [I κ

T −((·)κf (·))(s)][I κ
T −((·)κg(·))(s)] ds,

where we set 〈f, g〉κ,T = 〈f, g〉L2 for κ = 0. Denote the corresponding norm by ‖ · ‖κ,T . For
κ = 0, we have ‖ · ‖0,T = ‖ · ‖2. If c is a step function,

∫ T

0 c(s) dBκ(s) can be reduced to a
finite sum. We then have the isometry∥∥∥∥

∫ T

0
c(s) dBκ(s)

∥∥∥∥
2

= ‖c(·)‖κ,T , (2.1)

and, by using approximating sequences of step functions, integration for general c ∈ �κ
T is

defined in the L2-sense, while (2.1) still holds true; cf. [19, Theorems 4.1 and 4.2].
Let sp[0,T ](Bκ) be the closure in L2(�) of all possible linear combinations of the increments

of FBM on [0, T ]. Assume that we want to calculate an expression for the prediction

Xt(s, κ) := E[Bκ(t) | Bκ(v), v ∈ [0, s]], 0 ≤ s ≤ t.
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If Xt(s, κ) ∈ sp[0,s](Bκ), we would hope that there exists some function c ∈ �κ
T such that

Xt(s, κ) = ∫ s

0 c(v) dBκ(v). This is not immediately clear because it has been shown in [19] that,
while, for κ ∈ (− 1

2 , 0], the space (�κ
T , 〈, 〉κ,T ) is complete, i.e. a Hilbert space, for κ ∈ (0, 1

2 ),
this is not true. However, it has been shown by Gripenberg and Norros [11, Theorem 3.1] that
such a suitable c still exists for κ ∈ (0, 1

2 ). An explicit formula for c has been calculated. In
fact, Theorem 7.1 of [19] shows that the same formula holds for κ ∈ (− 1

2 , 0].
Lemma 2.1. Let 0 ≤ s ≤ t ≤ T and κ ∈ (− 1

2 , 1
2 ). Then

E[Bκ(t) | Bκ(v), v ∈ [0, s]] = Bκ(s) +
∫ s

0
�κ(s, t, v) dBκ(v),

where, for v ∈ (0, t),

�κ(s, t, v) = v−κ(I−κ
s− (I κ

t−(·)κ1[s,t](·)))(v) = sin(πκ)

π
v−κ(s − v)−κ

∫ t

s

zκ (z − s)κ

z − v
dz

and, for v ∈ {0, s}, we have �κ(s, t, v) = 0.

If we write now

E[Bκ(t) − Bκ(s) | Bκ(v), v ∈ [0, s]] =
∫ s

0
�κ(s, t, v) dBκ(v),

it is immediately clear that this prediction formula can be extended to integrals of FBM, which
has been done in Lemma 1 of [8].

Proposition 2.1. For 0 ≤ s ≤ t ≤ T and κ ∈ (− 1
2 , 1

2 ), let c ∈ �κ
T . Then

E

[∫ t

0
c(v) dBκ(v)

∣∣∣∣ Bκ(v), v ∈ [0, s]
]

=
∫ s

0
c(v) dBκ(v) +

∫ s

0
�κ

c (s, t, v) dBκ(v),

where, for v ∈ (0, s),

�κ
c (s, t, v) = v−κ(I−κ

s− (I κ
t−zκc(z)I[s,t](z)))(v)

= sin(πκ)

π
v−κ(s − v)−κ

∫ t

s

zκ (z − s)κ

z − v
c(z) dz (2.2)

and, for v ∈ {0, s}, we have �κ
c (s, t, v) = 0.

In fact, all our results in this paper are a consequence of Lemma 2.1, as will be seen later.

3. Main results

Calculating conditional distributions by conditional characteristic functions essentially
means predicting exponentials. A possible way to approach this problem for FBM-driven
integrals has been considered by Duncan [8], who transformed the exponential function to a
Wick exponential. While this idea works well, Proposition 2 of that paper is not correct. This
can be seen immediately because its result suggests that the prediction is deterministic. The
correct version with proof can be found in [9]. This has also been confirmed by our chosen
approach in the present paper, which is based on the simple prediction formula of Lemma 2.1
and classical results on conditional Gaussian distributions. We want to emphasize that our
approach also covers the range κ ∈ (− 1

2 , 0). All proofs are postponed to Section 5.
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For notational convenience, we fix for the rest of this section an FBM (Bκ
t )t∈[0,T ] with

κ ∈ (− 1
2 , 1

2 ). Furthermore, define

Fs := σ {Bκ(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.1. Let c ∈ �κ
T and 0 ≤ s ≤ t ≤ T . Then

∫ t

0 c(u) dBκ(u) | Fs is normally
distributed with

E

[∫ t

0
c(v) dBκ(v)

∣∣∣∣ Fs

]
=

∫ s

0
c(v) dBκ(v) +

∫ s

0
�κ

c (s, t, v) dBκ(v)

and

var

[∫ t

0
c(v) dBκ(v)

∣∣∣∣ Fs

]
= ‖c(·)1[s,t](·)‖2

κ,T − ‖�κ
c (s, t, ·)1[0,s](·)‖2

κ,T .

We now compare this result to the classical Brownian case with its Markov property.

Remark 3.1. (a) The variance formula above corresponds to

var[X(t) | Fs] = var[X(t)] − var[E[X(t) | Fs]]
for X(t) = ∫ t

0 c(v) dBκ(v).

(b) By Theorem 3.1 we obtain, for the conditional characteristic function of an FBM,

E[eiuBκ(t) | Fs] = exp

{
iu

[
Bκ(s) +

∫ s

0
�κ(s, t, v) dBκ(v)

]}

× exp

{
−u2

2
[‖1[s,t](·)‖2

κ,T − ‖�κ(s, t, ·)1[0,s](·)‖2
κ,T ]

}
, u ∈ R.

If we compare this to the standard Brownian motion case, i.e. setting κ = 0, we obtain

E[eiuB0(t) | Fs] = exp

{
iuB0(s) − u2

2
‖1[s,t](·)‖2

2

}
, u ∈ R.

It is not surprising that, for κ �= 0, the whole past path plays a role in the prediction.
Theorem 3.1 and the equations above show that the conditional expectation changes by the
term

∫ s

0 �κ(s, t, v) dBκ(v).

Consider now a general pathwise SDE with fractional Brownian noise, i.e.

dZ(t) = µ(Z(t)) dt + σ(Z(t)) dBκ(t), Z(0) ∈ R, t ∈ [0, T ], (3.1)

for suitable coefficient functions µ(·) and σ(·). Buchmann and Klüppelberg [4] have shown
that, for κ ∈ (0, 1

2 ), and under certain technical conditions on µ(·) and σ(·) (precisely stated in
Definition 3.2 of [4]), solutions to (3.1) are given by

Z(t) = f (X(t)), (3.2)

dX(t) = −aX(t) dt + dBκ(t), X(0) = f −1(Z(0)), t ∈ [0, T ], (3.3)

for some monotone and differentiable f : R → R (cf. Definition 3.3 of [4]) and a > 0.
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Motivated by this, we want to predict general OU-type processes driven by FBM in a next
step. Therefore, we consider the SDE with time-dependent coefficient functions, i.e.

dX(t) = (k(t) − a(t)X(t)) dt + σ(t) dBκ(t), X(0) ∈ R, t ∈ [0, T ], (3.4)

where integration is defined in Section 2. Here k(·) and a(·) are locally integrable and
continuous on R+, and σ(·) �= 0, is continuous, and belongs to �κ

T . Assume further that
exp{− ∫ t

· a(w) dw}σ(·) ∈ �κ
T for 0 ≤ t ≤ T . Then the unique solution to (3.4) is given by the

process X = (X(t))t∈[0,T ], defined by

X(t) = X(0) exp

{
−

∫ t

0
a(s) ds

}
+

∫ t

0
exp

{
−

∫ t

s

a(u) du

}
k(s) ds

+
∫ t

0
exp

{
−

∫ t

s

a(u) du

}
σ(s) dBκ(s), t ∈ [0, T ]. (3.5)

Because σ does not hit 0, we have the equality Fs = σ {X(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.2. Let 0 ≤ s ≤ t ≤ T . Set c(·) = exp{− ∫ t

· a(w) dw}σ(·) and recall �κ
c

from (2.2). Then X(t) | Fs is normally distributed with

E[X(t) | Fs] = X(s) exp

{
−

∫ t

s

a(v) dv

}
+

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
k(v) dv

+
∫ s

0
�κ

c (s, t, v) dBκ(v)

and

var[X(t) | Fs] = ‖c(·)1[s,t](·)‖2
κ,T − ‖�κ

c (s, t, ·)1[0,s](·)‖2
κ,T .

If we assume further that σ(·) and 1/σ(·) are of bounded p-variation for some 0 < p <

1/( 1
2 − κ), cf. [21], then (3.4) can be considered as a pathwise SDE and, furthermore, the FBM-

driven integral in (3.5) exists as the pathwise limit of Riemann–Stieltjes sums (see Section 10
of [21]). An advantage of these stronger assumptions on σ(·) is that we are now able to invert
SDE (3.5) (since a density formula like that in Theorem A.4 of [10] is needed for this step) and
rewrite the prediction in terms of X.

Proposition 3.1. In the situation of Theorem 3.2 assume that σ(·) and 1/σ(·) are of
bounded p-variation for some 0 < p < 1/( 1

2 − κ). Let 0 ≤ s ≤ t ≤ T . Set c(·) =
exp{− ∫ t

· a(w) dw}σ(·) and recall �κ
c from (2.2). Then X(t) | Fs is normally distributed

with

E[X(t) | Fs] = X(s) exp

{
−

∫ t

s

a(v) dv

}
+

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
k(v) dv

−
∫ s

0
�κ

c (s, t, v)
k(v)

σ (v)
dv +

∫ s

0
�κ

c (s, t, v)
a(v)

σ (v)
X(v) dv

+
∫ s

0
�κ

c (s, t, v)
1

σ(v)
dX(v)

and

var[X(t) | Fs] = ‖c(·)1[s,t](·)‖2
κ,T − ‖�κ

c (s, t, ·)1[0,s](·)‖2
κ,T ,

where c(·) = exp{− ∫ t

· a(v) dv}σ(·).
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Equation (3.2) shows that the FOU process with time-independent coefficient functions is
important when considering general fractional SDEs.

Corollary 3.1. Consider SDE (3.4) with k(·) = 0, a(·) = a > 0, and σ(·) = 1. Then the
solution X is given by

X(t) = X(0)e−at +
∫ t

0
e−a(t−s) dBκ(s), t ∈ [0, T ].

For 0 ≤ s ≤ t ≤ T , X(t) | Fs is normally distributed with

E[X(t) | Fs] = X(s)e−a(t−s) + a

∫ s

0
�κ

c (s, t, v)X(v) dv +
∫ s

0
�κ

c (s, t, v) dX(v)

and

var[X(t) | Fs] = ‖c(·)1[s,t](·)‖2
κ,T − ‖�κ

c (s, t, ·)1[0,s](·)‖2
κ,T ,

where c(·) = e−a(t−·).

When calculating prices in a bond market, the situation arises in which it is not the short rate
process r that has to be predicted, but the integrated process in (1.1). The next proposition will
deal with this situation. For notational convenience, we set

D(·, t) =
∫ t

·
exp

{
−

∫ v

·
a(w) dw

}
dv, t ∈ [0, T ]. (3.6)

Proposition 3.2. Denote by X the process given in (3.5), and let 0 ≤ s ≤ t ≤ T . Set
c(·) = D(·, t)σ (·), and recall �κ

c from (2.2). Assume further that D(·, t)σ (·) ∈ �κ
T . Then∫ t

0 X(v) dv | Fs is normally distributed with

E

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
=

∫ s

0
X(v) dv + D(s, t)X(s) +

∫ t

s

D(v, t)k(v) dv

+
∫ s

0
�κ

c (s, t, v) dBκ(v)

and

var

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
= ‖c(·)1[s,t](·)‖2

κ,T − ‖�κ
c (s, t, ·)1[0,s](·)‖2

κ,T .

If we assume further that σ(·) and 1/σ(·) are of bounded p-variation for some 0 < p <

1/( 1
2 − κ), then we have

E

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
=

∫ s

0
X(v) dv + D(s, t)X(s) +

∫ t

s

D(v, t)k(v) dv

−
∫ s

0
�κ

c (s, t, v)
k(v)

σ (v)
dv +

∫ s

0
�κ

c (s, t, v)
a(v)

σ (v)
X(v) dv

+
∫ s

0
�κ

c (s, t, v)
1

σ(v)
dX(v)

and

var

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
= ‖c(·)1[s,t](·)‖2

κ,T − ‖�κ
c (s, t, ·)1[0,s](·)‖2

κ,T .
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The next theorem presents the conditional characteristic function of processes f ◦ X as in
(3.2). In general, Z is no longer Gaussian. Note, however, that because of the assumptions
on f , we have Fs = σ {Z(v), v ∈ [0, s]} for 0 ≤ s ≤ T .

Theorem 3.3. Let the process Z be given by (3.2) with FOU X as in (3.3) and 0 ≤ s ≤ t ≤ T .
Then we have, for u ∈ R,

E[eiuZ(t) | Fs] =
∫

R

(E[e(iξ+1)X(t) | Fs]ĝ+(ξ, u) + E[e(iξ−1)X(t) | Fs]ĝ−(ξ, u)) dξ

with

ĝ±(ξ, u) = (2π)−1
∫

R±
e−(iξ±1)x+iuf (x) dx

and E[e(iξ+1)X(t) | Fs] given by the continuation of the characteristic function of X(t) | Fs

to C. This continuation exists due to the fact that X(t) | Fs is Gaussian.

Since the process Z as given in (3.2) does not have to be Gaussian any longer, there is no
closed form for the prediction. However, by Theorem 3.3 we can reduce this problem to an
improper integral and the prediction of FOU-type processes.

Example 3.1. (FCIR process.) We consider, for κ ∈ (0, 1
2 ), an FCIR model given by the

pathwise solution to the SDE

dZ(t) = −λZ(t) dt + σ
√|Z(t)| dBκ(t), Z(0) ∈ R, t ∈ [0, T ],

for some λ, σ > 0. Then by Proposition 5.7 of [4] we know that a solution is given by

Z(t) = f (X(t)),

dX(t) = −λ

2
X(t) dt + dBκ(t), X(0) = f −1(Z(0)), t ∈ [0, T ],

where f (x) = sgn(x)σ 2x2/4. We want to emphasize that this solution, in contrast to the
classical Brownian case (κ = 0), is not unique; for further details, we refer the reader to [10,
Proposition 5.1], where a similar case for the more general class of fractional Lévy-driven
processes is considered.

In the next section we consider an application of our results to bond markets. Recall that in
many cases characteristic functions can be extended from arguments in R to C.

4. Application: fractional bond market

We apply our formulae to calculate the price of a zero-coupon bond, when the short rate
is modeled by a fractional Vasicek model with any number of factors. As explained in the
introduction, there is empirical evidence of long-range dependence in the bond market. As we
also allow for κ = 0, the Brownian case is included.

Similar to the setup of Section 3 of Biagini et al. [3] we can directly model under a risk-
neutral measure. This is justified by the following argument. As in the classical HJM approach
of Heath et al. [14], a fractional Vasicek model can be derived from the fractional HJM model of
Ohashi [17]. First the whole forward curve is described under a measure P . Under proportional
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transaction costs with proportionality factor k > 0, arbitrage can be ruled out and an equivalent
measure Q exists under which bond prices are basically given as conditional expectations.

Ohashi’s considerations on a fractional HJM bond model with proportional transaction
costs are based on an extension of the full support property of the logarithmic price
processes in the set of continuous functions. The basic idea of taking the path properties
into account, and their relevance to the absence of arbitrage, was fully investigated by Guasoni
et al. [12]. However, these properties are only sufficient for the market to be arbitrage free.
A fundamental theorem with necessary and sufficient conditions for risk-neutral asset pricing
under proportional transaction costs has been proven by Guasoni et al. [13].

Following Section 3 of [3], let the bond market be described by the short rate process
r = (r(t))t≥0 on the probability space (�, F , Q), endowed with the filtration (Ft )t≥0 generated
by r , representing the complete market information and satisfying the usual conditions of
completeness and right continuity.

We are aware that, as a Gaussian process, the short rate r can also take negative values.
However, it is always possible to shift and, perhaps, also scale the model such that the probability
of becoming negative is arbitrarily small. On the other hand, it is attractive and useful to have
a benchmark model where quantities can be calculated explicitly.

Remaining in this framework and given a maturity date T > 0, we consider a multivariate
FBM given by

Bκ(t) = (B
κ(1)
(1) (t), . . . , B

κ(d)
(d) (t)), t ∈ [0, T ],

for some d ∈ N and κ ∈ (− 1
2 , 1

2 )d . The components B
κ(i)
(i) for i = 1 . . . , d are assumed to be

independent. We remark that, although empirical evidence shows long-range dependence in
short rates, our calculations also include the case κ(i) ∈ (− 1

2 , 0).
Consider, for

X(0) = (X(1)(0), . . . , X(n)(0)) ∈ Rd ,

a system of d fractional Vasicek SDEs given for i = 1, . . . , d by

dX(i)(t) = (k(i)(t) − a(i)(t)X(i)(t)) dt + σ (i)(t) dB
κ(i)
(i) (t), t ∈ [0, T ]. (4.1)

We assume that k(i)(·) and a(i)(·) are locally integrable and continuous on R+, and that
σ (i)(·) �= 0, is continuous, and belongs to �

κ(i)
T . Assume further that D(i)(·, t)σ (i)(·) ∈ �

κ(i)
T

for 0 ≤ t ≤ T . Furthermore, let σ (i)(·) and 1/σ (i)(·) be of bounded p(i)-variation for
some 0 < p(i) < 1/(1 − κ(i)). Considering (3.4), the unique solution of (4.1) is given by
X(t) = (X(1)(t), . . . , X(d)(t)), where X(i) is defined as in (3.5).

Now, for fixed b ∈ Rd , define, for t ∈ [0, T ],

r(t) = bX(t). (4.2)

Then Fs = σ {r(v), v ∈ [0, s]} for 0 ≤ s ≤ T . The price of a zero-coupon bond for a short
rate given in (4.2) is calculated in the next theorem.

Theorem 4.1. Assume that the situation above holds, and let 0 ≤ s ≤ t ≤ T . For i = 1, . . . , d,
set ci(·) = D(i)(·, t)σ (i)(·) with D defined in (3.6), and recall �κ

c from (2.2). Assume further
that D(i)(·, t)σ (i)(·) ∈ �

κ(i)
T . Then the price of a zero-coupon bond B(s, t) at time s with
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maturity t is given by

B(s, t) = E

[
exp

{
−

∫ t

s

r(v) dv

} ∣∣∣∣ Fs

]

=
d∏

i=1

exp

{
−b(i)

[
D(i)(s, t)X(i)(s) +

∫ t

s

D(i)(v, t)k(i)(v) dv

−
∫ s

0
�

κ(i)

c(i) (s, t, v)
k(i)(v)

σ (i)(v)
dv +

∫ s

0
�

κ(i)

c(i) (s, t, v)
a(i)(v)

σ (i)(v)
X(i)(v) dv

+
∫ s

0
�

κ(i)

c(i) (s, t, v)
1

σ (i)(v)
dX(i)(v)

]}

× exp

{
(b(i))2

2
[‖c(i)(·)1[s,t](·)‖2

κ(i),T − ‖�κ(i)

c(i) (s, t, ·)1[0,s](·)‖2
κ(i),T ]

}
.

Proof. We calculate

B(s, t) = E

[
exp

{
−

∫ t

s

r(v) dv

} ∣∣∣∣ Fs

]

= E

[
exp

{
−

∫ t

s

bX(v) dv

} ∣∣∣∣ Fs

]

=
d∏

i=1

E

[
exp

{∫ t

s

b(i)X(i)(v) dv

} ∣∣∣∣ Fs

]
, (4.3)

where we have used the independence of the X(i) in the last equality. The result now follows
by an application of Proposition 3.2. The extension of the conditional characteristic function
to the whole of the complex plane C exists because of Gaussianity.

Example 4.1. (Fractional one-factor model.) We want to compare prices in our fractional
model to the classical Brownian case, i.e. κ = 0. For simplicity, we assume constant coefficient
functions in (4.1) and set d = 1 with b = 1. Today’s prices of the zero-coupon bonds are given
by

B(0, t) = exp

{
−D(0, t)X(0) − k

∫ t

0
D(v, t) dv + σ 2

2
‖D(·, t)1[0,t](·)‖2

κ,T

}
, t ≥ 0.

(4.4)
Since negative κ is not relevant, as explained before, we consider only κ ∈ [0, 1

2 ). Standard
numerical methods may be unstable here because of the singularities in the norms in (4.4) whose
exact values cannot be computed. Therefore, we apply the following discretization scheme for
κ ∈ (0, 1

2 ) and t ∈ [0, T ]. We have

‖D(·, t)1[0,t](·)‖2
κ,T = πκ(2κ + 1)

�(1 − 2κ) sin(πκ)(�(κ))2

×
∫ T

0
s−2κ

(∫ T

s

rκD(r, t)1[0,t](r)
(r − s)1−κ

dr

)2

ds.
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In a first step we decompose the outer integral for n ∈ N and 0 = s0 ≤ s1 ≤ · · · ≤ sn = T :∫ T

0
s−2κ

(∫ T

s

rκD(r, t)1[0,t](r)
(r − s)1−κ

dr

)2

ds

=
n−1∑
i=0

∫ si+1

si

s−2κ

(∫ T

s

rκD(r, t)1[0,t](r)
(r − s)1−κ

dr

)2

ds.

For sufficiently small intervals [si, si+1], we get a reasonable approximation by∫ T

s

rκD(r, t)1[0,t](r)
(r − s)1−κ

dr ≈
∫ T

si

rκD(r, t)1[0,t](r)
(r − si)1−κ

dr.

Now we take, for i = 0, . . . , n − 1, a partition si = ui
0 ≤ ui

1 ≤ · · · ≤ ui
mi

= si+1 for some
mi ∈ N:∫ T

si

rκD(r, t)1[0,t](r)
(r − si)1−κ

dr

=
mi−1∑
j=0

∫ ui
j+1

ui
j

rκD(r, t)1[0,t](r)
(r − si)1−κ

dr

≈ 1

κ

mi−1∑
j=0

[(ui
j+1 − si)

κ − (ui
j − si)

κ ] (u
i
j )

κD(ui
j , t) + (ui

j+1)
κD(ui

j+1, t)

2
.

Putting everything together and using �(κ) · κ = �(κ + 1), we obtain

‖D(·, t)1[0,t](·)‖2
κ,T

≈ πκ(2κ + 1)

�(2 − 2κ) sin(πκ)(2�(κ + 1))2

×
n−1∑
i=0

[s1−2κ
i+1 − s1−2κ

i ]

×
[mi−1∑

j=0

[(ui
j+1 − si)

κ − (ui
j − si)

κ ](ui
j )

κD(ui
j , t) + (ui

j+1)
κD(ui

j+1, t)

]2

.

Choosing si = 0.01i for i = 0, . . . , 100t , and ui
j = 0.01(i + j) for j = 0, . . . , 100t − i, we

obtain

‖D(·, t)1[0,t](·)‖2
κ,T

≈ πκ(2κ + 1)

�(2 − 2κ) sin(πκ)2�(κ + 1)2 0.011+2κ

×
100t−1∑

i=0

[(i + 1)1−2κ − i1−2κ ]

×
[100t−i−1∑

j=0

[(j + 1)κ − jκ ][(i + j)κD(0.01(i + j), t)

+ (i + j + 1)κD(0.01(i + j + 1), t)]
]2

.

Examples of the norms and bond prices can be found in Figures 1 and 2.
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κ 0.25=
κ 0.45=
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t

Figure 1: Calculation of ‖D(·, t)1[0,t](·)‖2
κ,T in the fractional one-factor model for varying κ and

maturity t , using a = 4. The case κ = 0 has been calculated analytically.

κ 0.00=
κ 0.10=
κ 0.25=
κ 0.45=

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 4 53

t

B
(

)
0

,t

Figure 2: Bond prices B(0, t) in the fractional one-factor Vasicek model (4.3) for varying κ ≥ 0 and
maturity t , using constant coefficients a = 4, k = 1, and σ = 1. Negative κ is not relevant, as explained
in the introduction of Section 4. Recall that κ = 0 corresponds to the Brownian Vasicek model. Prices

increase with κ as a consequence of long-range dependence.

5. Proofs

There are different ways of proving Theorem 3.1; one possibility is to use Remark 3.1(a)
for X = ∫ t

s
c(v) dBκ(v). However, having discrete observations in mind (as is the realistic

statistical setup), we base our proof on a discretization scheme for the past. Given the grid size
and also κ , we obtain not only a limit result, but also an approximation based on the correct
approximating matrices (�n

22)
−1�n

21 and �n
12(�

n
22)

−1�n
21.

For this discrete approximation, we will need the well-known property of the multivariate
normal distribution. For d ∈ N, let Sd×d denote the space of all positive semidefinite symmetric
matrices of dimension d .

Lemma 5.1. Let Z ∼ N(µ, �), i.e. Z = (z1, . . . , zd) is multivariate normally distributed
with mean µ ∈ Rd and variance–covariance matrix � ∈ Sd×d . For k ∈ {1, . . . , d − 1}, set
X = (z1, . . . , zk)

 and Y = (zk+1, . . . , zd). Partition

µ =
(

µ1
µ2

)
and � =

(
�11 �12
�21 �22

)
with µ1 ∈ Rk , µ2 ∈ Rd−k , �11 ∈ Sk×k , �22 ∈ S(d−k)×(d−k), and �

12 = �21 ∈ R(d−k)×k .

https://doi.org/10.1239/jap/1363784431 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1363784431


178 H. FINK ET AL.

Then we have

X | {Y = y} ∼ N(µ1 + �12�
−1
22 (y − µ2), �11 − �12�

−1
22 �21).

Now we can start with the proofs of our results.

Proof of Theorem 3.1. Let 0 ≤ s ≤ t ≤ T . To calculate the conditional characteristic func-
tion of

∫ t

0 c(v) dBκ(v), we invoke the fact that, by Gaussianity and Lemma 5.1, the conditional
random variable

∫ t

0 c(v) dBκ(v) | Fs is again normally distributed. Since
∫ s

0 c(v) dBκ(v) is
Fs-measurable, it suffices to consider

∫ t

s
c(v) dBκ(v) | Fs .

From Proposition 2.1 we know that

E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]
=

∫ s

0
�κ

c (s, t, v) dBκ(v),

and, therefore, we need to calculate only the conditional variance var[∫ t

s
c(v) dBκ(v) | Fs].

Choose a sequence of partitions (πn)n∈N of [0, s] such that, for n ∈ N, we have πn =
(sn

i )i=0,...,mn for mn ∈ N with

0 = sn
0 < sn

1 < · · · < sn
mn

≤ s and sup
i=1,...,mn

|sn
i − sn

i−1| → 0 as n → ∞.

Using this notation, we know from Lemma 5.1 that, for n ∈ N,

E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Bκ(sn
i ) − Bκ(sn

i−1), i = 1, . . . , mn

]

= �n
12(�

n
22)

−1

⎛
⎜⎜⎝

...

Bκ(sn
i ) − Bκ(sn

i−1)
...

⎞
⎟⎟⎠

and

var

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Bκ(sn
i ) − Bκ(sn

i−1), i = 1, . . . , mn

]
= �n

11 − �n
12(�

n
22)

−1�n
21, (5.1)

where �n
11 = var[∫ t

s
c(v) dBκ(v)],

(�n
12)

 = �n
21 =

⎛
⎜⎜⎜⎜⎝

...

cov

[∫ t

s

c(v) dBκ(v), Bκ(sn
i ) − Bκ(sn

i−1)

]
...

⎞
⎟⎟⎟⎟⎠ ∈ Rmn,

�n
22 = (cov[Bκ(sn

i ) − Bκ(sn
i−1), B

κ(sn
j ) − Bκ(sn

j−1)])i,j=1,...,mn ∈ Smn×mn.

It follows from Lemma 5.1 and [5, p. 290] that, almost surely (a.s.) as n → ∞,

E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Bκ(sn
i ) − Bκ(sn

i−1), i = 1, . . . , mn

]
→ E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]
and

var

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Bκ(sn
i ) − Bκ(sn

i−1), i = 1, . . . , mn

]
→ var

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]
.
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It then follows by (5.1) and Proposition 2.1 that, a.s. as n → ∞,

�n
12(�

n
22)

−1

⎛
⎜⎜⎝

...

Bκ(sn
i ) − Bκ(sn

i−1)
...

⎞
⎟⎟⎠ =

mn∑
i=1

(�n
12(�

n
22)

−1)i[Bκ(sn
i ) − Bκ(sn

i−1)]

→
∫ s

0
�κ

c (s, t, v) dBκ(v).

Therefore, in ‖ · ‖κ,T as n → ∞,

mn∑
i=1

(�n
12(�

n
22)

−1)i1[sn
i−1,s

n
i ](·) → �κ

c (s, t, ·)1[0,s](·).

With this result we can now calculate the conditional variance, since, using isometry (2.1),

�n
12(�

n
22)

−1�n
21 = �n

12(�
n
22)

−1

⎛
⎜⎜⎜⎜⎝

...

cov

[∫ t

s

c(v) dBκ(v), Bκ(sn
i ) − Bκ(sn

i−1)

]
...

⎞
⎟⎟⎟⎟⎠

=
mn∑
i=1

(�n
12(�

n
22)

−1)i cov

[∫ t

s

c(v) dBκ(v), Bκ(sn
i ) − Bκ(sn

i−1)

]

=
mn∑
i=1

(�n
12(�

n
22)

−1)i〈c(·)1[0,s](·), 1[sn
i−1,s

n
i ](·)〉κ,T

=
〈
c(·)1[0,s](·),

mn∑
i=1

(�n
12(�

n
22)

−1)i1[sn
i−1,s

n
i ](·)

〉
κ,T

→ 〈c(·)1[0,s](·), �κ
c (s, t, ·)1[0,s](·)〉κ,T as n → ∞,

where in the last line we have used the continuity of the scalar product.
It remains to observe that, again by isometry (2.1),

〈c(·)1[0,s](·), �κ
c (s, t, ·)1[0,s](·)〉κ,T

= E

[∫ t

s

c(v) dBκ(v)

∫ s

0
�κ

c (s, t, v) dBκ(v)

]

= E

[(∫ t

s

c(v) dBκ(v) − E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

])
E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]]

+ E

[
E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]2]

= E

[
E

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]2]
= ‖�κ

c (s, t, ·)1[0,s](·)‖2
κ,T

by the projection property of the conditional expectation in L2.
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Finally, we conclude that, a.s.,

var

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Fs

]

= lim
n→∞ var

[∫ t

s

c(v) dBκ(v)

∣∣∣∣ Bκ(sn
i ) − Bκ(sn

i−1), i = 1, . . . , mn

]
= lim

n→∞(�n
11 − �n

21(�
n
22)

−1�n
12)

= ‖c(·)1[s,t](·)‖κ,T − 〈c(·)1[0,s](·), �κ
c (s, t, ·)1[0,s](·)〉κ,T

= ‖c(·)1[s,t](·)‖κ,T − ‖�κ
c (s, t, ·)1[0,s](·)‖2

κ,T .

Theorem 3.2 is now a consequence of Theorem 3.1.

Proof of Theorem 3.2. By (3.5), it follows that, for 0 ≤ s ≤ t ≤ T ,

X(t) = X(s) exp

{
−

∫ t

s

a(v) dv

}
+

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
k(v) dv

+
∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
σ(v) dBκ(v). (5.2)

Therefore, X(t) | Fs is again Gaussian distributed. Since X(s) is Fs-measurable, a direct
consequence is now that

E[X(t) | Fs] = X(s) exp

{
−

∫ t

s

a(v) dv

}
+

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
k(v) dv

+ E

[∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
σ(v) dBκ(v)

∣∣∣∣ Fs

]
and

var[X(t) | Fs] = var

[∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
σ(v) dBκ(v)

∣∣∣∣ Fs

]
.

Invoking Theorem 3.1 with c(·) = exp{− ∫ t

· a(w) dw}σ(·) concludes the proof.

The main step of the proof of Proposition 3.1 is an application of a density formula for
Riemann–Stieltjes integrals.

Proof of Proposition 3.1. By assumption on the coefficient functions, all integrals appearing
in this proof can be considered in the pathwise Riemann–Stieltjes sense; cf. [21, Section 10].

Our goal is now to invert (3.4). By (3.5) we have, for 0 ≤ s ≤ t ≤ T ,

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
σ(v) dBκ(v)

= X(t) − X(s) exp

{
−

∫ t

v

a(w) dw

}
−

∫ t

s

exp

{
−

∫ t

v

a(w) dw

}
k(v) dv,
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and, invoking a density formula (which can be applied using Theorem A.4 of [10]) we obtain

Bκ(t) − Bκ(s) =
∫ t

s

exp{∫ t

v
a(w) dw}

σ(v)
d

(
−

∫ t

v

exp

{
−

∫ t

z

a(w) dw

}
σ(z) dBκ(z)

)

=
∫ t

s

exp{∫ t

v
a(w) dw}

σ(v)
d

(∫ t

v

exp

{
−

∫ t

z

a(w) dw

}
k(z) dz

+ X(v) exp

{
−

∫ t

v

a(w) dw

}
− X(t)

)
(5.3)

= −
∫ t

s

k(v)

σ (v)
dv +

∫ t

s

a(v)

σ (v)
X(v) dv +

∫ t

s

1

σ(v)
dX(v).

To complete the proof, substitute this result into the formulae of Theorem 3.2.

Proof of Proposition 3.2. Let 0 ≤ s ≤ t ≤ T . By Gaussianity we again see that∫ t

0 X(v) dv | Fs is normally distributed, and, as before, it remains to calculate its expec-
tation and variance to achieve the conditional characteristic function. Since

∫ s

0 X(v) dv is
Fs-measurable, we just consider

∫ t

s
X(v) dv | Fs . From (3.5) we obtain, by (5.2) and Fubini’s

theorem (see Theorem 1 of [16]),∫ t

s

X(v) dv =
∫ t

s

{
X(s) exp

{
−

∫ v

s

a(w) dw

}
+

∫ v

s

exp

{
−

∫ v

z

a(w) dw

}
k(z) dz

+
∫ v

s

exp

{
−

∫ v

z

a(w) dw

}
σ(z) dBκ(z)

}
dv

= D(s, t)X(s) +
∫ t

s

D(v, t)k(v) dv +
∫ t

s

D(v, t)σ (v) dBκ(v).

It follows that

E

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
=

∫ s

0
X(v) dv + D(s, t)X(s) +

∫ t

s

D(v, t)k(v) dv

+ E

[∫ t

s

D(v, t)σ (v) dBκ(v)

∣∣∣∣ Fs

]
and

var

[∫ t

0
X(v) dv

∣∣∣∣ Fs

]
= var

[∫ t

s

D(v, t)σ (v) dBκ(v)

∣∣∣∣ Fs

]
.

Applying Theorem 3.1 with c(·) = D(·, t)σ (·) shows the first assertion. The second assertion
follows by applying (5.3).

The proof of Theorem 3.3 uses Fourier techniques.

Proof of Theorem 3.3. Let x ∈ R, and set g(x, u) = exp(iuf (x)). First we decompose g as
follows:

g(x, u) = ex[e−xg(x, u)1[0,∞)(x)] + e−x[exg(x, u)1(−∞,0)(x)]
=: exg+(x, u) + e−xg−(x, u).
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For fixed u ∈ R, denote by ĝ+(·, u) and ĝ−(·, u) the Fourier transforms of g+(·, u) and g−(·, u),
respectively. Using classical Fourier analysis, we obtain, for x, ξ ∈ R,

ĝ±(ξ, u) = 1

2π

∫
R

e−iξxg±(x, u) dx = 1

2π

∫
R±

e−(iξ±1)x+iuf (x) dx,

g±(x, u) =
∫

R

eiξx ĝ±(ξ, u) dξ,

where we have used the fact that g+(·, u) and g−(·, u) are in L1(R) ∩ L2(R) since g(·, u) is
bounded. Now we obtain

E[eiuZ(t) | Fs] = E[g(X(t)) | Fs]
= E[eX(t)g+(X(t), u) | Fs] + E[e−X(t)g−(X(t), u) | Fs]
= E

[
eX(t)

∫
R

eiξX(t)ĝ+(ξ, u) dξ

∣∣∣∣ Fs

]

+ E

[
e−X(t)

∫
R

eiξX(t)ĝ−(ξ, u) dξ

∣∣∣∣ Fs

]
.

Since E[ebX(t)] < ∞ for all b ∈ C, we can interchange the conditional expectation and
integration to obtain

E[eiuZ(t) | Fs] =
∫

R

(E[e(iξ+1)X(t) | Fs ]̂g+(ξ, u) + E[e(iξ−1)X(t) | Fs ]̂g−(ξ, u)) dξ.
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