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 1. Introduction. The theory of integration on a measure space has 

been generalized to a W*-algebra by Segal [10] and Dixmier [2] as a non-

commutative extension of it. Applying their theory, some parts of the 

probability theory may be described in a certain W*-algebra. In the paper 
of Dixmier [2], he has proved the existence of a mapping x-xP defined op, aa 

semi-finite W*-algebra A acting on a Hilbert space H into its W*-subalgebra 

Al with the similar properties of the Dixmier's trace (=natural mapping) 

in the finite W*-algebra, A being semi-finite provided every non-zero proje-

ction in A contains a non-zero finite projection in A (cf. [5]). In the previous 

paper [11], we have discussed for a o-finite finite W*-algebra A (with the 

faithful normal trace with (I)=1) that the mapping x-is defined on

L1(A) and valued on L1(A1) and it has the likewise properties with the 

c)nditional expectation in the usual probability space, and we have also 

cLlled it the conditional expectation relative to the W*-subalgebra A1, where 

L'(A) being a Banach space of all integrable operators on H in the sense

of Segal (cf. [10]) which coincides with that in the sense of Dixmier (cf. [2])

as Banach space. Nat amura-Turumaru have also given a very simple proof

of the characterization theorem of the conditional expectation in A (cf. [S]).

 If A is a commutative W*-algebra with a faithful normal trace 1a, then 

there exists a probability space (f2, B, v) such that, considering the space B

of all bounded random variables as the multiplication algebra on a Hilbert 

space L'(f2, B, v), B is isomorphic with A by the canonical mapping satis-

frying, (x) f(1(x))(co)dv(co)-for every x E A. Conversely, let (i1, B, v) be 

 sz 

a probability space. Then the multiplication algebra B is a W*-algebra on 

L2(12, B, v) and, defined by the above equation, is a faithful normal trace 

on it. Furthermore, the canonical mapping 4 defines an isomorphism between 

L (A) and L"((2, B, v) as Banach spaces (1), 11(A) being the Banach space

defined by Dixmier (cf. [2]). For any W*-subalgebra Al of A, there corres-

ponds a cr-subfield B, of B, and A1, Lr(A1) are isomorphic with B1, Lry(Q, 

B1, v) respectively, where B1 being the multiplication algebra of the bounded 

random variables on (1l, B1, v). The conditional expectation defined for the 

commutative algebra A (relative to the A1) is transformed to the one 

defined for the corresponding probability space (f2, B, v) (relative to the B1) 

by the canonical mapping (cf. [7] and [11]). 

 In the probability theory, the martingales have been investigated by 

many authors, particularly by Doob, Levy and Ville (cf. [3]), which is defined.
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by a linear system of the conditional expectations. The concept of the 

martingale can be extended to a non-commutative W*-algebra as the gene-

ralized conditional expectation. 

 In the present paper, we shall begin with a characterization theorem 

of the Dixmier mapping in a semi-finite W*-algebra (cf. Theorem 1 of 2). 

This is a generalization of the characterization theorem of the conditional 

expectation of Moy (cf. Theorem 3 of [7], also cf. Nakamura-Turumaru [8]), 

and we shall call the Dixmier mapping to be the conditional expectation (cf. 

2 below). In 3, we shall give the definition of the M -net in a semi-finite 

or finite W*-algebra A with respect to a given gage i (cf. [10] or [2], and 

cf. 2 below). If A is commutative and is a faithful normal trace, then

any M--net is transformed to a martingale in the corresponding probability 

space (12, B, v). In Theorem 2 and its Corollary, for a o--finite finite W*-algebra 

A with a faithful normal trace 1t we shall prove that for an M -net to be 

simple (cf. Def. in 3) and to converge in Lt-mean, are equivalent to the

weak conditional compactness of it, or to the uniform c-integrabilities of the 

real and imaginary parts and Lt-uniform boundedness, and moreover that

if an M-net is uniformly bounded then it is simple and converges strongly

to a bounded operator in A. If the directed set D is decreasing (cf. 3), 

then any M-net with finite integral in semi-finite A necessarily converges 

strongly, and if the, M-net belongs to L2(A) then it converges in the V-mean. 

These facts can be applied to a convergence of a sequence of bounded

operators (cf. In h or IL-factor, Theorem 6 of [9]), which was introduced 

by von Neumann and we can show that it is a simple M -net. I want to thank 

Mr. Sakai for his valuable remarks. 

 2. Let A be a semi-finite W*-algebra on a Flilbert space H with a

regular gage in the sense of Segal (cf. [10]) which is considered as the 
"normale

, fidele, essentielle et maximale" trace in the sense of Dixmier (cf. 

[2]). Let L'(A) and L2(A) be the space of all integrable and square integrable 
operators with respect to in the sense of Segal respectively (cf. [10] and. 

[2]). Denote the set of all-integrable operators belonging to A by J which 
is a two-sided ideal of A and is dense in L1(A) and L2(A) relative to the

respective norm 1 (=L1-norm) and j 1(=V-norm). Dixmier has proved

the following theorem (cf. Theoreme 8 of [2]). 

 THEOREM D1>Let Al be a W*-subalgebra of A. Then there exist a maximal

central projection p1. in Al and a linear mapping x-*x'e from A into itself

such that the range Ac=puA1 and for all x E A 

 (D.1);x6.<Jj x, xbeing operator bound. 

 (D. 2) xee=xe and x*cX<(x*x).

 1) Dixmier has proved more strict conditions i. e. (D. 8):xe J),.J x j,. for x E 
 Jl. (r 1) and (D. 9) (D. 9) holds for x E J11r1 and y E (J (1 A1)11 (1/ri1/rz=1), 
 where the power 1/r and the norm 1. are notations of him (cf. [21). But we can see
 their equivalences such as (D. 9) implies (D.8)', (D. 8)' implies (D. 9) (by (D. 5) and by 

 Holder's inequality of Dixmier, (cf. [2] and Proposition 5 of [2]), and (D. 9)' implies 
 (D. 9) by (D. 7).
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 (D.3) x 0 implies x>0. (D. 3) x*e=xe*.

 (D.4) x>0 and xe=0 imply pp=0.
 (D.5) (yx&)=yxey' and (p xp)e=xe for y, y' E A1.

 (D.6) (xy)e=(yx)e for every y E A fl Ai.

 (D.7) The mapping x--*x is strongest and weakest continuous.

 (D.8)) xeGI; x(1 and j xe CI2 xz for every x E J. 
 (D.9) (xye), (xey) for every x E A and y E J. 

 It is clear that Ie=, and the mapping x--x isextensible uniquely onto

LI(A) and L2(A) by (D.8). In the case that the gage is finite, regular and
normal i. e. /L(I)=1(we shall call such a to be a faithful normal trace),

the Dixmier's mapping x-* xe satisfies Ie=I. In the previous paper [11], we
called such a mapping x--xe from L1(A) into L1(A1) with respect to the

faithful normal trace to be a conditional expectation relative to A1. If

A is commutative, it coincides with the conditional expectation in the usual

probability sense on the corresponding probability space (S, B, v). In the

present paper, we shall also call the Dixmier's mapping x--xe from LI(A) 

(or L2(A)) into itself to be a conditional expectation relative to A1, and xe 
denotes it.

 Firstly we shall prove a characterization theorem of the conditional
expectation in the semi-finite case. Let A be a semi-finite W*-algebra and 

let µ be a regular gage on A. Then 

 THEOREM 1. Let x-xG be a linear mapping from A into itself satisfying

the conditions (D.2), (D.3), (D.9) and P<I. Then for any x E A, xe coincides
with the conditional expectation x relative to the W*-subalgebra Al which is

the direct sum of A {xe; x E A} and {X(I-Ie): X complex numbers}.

 PROOF. The linearity of xe and (D.3) imply obviously (D.3). Since for

any x E A, 0<x*x x*x 1, by (D.2), (D.3) we have 

(1) 0 E x*x<(x*x)S x*x l I

and, xe Ie x(so we have (D.1). Let {xy}D c A be a uni-

formly; -bounded directed set converging weakly to x E A, D being a 

directed set, then p(xyy)-+p(xy) for any y E I. By (D. 9), JF cJ and

(2) jit(xyy)(xyye) "apt xye)/L(xey) 

for every y E J. Since {x} is uniformly jI, -bounded, (2) implies the weak

convergence of xy to xe on H by Dixmier's Theorem (cf. Corollary 2 of [2]). 
 We shall now prove that AE is a weakly closed self-adjoit subalgebra*) 

of A. If x E A then xE*=x' E A&, i. e. AE and similarly f are self-adjoint. 
While, by (D. 2), for any x E Je 

(3) x*x=x*exe<(x*x)E.

As P<I, for any x E J

 *) In this paper, by a weakly closed self-adjoint algebra we mean a*-algebra which
 is closed in the weak operator topology, not necessarily having the identity operator; 
 and by a W*-algebra we mean a weakly closed *-algebraa which has the identity 
 operator.
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(4) μ(x2)=μ(xIe)≦μ(x).

Therefore, putting y=(x*x)F-x*x, since y E J+ and by (3), (4)

 0, (y)=((x*x)F)--a(x*x)<0.

This implies y=0 and x*x=(x*x) which belongs to J For any x, y E J, xy

can be expressed by; Xzz; for some z; E JE and complex numbers X; (j=

1, 2, 3, 4). Consequently,

(xy)=X (zjzs)e=X, z*z, =xy

and xy E J. Therefore J is a self-adjoint subalgebra of A. Next we shall

prove AE=F. For x E J, there is {xy}D C Je such that xy<JJ x and xY
converges weakly to x by a Kaplansky's Theorem (cf. [6]). Hence xy=xY con-

verges weakly to x=xF and x E A, i. e. P c: Ae. Conversely, since J=A,

for x E Ae we can take {xy}D c j crnverging weakly to x and xy <;x,

and obtain that xy canverges weakly to xF=x, i. e. x E J'. Therefore AF=JF,

and AE is a self-adjoint weakly closed subalgebra of A.
 Further, we prove that P is a self-adjoint unit element in the algebra

AF. For any x E JI and y E AE, since xy E J by the above fact,

(5),(yxIE)=C(yx)eI)=1a(yx).

Hence, for any complex number h and for any y E AE, 

((y+XI)xP)=((y+X1)x). 

This implies zxL)=zx) for every x E Je and z E Al. Therefore we have

x P=x and similarly=Px for every x E J. Since P=P is clear and since

Af=P, P is a self-adjoint unit element in AF. Consequently Al is the 

direct sum of A and {X(I-IC); X complex numbers}, and P is a maximal
central projection in A1.

 Finally, in order to prove x=x for all x E A, x being the conditional

expectation relative to A1, we show J=J n A1. Each x E J fl Al is expressed
by x+X(I--Ie) for some x E J and X, and hence for every y E J

 se(xy)=((x'+X(1+P))y)=1c(x'y)+Xa((I-P)y)=

Since x E J and x' E J,, u(x(y+X'I))=p(x'(y+X'I)) for every y E J and complex
numbers X'. This implies easily a(xz)=1a(x'z) for all z E Al and x=x' which

belongs to J. Since J c J fl Al is clear, we obtain J=J fl Al. Therefore,
for every x E A and y E J fl Al (=JE), 

 (x'y)=, (xy)=(xy)=

i. e. xF=xe for all x E A. 
 Using a method of Nakamura and Turumaru (cf. Cor. of [3]), the 

 2) For any subset S in A, S denote the weak closure (as operator on Hj of S
 which coincides with the strong closure when S is convex, S+ denotes the set of all 
 non-negative operators in S.
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conditional expectation satisfying the condition P=I can be characterized

as the following 

 COROLLARY 1.1. Let x--t be a linear mapping from A into itself satisfying

(D.2), (D.8), 1=I and 

(6) (xy) (xyE)<+c for every x E A and y E J}

Then the range AE is a W*-subalgebra and xE coincides with the conditional

expectation relative to AF. 

 PROOF. Taking y E J+such that 4y)=1 and putting a(x) (xye) for

x E A, then by (6) and (D. 2) 6(xE) tx (x) for every x E At Since P=I

and o J(1)=(ye)=1, by the proof of the Nakamura-Turumaru's Theorem 

we have that o (x)=a-(x) for every x E A. This implies that (x y)=(xye)

for every y E J+and hence for every y E J. Further, since the strong con-

tinuity of xe (on bounded part) is followed from (b) (cf. Remark 1.2 below), 

and since (D.9) holds for x, y E J (by(6)), we obtain (4) and complete the 

proof.

 REMARK 1. 1. We shall give in the last section (cf. 4) an example of the

conditonal expectation satisfying P=I in a semi-finite W*-algebra. When

is a faithful normal trace, i. e. A is a o--finite, finite W*-algebra, Theorem 

I holds and Corollary 1.1 also characterizes the conditional expectation. 

These characterizations are analytical and somewhat simple when compared

with the Theorem 2 in the preceding paper (cf. [11]). 

 REMARK 1. 2. In Corollary 1.1, if P<I then x--xe is strongly continuous

on the unit sphere of A and AE is a self-adjoint weakly closed subalgebra of A. 

The first part will follow from the fact that J CJ (by (6)) and for every 

x C A and yE1

<((x*x)(yy*)e) (7) xey iz=(y*x*exey)<(y*(x*x)ey)=((x*x)eyy*) 

The second part follows by the similar way of the proof of Theorem 1. 

Further we remark that if is a faithful normal trace and the mapping x-*x

satisfies P=I and a weaker condition than (6):

(8) (xe)<(x) for every x E A,

then A is a W*-subalgebra of A. Indeed, for the present A and, J=A 

and

 xe'(x'xe)<((x*x)e)<(x*x) I; x: for every x E A. 

This implies the strong continuity of x-xF on the unit sphere, and hence

by the similar way of the first part in this Remark, we obtain the required

ones.

 Let A be again a semi-finite W*-algebra and let be a regular gage on

A. For any W*-subalgebra Al of A, we shall also denote the contracted

gage on Ar by. Then the space Y(A1) is considered as a closed
subspace of Lr(A), r=1, 2. For any self-adjoint operator x in Y(A) (r=1,

3) In this case we have assumed (D.3) and (D.5) but not (D.3).



 CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA 91 

 2), let x=f X dEA(x) be the spectral resolution of x. Then each(xY

 belongs to A. Denote by W(x) the W*subalgebra of A generated by 

{EA(x); X}. If x is not self-adjoint, then it can be uniquely expressed by x=
x1>+ix where x and xt2 are the real and imaginary parts respectively.

Then there correspond the W*-subalgebras W(x) and W(x2) to x and

x2 respectively. Let W(x) be the W*-subalgebra generated by W(x(i)) and.

W(xtj>). Then W(x) is a minimal W*-subalgebra of A containing the reso-

lutions of identities EA(x1)) and EA(xJ)) of x(1> and x2 respectively. Under 

these notations we have 

 PROPOSITION. For any subset S of L(A) (r=1 or 2 rest.) there corresponds

uniquely a minimal W*-subalgebra W(S) of A such that S c L'(W(S)). The

operation S-k W(S) has the properties that, W(Lr(W(S)))=W(S); S e A implies 

W(S)=S4; Sl c S2 implies W(S1) c W(S2); and further for Si and S having' 

the same closed linear hull in D(A) (r=1, or 2 resp., W(S1)=W(S).

 PROOF. Let S e L(A) (r=1 or 2 resp.) and let W(S) be a W*-subalgebra

of A generated by {W(x); x E S}. Since for any x E S xci>, x>E L(A) and

the projections EA(x>), E(x2) belongs to W(S), x and xtj> are measurable

with respect to W(S) in the sense of Segal (cf. [10]) and hence they belong 

to L(W(S)). For a W*, subalgebra W of A such that S c L(W), W(S) c W 

follows from [10]. Hence W(S) is minimal and uniquely determined by S.

Now we prove W(L(W(S)))=W(S). Since S c Lr(W(S)), W(S) c W(L'(W(S)))

(because S1 c S implies clearly W(S1) c W(S2)). Conversely, for x=x* in.
Lr(W(S)), EA(x) E W(S) and hence W(D(W(S))) c W(S). The other parts in this 

proposition will easily follow from these facts. 
 The following corollary contains a generalization of a halt part of a

theorem of Bahadur (cf. [1]). 

 COROLLARY 1.2. (10) Let A be a semi-finite W'-algebra with a regular

gage a, and put L=D(A). Let x-* x be a projection in L such that x*E=xe*.
Then the following conditions are equivalent:

 (1)x--x coincides with a conditional expectation xe (on L) relative to a
certain W*subalgebra Al of A. 

 (2') L=Lr(W(L)). 

 (2) If is a faithful norm2l trace, then (1') and (2') are equivalent to the 

following each condition:

 (3) LF contains a set adjoint subalgebra B of A such that I E B and B is
L2-dense in L.

 (4') AE=W(LF). 

 PROOF. (1). (1')-+(2'): Since Le=L2(A1) and Je is dense in Ii, by Theorem

1, Je=f Al n J fl W(f) Je and Je=J(W(f). Further, by the preceding

Proposition, W(Je)=W(L). Hence we obtain V=L(W(L)) and (2') holds.

 4) For any subset S of bounded operators or.. H, S' denotes the set of all bounded 
 operators on H which with all operators in e S. S denotes (S')'. S" is a W*-algebra 
 generated by S.
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 (2')(1'):<ni> denotes the inner product in L. Since x-xE is a proje-
ction in L, for x, y E L 

 (xfy)=<x, y*>=<x, y*F>=<x, y*>=

Let xe be the conditional expectation relative to W(LE). Then, for every x E 

L, xEe=x= and xeE=xe, and for every y E J 

(9) (xey)=(xeey)=(xeyn)=(xy)=(xye)=(xey)

This implies that x= xe for every x E L. (2) will be followed immediately

from (1) as its corollary. 
 By a slight modification of the proof of Cor.1.2 it also holds that: In Cor. 

1.2, (1), put L=L1(A), and let x--} xE be a bounded linear mapping from
L into itself satisfying x=xE and (D. 9) for every x, y E J. Then the condition

(1') is equivalent to 

 (2) V=L1(W(D)) and J' C A.

 3. As the preceding section we shall consider a semi-finite W*-algebra

A on a Hilbert space H, with a regular gage a. Let {xa, cr E D} be a family 
of operators in A (or 12(A) or L2(A) resp. ), D being directed set. Let Aa 

be W*-subalgebra of A generated by {W(xy);y C a}, W(x) being the W*-

subalgebra given in the Proposition in 2. Then Aa Ag if and only if a
Q. If {xa, a E D} satisfies the conditions xa=xa for every a, E D (a c

(3), where xea denotes the conditional expectation relative to Aa, then we 
shall call the family of operators {xa, a E D} to be an M-net (with respect 

to the gage, u), and {Aa, a E D} the family of W*-subalgebras associated to 

the M-net. We shall call an M-net to be increasing or decreasing, whenever:
for any a,, & E D there exists'y E D such that a,<ry or 7<a, respe-

ctively. 
 An example of M-net is given such as:Let {Ba, a E D} be a family of

W*-subalgebras of A and suppose that Ba C B if and only if a /3. Let

{xa, a E D} be a family of operators in L1(A) or L2(A) such that

(10) xa=xa for every a, E D (a /3) 
where xEa denotes the conditional expectation relative to Ba. Then {xa, a E

D} is an M nets>. We denote such an M-net by {xa, Ba, a E D}. Further,
for any x E L1(A) or L2(A) putting xa=xEa (a ED), {xa, Ba, a E D} is also

an M-net. Such an M-net {x,, B,, a E D} is called to be simple. Any finite M 

net is clearly simple. The sequence of bounded operators in L or IL-factor

given by von Neumann (cf. p. 118 of [9] and cf. 4 in this paper) is an example
of simple M-net.

 If A is a or-finite commutative W*-algebra with faithful normal trace, 
then any M-net {xa, a E D} in L1(A) is transformed to a martingale on the

corresponding probability space by the canonical mapping.
 By the definition of M-net and the properties of the conditional expec-

tations the following conditions are equivalent for a given family of operators 

 5) That is, taking the corresponding family of W*-subalgebras {Aa, a E D}, it 
 satisfies that xa=xa for every a, E D (a<).
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{xa, a E D} in/2(A) or L2(A):

 (i) {xa, a E D} is an M-net. 

 (ii), (yxa)=,(yxp) for every a, & E D (a) and y E J fl Aa, Aa being
the W*-subalgebra given at the first paragraph in this section.

 (iii) xa=x ra) for every a, f, y E D such that y a _/3, where e(y, a)
denotes the conditional expectation relative to the W*-subalgebra W(xy, xa). 

 If {xa, Aa, a E D} and {ya, Aa, a E D} are M--nets, then {xa, Aa, a E D},

{Xxa, Aa, a E D} and {xa+ya, Aa, a E D} are also M--nets, X being any com-

plex number. We shall say an , M-net {xa, a E D} to be real or positive 
if xa=xa for every a E D or xa 0 for every a E D. Any M-net {xa, a E
D} can be decomposed into two reat M-nets in an obvious way, that is, 

{xa), a E D} and {x), a E D} where x)=-1-- (xa+x*) and xc=)=1: (xa-x) a a 2 a a 22 a

In an M -net {xa, a E D}, for any directed subset D' of D, {xa, a E D} is 
also an M--net. 

 Besides, we shall define a subset S C L'(A) to be uniformly a-integrable 

if for any (9> 0 there is a positive number > 0 such that , a(p)<(p being 

projection in L'(A)) implies c(p j x I)<(9 for all x E S.
 With these terminologies, w e shall prove 

 THEOREM 2." Let A be a o--finite, finite W*-algebra on a Hilbert space H
with a faithful normal trace, and let D be an increasing directed set. Then,

for a given M-net {xa, a E D}, the following conditions are equivalent:

 (2.1) Both {x), a E D}, and {xa'), a E D} are uniformly -integrable and 
uniformly bounded in L'-norm. 

 (2.2) {xa, a E D} is weakly* conditional compact in L'(A).

 (2.3) {xa, a E D} is simple. 

 (2.4) There exists x E L'(A) such that xa-x-+0.

 PROOF. If the M -net {xa, a E D} is finite, the proof is trivial. Hence we 

consider the case that it is infinite. Let {A,, a E D} be the family of the 

W*-subalgebras of A associated to {xa, a E D}. Let Ao =LJAa and let
 aeD

AI be the weak closure of A0. Let zea be the conditional expectation of z E 

L'(A) relative to A.
 Firstly we prove that (2.1)-} (2.2): Each xa is uniquely expressed by

xa -'x such that x', xa E L(A)a x, x>0 and x' x"=0 for every a E D. 
 a a a a=a s 

Since {xal), a E D} is uniformly t-integrable and x,) (=xa+x, for any

(9>0 there exists a>0 such that, a(p)<implies for all a E D

(11) (pxa)+(pxa)=(p(xa+xa))=(p I xa I)<5/2.

Since (pxa), c(pxa)>0, both <(9/2 for all a E D, and hence {xa, a E D}
and {xa, a E D} are uniformly c-integrable. Putting o(y)=tc(yxa) and o' (y)
=(yx) for all y E A and a E D, y a and O-(belong to the conjugate

 6) This theorem contains a generalization of L'-mean convergence of a martingale 
 in a probability space (cf. Theorem 1.4 of [3D.
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Banach space A of A. Let T' and T" be the weak closures of {o-a, a E D} 

and {o-, a E D} as functional on A respectively. Let 6o- E T' be a limiting 

point of {o-'a, a E D} which is a positive linear functional on A. We take 

a sequence of projections {p, j 1, 2,....} in A such that pLL (j*k). For

5>0, taking >0 as (11), there exists an integer ko>0 such that p

and since p is a projection in A, by (11) 
 J=ko

σα(Σpj)=μ(Σpj)x'α<ε/2.

Choosing o-a such that

σ'(Σρj)-σα(Σpj)<ε/2
J=kp

then for any integer k>kJ

σ'(∑pj)≦σ'(Σpj=ko)≦P(∑[k)|+σα(Σpj)

<<9/2+<9/2=<9.

Therefore a- is countably additive and by Dye-Radon-Nikodym's Theorem

(cf. [4]), there exists x' E L'(A) such that x'>0 and 

(12) a-(y)=(yx') for all y E A. 

Hence every a-in T' (and similarily every a-" in T") are represented as

(12) (and 6"(y)=p yx") for some x" E L'(A)). x' and x" are uniquely deter-
mined by a-and a-in L'(A) respectively. Therefore the weak* closures of

{xa, a E D} and {x,, a E D} in L1(A) are weak* compact in L'(A) and so is
the weak* closure of {xa-xa, a E D}, i. e. a E D} is weakly* conditio-

nally compact. Since for {xa'), a E D} the same fact can be proved by the
same way and xa=xa>+a E D} is weakly* conditionally compact.

 Secondly we prove that (2.2)-(2.3): Put S={a-, a E D} a-a(y)=

and Sand Sthe weak* closures in Ai of S with respect to AI and Ao
respectively, that is, the closures with respect to the weak* topologies on 
12(A1) defined by the neighborhoods: 

 U(x0; zi,.....z12, 9>0){x E Ll (A1); I a((xo-x)z,) I <<9, j=1, 2....., n}

z; belonging to Al or A0 respectively. Then by (2.2) Sis weakly* compact.

Since the weak* topology on Ll(A1) with respect to Al is stronger than the 
one with respect to A0, the canonical mapping from S1 to S is continuous, 

and it is also one-to-one. For, since Aa is strongly dense in Al (as operator

on H), p x, z)=p x2z) for x1, x2 E Ll(A1) and for all z E A0 thus a fortiori, for 
all z E A1. Therefore S'1 is compact (and hence closed) in Shy, and S c Sr1
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mplies So C Slvo=S1. Further, by the definition of the M -net, lira, a(yxa) 

(=v(y) say) always exists for every y E A0, which belongs to Sand hence 
S1. Consequently, there is an x E L'(A1) such that a-(y) (yx) for every 

y E A0. Since (yx)=lim (yxa) for every y E A, for any fixed cr E D and

for any y E Aa,

 (yx)=h mm 1(yxp)=li m 1i(yxa) (c<)=(yxa).

Hence we obtain xa=xa for every a E D. 

 Next we shall show the equivalence of (2.3) and (2.4). Assume (2.3). 

For any z E A, putting za=zPa for all a E D and zt=zel, {za, a E D} is a
simple M-net satisfying zea IJz<1 eel 2 and 

(14) za-z1=(z*z1)-c(z*za)-0

and hence i za-zt za-zt h 0. Let x E L'(A) be xa=xea (cr E D) and

take {z7j e Al such that xe'-z,,<1/3n (n=1, 2,....). Moreover for each

n taking an E D such that z, z-zyia' t<1/3n for all a E D, (a, z a),

 xel--a t<i xe z. (t+z,,-zPna t+(z-x)ea <1/n

and xel-xa t-+O. This implies (2.4). Conversely, assuming (2.4), lim (yxa)

=(yx) for all y E A, and if y E Aa, then t(yxao)=(yx) for all a E D (a0

a). These facts imply that 1a(yxao)=(yx) for all y E Aaa.

 Finally we shall prove that (2.3) and (2.4) imply (2.1). Let x E L'(A) be

xa=xea and xa-x1-}0. The expressions x=x+ix(2) and x)=x-x(x',

x>0 and x'x"=0) are unique. Putting xa=xea and xa=x1 ea (a E D), xa
=xa- xa and {xa, a E D} and {xa, a E D} are positive simple M-sets 

satisfying xa-x zi I xa-x" t-0. If {xaL), a E D} is not uniformly -inte-

grable, then so is at least one {x,, a E D} or {x, a E D}. Indeed, if both
are uniformly c-integrable, then let I xa (=vax being canonical decomposition, 

va being partially isometric operator,  

I xaj) I) G(pvaxal))=c(pvaxa)-/(vaxa) 

 C (xa)1/(vavaxa)i 1+p(f xa )11(vavaxa)t 12 

 x (pxa)+x I tl 1a(Pxa)112,

because xa=x'a and xa=xea. This implies the uniformly c-integrability 

of {xa, a E D}. Now if {x,, a E D} i s not uniformly -integrable, then there

exist an E>0, sequences of projections {pn} c A and indices {an} c D such
that a(p)<1/n, c(mX) and an<a1,,+1 (n=1, 2,....). Let B be a W*-subal-

gebra of A generated by {Aa,, 1 n=1, 2,....} and let x'e be the conditional
expectation of x' relative to B. Then j xan-x'6 11-*0 (n-+cx). Therefore 

 </j7ax'n) C I fG(n(xan7a--x'e))I+(o(mx/e)) (x'an.-x'e'I1-1a(p x'e)-+0(n-o0).

This is a contradiction. The uniform 1a integrability of {x/, a E D} also 

follows in the same way as for case of {xa'), a E D}. Q. E. D.
 For the M-nets in L2(A) and A we have the following 

 COROLLARY 2.1. Let A and 1a have the same meanings as Theorem 2. Let
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{xa, a E D} be an increasing M-net in L2(A) (in A, rest. ). Then the following 
three conditions are equivalent:

 (2.1) {xa, a E D} is uniformly bounded in L'-norm (-norm rest.). 

 (2.3)' {xa, a E D} is simple for x E L2(A) (for x E A rest.).

 (2.4)' There exists an x E L2(A) (x E A rest.) such that xa converges to x
in the L2-mean (in the strong operator topology on H rest..

 In the proof of this corollary, we shall use the notations in the proof of 
Theorem 1.

 PROOF FOR THE L2(A)-CASE. (2.1)--(2.3): Since x,= jJ xal) iz--xa) 

(cr E D) and for any projection p E A

 (i(p J x) (f); gy(p)'/2(xa)*xa))hl'-C, (t)'/2 ii x, cJ) L (1=1, 2),

Theorem 1 (2.1) is satisfied. Hence {x, a E D} are simple in L1(A), i. e. 
xa')=x)ea and ((x)-XU) (-0 for some x) E LE(A), and 

 (yxj))I (y*y)l, 2(x(i))1/2*xa, ))  

for every y E A. Consequenly,) (yx) f<sup i'2 jy 2 andd xU) E L 2(A) 

(j=1, 2). (2.3)-+(2.4) As in the proof of Theorem 2 (cf. the part (2.3 

(2.4)), taking {z,, a E D} C A and z1 E A, (2.4)' holds (see (14)). Since A is 
dense in L2(A), we can show xa-x'1 2-0 by the same method of the proof
of Theorem 1, if we take the L2 norm instead of V-norm. (2.4)'-+(2.3)' and 

(2.3)'--+(2.1)' are obvious by Theorem 1 and by the fact that the x belonging 
to L2(A).

 PROOF FOR THE A-CASE. (2.1)'-+(2.3)' Since (xaxa)<(xa (,,(2.1)' holds
for L2-norm and (2.3)' holds for x E L2(A). Hence, by Cor. 2.1. (2.4)', for every 

YEA

 ii xy 2=p(x*xyy*)=1im tc(x*xyy*)<sup (xay2

and x E A. (2.3)-(2.4)': We can assume that x E A satisfies xa=xa and 

((xa-xlJ-0. Whence for any y E A JJ (xa-x)y;(-0. Since J xa J c x (and
A is dense in L2(A), xa--x strongly on the Hilbert space L2(A). This fact

implies the strong convergence of xa to x on H. It is clear that (2.4)'-} (2.3)' 

and (2.3)'-*(2.1)' for A. 

 REMARK 2.1. In Theorem 1, the condition (2.1) implies (2.2) for arbitrary 

set S in LE(A) and the converse case holds for S consisting of positive 

operators in LE(A). Indeed, the former follows from the proof of Theorem 1, 

and the latter will be obtained by the last part of its proof, because we 

can take the weak* convergence in the place of the L'-mean convergence in 

that part of the proof. 

 As the final part in this section, we shall discuss a decreasing M -nets 

in a semi-finite W*-algebra A on H with a regular gage p:

 THEOREM 3. Let {x,, a E D} be a decreasing M-net in L2(A) (in L2(A) n 

A rest.). Then xa converges to an operator x E L2(A) (in L2(A) n A rest.) in 

L2-mean (strongly as operator on H rest.). In particular, if A is o--finite finite
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and/is a faithful normal trace and {x, a E D} c L'(A), then xa converges 

to an x E L'(A) in L1-mean. 

 PROOF. Let {Aa, a E D} be the family of the W*-subalgebras associated 

to {xa, a ED} (cf. The first paragraph of 3). Let A1= n aD Aa which is a 

W*-subalgebra of A and let yel be the conditional expectation of y relative 
to A1.

 L2-CASE: Since for any a,, E D (a<5), 0<xaxa x *j xa (x8)ea,

 0<(xaxa)t((xxp)ea)<tC(xxp)

and Em (xaxa) exists (uniquely, =X say). Therefore 

 

C xa-xp i=, ((xa--xp)*(xa-xp))=(xx)-(xaxa)+X- X=0,

and there exists an x E LL(A) such that (1 xa x;(2 -*0.

 L2 n A CASE: Since {xa, a E D} c L2(A), it converges to x E L2(A) in the

L2-mean. While for any y E J and any fixed a0 E D, (c(xy)f=lim, 4x, y)
a<ao

< xa0 (y 1i which implies x E A. Hence x E LL(A) f A and (x,--x)y 1

y' I xa =-x ii-0 for every y E I, and I( (x,-x)y 1 -+0 for every y E LL(A), 
because j is dense in L2(A). Therefore xa converges strongly to x on H. 

 Finally we prove the last part. For fixed aQ E D, taking {yn} c Aa o such 
that yn-x 0 -0 (n-cc),

 yna-ynp 1'Z  yna-Y, j.2-+0

and
 --xa I, 1<1.Yn-xa o 11-*0 (n- oo, a<a0) 

Therefore for any 9>0 there are a~ and n such that for every a, <a, ao

 lixa-xp(lc xc-y, a"r+11yna-Y 1i+l, ynp X 11

and xa converges to some x E L1(A) in the L'-mean. 

 REMARK 2.2. In the above proof, each limit operator belongs to L2(A1), 
L2(A) fl AT or Ll(A1) respectively. For, let x be the limit operator, then by 

the above proof, we find c(yx)=tc(yx, ) for every y E J fl Al and for every

a E D.

 4. In this section we shall show that a sequence of bounded operators 
defined by von Neumann (cf. p. 118 of [9]) is a simple M-set, and apply the

preceding consideration to the convergence theorem of i t (cf. Theorem 6 
of [9]). Firstly, we show a lemma:

 LEMMA 1. (Misonou). Let W be a W*-algebra on H and let p be a projection
in W. For any x E W, but 

(15) x1=pxp+(1-p)x(1-p)7)

 Then the range W  of the mapping x-+xl p is a W*-subalgebra of W and 
the mapping is linear and satisfies the conditions (D.1)-(D.5), (D.7) (in 

 7) These notations were introduced by von Neumann (cf. [9;p. 118J).
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Theorem D) and P=I. 

 PROOF. We prove only (D. 5), since the others are almost obvious. For 

any x, yEW

(16) (xT y) I p=((pxp+(1--p)x(1--p))y) I P=pxpyp+(1--p)x(1--p)y(1--p)

and x1y1p=(pxp+(1-p)x(1-p)) (pyp+(1-p)y(1--p)) which equals to the

right side of (16). This implies (x1y)1 p=x1 y1' and similarly=(xy1 p)1 p. Since

yIP=y for every y E WI2, (yxy')IP y(xy')Ip=yxl "y' for y, y' E WI P.

 For any projections in W of finite number pl,, p, we denote

(XIP1)11)2, ((XIP1)12'2)Ipa and ((....((x1P1)1P2)1P2)....)IPn by XIP1IP2, XIPIIP21p3, and X hIP2...IPn 
respectively. 

 LEMMA 2 (von Neumann [9]). If the projections p1i ....p72 in W commute 

with each others, then for any permutation (1', 2', ...., n') of (1, 2,....,n) 

 xl pl'I p2' In=xf 1.1V21.. Ipn

This lemma wass proved by von Neumann for the h or IL factor (cf. 

[9]), which is valid for the present case. 
 Let W=A be a semi-finite W*-algebra on H and let be a regular

gage. Let {p2} be a finite or infinite sequence of projections in S commuting 
with each others. For any x E A, put 

(17) xEn=xl X11 p2... it n=1, 2....

Under these notations we obtain 

 THEOREM 4. A={xFn; x E A} is a W*-subal gebra of A for each n=

1, 2,...., and the mapping-+xn transforms A onto A, a and is the condi-

tional expectation relative to An satisfying Ian=I. Putting x72=x' for each 

n, {xn, n=1, 2,....} is a decreasing simple M-net. 

 PROOF. By Lemmas 1 and 2, each A,, is obviously a W*-subalgebra

satisfying

 (18) A1..... 

For any fixed projection p E A and for x E J, xlp belongs to J n A and

satisfying

(19) (xl p)=(pxp+(1-p)x(1-p))=,(px)+((1-p)x)=(x).

Hence by Lemma 1 (y1 x)=((y1px)1 p)=((yxl')12')=, (yx1 p) for every y E A

and x E.I, and by Theorem 1 the mapping x-+x1 p is the conditional ex-

pectation relative to AID'. Similarly, (xl11IP2)=a(x) and by Lemmas 1 and 2

(xl llp2y)I1hhI 2xIp1IP2y1'1IP2 holds. Hence by the same way for xl2, the mapping 
x-.*XI P1IP2 is the conditional expectation relative to AIP1IPZ (=A2). By the 

inductive method and by (18) these facts hold for every E,. It follows from 

the definition of M-net and r=I that {x 1, n=1, 2.....} is a decreasing

simple, M-set. 

 For x E L2(A) n A and each n =1, 2..... 

(x*-nx_n)=(x* nxn)<((x*x)en)=((x*x)
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and hence x9a E L2(A) n An. Then by Theorems 3 and 4, x,converges

strongly to an operator x in L2(A) fl A which is also a limit in L2-mean,

where A=QAn. This implies the Theorem of van Neumann:

 THEOREM 5. For any x E L2(A) n A, {xFn} belongs to L(A) fl A, and 

converges strongly as operator on H and in L2-mean to an operator x in 

L2(A) n A.

Put x=for x E L2(A) fl A. Since; xFn iz=x, z c x (2, we have

(20) IJ xF J2<xa for every x E L2(A) fl A. 

While for every x, y E L2(A) fl A, x*F=llm x'n=llm xen*=xF* and 

 (xEy)F=lien (x"y)'n=lira xFyn=xey'=lxm x'nyE=(xy)F, 

where the limit is that with respect to the weak operator topology, and

for every x, y E J

fL(xy)=hm p(x'7y)=lim u(xy'n)=p(xy").
 noo n-,

The linearity and idempotency (x"=x") of the mapping x*x F (defined on

L2(A)lA) are clear. Since LE(A) fl A is dense in L2(A), by (20) it is uniquely 

extended on the whole space L2(A). Further, tsince xE =x for every x E L2(A) 

n A, x-* xF satisfies the condition (2') in Corollary 1.2. Therefore, we 
obtain 

 COROLLARY 5.1 The mapping x--x (x E L2(A) (1 A) is uniquely extended

to the conditional expectation x-+xe relative to A

 From Theorem 5 and this Corollary it follows that for every x E A, Px n

+converges weakly to the xe, P being the maximal central projection in the 

W* subalgebra A of A. 
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