CONDITIONAL EXPECTATIONS AND AN ISOMORPHIC CHARACTERIZATION OF L_{1}-SPACES

L. TZAFRIRI ${ }^{1}$

Abstract

Conditional expectations can be defined in Banach spaces whose elements can be represented as measurable functions. In the present paper it is shown that such a space (precisely a cyclic space) is isomorphic to an L_{1}-space if and only if the conditional expectations act as bounded operators for sufficiently many representations.

Let (Ω, Σ, μ) be a finite measure space and Σ_{0} a subring of Σ with maximal element Ω_{0}; then for each Σ-measurable function f which is bounded on Ω one can consider the measure $\mu_{0}(\sigma)=\int_{\sigma \cap \Omega_{0}} f(\omega) \mu(d \omega)$; $\sigma \cap \Omega_{0} \in \Sigma_{0}$. Since μ_{0} is evidently absolutely continuous with respect to the restriction of μ to the subfield generated by Σ_{0} and Ω, due to the Radon-Nikodym theorem, there exists a Σ_{0}-measurable function denoted $E\left(\boldsymbol{\Sigma}_{0}, \mu\right) f$ for which

$$
\int_{\sigma} f(\omega) \mu(d \omega)=\int_{\sigma} E\left(\Sigma_{0}, \mu\right) f \mu(d \omega) ; \quad \sigma \in \Sigma_{0}
$$

Obviously the operator $E\left(\Sigma_{0}, \mu\right): f \rightarrow E\left(\Sigma_{0}, f\right) f$ can be extended uniquely to a contractive projection in $L_{p}(\Omega, \Sigma, \mu) ; 1 \leqq p \leqq+\infty$, which is called the conditional expectation relative to Σ_{0}.

However, if the L_{p}-norm is replaced by a general monotonic norm ρ in the sense of the theory of Banach function spaces (see for instance W. A. J. Luxemburg and A. C. Zaanen [9, Note I]), usually, $E\left(\Sigma_{0}, \mu\right)$ does not act as a bounded operator in L_{ρ}-the space of all Σ-measurable functions for which $\rho(f)<+\infty$, even when we assume that $L_{1}(\Omega, \Sigma, \mu) \supset L_{\rho} \supset L_{\infty}(\Omega, \Sigma, \mu)$. Furthermore, a Banach function space L_{ρ} admits many isometric representations; e.g. to every positive function $\phi \in L_{\rho}$ whose support is Ω one can define a new norm $\rho_{\phi}(f)$ $=\rho(\phi f)$, obtaining in this way a new Banach function space $L_{\rho_{\phi}}$ which is isometric to L_{ρ} and satisfies $L_{1}(\Omega, \Sigma, \phi \mu) \supset L_{\rho_{\phi}} \supset L_{\infty}(\Omega, \Sigma, \phi \mu)$.

The main result of this paper states that L_{ρ} is isomorphic to an L_{1}-space over a finite measure space provided for every subring Σ_{0} of

Received by the editors September 24, 1969.
AMS 1969 subject classifications. Primary 4606, 4635, 4725; Secondary 4610, 4720.
Key words and phrases. Conditional expectation, Banach function spaces, cyclic spaces, L_{1}-spaces, Boolean algebras of projections, isomorphism between Banach spaces.

Supported in part by National Science Foundation, Grant GP 8217.
Σ and positive function $\phi \in L_{\rho}$ whose support is Ω the conditional expectation $E\left(\Sigma_{0}, \phi \mu\right)$ is a bounded operator in $L_{\rho_{\phi}}$.

Since a Banach space isomorphic to an L_{1}-space is not in general a Banach function space, in order to have a complete characterization we will consider the more natural context (for this purpose) of cyclic spaces introduced by W. G. Bade [3] rather than that of Banach function spaces (for other characterizations using cyclic spaces see [11]).

Conditional expectations in cyclic spaces. We shall start by summarizing some notions and results needed in the sequel. A Boolean algebra of projections \mathfrak{B} in a Banach space X is called σ-complete (cf. W. G. Bade [2]) provided for every sequence $P_{n} \in \mathfrak{B} ; n=1$, $2, \cdots$, the projections $\bigvee_{n=1}^{\infty} P_{n}$ and $\bigwedge_{n=1}^{\infty} P_{n}$ exist in \mathfrak{B} and satisfy

$$
\left(\bigvee_{n=1}^{\infty} P_{n}\right) X=\underset{n}{\operatorname{clm}}\left\{P_{n} X\right\} ; \quad\left(\bigwedge_{n=1}^{\infty} P_{n}\right) X=\bigcap_{n=1}^{\infty}\left\{P_{n} X\right\} .
$$

It is well known that \mathfrak{B} can be regarded as a spectral measure $P(\cdot)$ defined on the Borel sets Σ of its Stone space Ω and it follows from W. G. Bade [2, Theorem 2.2] and N. Dunford [4] that there exists a constant K such that for every Borel bounded function f, the integral $S(f)=\int_{\mathrm{\Omega}} f(\omega) P(d \omega)$ exists in the uniform operator topology and satisfies the inequality: $\|S(f)\| \leqq K \sup _{\omega \in \Omega}|f(\omega)|$. For f unbounded we can consider $S(f)$ as an unbounded operator whose domain is

$$
D(S(f))=\left\{x \mid x \in X, \lim _{m \rightarrow \infty} \int_{e_{m}} f(\omega) P(d \omega) x \text { exists }\right\}
$$

and $e_{m}=\{\omega|\omega \in \Omega,|f(\omega)| \leqq m\} ; m=1,2, \cdots$. According to W. G. Bade [3], X is a cyclic space relative to a σ-complete Boolean algebra of projections \mathfrak{B} if there is $x_{0} \in X$ such that $X=\mathfrak{M}\left(x_{0}\right)$ $=\operatorname{clm}\left\{P x_{0} \mid P \in \mathfrak{B}\right\}$. In this case, by W. G. Bade [3, Theorem 4.5], $X=\mathfrak{M}\left(x_{0}\right)=\left\{S(f) x_{0} \mid x_{0} \in D(S(f))\right\}$. Let us also mention that for every cyclic space $X=\mathfrak{M}\left(x_{0}\right)$ there exists a functional $x_{0}^{*} \in X^{*}$, which will be called Bade functional, with the following properties:
(i) $x_{0}^{*} P x_{0} \geqq 0 ; P \in \mathfrak{B}$;
(ii) if $x_{0}^{*} P x_{0}=0$ for some $P \in \mathfrak{B}$, then $P=0$ (cf. W. G. Bade [2, Theorem 3.1]).
With this preparation we can state our principal result which is contained in the following theorem.

Theorem 1. A Banach space X is isomorphic to an L_{1}-space over a finite measure space if and only if:
(a) X is a cyclic space $\mathfrak{M}\left(x_{0}\right) ; x_{0} \in X$, relative to some σ-complete Boolean algebra of projections \mathfrak{B}, and
(b) there exists a Bade functional $x_{0}^{*} \in X^{*}$ such that the series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{x_{0}^{*} P\left(\sigma_{n}\right) S(f) x_{0}}{x_{0}^{*} P\left(\sigma_{n}\right) S(\phi) x_{0}} P\left(\sigma_{n}\right) S(\phi) x_{0} \\
& S(f) x_{0}, S(\phi) x_{0} \in \mathfrak{M}\left(x_{0}\right) ; \quad \phi(\omega)>0 ; \quad \omega \in \Omega
\end{aligned}
$$

converges strongly in X for every sequence of disjoint sets $\sigma_{n} \in \Sigma$; $n=1,2, \cdots$.

Proof. Let τ be an isomorphism between an L_{1}-space $L_{1}(T, J, m)$; $m(T)<+\infty$ and $X ; x_{0}=\tau(1) ; x_{0}^{*}=\left(\tau^{*}\right)^{-1}(1)$ and $\mathcal{F}=\{F(e) \mid e \in T ;$ $\left.F(e) \tau(f)=\tau\left(\chi_{e} f\right) ; f \in L_{1}(T, J, m)\right\}$. Obviously X is a cyclic space relative to the σ-complete Boolean algebra of projections \mathcal{F} for which the series in condition (b) of the theorem converges and its sum is bounded in norm by $\|\tau\| \cdot\left\|\tau^{-1}\right\| \cdot\left\|S(f) x_{0}\right\|$.

Conversely, let us set

$$
Q\left(S(f) x_{0}\right)=\sum_{n=1}^{\infty} \frac{x_{0}^{*} P\left(\sigma_{n}\right) S(f) x_{0}}{x_{0}^{*} P\left(\sigma_{n}\right) S(\phi) x_{0}} P\left(\sigma_{n}\right) S(\phi) x_{0} ; \quad S(f) x_{0} \in X
$$

One can easily see that Q is a linear projection in X. In order to show that Q is bounded assume there exist $S\left(f_{n}\right) x_{0} \in X ;\left\|S\left(f_{n}\right) x_{0}\right\|=1$; $n=1,2, \cdots$, such that $\left\|Q\left(S\left(f_{n}\right) x_{0}\right)\right\| \geqq n^{3}$. The inequality

$$
\left\|S\left(\left|f_{n}\right|\right) x_{0}\right\|=\left\|S\left(\frac{\left|f_{n}\right|}{f_{n}}\right) S\left(f_{n}\right) x_{0}\right\| \leqq K\left\|S\left(f_{n}\right) x_{0}\right\|
$$

shows that $S\left(\left|f_{n}\right|\right) x_{0} \in X$ and $\left\|S\left(\left|f_{n}\right|\right) x_{0}\right\| \leqq K ; n=1,2, \cdots$ Set $Q\left(S\left(f_{n}\right) x_{0}\right)=S\left(g_{n}\right) x_{0} ; \quad Q\left(S\left(\left|f_{n}\right|\right) x_{0}\right)=S\left(h_{n}\right) x_{0} ;$ since $\left|g_{n}(\omega)\right| \leqq h_{n}(\omega)$; $\omega \in \Omega$, we obtain

$$
\left\|S\left(h_{n}\right) x_{0}\right\| \geqq \frac{1}{K}\left\|S\left(\left|g_{n}\right|\right) x_{0}\right\| \geqq \frac{1}{K^{2}}\left\|S\left(g_{n}\right) x_{0}\right\| \geqq \frac{n^{3}}{K^{2}}
$$

Thus for $S(f) x_{0}=\sum_{n=1}^{\infty}\left(S\left(\left|f_{n}\right|\right) x_{0} / n^{2}\right) \in X$ we have

$$
\left\|Q\left(S(f) x_{0}\right)\right\| \geqq \frac{1}{K}\left\|Q\left(\frac{S\left(\left|f_{n}\right|\right) x_{0}}{n^{2}}\right)\right\|=\frac{1}{K n^{2}}\left\|S\left(h_{n}\right) x_{0}\right\| \geqq \frac{n}{K^{3}}
$$

which shows that Q is not defined in $S(f) x_{0} \in X$ i.e. condition (b) of the theorem does not hold. We have to point out that Q depends on the choice of $S(\phi) x_{0} \in X$ and $\sigma_{n} \in \Sigma ; n=1,2, \cdots$.

Now, let $\left\{\delta_{n}^{\prime}\right\}$ and $\left\{\delta_{n}^{\prime \prime}\right\}$ be two sequences of mutually disjoint sets; $\delta_{n}^{\prime}, \delta_{n}^{\prime \prime} \in \Sigma ; n=1,2, \cdots,\left(\cup_{n=1}^{\infty} \delta_{n}^{\prime}\right) \cap\left(\cup_{n=1}^{\infty} \delta_{n}^{\prime \prime}\right)=\varnothing$ for which $P\left(\delta_{n}^{\prime}\right)$ as well as $P\left(\delta_{n}^{\prime \prime}\right)$ are nonzero projections. Set $\mu(\sigma)=x_{0}^{*} P(\sigma) x_{0}$; $\sigma \in \Sigma ; a_{n}=\min \left\{\mu\left(\delta_{n}^{\prime}\right), \mu\left(\delta_{n}^{\prime \prime}\right)\right\}$ and

$$
\begin{aligned}
S(\phi) x_{0}= & \sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \frac{P\left(\delta_{n}^{\prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime}\right)}+\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}} \frac{P\left(\delta_{n}^{\prime \prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime \prime}\right)} \\
& +P\left(\Omega-\left(\bigcup_{n=1}^{\infty} \delta_{n}^{\prime} \cup \bigcup_{n=1}^{\infty} \delta_{n}^{\prime \prime}\right)\right) x_{0} .
\end{aligned}
$$

Since $\phi(\omega)>0 ; \omega \in \Omega$, we can consider the projection Q corresponding to $S(\phi) x_{0}$ and the partition $\sigma_{n}=\delta_{n}^{\prime} \cup \delta_{n}^{\prime \prime} ; n=1,2, \cdots$. Then

$$
Q\left(P\left(\delta_{n}^{\prime}\right) x_{0}\right)=\frac{2^{n-1}}{a_{n}} \mu\left(\delta_{n}^{\prime}\right)\left[\frac{a_{n}}{2^{n}} \frac{P\left(\delta_{n}^{\prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime}\right)}+\frac{a_{n}}{2^{n}} \frac{P\left(\delta_{n}^{\prime \prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime \prime}\right)}\right]
$$

and further

$$
Q\left(\frac{P\left(\delta_{n}^{\prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime}\right)}\right)=\left(\frac{P\left(\delta_{n}^{\prime}\right) x_{0}}{\mu\left(\delta_{n}{ }^{\prime}\right)}+\frac{P\left(\delta_{n}^{\prime \prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime}{ }^{\prime \prime}\right)}\right) / 2
$$

and similarly:

$$
Q\left(\frac{P\left(\delta_{n}^{\prime \prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime \prime}\right)}\right)=\left(\frac{P\left(\delta_{n}^{\prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime}\right)}+\frac{P\left(\delta_{n}^{\prime \prime}\right) x_{0}}{\mu\left(\delta_{n}^{\prime \prime}\right)}\right) / 2 .
$$

This implies that a series $\sum_{n=1}^{\infty} c_{n} P\left(\delta_{n}^{\prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime}\right)$ converges if and only if the series $\sum_{n=1}^{\infty} c_{n} P\left(\delta_{n}^{\prime \prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime \prime}\right)$ does, i.e., the basis $\left\{P\left(\delta_{n}^{\prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime}\right)\right\}$ is equivalent to the basis $\left\{P\left(\delta_{n}^{\prime \prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime \prime}\right)\right\}$. If π is a permutation of the natural numbers, the bases $\left\{P\left(\delta_{n}^{\prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime}\right)\right\}$ and $\left\{P\left(\delta_{\pi(n)}^{\prime}\right) x_{0} / \mu\left(\delta_{\pi(n)}^{\prime}\right)\right\}$ will be equivalent since both are equivalent to $\left\{P\left(\delta_{n}^{\prime \prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime \prime}\right)\right\}$. In the terminology of I. Singer [10] (see also M. J. Kadec and A. Petczyński [7]) this means that both bases $\left\{P\left(\delta_{n}^{\prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime}\right)\right\}$ and $\left\{P\left(\delta_{n}^{\prime \prime}\right) x_{0} / \mu\left(\delta_{n}^{\prime \prime}\right)\right\}$ are symmetric and thus by $[7$, Theorem 5$]$ there exists M^{\prime} and $M^{\prime \prime}$ such that

$$
\frac{1}{\left\|x_{0}^{*}\right\|} \leqq \frac{\left\|P\left(\delta_{n}^{\prime}\right) x_{0}\right\|}{\mu\left(\delta_{n}{ }^{\prime}\right)} \leqq M^{\prime} ; \quad \frac{1}{\left\|x_{0}^{*}\right\|} \leqq \frac{\left\|P\left(\delta_{n}{ }^{\prime \prime}\right) x_{0}\right\|}{\mu\left(\delta_{n}^{\prime \prime}\right)} \leqq M^{\prime \prime} ; \quad n=1,2, \cdots .
$$

Consequently, for any partition $\left\{\delta_{n}\right\}$ there exists M such that $\left\|P\left(\delta_{n}\right) x_{0}\right\| / \mu\left(\delta_{n}\right) \leqq M ; n=1,2, \cdots$, (since we can take $\delta_{n}^{\prime}=\delta_{2 n-1}$ and $\left.\delta_{n}^{\prime \prime}=\delta_{2 n} ; n=1,2, \cdots\right)$.

The next step will be to show that for any partition $\left\{\delta_{n}\right\}$ the basis $\left\{P\left(\delta_{n}\right) x_{0} / \mu\left(\delta_{n}\right)\right\}$ is equivalent to the natural basis of l_{1}. Indeed, if a series $\sum_{n=1}^{\infty} c_{n} P\left(\delta_{n}\right) x_{0} / \mu\left(\delta_{n}\right)$ is convergent, then it is easy to see that
the series $\sum_{n=1}^{\infty}\left|c_{n}\right| P\left(\delta_{n}\right) x_{0} / \mu\left(\delta_{n}\right)$ is convergent too. By repeating the previous part of the proof for

$$
S(\psi) x_{0}=\sum_{n=1}^{\infty}\left|c_{n}\right| \frac{P\left(\delta_{n}\right) x_{0}}{\mu\left(\delta_{n}\right)}+P\left(\Omega-\bigcup_{n=1}^{\infty} \delta_{n}\right) x_{0}
$$

instead of x_{0} (which is possible since $\psi(\omega)>0 ; \omega \in \Omega$) we get $\sum_{n=1}^{\infty}\left\|P\left(\delta_{n}\right) S(\psi) x_{0}\right\|<+\infty$ which implies the convergence of $\sum_{n=1}^{\infty}\left|c_{n}\right|$. Since the converse is obvious the assertion is completely proved.

The crucial point in the proof is to show that

$$
\sup _{0 \neq \delta \in \Sigma} \frac{\left\|P(\delta) x_{0}\right\|}{\mu(\delta)}<+\infty
$$

Suppose there exists a sequence $\eta_{n} \in \Sigma$, for which $\left\|P\left(\eta_{n}\right) x_{0}\right\| / \mu\left(\eta_{n}\right) \geqq n$; $n=1,2, \cdots$, and $\mu\left(\eta_{n}\right) \neq 0$. We shall construct by induction another sequence $\left\{\sigma_{n}\right\}$ with the properties
(i) $\sigma_{n} \cap \sigma_{i}$ is equal to σ_{n} or \varnothing;
(ii) $\left\|P\left(\sigma_{n}\right) x_{0}\right\| / \mu\left(\sigma_{n}\right) \geqq n ; 1 \leqq i \leqq n-1$.

Indeed, set $\sigma_{1}=\eta_{1}$ and assume that $\sigma_{1}, \cdots, \sigma_{n}$ are already constructed and satisfying the conditions (i) and (ii). The following equality

$$
\eta_{n+1}=\left(\eta_{n+1}-\bigcup_{k=1}^{n} \sigma_{k}\right) \cup\left(\eta_{n+1} \cap \sigma_{n}\right) \bigcup \bigcup_{k=1}^{n-1}\left(\eta_{n+1} \cap\left(\sigma_{k}-\bigcup_{j=k+1}^{n} \sigma_{j}\right)\right)
$$

splits η_{n+1} into $n+1$ disjoint sets; hence

$$
\begin{aligned}
& \left\|P\left(\eta_{n+1}-\bigcup_{n=1}^{n} \sigma_{k}\right) x_{0}\right\|+\left\|P\left(\eta_{n+1} \cap \sigma_{n}\right) x_{0}\right\| \\
& \quad+\sum_{k=1}^{n-1}\left\|P\left(\eta_{n+1} \cap\left(\sigma_{k}-\bigcup_{j=k+1}^{n} \sigma_{j}\right)\right) x_{0}\right\| \\
& \geqq \geqq P\left(\eta_{n+1}\right) x_{0} \| \geqq(n+1) \mu\left(\eta_{n+1}\right) \\
& =(n+1)\left[\mu\left(\eta_{n+1}-\bigcup_{k=1}^{n} \sigma_{k}\right)+\mu\left(\eta_{n+1} \cap \sigma_{n}\right)\right. \\
& \\
& \left.\quad+\sum_{k=1}^{n-1} \mu\left(\eta_{n+1} \cap\left(\sigma_{k}-\bigcup_{j=k+1}^{n} \sigma_{j}\right)\right)\right] .
\end{aligned}
$$

Thus, at least for one of these disjoint sets, which will be denoted η_{n+1} we have $\left\|P\left(\eta_{n+1}\right) x_{0}\right\| \geqq(n+1) \mu\left(\sigma_{n+1}\right)$ and in this way all conditions imposed on $\left\{\sigma_{n}\right\}$ will hold.

Condition (i) satisfied by the sequence $\left\{\sigma_{n}\right\}$ shows that it contains either a subsequence of disjoint sets or a nested subsequence $\left\{\sigma_{n_{j}}\right\}$. The first possibility leads immediately to a contradiction of condition (ii) while in the second case we will have the basis

$$
\left\{P\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right) x_{0} / \mu\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right)\right\}
$$

which is equivalent to the natural basis of l_{1}. In view of the closed graph theorem this implies the existence of a constant A such that:

$$
\left\|\sum_{j=1}^{\infty} \alpha_{j} \frac{P\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right) x_{0}}{\mu\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right)}\right\| \leqq A \sum_{j=1}^{\infty}\left|\alpha_{j}\right|
$$

for any sequence $\left(\alpha_{j}\right) \in l_{1}$. Taking $\alpha_{j}=\mu\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right) / \mu\left(\sigma_{n_{k}}-\sigma_{n_{m+1}}\right)$; $k \leqq j \leqq m$, we obtain

$$
\left\|\sum_{j=k}^{m} \frac{P\left(\sigma_{n_{j}}-\sigma_{n_{j+1}}\right) x_{0}}{\mu\left(\sigma_{n_{k}}-\sigma_{n_{m+1}}\right)}\right\| \leqq A
$$

i.e.

$$
\left\|\frac{P\left(\sigma_{n_{k}}\right) x_{0}-P\left(\sigma_{n_{m+1}}\right) x_{0}}{\mu\left(\sigma_{n_{k}}\right)-\mu\left(\sigma_{n_{m+1}}\right)}\right\| \leqq .
$$

But $\mu\left(\sigma_{n_{m+1}}\right) \leqq K\left\|x_{0}\right\| / n_{m+1}$ i.e. $\lim _{m \rightarrow \infty} \mu\left(\sigma_{n_{m+1}}\right)=0$ and therefore $\lim _{m \rightarrow \infty}\left\|P\left(\sigma_{n_{m+1}}\right) x_{0}\right\|=0$. Thus $\left\|P\left(\sigma_{n_{k}}\right)\right\| / \mu\left(\sigma_{n_{k}}\right) \leqq A ; \quad k=1,2, \cdots$, which contradicts again condition (ii).

In conclusion we have proved the existence of a constant L such that

$$
\left\|P(\delta) x_{0}\right\| / \mu(\delta) \leqq L ; \quad \delta \in \Sigma ; \mu(\delta) \neq 0
$$

Finally, let f be a simple function; one can easily see that

$$
\begin{aligned}
\frac{1}{K\left\|x_{0}^{*}\right\|} \int_{\Omega}|f(\omega)| \mu(d \omega) & \leqq \frac{1}{K}\left\|S(|f|) x_{0}\right\| \leqq\left\|S(f) x_{0}\right\| \\
& \leqq L \int_{\Omega}|f(\omega)| \mu(d \omega)
\end{aligned}
$$

which shows that $X=\mathfrak{M}\left(x_{0}\right)$ is isomorphic to $L_{1}(\Omega, \Sigma, \mu)$.
Let $X=\mathfrak{M}\left(x_{0}\right)$ be a cyclic space relative to a σ-complete Boolean algebra of projections \mathfrak{B} (regarded as a spectral measure $P(\cdot)$ on $(\Omega$, $\Sigma)$ and x_{0}^{*} a Bade functional. It is quite clear that for any $x_{\phi}=S(\phi) x_{0}$ $\in X ; \phi(\omega)>0 ; \omega \in \Omega$, we have $\mathfrak{M}\left(x_{0}\right)=\mathfrak{M}\left(x_{\phi}\right)$. Considering the positive measure $\nu_{\phi}(\sigma)=x_{0}^{*} P(\sigma) x_{\phi}$ we can define the conditional expectation $E\left(\Sigma_{0}, \nu_{\phi}\right)$ relative to a subring Σ_{0} of Σ as the operator in $\mathfrak{M}\left(x_{\phi}\right)$
$=X$ which assigns to $S(f) x_{\phi} \in \mathfrak{M}\left(x_{\phi}\right)$ the vector $E\left(\Sigma_{0}, \nu_{\phi}\right) S(f) x_{\phi}$ $=S(h) x_{\phi}$ where h would be the Radon-Nikodym derivative of the measure $x_{0}^{*} P(\sigma) S(f) x_{\phi} ; \sigma \in \Sigma_{0}$, with respect to the restriction of ν_{ϕ} to $\Sigma_{0}\left(S(f) x_{\phi}\right.$ belongs to the domain of $E\left(\Sigma_{0}, \nu_{\phi}\right)$ if and only if $\left.x_{\phi} \in D(S(h))\right)$.

Now the previous theorem can be restated as follows:
Theorem 2. A Banach space X is isomorphic to an L_{1}-space over a finite measure space if and only if:
(a) X is a cyclic space $\mathfrak{M}\left(x_{0}\right) ; x_{0} \in X$, relative to some σ-complete Boolean algebra of projections \mathfrak{B}, and
(b) there exists a Bade functional $x_{0}^{*} \in X^{*}$ such that for every subring Σ_{0} of Σ and $x_{\phi}=S(\phi) x_{0} \in X ; \phi(\omega)>0 ; \omega \in \Omega$, the conditional expectation $E\left(\Sigma_{0}, \nu_{\phi}\right)$ is a linear bounded projection in $X=\mathfrak{M}\left(x_{\phi}\right)$.

Proof. It suffices to observe that the series involved in the statement of Theorem 1 converges and its sum is $E\left(\Sigma_{0}, \nu_{\phi}\right) S\left(f \phi^{-1}\right) x_{\phi}$ where Σ_{0} is the subring generated by the sets $\sigma_{n} ; n=1,2, \cdots$ Q.E.D.

Remarks. 1. Using Banach function spaces instead of cyclic spaces might simplify the statement of Theorem 2 but only a sufficient condition for such spaces to be isomorphic to an L_{1}-space can be obtained. The precise assertion appears in the introduction.
2. In defining the measures ν_{ϕ} we use the same Bade functional x_{0}^{*}; if instead we set $\lambda_{\phi}(\cdot)=x_{\phi}^{*} P(\cdot) x_{\phi}$, where x_{ϕ}^{*} depends on x_{ϕ}, L_{ρ} will be isometric to an L_{p}-space; $1 \leqq p<+\infty$, provided all the conditional expectations $E\left(\Sigma_{0}, \lambda_{\phi}\right)$ will be contractive projections in L_{ρ} (cf. T. Ando [1]).
3. The problems discussed in this paper are related to the so called "leveling property" of a norm ρ in a Banach function space (cf. H. W. Ellis and I. Halperin [5]) and to the property (J) introduced by N. E. Gretsky [6]. It follows from Theorem 1 that unless a weakly sequentially complete Banach function space is isomorphic to an $L_{1^{-}}$ space, there exists always an isometric representation $L_{\rho_{\phi}}$ of L_{ρ} in which $\sup _{\phi} \rho_{\phi}(f)=+\infty$ (in the notation of [6]), and consequently ρ_{ϕ} does not admit an equivalent rearrangement-invariant norm with respect to the measure ν_{ϕ} (cf. W. A. J. Luxemburg [8, Theorem 14.4]).

References

1. T. Ando, Banachverbände und positive Projektionen, Math. Z. 109 (1969), 121130.
2. W. G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-360. MR 17, 513.
3. -_, A multiplicity theory for Boolean algebras of projections in Banach spaces, Trans. Amer. Math. Soc. 92 (1959), 508-530. MR 21 \#7443.
4. N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. MR 16, 142.
5. H. W. Ellis and I. Halperin, Function spaces determined by a levelling length function, Canad. J. Math. 5 (1953), 576-592. MR 15, 439.
6. N. E. Gretsky, Representation theorems on Banach function spaces, Bull. Amer. Math. Soc. 74 (1968), 705-709. MR 37 \#2009.
7. M. I. Kadec and A. Pelczyniski, Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21 (1961/62), 161-176. MR 27 \#2851.
8. W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, Proc. Sympos. Anal. (Queen's Univ., 1967), Queen's Papers in Pure and Appl. Math., no. 10, 1967, pp. 88-144.
9. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach function spaces. I, Nederl. Akad. Wetensch. Proc. Ser. A $66=$ Indag. Math. 25 (1963), 135-147. MR 26 \#6723a.
10. I. Singer, Some characterizations of symmetric bases in Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 185-192. MR 26 \#5393.
11. L. Tzafriri, An isomorphic characterization of L_{p} and c_{0}-spaces, Studia Math. 32 (1969), 287-296.

Northwestern University, Evanston, Illinois 60201
University of Washington, Seattle, Washington 98105

