
Conditional Estimators: An Effective
Attack on A5/1

Elad Barkan and Eli Biham

Computer Science Department,
Technion – Israel Institute of Technology,

Haifa 32000, Israel
{barkan, biham}@cs.technion.ac.il
http://www.technion.ac.il/∼barkan/

http://www.cs.technion.ac.il/∼biham/

Abstract. Irregularly-clocked linear feedback shift registers (LFSRs)
are commonly used in stream ciphers. We propose to harness the power
of conditional estimators for correlation attacks on these ciphers. Condi-
tional estimators compensate for some of the obfuscating effects of the
irregular clocking, resulting in a correlation with a considerably higher
bias. On GSM’s cipher A5/1, a factor two is gained in the correlation
bias compared to previous correlation attacks. We mount an attack on
A5/1 using conditional estimators and using three weaknesses that we
observe in one of A5/1’s LFSRs (known as R2). The weaknesses imply
a new criterion that should be taken into account by cipher designers.
Given 1500–2000 known-frames (about 4.9–9.2 conversation seconds of
known keystream), our attack completes within a few tens of seconds to a
few minutes on a PC, with a success rate of about 91%. To complete our
attack, we present a source of known-keystream in GSM that can pro-
vide the keystream for our attack given 3–4 minutes of GSM ciphertext,
transforming our attack to a ciphertext-only attack.

1 Introduction

Correlation attacks are one of the prominent generic attacks on stream ciphers.
There were many improvements to correlation attacks after they were introduced
by Siegenthaler [13] in 1985. Many of them focus on stream ciphers composed
of one or more regularly clocked linear feedback shift registers (LFSRs) whose
output is filtered through a non-linear function. In this paper, we discuss stream
ciphers composed of irregularly-clocked linear feedback shift registers (LFSRs),
and in particular, on stream ciphers whose LFSRs’ clocking is controlled by the
mutual value of the LFSRs. The irregular clocking of the LFSRs is intended
to strengthen the encryption algorithm by hiding from the attacker whether
a specific register advances or stands still. Thus, it should be difficult for an
attacker to correlate the state of an LFSR at two different times (as he does not
know how many times the LFSR has been clocked in between).

Assume the attacker knows the number of clocks that the LFSRs have been
clocked until a specific output bit has been produced. The attacker can guess the

B. Preneel and S. Tavares (Eds.): SAC 2005, LNCS 3897, pp. 1–19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 E. Barkan and E. Biham

number of clocks that the LFSRs are clocked during the generation of the next
output bit with some success probability p < 1. A better analysis that increases
the success probability of guessing the number of clocks for the next output
bit could prove devastating to the security of the stream cipher. Our proposed
conditional estimators are aimed at increasing this success probability.

In this paper, we introduce conditional estimators, aimed to increase the prob-
ability of guessing the clockings of the LFSRs correctly. We apply conditional
estimators to one of the most fielded irregularly clocked stream ciphers — A5/1,
which is used in the GSM cellular network. GSM is the most heavily deployed
cellular phone technology in the world. Over a billion customers world-wide own
a GSM mobile phone. The over-the-air privacy is currently protected by one of
two ciphers: A5/1 — GSM’s original cipher (which was export-restricted), or
A5/2 which is a weakened cipher designated for non-OECD (Organization for
Economic Co-operation and Development) countries. As A5/2 was discovered
to be completely insecure [3], the non-OECD countries are now switching to
A5/1. The internal design of A5/1 and A5/2 was kept secret until Briceno [6]
reverse engineered their internal design in 1999. Contrary to A5/1 and A5/2,
the internal design of the future GSM cipher A5/3 was officially published.

The first attacks on A5/1 were proposed by Golic [9] in 1997, when only
a rough design of the cipher was leaked. He proposed two known-keystream
attacks: the first is a guess and determine attack, and the second is a time-
memory tradeoff attack. In 2000, the second attack was significantly improved
by Biryukov, Shamir, and Wagner [5]. In some scenarios the improved attack can
find the key in less than a second. However, the attack requires four 74-gigabyte
disks and a lengthy precomputation. At the same time, Biham and Dunkel-
man [4] took a different approach. Their attack requires a few tens of seconds of
known-keystream and recovers the key with a time complexity of about 240 A5/1
cycles. In 2003, Barkan, Biham, and Keller [3] showed a ciphertext-only attack
that finds the encryption key of A5/2, using the fact that in GSM the error-
correction codes are employed before encryption. They converted this attack to
an active attack on A5/1 networks, and also presented a ciphertext-only time-
memory tradeoff attack on A5/1. However, the latter requires a very lengthy pre-
computation step. As for correlation attacks, in 2001, Ekdahl and Johansson [7]
applied ideas from correlation attacks to A5/1. Their attack requires a few min-
utes of known-keystream, and finds the key within minutes on a personal com-
puter. In 2004, Maximov, Johansson, and Babbage [11] discovered a correlation
between the internal state and the output bits and used it to improved the at-
tack. Given about 2000–5000 frames (about 9.2–23 seconds of known-plaintext),
their attack recovers the key within 0.5–10 minutes on a personal computer.

These attacks demonstrate that fielded GSM systems do not provide an ad-
equate level of privacy for their customers. However, breaking into fielded A5/1
GSM systems using these attacks requires either active attacks (e.g., man in the
middle), a lengthy (although doable) precomputation step, a high time complex-
ity, or a large amount of known keystream.

Conditional Estimators: An Effective Attack on A5/1 3

One advantage of correlation attacks on A5/1 over previous attacks is that
they require no long-term storage and no preprocessing, yet given a few sec-
onds of known-keystream, they can find the key within minutes on a personal
computer. Another advantage of correlation attacks over some of the previous
attacks is the immunity to transmission errors. Some of the previous attacks
are susceptible to transmission errors, e.g., a single flipped bit defeats Golic’s
first attack. Correlation attacks can naturally withstand transmission errors, and
even a high bit-error-rate can be accommodated for.

In this paper, we introduce conditional estimators, which can compensate for
some of the obfuscating effects caused by the irregular clocking. Using conditional
estimators, we improve the bias of the correlation equation that was observed
in [11] by a factor of two. In addition, we discover three weaknesses in one of
A5/1’s registers. We mount a new attack on A5/1 based on the conditional
estimators and the three weaknesses. Finally, we describe a source for known
keystream transforming our attack to a ciphertext-only attack.

One of the weaknesses relates to the fact that register R2 of A5/1 has only two
feedback taps, which are adjacent. This weakness enables us to make an optimal
use of the estimators by translating the problem of recovery of the internal state
of the register to a problem in graph theory. Thus, unlike previous attacks [7, 11],
which were forced to use heuristics, we can exactly calculate the list of most
probable internal states. We note that in 1988, Meier and Staffelbach [12] warned
against the use of LFSRs with few feedback taps. However, it seems that their
methods are difficult to apply to A5/1.

An alternative version of our attack can take some advantage of the fact that
many operators set the first bits of the key to zero (as reported in [6]); this
alternative version slightly simplifies the last step of our attack, and results with
a somewhat higher success rate. We are not aware of any other attack on A5/1
(except for exhaustive search) that could benefit from these ten zero bits.

Our last contribution is a new source for known-plaintext in GSM. We point
at the Slow Associated Control CHannel (SACCH) and show that its content can
be derived. We also discuss the frequency hopping in GSM and how to overcome
it. Using this new source for known-plaintext, our attacks can be converted to
ciphertext-only attacks. However, this is a slow channel, that provides only about
eight known frames each second.

We have performed simulations of our attacks. Given 2000 frames, our simu-
lations take between a few tens of seconds and a few minutes on a PC to find
the key with a success rate about 91%. For comparison, the simulations of [11]
with a similar number of frames take about four times longer to run and achieve
a lower success rate of about only 5%. A comparison of some of the results of
previous works and our results is given in Table 1. With our new source for
known keystream, the required 1500–2000 known frames can be obtained from
the ciphertext of about 3–4 minutes of conversation.

This paper is organized as follows: We give a short description of A5/1 in
Section 2, then, we set our notations and review some of the main ideas of
previous works in Section 3. In Section 4 we describe the conditional estimators

4 E. Barkan and E. Biham

Table 1. Comparison Between the Our Attacks and Previous Works. Only passive at-
tacks are included, i.e., the active attack of [3] is not shown. The attack time for [3, 4, 5]
is our estimate. As [3, 5] are time/memory/data tradeoff attacks, we give the tradeoff
point that uses data that is equivalent to four minutes of ciphertext.
∗ based on error-correction codes as described in [3] (not on Section 7).
� preprocessing time

Attack: Required Frames Average Time Success
(Configuration Known Ciphertext on a single Rate

explained in Section 6) Keystream Only PC (range)
(by Section 7)

Ekdahl & Johansson [7] 70000 (322 s) 140 min 5 min 76%
[7] 50000 (230 s) 99 min 4 min 33%
[7] 30000 (138 s) 60 min 3 min 3%

Biham & Dunkelman [4] 20500 (95 s) 40.8 min ≈ 1.5 days 63%

Maximov et al. [11] 10000 (46 s) 20 min 10 min 99.99%
[11] 10000 (46 s) 20 min 76 s 93%

[11] 5000 (23 s) 10 min 10 min 85%
[11] 5000 (23 s) 10 min 44 s 15%

[11] 2000 (9.2 s) 4 min 10 min 5%
[11] 2000 (9.2 s) 4 min 29 s 1%

Biryukov et al. [5] 2000 (9.2 s) 4 min � > 5 years
Ciphertext only attack of — 4 min∗ � > 2300 years

Barkan et al. [3]

This Paper 2000 (9.2 s) 4 min (6–10 min) 64%
early filtering 2000 (9.2 s) 4 min (55–300 s) 64%

(220000, 40000, 2000, 5200)
early filtering 2000 (9.2 s) 4 min (32–45 s) 48%

(100000, 15000, 200, 300)
improved estimators, 2000 (9.2 s) 4 min 74 s 86%

(200000, 17000, 900, 2000) (50–145 s)
improved estimators, 2000 (9.2 s) 4 min 133 s 91%

(200000, 36000, 1400, 11000) (55–626s)

early filtering 1500 (6.9 s) 3 min (39–78 s) 23%
(120000, 35000, 1000, 800)

improved estimators, 1500 (6.9 s) 3 min 82 s 48%
(88000, 52000, 700, 1200) (44–105 s)
improved estimators, 1500 (6.9 s) 3 min 7.2 min 54%

(88000, 52000, 3200, 15000) (44–780 s)

and three weaknesses, and then use them in our new attack in Section 5. The
results of our simulations are presented in Section 6. We describe the new source
of known-plaintext in Section 7. Finally, the paper is summarized in Section 8.

Conditional Estimators: An Effective Attack on A5/1 5

2 A Description of A5/1

The stream cipher A5/1 accepts a 64-bit session key Kc and a 22-bit publicly-
known frame number f . GSM communication is performed in frames, where
a frame is transmitted every 4.6 millisecond. In every frame, A5/1 is initial-
ized with the session key and the frame number. The resulting 228 bit output
(keystream) is divided into two halves: the first half is used to encrypt the data
from the network to the mobile phone, while the second half is used to encrypt
the data from the mobile phone to the network. The encryption is performed by
XORing the data with the appropriate half of the keystream.

A5/1 has a 64-bit internal state, composed of three maximal-length Linear
Feedback Shift Registers (LFSRs): R1, R2, and R3, with linear feedbacks as
shown in Figure 1. Before a register is clocked the feedback is calculated (as
the XOR of the feedback taps). Then, the register is shifted one bit to the
right (discarding the rightmost bit), and the feedback is stored into the leftmost
location (location zero).

A5/1 is initialized with Kc and f in three steps, as described in Figure 2.
This initialization is referred to as the key setup.

Observe that the key setup is linear in the bits of both Kc and f , i.e., once the
key setup is completed, every bit of the internal state is an XOR of bits in fixed
locations of Kc and f . This observation is very helpful in correlation attacks.

A5/1 works in cycles, where in each cycle one output bit is produced. A
cycle is composed of irregularly clocking R1, R2, and R3 according to a clocking
mechanism that we describe later, and then outputting the XOR of the rightmost
bits of the three registers (as shown in Figure 1). The first 100 bits of output are
discarded, i.e., the 228 bits that are used in GSM are output bits 100,. . . ,327.
The keystream generation can be summarized as follows:

1. Run the key setup with Kc and f (Figure 2).
2. Run A5/1 for 100 cycles and discard the output.
3. Run A5/1 for 228 cycles and use the output as keystream.

C3

0 22

Output

stream

Clocking Unit

R2 0 21

0 18R1

R3

C1

C2

Fig. 1. The A5/1 internal structure

6 E. Barkan and E. Biham

1. Set R1 = R2 = R3 = 0.
2. For i = 0 to 63

– Clock all three registers.
– R1[0] ← R1[0] ⊕ Kc[i]; R2[0] ← R2[0] ⊕ Kc[i]; R3[0] ← R3[0] ⊕ Kc[i].

3. For i = 0 to 21
– Clock all three registers.
– R1[0] ← R1[0] ⊕ f [i]; R2[0] ← R2[0] ⊕ f [i]; R3[0] ← R3[0] ⊕ f [i].

Fig. 2. The key setup of A5/1. The i’th bit of Kc is denoted by Kc[i], and the i’th bit
of f is denoted by f [i], where i = 0 is the least significant bit. We denote the internal
state after the key setup by (R1, R2, R3) = keysetup(Kc, f).

It remains to describe the clock control mechanism, which is responsible for
the irregular clocking. Each register has a special clocking tap near its middle
(in locations R1[8], R2[10], and R3[10]). The clocking mechanism algorithm:

1. Calculate the majority of the values in the three clocking taps.
2. Then, clock a register if and only if its clocking tap agrees with the majority.

For example, assume that R1[8] = R2[10] = c and R3 = 1−c for some c ∈ {0, 1}.
Clearly, the value of the majority is c. Therefore, R1 and R2 are clocked, and
R3 stands still.

Note that in each cycle of A5/1, either two or three registers are clocked (since
at least two bits agree with the majority). Assuming that the clocking taps are
uniformly distributed, each register has a probability of 1/4 for standing still
and a probability of 3/4 for being clocked.

3 Notations and Previous Works

In this section, we set our notations, and describe some of the main ideas of
the previous works. Let S1, S2, and S3 be the initial internal state of registers
R1, R2, and R3 after the key-setup (using the correct Kc), where the frame
number is chosen to be zero, i.e., (S1, S2, S3) = keysetup(Kc, 0). For i = 1, 2, 3,
denote by S̃i[li] the output bit of Ri after it is clocked li times from its initial
state Si.1 Similarly, let F j

1 , F j
2 , and F j

3 be the initial internal state of registers
R1, R2, and R3 after a key setup using all zeros as the key, but with frame
number j, i.e., (F j

1 , F j
2 , F j

3) = keysetup(0, j). For i = 1, 2, 3, denote by F̃ j
i [li]

the output of Ri after it is clocked li times from its initial state F j
i . Ekdahl

and Johansson [7] observed that due to the linearity of the key setup, the initial
internal value of Ri at frame j is given by Si ⊕ F j

i , i.e., keysetup(Kc, j) =
keysetup(Kc, 0) ⊕ keysetup(0, j) = (S1 ⊕ F j

1 , S2 ⊕ F j
2 , S3 ⊕ F j

3). Furthermore,

1 Note that as a register has a probability of 3/4 of being clocked in each cycle, it
takes about li + li/3 cycles to clock the register li times.

Conditional Estimators: An Effective Attack on A5/1 7

due to the linear feedback of the shift register, the output of LFSR i at frame j
after being clocked li times from its initial state is given by S̃i[li] ⊕ F̃ j

i [li].
Maximov, Johansson, and Babbage [11] made the following assumptions:

1. clocking assumption (j, l1, l2, t): Given the keystream of frame j, registers
R1 and R2 were clocked exactly l1 and l2 times, respectively, until the
end of cycle t. The probability that this assumption holds is denoted by
Pr((l1, l2) at time t) (this probability can be easily computed, see [11]).

2. step assumption (j, t): Given the keystream of frame j, both R1 and R2 are
clocked in cycle t+1, but R3 stands still. Assuming the values in the clocking
taps are uniformly distributed, this assumption holds with probability 1/4
(the clocking mechanism ensures that if the values of the clocking taps are
uniformly distributed, each register stands still with probability 1/4).

They observed that under these two assumptions, R3’s contribution to the out-
put is fixed in output bits t and t + 1. Thus, R3 does not affect the difference
between these two output bits, and the following equation holds:

(S̃1[l1] ⊕ S̃2[l2]) ⊕ (S̃1[l1 + 1] ⊕ S̃2[l2 + 1]) =

Z̃j [t] ⊕ Z̃j [t + 1] ⊕ (F̃ j
1 [l1] ⊕ F̃ j

2 [l2]) ⊕ (F̃ j
1 [l1 + 1] ⊕ F̃ j

2 [l2 + 1]), (1)

where Z̃j[t] is the output bit of the cipher at time t of frame j. Thus, the value
of (S̃1[l1] ⊕ S̃2[l2]) ⊕ (S̃1[l1 + 1] ⊕ S̃2[l2 + 1]) can be estimated from the known
keystream and the publicly available frame numbers.

Equation (1) holds with probability 1 if both the clocking assumption and
the step assumption hold. If either or both assumptions do not hold, then Equa-
tion (1) is assumed to hold with probability 1/2 (i.e., it holds by pure chance).
Therefore, Equation (1) holds with probability (1 − Pr((l1, l2) at time t))/2 +
Pr((l1, l2) at time t)((3/4)/2 + 1/4) = 1/2 + Pr((l1, l2) at time t)/8. The bias
Pr((l1, l2) at time t)/8 is typically two to three times higher compared to the
bias shown in [7]. Such a difference in the bias is expected to result in an im-
provement of the number of frames needed by a factor between four and ten,
which is indeed the case in [11].

We simplify Equation (1) by introducing the notation S̃′
i[li] defined as S̃i[li]⊕

S̃i[li+1]. Similarly denote F̃ j
i [li]⊕F̃ j

i [li+1] by F̃ ′j
i [li], and denote Z̃j [t]⊕Z̃j [t+1]

by Z̃ ′j [t]. Thus, Equation (1) can be written as:

(S̃′
1[l1] ⊕ S̃′

2[l2]) = Z̃ ′j [t] ⊕ (F̃ ′j
1 [l1] ⊕ F̃ ′j

2 [l2]) (2)

Observe that due to the linearity of the LFSR, S̃′
i[li] can be viewed as the output

of Ri after it has been clocked li times from the initial state S′
i � S+

i ⊕Si, where
S+

i denotes the internal state of Ri after it has been clocked once from the
internal state Si. Note that there is a one-to-one correspondence between Si and
S′

i, therefore, when we recover S′
i, we find Si.

In [11] it was observed that better results are obtained by working with d con-
secutive bits of the output of S′

i, where d is a small integer. A symbol is defined to
be the binary string of d consecutive bits S′

i[li] � S̃′
i[li]||S̃′

i[li+1]|| · · · ||S̃′
i[li+d−1],

8 E. Barkan and E. Biham

where “||” denotes concatenation. For example, S′
2[81] = S̃′

2[81] is a 1-bit symbol,
and S′

1[90] = S̃′
1[90]||S̃′

1[91] is a 2-bit symbol.
In the first step of [11], estimators are calculated based on the above correla-

tion and on the available keystream. For every pair of indices l1 and l2 for which
estimators are computed, and for every possible symbol difference δ = S′

1[l1] ⊕
S′

2[l2], the estimator El1,l2 [δ] is the logarithm of the a-posteriori probability that
S′

1[l1] ⊕ S′
2[l2] = δ. For example, for d = 1, the symbol is a single bit, thus, the

symbol difference can be either zero or one. Then, for l1 = 80 and l2 = 83, the es-
timator E80,83[0] is the logarithm of the probability that S′

1[80]⊕S′
2[83] = 0, and

E80,83[1] is the logarithm of the probability that S′
1[80] ⊕ S′

2[83] = 1. For d = 2,
there are four estimator for every pair of indices, e.g., E80,83[002], E80,83[012],
E80,83[102], and E80,83[112] (where “2” denotes the fact that the number is writ-
ten in its binary representation, e.g., 112 is the binary representation of the num-
ber 3). The value of E80,83[102] is the logarithm of the probability that S′

1[80] ⊕
S′

2[83] = 102, and so on. Note that the higher d is — the better the estimators
are expected to be (but the marginal benefit drops exponentially as d grows).

In order to save space, we do not describe here how to calculate the estimators
given the known-keystream and d. See [11] for the details. We would only note
that the time complexity of this step is proportional to 2d. With 2000 frames, the
simulation in [11] takes about eleven seconds to complete this step with d = 1,
and about 40 seconds with d = 4.

The rest of the details of previous works deal with how to decode the esti-
mators and to recover candidate values for S1, S2, and S3 (and thus recovering
the key). These methods are basically heuristic methods that decode the estima-
tors in short intervals of li of the output of S′

i, and then intersect the resulting
candidates to find candidates for S1, S2, and S3.

4 The New Observations

In this section, we describe tools and observations that we later combine to form
the new attack.

4.1 The New Correlation — Conditional Estimators

In Section 3, we reviewed the correlation equation used by Maximov, Johansson,
and Babbage. This correlation equation is based on two assumptions, the clock-
ing assumption and the step assumption. Recall that the step assumption (i.e.,
that the third register stands still) holds in a quarter of the cases (assuming that
the values in the clocking taps are independent and uniformly distributed).

Consider registers R1 and R2, and assume that for a given frame j and output
bit t the clocking assumption holds, i.e., we know that R1 and R2 were clocked
l1 and l2 times, respectively, from their initial state. Also assume that we know
the value of S̃1[l1 +10] and S̃2[l2 +11]. We use the publicly known frame number
j to find the value of the clocking taps C1 = S̃1[l1 + 10] ⊕ F̃ j

1 [l1 + 10] of R1 and
C2 = S̃2[l2 + 11] ⊕ F̃ j

2 [l2 + 11] of R2 at output bit t.

Conditional Estimators: An Effective Attack on A5/1 9

We observe that the bias of the correlation can be improved by a factor of
two by dividing the step assumption into two distinct cases. The first of the two
distinct cases is when C1 �= C2. Due to the clocking mechanism, R3 is always
clocked in this case along with either R1 or R2. The step assumption does not
hold, and therefore, Equation (2) is assumed to hold in half the cases. In other
words, the case where C1 �= C2 provides us no information.

However, in the second case, when C1 = C2, we gain a factor two increase in
the bias. In this case, both R1 and R2 are clocked (as c = C1 = C2 is the major-
ity), and R3 is clocked with probability 1/2, in case its clocking tap C3 = c (we
assume that the values of the clocking taps are uniformly distributed). There-
fore, when C1 = C2, the step assumption holds with probability 1/2 compared
to probability 1/4 in [11].

We analyze the probability that Equation (2) holds when C1 = C2. If either
the step assumption or the clocking assumption do not hold, then we expect
that Equation (2) holds with probability 1/2 (i.e., by pure chance). Together with
the probability that the assumptions hold, Equation (2) is expected to hold with
probability Pr((l1, l2) at time t)(1/2+1/2·1/2)+1/2(1−Pr((l1, l2) at time t)) =
1/2 + Pr((l1, l2) at time t)/4 compared to 1/2 + Pr((l1, l2) at time t)/8 in [11].
Therefore, when C1 = C2, we gain a factor two increase in the bias compared
to [11].2

We use the above observation to construct conditional estimators (which are
similar to conditional probabilities). We define a d-bit clock symbol Si[li] in index
li as the d-bit string: S̃i[li]||S̃i[li+1]|| · · · ||S̃i[li+d−1], where “||” denotes concate-
nation. The conditional estimator El1,l2 [x|Sc] for indices l1, l2 is computed for ev-
ery possible combination of a clock symbol difference Sc = S1[l1+10]⊕S2[l2+11]
and a symbol difference x = S′

1[l1]⊕S′
2[l2]. The estimator El1,l2 [x|Sc] is the log-

arithm of the a-posteriori probability that the value of the symbol difference
is x, given that the value of the clock symbol difference is Sc. The computa-
tion of conditional estimators is similar to the computation of the estimators
as described in [11], taking into account the above observations. The complete
description of the calculation of conditional estimators will be given in the full
version of this paper.

One way of using conditional estimators is to remove the conditional part
of the estimators, and use them as regular estimators, i.e., compute El1,l2 [x] =

log
(

1
2d

∑
y eEl1,l2 [x|y]

)
. Nevertheless, the benefit would not be large. A better

use of the conditional estimators is to use them directly in the attack as is shown
in Section 5.1.

4.2 First Weakness of R2 — The Alignment Property

The first weakness of R2 uses the fact that the feedback taps of R2 coincide
with the bits that are estimated by the correlation equation. Assume that the

2 As a refinement of these observations, note that it suffices to know the value of
S̃1[l1 + 10] ⊕ S̃2[l2 + 11], since we only consider C1 ⊕ C2 rather than the individual
value of C1 and C2.

10 E. Barkan and E. Biham

value of S1 is known. Then for every index i, the correlation equation estimates
the value of S2[i] ⊕ S2[i + 1]. On the other hand the linear feedback of R2 forces
S2[i] ⊕ S2[i + 1] = S2[i + 22]. Thus, the correlation equation actually estimates
bits which are 22 bits away. Using our notations, this property can be written as

S′
2[i] = S2[i + 22].

4.3 Second Weakness of R2 — The Folding Property

The second weakness of R2 is that it has only two feedback taps, and these taps
are adjacent. Let X [∗] be a bit-string which is an output of R2, and let cost(i, x)
be a cost function that sets a cost for every possible d-bit string x in index i of
the string X [∗] (the cost function is independent of the specific stream X [∗]).
We calculate the total cost of a given string X [∗] (i.e., calculate its “score”) by

∑
i

cost(i, X [i]||X [i + 1]|| · · · ||X [i + d − 1]). (3)

Given the cost function, we can also ask what is the string Xmax that maximizes
the above sum, i.e., the string with the highest score.

The folding property allows to create a new cost function cost′(i, x), where i is
one of the first 22 indices. The special property of cost′ is that the score calculated
on the first 22 indices using cost′ is equal to the score using Equation (3) over
all the indices (using cost). cost′ is very helpful in finding the highest scored
string Xmax for a given cost function cost. However, the transition from cost to
cost′ has the penalty that cost′(i, x) operates on d′-bit strings x that are slightly
longer than d. In general, every 22 additional indices (beyond the first 22 indices)
in X [∗] add one bit of length to x (in our simulation we work with strings of 66
indices, therefore, our cost′ operates on strings of length d′ = d + 2).

For every index i, it holds that X [i + 22] = X [i] ⊕ X [i + 1], due to the linear
feedback taps of R2. Therefore, the d′-bit string at index i determines a (d′ −1)-
bit string at index i + 22, a (d′ − 2)-bit string at index i + 2 · 22, a (d′ − 3)-bit
string at index i+3 · 22, etc. Clearly, the contribution to the score of the strings
in these indices is also determined by the value of the d′-bit string at index i,
and thus can be “folded” into the cost function for index i.

For simplicity, we assume that the number of indices is divisible by 22, i.e.,
22k + d − 1 bits of X [∗] are included in the score computation (the attack can
easily be extended to cases where the number of indices is not divisible by 22).
The calculation of cost′ from cost is given in Figure 3. We call the d′-bit strings
representative symbols. Note that not every choice of 22 representative symbols
is a consistent output of R2, as the 22 representative symbols span 22 + d′ − 1
bits (and thus there are 222+d′−1 possibilities for these bits), while R2’s internal
state has 22 bits. Specifically, the last d′ − 1 bits are determined by the first d′

bits through the linear feedback. Denote these last d′ − 1 bits by w.
The linear feedback of R2 is actually calculating the difference between ad-

jacent bits. We denote this operation using the difference operator D, i.e.,
D(α1, α2, α3, . . . , αd′) = (α1 ⊕ α2, α2 ⊕ α3, . . . , αd′−1 ⊕ αd′).

Conditional Estimators: An Effective Attack on A5/1 11

For each i ∈ {is, . . . , is + 21}
For each e ∈ {0, 1}d+k−1

cost′(i, e) �
∑k−1

j=0 cost(i + 22k, lsbd(Dj(e))

Fig. 3. The folding property; calculating cost′ from cost. Denote the first index of X[∗]
by is, and the number of indices by 22k. D(x) is the difference function that calculates
the difference string — the parity of each two adjacent bits in x; Dj(x) is j applications
of D on x. lsbd(x) returns the d least significant bits of x, thus, lsbd(Dj(e)) is the d-bit
string in index i + 22k that is determined by e.

For the first bits to be consistent with the last bits w, we require that the
first bits are equal to D−1

0 (w) or D−1
1 (w), where D−1

0 (w) is the value such
that D(D−1

0 (w)) = w, and the first bit of D−1
0 (w) is zero (i.e., D−1

0 is one
of two inverses of D). D−1

1 (w) is the 1-complement of D−1
0 (w) (it also satisfies

D(D−1
1 (w)) = w, i.e., D−1

1 is the other inverse of D).

4.4 Third Weakness of R2 — The Symmetry Property

The third weakness in R2 is that its clock tap is exactly in its center. Combined
with the folding property, a symmetry between the clocking tap and the output
tap of R2 is formed. The symmetry property allows for an efficient attack using
conditional estimators. Assume that S1 is known. S2[i] is at the output tap of
R2 when S2[i + 11] is at the clock tap. When S2[i + 11] reaches the output tap,
S2[i+11+11] = S2[i+22] is at the clock tap. However, the representative symbol
at i determines both the bits of S2[i] and S2[i+22]. Therefore, the representative
symbols are divided into pairs, where each pair contains a representative symbol
of some index i and a representative symbol of index i+11. When the represen-
tative symbols of index i serve for clocking, the other representative symbol is
used for the output, and vice versa, i.e., the representative symbols in the pair
control the clocking of each other. If the clocking taps were not in the middle,
we could not divide the representative symbols into groups of two.

5 The New Attack

The attack is composed of three steps:

1. Compute the conditional estimators.
2. Decode the estimators to find list of best candidate pairs for S1, S2 values,

by translating the problem of finding the best candidates to a problem in
graph-theory.

3. For each candidate in the list, recover candidates for S3. When a triplet
S1, S2, S3 is found, the key is recovered and verified through trial encryptions.

The computation of conditional estimators is based on Section 4.1, and similar
to the computation of estimators in [11]. We will give a full description of this
computation in the full version of the paper. Step 2 is described in Section 5.1.

12 E. Barkan and E. Biham

In Step 3, given candidate pairs for S1 and S2, we work back candidates for
S3 from the keystream. The method is similar to the one briefly described by
Ross Anderson in [1]. However, some adjustments are needed as the method
in [1] requires the internal state right at the beginning of the keystream (after
discarding 100 bits of output), whereas Step 2 provides candidates for the in-
ternal state after the key setup but before discarding 100 bits of output (the
candidates for S1 and S2 XORed with F j

1 and F j
2 , respectively, are the internal

state right after the key-setup and before discarding 100 bits of output). An
alternative Step 3 exhaustively tries all 223 candidate values for S3. Taking into
account that many operators set ten bits of the key to zero (as reported in [6]),
we need to try only the 213 candidate values for S3 which are consistent with
the ten zero bits of the key. A more detailed description of Step 3 will be given
in the full version of this paper.

5.1 Step 2 — Decoding of Estimators

The aim of Step 2 is to find the list of best scored candidates for S1 and S2,
based on the conditional estimators. The score of s1 and s2 (candidate values
for S1 and S2, respectively) is simply the sum of their estimators (which is the
logarithm of the product of the a-posteriori probabilities), i.e.,

score(s1, s2) =
∑
l1,l2

El1,l2 [s
′
1[l1] ⊕ s′2[l2] | s1[l1 + 10] ⊕ s2[l2 + 11]].

The list of best candidates is the list of candidates {(s1, s2)} that receive the
highest values in this score. For the case of non-conditional estimators, the score
is defined in a similar manner but using non-conditional estimators (instead of
conditional estimators).

Surprisingly, the list of best candidate pairs can be efficiently computed using
the three weaknesses of R2. We translate the problem of calculating the list of
best scored candidates into a problem in graph theory. The problem is modeled
as a huge graph with a source node s and target node t, where each path in
the graph from s to t corresponds to a candidate value for S1 and S2, with the
score of the pair being the sum of the costs of the edges along the path (also,
for every candidate pair s1, s2, there is a single path in the graph from s to
t). Thus, the path with the heaviest score (“longest” path) corresponds to the
highest scored pair. A Dijkstra-like algorithm [2] (for finding shortest path) can
find the longest path, since the weights on the edges in our graph are negative
(logarithm of probability). The list of best candidates corresponds to the list of
paths which are near the heaviest. The literature for graph algorithms dealt with
finding N -shortest paths in a graph (e.g., [10]); these algorithms can be adapted
to our graph, and allow to find the heaviest paths.

Our graph contains 219 subgraphs, one for each candidate value for S1. All the
subgraphs have the same structure, but the weights on the edges are different.
Each such subgraph has one incoming edge entering the subgraph from the
source node s, and one outgoing edge from the subgraph to the target node t.
Both edges have a cost of zero.

Conditional Estimators: An Effective Attack on A5/1 13

5.1.1 The Structure of the Sub-graph Using Non-conditional
Estimators

Our method for decoding the estimators can be used with non-conditional es-
timators, and in fact the structure of the subgraph is best understood by first
describing the structure of the subgraph for the case of non-conditional estima-
tors. In this case, the subgraph for the jth candidate of S1 has a source node sj

and a target node tj . The subgraph is composed of 2d′−1 mini-subgraphs. Each
mini-subgraph corresponds to one combination w of the last d′−1 bits of the rep-
resentative symbol in index is + 21 (last representative symbol). Figure 4 shows
an example of a subgraph for d′ = 3, in which only the mini-subgraph for w = 01
is shown. The full subgraph contains a total of four mini-subgraphs, which differ
only in the locations of the two incoming edges (and their weight) and the out-
going edge. For each index i ∈ {is, . . . , is+21}, the mini-subgraph includes 2d′−1

nodes: one node for each combination of last d′ − 1 bits of the representative
symbols in index i. A single outgoing edge connects the mini-subgraph relevant
node 0

101 in index is + 21 to tj (the other nodes in index is + 21 can be erased
from the mini-subgraph). Two incoming edges (for D−1

0 (w) and D−1
1 (w)) con-

nect sj to relevant nodes in index is, which in our example are D−1
0 (01) = 001

and D−1
1 (01) = 110 (the nodes 0

100 and 0
111 in index is can be erased from

the mini-subgraph). Thus, any path that goes through the mini-subgraph must
include one of these incoming edges and the outgoing edge. This fact ensures
that each path corresponds to a consistent choice of representative symbols (as
discussed at the end of Section 4.3).

j

i

0001

0011

0101

0111

T

0001

0011

0101

0111

si +1 si +21

0001

0011

0101

0111

 s
r(i

 ,
00

1)
s

 sr
(i

,110)

s

S j

s

Fig. 4. The subgraph for the jth candidate value of S1

14 E. Barkan and E. Biham

Consistent transitions between representative symbols in adjacent indices are
modeled by edges that connect nodes of adjacent indices (in a way that reminds
a de-Bruijn graph). There is an edge from a first node to a second node if and
only if the last d′ − 1 bits of the first node are the same as the first d′ − 1
bits of the second node, which is the requirement for consistent choice of rep-
resentative symbols. For example, a transition between a representative symbol
a0a1 . . . ad′−1 in index i and a representative symbol a1a2 . . . ad′ in index i + 1
is modeled by an edge from node 0

1a1 . . . ad′−1 to node 0
1a2 . . . ad′ . The cost of

the edge is sr(i + 1, a1a2 . . . ad′) � cost′(i + 1, a1a2 . . . ad′), where cost′ is folded
using the folding property from cost(i, x) � funci,s1 [x] �

∑
l1

El1,i[s′1[l1] ⊕ x],
as described in Section 4.3, and s′1 is fixed for the given subgraph.

The total cost of edges along a path is
∑

i funci,s1 [s′2[i]] =
∑

l1,i El1,i[s′1[l1]⊕
s′2[i]] = score(s1, s2), where s′2 is the candidate for S′

2 that is implied by the
path, and s′1 is the appropriate value for the jth candidate for S1. After a quick
precomputation, the value of funci,s1 [x] can be calculated using a few table
lookups regardless of the value of s1.

5.1.2 The Structure of the Sub-graph Using Conditional Estimators
Similarly to the case of non-conditional estimators, in case conditional estimators
are used, the subgraph for candidate j has a source node sj , a target node tj ,
and the subgraph is composed of several mini-subgraphs, which differ only in the
location of the incoming edges (and their cost) and the location of the outgoing
edge. However, with conditional estimators, the structure of the mini-subgraphs
is different: each pair of indices i, i + 11 are unified to a single index, denoted by
i|i + 11.

We would like to combine the nodes in index i with nodes in index i + 11 by
computing their cartesian product: for each node a in index i and for each node
b in index i + 11, we form the unified node a|b in unified index i|i + 11. How-
ever, there is a technical difficulty: while (given S1) a non-conditional estimator
depends on a symbol candidate s′2[i], a conditional estimator depends on both a
symbol candidate s′2[i] and a clock symbol candidate s2[i + 11]. As a result, we
must apply the D−1 operator on nodes in index i + 11 (to transform them from
symbols to clock symbols). This operation divides node b =0

1 b1b2 . . . bd′−1 in
index i + 11 into two nodes 0

1D
−1
0 (b1b2 . . . bd′−1) and 0

1D
−1
1 (b1b2 . . . bd′−1). Only

then, we can perform the cartesian product between the nodes in index i and the
nodes that results from applying D−1. Thus, from a pair of a and b of the above
form, we have two nodes in the product (in index i|i+11): a|01D−1

0 (b1b2 . . . bd′−1)
and a|01D−1

1 (b1b2 . . . bd′−1). We refer to the bits on the left of the “|” in the node
as symbol bits, and the bits on the right of the “|” as clock bits. In total, there
are 2d′−1(2 · 2d′−1) = 22d′−1 nodes in each index i|i + 11.

There is an edge from node x1|y1 in index i|i + 11 to node x2|y2 in index i +
1|i+ 12 if and only if the last d′ − 1 bits of x1 are equal to the first d′ − 1 bits of
x2 and the last d′ bits of y1 are equal to the first d′ bits of y2. Figure 5 depicts
four nodes of a mini-subgraph using conditional estimators.

What should be the cost of an edge? the basic cost function is cost(i, x|y) �
funci,s1 [x|y] �

∑
l1

El1,i[s′1[l1] ⊕ x|s1[l1 + 10] ⊕ y], which is folded to the cost

Conditional Estimators: An Effective Attack on A5/1 15

i+1 | i+12

001
01101

0001
00101

0011
01001

0001
01001

nsr(i+1 , 001 | 0100)
nsr(i+1 , 000 | 0100)

nsr(i+
1 , 001 | 1100)

nsr(i+1 , 000 | 1100)

i | i+11

0

Fig. 5. Four nodes of the mini-subgraph using conditional estimators for d′ = 3

function cost′(i, x|y). Since each index i|i + 11 unifies two indices, the edge that
enters i|i+11 should contain the sum of contribution of indices i and i+11, i.e.,
the cost of the edge is nsr(i, s′2[i]|s2[i + 11]) � cost′(i, s′2[i]|lsbd′(s2[i + 11])) +
cost′(i+11, s′2[i+11]|s2[i+22]), where lsbd′(x) returns the d′ first bits of x. Note
that s′2[i + 11] = D(s2[i + 11]), and (due to the alignment property) s2[i + 22] =
s′2[i]. Therefore, nsr(i, s′2[i]|s2[i+11]) = cost′(i, s′2[i]|lsbd′(s2[i+11]))+ cost′(i+
11, D(s2[i + 11])|s′2[i]).

Like the case of non-conditional estimators, we create several mini-subgraphs
to ensure that the paths in the subgraph represent consistent choices for S1 and
S2. We include in the subgraph a mini-subgraph for each combination v of the
last d′ − 1 symbol bits and each combination w of the last d′ clock bits of the
last node (the node near tj). A single edge (with cost zero) connects the mini-
subgraph to tj from node 0

1v|01w. For consistency with the linear feedback, the
bits w must be identical to the symbol bits of the first node (both w and the
first symbol bits are d′-bit long). The bits v must be identical to the difference
of the first d′ bits of the first clock symbol. As v is (d′ − 1)-bit long, and as
the clock bits of the first symbol are (d′ + 1)-bit long, there are four possibili-
ties for the clock bits: D−1

0 (v)||0, D−1
1 (v)||0, D−1

0 (v)||1, and D−1
1 (v)||1. There-

fore, four edges w|D−1
0 (v)0, w|D−1

1 (v)0, w|D−1
0 (v)1, and w|D−1

1 (v)1 connect
sj to the mini-subgraph (the concatenation mark “||” was removed for clarity).
Their costs are nsr(is, w|D−1

0 (v)0), nsr(is, w|D−1
1 (v)0), nsr(is, w|D−1

0 (v)1), and
nsr(is, w|D−1

1 (v)1), respectively.
To reconstruct s′2 from a path in the mini-subgraph, we first concatenate the

symbol bits to form the first half of the path, and separately concatenate the
clock bits to form the second half of the path. Then, we compute the difference
between the clock bits, and combine the result with the symbol bits to obtain
a path of s′2 (similar to the path in the case of the mini-subgraph using un-
conditional estimators).

Note that in an efficient implementation there is no need to keep the en-
tire graph in memory, and needed parts of the graph can be reconstructed
on-the-fly.

16 E. Barkan and E. Biham

6 Simulations of Our Attacks

We have implemented our attack, and simulated it under various parameters.
Our simulations focus on 2000 frames of data, which is the lowest amount of
data that gives a non-negligible success rate in the simulations of Maximov,
Johansson, and Babbage [11]. We also simulated the attack with 1500 frames. A
comparison of simulations of previous attacks and simulations of our new attacks
is given in Table 1.

In the simulations we use d = 1, l1 ∈ {61, . . . , 144}, l2 ∈ {70, . . . , 135}, and
calculate estimators for | l1 − l2 |< 10. We use the first version of Step 3 with 64-
bit keys.

We ran the simulations on a 1.8GHz Pentium-4 Mobile CPU with 512MB of
RAM. The operating system was Cygwin under Windows XP. In comparison,
the simulations of [11] were performed on a 2.4GHz Pentium-4 CPU with 256MB
of RAM under Windows XP, and the simulations of [7] were performed on
a 1.8GHz Pentium-4 CPU with 512MB of RAM under Linux.

In one simulation, we limited the size of the list of top (s1, s2) pairs to 5200.
The key was found in about 64 percent of the cases, compared to about 5 per-
cent in previous attacks with 2000 frames. Our attack takes about 7 seconds to
complete Step 1. Step 2 takes about 340 seconds for the first pair, after which it
can generate about 1500 pairs of candidates per second. Step 3 scans about 20.4
candidate pairs per second. Therefore, the total time complexity varies depend-
ing on the location of the correct pair in the list. It takes about 350 seconds (six
minutes) in the best case, and up to ten minutes in the worst case.

For better results, we employ two methods: early filtering and improved
estimators.

6.1 Early Filtering

In early filtering, we perform Step 2 several times, using less accurate (and faster)
methods. Thus, we discard many candidate values of S1 that are highly unlikely,
and we do not need to build a subgraph for these values. For example, we score
all the candidates of S1 (a score of a candidate s1 of S1 is maxs2 score(s1, s2))
using non-conditional estimators and a less accurate but faster method. Then,
we recalculate the score for the 220000 top candidates, using a similar method,
but with conditional estimators. The 40000 top scored candidates are re-scored
using conditional estimators with a variation using only one mini-subgraph.
Finally, we perform Step 2 of Section 5.1 with subgraphs only for the 2000
scored candidates of S1. The list of the 5200 top candidates of S1 and S2 is
generated and passed to Step 3. We denote this kind of configuration in a tu-
ple (220000, 40000, 2000, 5200). Simulation results using other configurations for
both 2000 and 1500 frames are given in Table 1.

6.2 Improved Estimators

A disadvantage of the described attack is that only information from the esti-
mators El1,l2 [·|·] is taken into consideration, while estimators involving R3, i.e.,

Conditional Estimators: An Effective Attack on A5/1 17

El1,l3 [·|·] and El2,l3 [·|·], are disregarded. In improved estimators, we improve our
results by adding to each estimator El1,l2 [x|y] the contributions of the estimators
of the other registers, i.e., we add to it

∑
l3

log

⎛
⎝ ∑

α,β∈{0,1}d

eEl1,l3 [α|β]+El2,l3 [x⊕α|y⊕β]

⎞
⎠ .

The resulting estimators include more information, and thus, are more accurate.
They significantly improve the success rate with a modest increase in the time
complexity of Step 1 (mostly, since we need to calculate three times the number of
estimators). This increase in time complexity is compensated by a large decrease
in the time complexity of Step 3 (as the correct S1, S2 are found earlier). The
results are summarized in Table 1.

7 New Source for Known-Keystream

Every traffic channel between the handset and the network is accompanied by
a slower control channel, which is referred to as the Slow Associated Control
CHannel (SACCH). The mobile uses the SACCH channel (on the uplink) to
report its reception of adjacent cells. The network uses this channel (on the
downlink) to send (general) system messages to the mobile, as well as to control
the power and timing of the current conversation.

The contents of the downlink SACCH can be inferred by passive eavesdrop-
ping: The network sends power-control commands to the mobile. These com-
mands can be inferred from the transmission power of the mobile. The timing
information that the network commands the mobile can be inferred from the
transmission timing of the mobile. The other contents of the SACCH is a cycli-
cal transmission of 2–4 “system messages”(see [8, Section 3.4.1]). These messages
can be obtained from several sources, for example by passively eavesdropping
the downlink at the beginning of a call (as the messages are not encrypted at
the beginning of a call), or by actively initiating a conversation with the network
using another mobile and recover these messages (these messages are identical
for all mobiles). There is no retransmission of messages on the SACCH, which
makes the task of the attacker easier, however, it should be noted that an SMS
received during an on-going conversation could disrupt the eavesdropper, as the
SMS can be transferred on the SACCH, when system messages are expected.

An attacker would still need to cope with the Frequency Hoping (FH) used
by GSM. Using a frequency analyzer the attacker can find the list of n frequen-
cies that the conversation hops on. Given n, GSM defines only 64n hopping
sequences (n cannot be large since the total number of frequencies in GSM is
only about 1000, of which only 124 belong to GSM 900). Thus, the hopping
sequence can be determined through a quick exhaustive search.

As the name of SACCH implies, it is a slow channel. Only about eight frames
are transmitted every second in each direction of the channel. Therefore, to col-
lect 1500–2000 SACCH frames transmitted from the network to mobile, about 3–
4 minutes of conversation are needed.

18 E. Barkan and E. Biham

8 Summary

Our contribution in this paper is multi-faced. We begin by introducing condi-
tional estimators that increase the bias of the correlation equation. Then, we
present three weaknesses in R2, which were not reported previously. The first
weakness — the alignment property — utilizes the fact that the correlation equa-
tion coincides with the feedback taps of R2. The second weakness — the folding
property — uses the fact that R2 has only two feedback taps, and they are adja-
cent. We use the folding property to decode the estimators in an optimal way. In
contrast, previous attacks were forced to use heuristics to decode the estimators.
Using this weakness, we present a novel method to efficiently calculate the list
of best candidate pairs for S1 and S2. Given S1 and S2, the value S3 can be
worked back from the keystream.

The last weakness that we report — the symmetry property — is based on
the fact that R2’s clocking tap is exactly in its middle, which together with the
folding property causes a symmetry between the clocking tap and the output of
R2. This property enables us to efficiently decode the conditional estimators.

Finally, we describe a new source for known-plaintext in GSM. This source
of known-plaintext transforms our attack to a practical ciphertext-only attack.
With 3–4 minutes of raw ciphertext, we can extract (from the SACCH) the
required amount of about 1500–2000 frames of known-plaintext.

We compare some of the previous results and our current simulation results in
Table 1. Compared to previous attacks on 1500–2000 frames, it can be seen that
our new attack has a significantly higher success rate (91% compared to 5%), it
is faster, and it does not require any precomputation.

Acknowledgments

We are pleased to thank Alexander Maximov for providing early versions of [11].

References

1. Ross J. Anderson, On Fibonacci Keystream Generators, proceedings of Fast Soft-
ware Encryption: Second International Workshop, Lecture Notes in Computer Sci-
ence 1008, Springer-Verlag, pp. 346–352, 1995.

2. Edsger W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Nu-
merische Mathematik, Vol. 1, pp. 269–271, 1959.

3. Elad Barkan, Eli Biham, Nathan Keller, Instant Ciphertext-Only Cryptanaly-
sis of GSM Encrypted Communications, Advances in Cryptology, proceedings of
Crypto’03, Lecture Notes in Computer Science 2729, Springer-Verlag, pp. 600–616,
2003.

4. Eli Biham, Orr Dunkelman, Cryptanalysis of the A5/1 GSM Stream Cipher,
Progress in Cryptology, proceedings of Indocrypt’00, Lecture Notes in Computer
Science 1977, Springer-Verlag, pp. 43–51, 2000.

5. Alex Biryukov, Adi Shamir, David Wagner, Real Time Cryptanalysis of A5/1 on a
PC, Advances in Cryptology, proceedings of Fast Software Encryption’00, Lecture
Notes in Computer Science 1978, Springer-Verlag, pp. 1–18, 2001.

Conditional Estimators: An Effective Attack on A5/1 19

6. Marc Briceno, Ian Goldberg, David Wagner, A pedagogical implementation
of the GSM A5/1 and A5/2 “voice privacy” encryption algorithms, http://
cryptome.org/gsm-a512.htm (originally on www.scard.org), 1999.

7. Patrik Ekdahl, Thomas Johansson, Another Attack on A5/1, IEEE Transactions
on Information Theory, Volume 49, Issue 1, pp. 284-289, 2003.

8. European Telecommunications Standards Institute (ETSI), Digital cellular
telecommunications system (Phase 2+); Mobile radio interface; Layer 3 specifi-
cation, TS 100 940 (GSM 04.08), http://www.etsi.org.

9. Jovan Golic, Cryptanalysis of Alleged A5 Stream Cipher, Advances in Cryptology,
proceedings of Eurocrypt’97, LNCS 1233, pp. 239–255, Springer-Verlag, 1997.

10. Walter Hoffman, Richard Pavley, A Method for the Solution of the Nth Best Path
Problem, Journal of the ACM (JACM), Volume 6, Issue 4, pp. 506–514, 1959.

11. Alexander Maximov, Thomas Johansson, Steve Babbage, An improved correlation
attack on A5/1, proceedings of SAC’04, LNCS 3357, pp. 1–18, Springer-Verlag,
2005.

12. Willi Meier, Othmar Staffelbach, Fast Correlation Attacks on Certain Stream Ci-
phers, Journal of Cryptology, Volume 1, Issue 3, pp. 159–176, Springer-Verlag,
1989.

13. Thomas Siegenthaler, Decrypting a Class of Stream Ciphers Using Ciphertext Only,
IEEE Transactions on Computers, Volume 49, Issue 1, pp. 81–85, 1985.

	Introduction
	A Description of A5/1
	Notations and Previous Works
	The New Observations
	The New Correlation --- Conditional Estimators
	First Weakness of $R2$ --- The Alignment Property
	Second Weakness of $R2$ --- The Folding Property
	Third Weakness of $R2$ --- The Symmetry Property

	The New Attack
	Step 2 --- Decoding of Estimators

	Simulations of Our Attacks
	Early Filtering
	Improved Estimators

	New Source for Known-Keystream
	Summary

