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CONDITIONAL EXPECTATIONS AND AN ISOMORPHIC
CHARACTERIZATION OF Li-SPACES

L. TZAFRIRI1

Abstract. Conditional expectations can be defined in Banach

spaces whose elements can be represented as measurable functions.

In the present paper it is shown that such a space (precisely a

cyclic space) is isomorphic to an Li-space if and only if the condi-

tional expectations act as bounded operators for sufficiently many

representations.

Let (ß, 2, p) be a finite measure space and So a subring of 2 with

maximal element Q0; then for each 2-measurable function/which is

bounded on Í2 one can consider the measure Po(<r) =ftnaj(u)p(dui);

fff^ßoGSo. Since p0 is evidently absolutely continuous with respect

to the restriction of p to the subfield generated by 20 and Í2, due to

the Radon-Nikodym theorem, there exists a 20-measurabIe function

denoted £(20, p)fior which

f f(w)p(du) =   f £(So, p)fp(du) ;        a E So-

Obviously the operator E(20, p) :/—>£(S0, /)/ can be extended

uniquely to a contractive projection in LP(Q, 2, ¿t) ; 1 ̂ p ^ + », which

is called the conditional expectation relative to 20.

However, if the /.„-norm is replaced by a general monotonie norm p

in the sense of the theory of Banach function spaces (see for instance

W. A. J. Luxemburg and A. C. Zaanen [9, Note I]), usually, £(20, p)

does not act as a bounded operator in L„—the space of all 2-mea-

surable functions for which p(f) < + «>, even when we assume that

Zi(ß, S, p)Z)Lp'^)Lx(Q, S, p). Furthermore, a Banach function

space L„ admits many isometric representations; e.g. to every positive

function <t>EL„ whose support is Q one can define a new norm p+(f)

=p(<t>f), obtaining in this way a new Banach function space LPtt> which

is isometric to L„ and satisfies /-i(S2, S, <f>p)Z)Lf,iZ)La,(Çl, S, <f>p).

The main result of this paper states that L„ is isomorphic to an

Li-space over a finite measure space provided for every subring S0 of
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2 and positive function <j>EL„ whose support is ß the conditional

expectation £(S0, <pfi) is a bounded operator in LPi?.

Since a Banach space isomorphic to an Zi-space is not in general a

Banach function space, in order to have a complete characterization

we will consider the more natural context (for this purpose) of cyclic

spaces introduced by W. G. Bade [3] rather than that of Banach

function spaces (for other characterizations using cyclic spaces see

[11])-

Conditional expectations in cyclic spaces. We shall start by sum-

marizing some notions and results needed in the sequel. A Boolean

algebra of projections 33 in a Banach space X is called o--complete

(cf. W. G. Bade [2]) provided for every sequence Pn£93; n = i,

2, • • • , the projections ViT=iPn and t\n~iPn exist in 93 and satisfy

(V Pn)x = c\m{PnX};        (l Pn)x=  f)   {PnX\.
\n=l        / » \n-l        / n=l

It is well known that 93 can be regarded as a spectral measure P(-)

defined on the Borel sets 2 of its Stone space Q and it follows from

W. G. Bade [2, Theorem 2.2] and N. Dunford [4] that there exists

a constant K such that for every Borel bounded function /, the

integral S(f) =faf(u>)P(doû) exists in the uniform operator topology

and satisfies the inequality: ||S(/)|| ^Ksupaea\f(<>>)\ • For/unbounded

we can consider S(f) as an unbounded operator whose domain is

D(S(f)) = <x\ xE X, lim   J   f(u)P(du)x existsi-
\ m-»«o J e„, )

and em= {<o|wEfi, |/(«) | Sm\; m = \, 2, • • • . According to W. G.

Bade [3], X is a cyclic space relative to a o"-complete Boolean al-

gebra of projections 93 if there is x0EX such that X = ffll(x0)

= clm{Px0|PG93}. In this case, by W. G. Bade [3, Theorem 4.5],

X =SDÎ(xo) = {S(f)x0\xoED(S(f))}. Let us also mention that for every

cyclic space X=lifft(xo) there exists a functional x0 EX*, which will

be called Bade functional, with the following properties:

(i) x0*PxoèO;PG93;
(ii) if x*Pxo = 0 for some PG93, then P = 0 (cf. W. G. Bade

[2, Theorem 3.1]).

With this preparation we can state our principal result which is

contained in the following theorem.

Theorem 1. A Banach space X is isomorphic to an Li-space over a

finite measure space if and only if:
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(a) X is a cyclic space 9K(x0); xoEX, relative to some a-complete

Boolean algebra of projections Sß, and

(b) there exists a Bade functional x0 EX* such that the series

'   x>(<rn)S(f)x0

„=i x*P(an)S(<l>)xo

S(f)x0,S(<t>)xoE^ft(x(l);    0(co)>O;    co E Q,

converges strongly in X for every sequence of disjoint sets crnG2;

« = 1,2,

Proof. Letr be an isomorphism between an Li-space Li(T, 3, m);

m(T)< + oo and X; x0=t(1); *f - (r*)_l(l) and ff= {F(e)\eET;

P(e)T(f) =T(Xe/);/E/-i(r, 3, m)}. Obviously X is a cyclic space rela-

tive to the <r-complete Boolean algebra of projections 5 for which the

series in condition (b) of the theorem converges and its sum is

bounded in norm by ||t|| - |j-7- xjj -||.S(/)xo||.

Conversely, let us set

"    x*P(an)S(f)x0
Q(S(f)xo) = Z   »J   ','    PMS(*)x0;       S(f)x0 E X.

„=1   X*P((Tn)S(<l>)Xo

One can easily see that Q is a linear projection in X. In order to show

that Q is bounded assume there exist S(f„)xoEX; \\S(f„)xo\\=l;

« = 1, 2, • • • , such that ||i2(5(/„)xo)|| ==«3. The inequality

|S(|/»|)*o|| = h(-^-)s(fn)x0
\     Jn      /

g K\\S(fn)x0\\

shows that S(\fn\)x0EX and ||S(|/„|)x0|| ¿X; » = 1, 2, • • • . Set

Q(5(/„)xo)=5(g„)x0; <3(5([/„|)xo)=5(Än)x0; since |g„(co)| ^hn(u);

w£i2, we obtain

1 1 w3
||S(A,)*.|| â - ||5( | gn I )*.|| è -||5(g„)x„|| ^ - ■

Thus for S(f)x0 =En". i(5( |/„ | )x0/«2) GI we have

m * ¿IKS-^) ¿IWW-41 6 j
which shows that Q is not defined in S(f)x0EX i.e. condition (b) of

the theorem does not hold. We have to point out that Q depends on.

the choice of 5(<^)x0GXandcrriE2; « = 1, 2, • • •.
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Now, let {¡>'„\ and {ô'n'\ be two sequences of mutually disjoint

sets; «;, S;'G2; » = 1, 2, • • -, (U»"-i5;)n(Un"=15;') =0 for which

P(ôJ,) as well as P(8'n') are nonzero projections. Set p(<r) =x*P(a)x0;

or£2;an = min{ju(5;i),/¿(Sñ')} and

»   an  P(S:)x0        -   a»   P(än")x„
5(<^)xo = ¿.-h y,-

„tí 2»    „(«„') ntí 2»     „(«„")

tpÍo-ÍÚí.'uu" «,")Vo.

Since <p(co) >0; coGß, we can consider the projection Q corresponding

to S(d>)xo and the partition <rn = 5'nVJ8'n'; » —1, 2, • • • . Then

e(W)*o) =—/if.«:)!"?
a» L2"

ßn P(6ñ)x0      an   P(8ñ')xo

i(i¿)        2-    M(5„")

and further

/P(Sn)x0\ _ /P(8¿)x0      P(gn,/)x0\    /

V m(0  /      \ /*(«-') d(*i')   //

and similarly:

/P(8:')xq\ _/P(8¿)xo P(8n")xp\    i

Q\  „(«„")   /      \ m(0 m(«-")   //

This implies that a series ^ü-iCnP(8'„)xo/p(8'n) converges if and

only if the series ^ln~iCnP(8'„')x0/ß(8'n') does, i.e., the basis

{P(ô'H)xo/u(ô'n)} is equivalent to the basis {P(5;')xo/m(8») }• If * is

a permutation of the natural numbers, the bases {P(8'n)xo/fi(8'„)}

and {P(K(.n))x»/ß(Kin))} will be equivalent since both are equiv-

alent to {P(o'¿)xo/n(8ü)\. In the terminology of I. Singer [lo]

(see also M. J. Kadec and A. Pefczyñski [7]) this means that both

bases {P(8'n)xo/ß(8'n)} and {P(í¿')x0/ju(5»)} are symmetric and

thus by [7, Theorem 5 ] there exists M' and M" such that

' Jn«M        i   ll^.-'HI
wr >•(«-)       mi   "(*•")

Consequently, for any partition {S„} there exists M such that

||P(ô»)xo||/m(8») SJf;* —1, 2, • • -, (since we can take 8'n = 82n-i and

%=«*.;»-1,2, • • •)•
The next step will be to show that for any partition {S„} the basis

{P(5„)x0/ju(ôn)} is equivalent to the natural basis of h. Indeed, if a

series '^ln-iCnP(8n)xo/ß(8n) is convergent, then it is easy to see that
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the series ZT-i| cn\ P(èn)x0/p(ô„) is convergent too. By repeating the

previous part of the proof for

00 P(8 )xn / °°        \

s(i)»o= E kl ^V + p(o- u 5nk
n=l m(5») \ „=1      /

instead   of  x0   (which   is   possible   since  \p(ui)>0;  co£i2)   we   get

E>T.i||^>(5n)'S(^')xo|| < + °° which implies theconvergenceofEiT.il cn\.

Since the converse is obvious the assertion is completely proved.

The crucial point in the proof is to show that

||P(5)x0||
SUp     - <   +   00 .

o*Sez       p(b)

Suppose there exists a sequence r/„£2, for which \\P(i)n)xo\\/p(vn) èw;

« = 1, 2, • • -, and p(vn)yiO. We shall construct by induction another

sequence ¡<rn} with the properties

(i) <7„D<t, is equal tO(r„or 0;

(ii)  ||P(<rB)xo||MOS:«;l=î = ra-l.

Indeed, set o-x = rji and assume that 9\, • • • , <r» are already con-

structed and satisfying the conditions (i) and (ii). The following

equality

r/«+i= ( 1n+i— U o-k 1 W(77B+1fV,,)U U ( j?„+i A f ak—   U    a, J 1
\ *«1       / Jfc=l \ \ i=k+l       //

splits 77n+i into «+ 1 disjoint sets; hence

' Í Vn+l  —    U    0-k j x0    + ||P(t7b+iPi o-n)x0||

n-l||       / / n \\

+ E \\P ( Íb+I ^ ( °> ~     U     o-yjjxo
k-i 11    \ \        y=*+i    //   II

^ ||P(i,n+i)x0|| è (n + l)p(Vn+l)

=   (« +  1)     plvn+l —    U   0> j + M^n+l H (7„)

+ EkLi^U- û a,-ni.

Thus, at least for one of these disjoint sets, which will be denoted

r?„+i we have ||P(t)b+i)xo|| ^(n + l)p(crn+i) and in this way all condi-

tions imposed on {crB} will hold.
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Condition (i) satisfied by the sequence {a„} shows that it contains

either a subsequence of disjoint sets or a nested subsequence k¿l-

The first possibility leads immediately to a contradiction of condition

(ii) while in the second case we will have the basis

{P(o-nj — <rnj+i)xo/p(a-nj — o-B)+I)}

which is equivalent to the natural basis of h. In view of the closed

graph theorem this implies the existence of a constant A such that:

P(&nj — o-Bj-+1)xo|

E«,
1=1 p(<rnj — <rnj+1)

= ̂ E
j=i

for   any   sequence   (a¡)Eh- Taking  aj=p(an¡— crnj+l)/p(o-nk — crnm+1);

k^j^m, we obtain

P(<rnj — <rnj+l)xo

j=k     p(o-nk ,,)

i.e.

P(<r»l)xo - P(<rBm+1)*o|

ß(<Tnk)   —  ß(o-nm+1)

< A

^ A.

But pWn^i) úK\\xt)\\/nm+i i.e. lim™-»«,/¿(u-%,+1 ) =0 and therefore

limm_||P((rwl)xo||=0. Thus \\P(<jnk)\\/p(ank)^A; k = l,2, • ■ ■ ,

which contradicts again condition (ii).

In conclusion we have proved the existence of a constant L such

that

||P(5)x0||/M(5) á L;       5 G 2; p(8) ^ 0.

Finally, let/ be a simple function ; one can easily see that

-J-rr  f | /(«) | p(dœ) í i \\S( \f\ )*,|| á
K\\x*\\ Jn K

( \f(w)\p(do>)

\\S(f)X„\

= L

which shows that X = tyfl(x0) is isomorphic to Li(Q, 2, p).

Let X = W(x0) be a cyclic space relative to a <r-complete Boolean

algebra of projections SB (regarded as a spectral measure P(-) on (Q,

2) and x0 a Bade functional. It is quite clear that for any x¿ = S(d))xo

EX; <t>(o3)>0; coGñ, we have 2ft(x0) = $Dí(x¿). Considering the posi-

tive measure v^,(<r) =x0P(<r)xi we can define the conditional expecta-

tion -E(20, v¿) relative to a subring 20 of 2 as the operator in SDc(a:*)
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= X which assigns to S(f)x^E^H(x^) the vector £(20, »v)S(/)x0

= S(h)x<t, where h would be the Radon-Nikodym derivative of the

measure x0P(ar)S(f)x<i,; <rE20, with respect to the restriction of vt to

2o (S(f)x<j, belongs to the domain of EÇ20, v¿) if and only if
x,ED(S(h))).

Now the previous theorem can be restated as follows:

Theorem 2. A Banach space X is isomorphic to an Li-space over a

finite measure space if and only if:

(a) X is a cyclic space Wl(xo); x0EX, relative to some a-complete

Boolean algebra of projections 93, and

(b) there exists a Bade functional x0 EX* such that for every subring

20 o/2 and x¿ = S(<p)xaEX; d>(u>)>0; «Eß, the conditional expectation

EÇZo, v¿) is a linear bounded projection in X = Wl(x¿).

Proof. It suffices to observe that the series involved in the state-

ment of Theorem 1 converges and its sum is £(20, v^)S(f<p~l)x^, where

20 is the subring generated by the sets an; n = l, 2, ■ • • . Q.E.D.

Remarks. 1. Using Banach function spaces instead of cyclic spaces

might simplify the statement of Theorem 2 but only a sufficient condi-

tion for such spaces to be isomorphic to an Zi-space can be obtained.

The precise assertion appears in the introduction.

2. In defining the measures v$ we use the same Bade functional x0 ;

if instead we setX^(') =x^P(-)x^, where x¿ depends on x$, L„ will be

isometric to an Zp-space; l^£< + °°, provided all the conditional

expectations EÇZo, X*) will be contractive projections in Z„ (cf. T.

Ando[l]).

3. The problems discussed in this paper are related to the so called

"leveling property" of a norm p in a Banach function space (cf. H. W.

Ellis and I. Halperin [5]) and to the property (J) introduced by

N. E. Gretsky [ó]. It follows from Theorem 1 that unless a weakly se-

quentially complete Banach function space is isomorphic to an Zi-

space, there exists always an isometric representation Lp^ of Lp in

which sup<t,p<t,(f) = -f- 00 (in the notation of [ó]), and consequently p0

does not admit an equivalent rearrangement-invariant norm with

respect to the measure vt (cf. W. A. J. Luxemburg [8, Theorem 14.4]).
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